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EAR interaction terms in the many-body Hemii-
tonian are of considerable interest to molecular

quantum mechanics. Because of their small magnitude,
they are usually ignored in the determination of
electronic wave functions. The detailed interpretation
of the interaction terms shows, however, that they can
be utilized both for the quantitative appraisal of
approximate wave functions and for the qualitative
verification of theoretical constructs. In this paper, we
first outline perturbation methods that can be used
for the calculation of the weak interactions and then
give an indication of their importance to molecular
theory by a discussion of certain applications.

In most attempts to approximate the electronic wave
functions of simple molecules, such as those reported
at this Conference, a Hamiltonian operator of the form

perturbation theory is ideally suited for the purpose.
We write the Hamiltonian X for a system in the usual
form

BC=Xp+K',

where Xp is given by Eq. (1) and X' is the operator
required for the particular weak interaction that is
being considered. If the exact zero-order functions
+„' and energies E ' that satisfy the equation

Bcp@'„=E„%
are known, the perturbation energy AE for the ground
state of the molecule is given by the expression

th E= (%p'
i
I' i%p'),

where E' is the perturbation operator. In general, P
has the form

Rp ——T,+V

has been used. Here T. represents the kinetic energy of
the electrons and V the Coulomb energy of the electrons
and nuclei regarded as point charges. As is well known,
the complete electronic Hamiltonian contains a large
number of additional terms. Some of these, such as the
electron-coupled nuclear-spin interactions and the
nuclear quadrupole coupling are due to the fact that
neither the electrons nor the nuclei can be completely
described by the point charge model used in Eq. (1).
Other terms arise from the interaction between elec-
tronic and nuclear motion. In the presence of external
electric and magnetic fields, still more terms have
to be included. All of these additional terms, which
comprise the weak interactions in molecules, have in
common that their contribution to the electronic energy
is generally a small part of the total. In compariso
with the Hamiltonian of Eq. (1), which involve
energies on the order of electron volts, the weak inter
actions are usually in the range 10 ' to 10—"ev. I
spite of their small magnitude, the weak interaction
often can be measured to a very high accuracy by
number of methods, such as microwave, magneti
resonance, and electric resonance spectroscopy.

PERTURBATION THEORY APPROACH

To permit a fruitful comparison of the experimental
measurements and molecular theory, a technique must
be available for the evaluation of the weak interaction
terms from approximate electronic wave functions.
Because of the minute eBects of the weak interactions,

~ Alfred P. Sloan Foundation Fellow.

~=g~=~+x p~ -'"-'~ xp. ..
l Epp —E„p

For most problems involving weak interactions, only
the first two terms in Eq. (5) are of interest. By
substituting these terms into Eq. (4), we have the
erst-order energy AEp',

B,Ep' (4p'
~

I'i
[
4p——') = (4 p'

~

X'
~
4p'), (6)

and the second-order energy AEp',

~Zp = ('Pp
I
I', I'Pp )

+ (+p' [
X'

(
@„')(0„'

(

X'
(
@p')

ny-Q gpp g 0 (7)

Although Eqs. (6) and (7) provide formal expres-
sions for the desired quantities, lack of knowledge of
exact values for 4' ' and E„' raises problems in their
application. Fortunately, there is no need to have an
exact value of Ep' for AEp', since the first-order energy
is calculated directly rather than from the difference
in the total energy. For AEp', one does require values
for the zero-order energies so as to be able to obtain
the energy denominator (Ep —E ') in Eq. (7). A
greater difhculty with Eq. (7) is that although reason-
able approximations to the ground-state wave func-
tions are available for a few simple molecules, very little
is known about the excited states. The few attempts
that have been made to evaluate AEp' by summing
over a selected finite set of approximate excited-state
functions are confused by the question of the impor-
tance of the continuum contributions. These com-
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plications suggest that some procedure for avoiding
the need for the excited-state functions in AEO' is
essential.

Two methods that reduce the problem of evaluating
AEO' to one involving only the ground-state function
0'0' have been introduced. The first of these makes use
of a matrix sum rule to obtain the equation

where 6 is the so-called average excitation energy,
which is formally defined as the quantity required to
make Eq. (8) exact. To avoid the necessity for solving

Kq. (8) for 6, which would reintroduce the summation
problems that we are trying to avoid, a semitheoretical
estimate of 6 can be made. This is commonly done by
using the form of X' to determine the excited states
that make the most important contribution to I'2 and
then attempting to relate a guess at their energy
spacing to a likely value of D. Although there are
obvious difhculties in 6nding an accurate 6 by such a
crude procedure, the values obtained should generally
be within a factor of two of the correct result and in
favorable cases considerably closer than that. If all the
terms in I'2 result in contributions to AEO' of the same

sign, an upper limit to the perturbation energy can be
found by an appropriate choice of 6,.

The second method, which is considerably more
reliable than the use of a 6 value, introduces a function
C such that

where the function C is obtained by solving the first-
order perturbation equation

(E o—Xo) C+ '= (X'—&Eo')+o' (10)

This method might be called the differential equation
approach. In some cases, particularly those arising in
atomic systems, Eq. (10) can be reduced to a one-

dimensional problem for which a direct numerical

integration is feasible. Since such a simpli6cation is

usually not possible for molecules, another procedure,
such as the variation method, must be used to deter-
mine 4 from Eq. (10).Equation (10) assumes that the
function%'0' is an exact solution of the zero-order equa-

tion [Kq. (3)j. For molecular problems, in which this

assumption is violated by the approximate functions
that are available, one can use the device of construct-

ing an eGective unperturbed Hamiltonian 3CO" to re-

place Xo in Eqs. (3) and (10).Xo" is given by

ef z'+ ye~ (11)
where

If a Hartree-Pock solution has been obtained for the
zero-order Hamiltonian, the Hartree-Fock operator
can be used directly in the set of coupled one-electron

equations that appear instead of Kq. (10).

Both the average excitation energy approach LEq.
(8)j and the differential equation approach LEq. (9)j
are applicable to calculations of weak interactions in
molecules. By their use, the second-order contributions
AE02, as well as the first-order energy AEO', has been
expressed in a form that requires only the ground-state
solution of Kq. (1). In the following sections, these
formulations for the determination of weak interac-
tions from a knowledge of approximate wave functions
are applied to problems of molecular theory.

Early theoretical studies in the area of weak inter-
actions were made by Unsold, ' Van Vleck and Frank, '
I ennard-Jones, ' Hasse, 4 Slater and Kirkwood, ' and
Buckingham. ' The recent refinements in the experi-
mental techniques for the measurement of weak inter-
actions have stimulated a renewed interest in their
calculation. Some of the workers involved are Stern-
heimer (nuclear quadrupole coupling in atoms and
ions), ~ Tillieu and Guy (electric and magnetic sus-

cepitibilities), Dalgarno et al. (polarizabilities in
atoms), ' Das and Bersohn (magnetic shielding in
molecules), 'o Stephens (magnetic shielding and spin
coupling in molecules), "and Ishiguro et al. (accurate
wave functions for weak interactions in Ho)."

APPRAISAL OF APPROXIMATE WAVE FUNCTIONS

We now show how the theory of weak interactions
can be used to appraise approximate wave functions.
By means of the diGerential equation approach to
DE02, both the first-order and the second-order con-
tributions to the weak interactions can be calculated

by perturbation theory. The accuracy of the method is
such that any difference between the calculated results
and the experimental measurements should be due to
errors in the wave function. Since certain of the weak
interactions involve operators whose major contribu-
tions come from regions of space diferent from those
emphasized by the Hamiltonian of Eq. (1),an examina-

tion of the results obtained with a number of these

' A. Unsold, Ann. Physik 82, 380 (1927).' J. H. Van Vleck and A. Frank, Proc. Natl. Acad. Sci. U.S. 15,
539 (1929).' J. E. Lennard-Jones, Proc. Roy. Soc. (London) A129, 598
('1930).

4 H. R. Hasse, Proc. Cambridge Phil. Soc. 26, 542 (1930).' J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).
'R. A. Buckingham, Proc. Roy. Soc. (London) A160, 94

(1937).
7 R. M. Sternheimer, Phys. Rev. 80, 102 (1950);see also H. M.

Foley, R. M. Sternheimer, and D. Tycko, ibid. 93, 734 (1954) and
more recent papers in The Physicat Review.

8 J. Tillien and G. Guy, Compt. rend. 239, 1203 (1954), 240,
1402 (1955); also J. Guy and M. Harrand, ibid. 234, 616 (1952).

9 (a) T. P. Das and R. Bersohn, Phys. Rev. 104, 849L (1956);
(b) 102, 733 (1956).I A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London)
A238, 269 (1956); A247, 245 (1958), and other papers in the
I'roceedhngs of the Royal Society (I,ondon), Series A.

"M. J. Stephens, Proc. Roy. Soc. (London) A243, 264, 274
(1958).

'2 E. Ishi uro, T. Arai, M. Mizushima, and M. Kotani, Proc.
Phys. Soc. London) A65, 178 (1952); E. Ishiguro and S. Koide,
Phys. Rev. 94, 350 (1954); E. Ishiguro, ibid. 111, 203 (1958).



WEAK INTERACTIONS

TABLE I. Magnetic susceptibility and shielding in Hz (rzEz terms) .

&x2)
(A')

(s')
(A')

(s' —x') (x")
(A') (10 ' emu') (10-5)

Exp erimentb
Heitler-London (Z= 1) function
Wang (Z=1.16) function
LCAO-MO iZ= 1.193) function
Nordsieck function

0.214
0.291
0.216
0.208
0.210

0.297
0.398
0.328
0.310
0.297

0.083
0, 108
0.112
0.102
0.081

4.11
5.55
4.30
4.17
4.02

3.15
2.84
2.96
3.08
3.24

~ M. Karplus, J. Chem. Phys. 25, 605 {1956),and unpublished calculations.
See reference 13.

interactions provides a much more detailed experi-
mental test of the wave function than does the energy
criterion alone.

To illustrate the approach, we consider some proper-
ties of the hydrogen molecule, for which the most
accurate experimental and theoretical results are
available. Of the large number of weak interactions
that have been studied in H2, we restrict ourselves to
the molecular magnetic susceptibility and the proton
magnetic shielding. These two interactions are of
special interest because the refined molecular beam
techniques of Ramsey and his co-workers" have made
possible a separate experimental evaluation of the
AEO' and AEO' contributions to the perturbation energy.

For the first-order (diamagnetic) terms in 'Z mole-
cules, the energy corresponding to the susceptibi1. ity y is
given by

»o'(x) = (~" I l~.x.&"~& I ~"),
and that corresponding to the shielding 0 by

Here H and p are the o. components of the magnetic
field and proton moment, respectively, x ~" is a com-
ponent of the diamagnetic part of the susceptibility
tensor given by

y o"——(e'/8mcs) g(b, or s x;,x;o) (15)—

and w p" is a component of the diamagnetic part of the
shielding tensor given by

a p"——(e/2mc)'QD8 pr' —x x;s)/r sj. (16)

second moments of the charge distribution (x') = (ys),
(s'), and (s'—x'), which are obtained directly from the
corresponding (x ")values, and (y") and (o ), which
are rotational averages of the tensors; i.e., (y")=
3 (gzz )+3 (pzz ) and (o' ) s (o'zz )+s (o zz ). Table I
also lists the values for these quantities calculated with
certain of the simpler approximate wave functions for
H2. The particular functions chosen are those which
have been determined for a number of internuclear
distances so as to permit averaging over the zero-point
vibrations. Comparison of the experimental and
theoretical results shows very clearly that the rather
poor results obtained with the Heitler-london func-
tion are considerably improved in the Wang and
LCAO-MO functions. The introduction of an effective
charge parameter contracts the charge distribution to
nearly the correct "size" as measured by both the sus-
ceptibility terms (which vary as r') and the shielding
term (which varies as r '). For a good value of the
quadrupole moment ((s')—(x')), there is necessary
the additional Qexibility in 'shape" that is provided by
the Nordsieck function. When the calculated values
of (x') and (s') for the 28-term James and Coolidge
type function (reported by Kolos and Roothaan at
this Conference) are averaged over an empirical
vibrational potential, exact agreement between theory
and experiment is obtained. By contrast, their 9-term
SCF function yields the values (xs)=0.219As and
(s') =0.2973', the first of which is not quite correct.

For the second-order (paramagnetic) terms, the
energy expressions have the same general form as the
first-order contributions; that is,

The cylindrical symmetry of H2 reduces to two the
number of independent components of these tensors;
with the molecular axis in the s direction, we have
to determine (y„s)= (x„„"),(x„")and (o o)= (o»"),
(o„).For the susceptibility, the individual components
have been determined separately by their dependence
on the quantum number mg. A comparable separation
of the components of the shielding tensor should be
possible; however, the required experimental accuracy
has as yet not been attained. " In. Table I, we list the

"N. F. Ramsey, Molecular Beams (Clarendon Press, Oxford,
England, 1956).

'4
¹ F. Ramsey (private communication).

»*(~)= 8" I l~-x.s ~s I ~"),

»s'(o) = (~ss
I &.o.pa, I e,s). (18)

x o'= —(e/2mc) spy; g

gonzo,

(19)
&o'—E '

The expressions for the operators, however, are con-
siderably more complicated than their first-order coun-
terparts. For the components of the paramagnetic
susceptibility tensor, we have
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(x**") &~**")' (x)' (~)b
(10~emu) (10 ~) (10 o emu) (10 ~)

—0, 0846 —0.63—0.465 —0.39
Experiment'
Heitler-London

(Z= 1) function
Wang (Z=1.16) —0.334

function
LCAO —Mo —0.289

(Z=1.19) func-
tion

Nordsieck function —0.106

—0.50

—0.54

4.03
5.08

3.97

3.88

2.52
2.45

2.46

2.54

TAM,E II. Magnetic susceptibility and shielding in H2.
(BEp' and AEo=hEo'+ZkEo' terms).

has been made of it, even in the cases where wave
functions are available. In Table III, we give some
preliminary results from a study of 820 and NH3.
The (r'} values determined from the diamagnetic part
of the susceptibility are compared with the theoretical
results calculated from the SCF—LCAO —MO wave
function of Ellison and Shull" for 829 and Higuchi"
for NH3. Although no Qexibility in the efkctive charge
parameters of the hydrogen orbitals was introduced
into the wave function, the agreement between experi-
ment and theory is quite good. No results for the
paramagnetic terms are available. '8

a J. Tillien and-G. Guy, see reference 8; J. Chem. Phys. 24, 1117 (1956); I.
Espe, Phys. Rev. 10$, 1254 (1956).

b See references 9(a) and 11,p. 264.' See reference 13.

and for the components of the paramagnetic shielding
tensor,

&r').s|. &r').*~ti. (x") |. (x').*yu.
(A') (A') (10~ emu) (10 ' emu)

H20
NHg

0.51
0.79

0.56'
0.81b

14.4
22.4

15 9a
22. 9b

ThaI.E III. Magnetic susceptibility of polyatomic molecules
{AEo' terms) .

+complex conjugate, (20)

where te; is the u component of the angular mo-
mentum operator for electron i. With the molecular
axis in the 2' direction, the only nonzero contributions
to the tensors come from (x„+)=(x„vr }and (o»"}=
(o~s}. Experimental and theoretical values for these
quantities are given in Table II. The agreement for the
second-order terms is considerably worse than that
found for the 6rst-order contributions. This result is not
surprising since the angular momentum operators
involved in the Es terms of Eqs. (19) and (20) intro-
duce derivatives, which serve as a considerably more
sensitive test of the form of wave functions than do
the operators of Eqs. (15) and (16). Just as for the
diamagnetic terms, some improvement is found on
introducing an effective charge parameter. However,
only when the Nordsieck function is used does one
approach the correct result for Q, s};no comparable
calculation is available for (o r }.From the viewpoint
of the calculation of experimental quantities, it is of
interest that the total suceptibility and shielding
constants are obtained in very good agreement with
the measured values because of the small contribution
made by the paramagnetic terms and their errors
(Table II) "

Thus we see that the magnetic susceptibility and
shielding (especially the second-order terms) provide
a considerable challenge for approximate wave func-
tions. Although comparable information from weak
interaction measurements has been obtained for
molecules other than hydrogen, relatively little use

"For a more general and detailed discussion of the properties
of the hydrogen molecule, see T. P. Das and R. Bersohn, Phys.
Rev. 115, 897 (1959).

~ R. P. Schwarz, thesis, Harvard University, 1952.
b J. R. Eshbach and M. %. P. Strandberg, Phys. Rev. 85, 24 (1952).

For systems with unpaired spins Jn doublet or
triplet states, a number of erst-order weak interactions
have been measured that are not observed in singlet
species. Detailed studies of these interactions have
been made by microwave methods in a few stable
molecules such as NO and 92. In spite of extensive
attempts to 6nd unstable gas phase radicals, the only
successful experiments have been done with QH. It
seems likely that microwave and paramagnetic reso-
nance spectroscopy will soon increase the number of
molecules for which data are available. To illustrate
brieQy the type of results that are obtained, we list
in Table IV certain of the operators that occur. The
(1/r ) interaction arises from spin-orbit coupling in
states of nonzero orbital angular momentum. Both
the (sin'8/r'} and the ((3cos'ii—1)/r'} terms are
obtained from hyper6ne interactions between the
electron-spin and the nuclear-spin magnetic dipoles.
For triplet states, the spin dipole-dipole coupling
between a pair of electrons leads to the

((3 cos'&» —1)/rrs )
term. Numerical values for these interactions in NO,
02, and OH are given in Table IV, with theoretical
estimates of their magnitude made from approximate
wave functions determined by the variational method.
The listed experimental results depend on the par-
ticular model used for the interpretation of the micro-
wave spectra; in both NO and OH, additional work is

'o F. 0. Ellison and H. Shull, J. Chem. Phys. 28, 2348 (1955).
'7 J. Higuchi, J. Chem. Phys. 24, 535 {1956).I' Dr. Y. D. Das has kindly informed me that he has calculated

(x&) for Hso from a localized orbital wave function. The result
obtained is much smaller than the experimental value of 1.46&
10~ emu.
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TABLE IV. interactions in simple nonsinglet species (aEo terms)

(Units of 1(P4 cm') (sin' 8) /r') ((3 cos28 —1)/r3) +'(0) ((3 cos' ego-') /r, o') I

S»4 0
Exptl. b

Calc'

0 0"
Exptl. ~

Calc (Kotani)'
Calc (Meckler) '

0 H»

Exptl. g

Caleb

14.6
16.i

(0.75)
0.95

13.4
13.2

(0.49)
0.2i

—11.8—6.2
1.02

1.26
1.31

18.3

10.8

Includes Coulomb and exchange terms.
M. Mizushima, Phys. Rev. 105, 1262 (1957), and earlier references therein.
Estimated from the wave function of H. Brion, C. Moser, and M. Yamazaki, J. Chem. Phys. 80, 673 (1959).Hartree-Fock values for atomic (1/rg) terms were

used.
~ M. Tinkam and M. W. P. Strandberg, Phys. Rev. 97, 937 (1955); S. L. Miller and C. H. Townes, ibid. 90, 537 (1953).

M. Kotani, Y. Mizuno, K. Kayama, and E. Ishiguro, J. Phys. Soc. Japan, 12, 707 (1957).
Calculated by Tinkam and Strandberg (reference d) from the wave function of A. Meckler, J. Chem. Phys. 21, 1750 (1953).

I G. C. Dousmanis, T. M. Sanders, Jr., and C. H. Townes, Phys. Rev. 100, 1735 (1955).
Estimated from the wave function of M. Krauss, J. Chem. Phys. 29, 1287 (1958).

required to clarify the interactions involved. Com-
parison of the calculated and the measured values
shows reasonable agreement for most of the one-elec-
tron quantities. Without much additional refinement
in the wave functions for these diatomic molecules,
quite accurate values should be attainable. The two-
electron interaction in 02 is more sensitive to the
detailed form of the wave function. Since this interac-
tion offers a direct approach to electron correlation, it is
of considerable interest to molecular theory and should
be carefully examined in system other than 02. The
recent study of the excited triplet state in naphthalene
by paramagnetic resonance" demonstrates the wider
applicability of this approach to the correlation prob-
lem.

VERIFICATION OF THEORETICAL CONSTRUCTS

In the usual form of valence theory, a large number
of constructs are used for the description of the elec-
tronic structure of molecules. Since many of these
constructs, such as 0.—m interaction, hybridization, and
hyperconjugation, have been introduced in the ex-
planation of only small diRerences in the total energy of
molecules, it has usually been difIicult to obtain reliable
criteria for estimating their contribution. We now wish
to show how the weak interactions involved in the
electron coupling of nuclear spins can be used as a
measure for the deviations from perfect pairing that
are involved in hyperconjugation. In the nuclear mag-
netic resonance spectra of rapidly reorienting mole-
cules, pairs of nuclear spins I~ and I~ interact through
a second-order process to yield an energy AEos(a». ) of
the form

(a~o-) = (+oo
~
4 amor" 4 ~+oo), (21)

' C. A. Hutchison and B. W. Magnum, J. Chem. Phys. 29,
952 (1958); see also the theoretical interpretation by M. Gouter-
man, J. Chem. Phys. 30, 1369 (1959).

where the expectation value of the operator aN~. is the
coupling constant ANor, that is, AorN =(aNsr. ) To a.
good approximation, the coupling operator for a pair of
protons a~II can be written

aIrIr. = (2/3h) (16rrp5/3) sy&s(D (r&&) S„)

(22)

where Sk represents the spin operator (in units of fi)
and P, &Jr, etc. correspond to standard notation. By
means of the average excitation energy method [Eq.
(g) ], we can reduce Eq. (22) to the form

alrrr —(2/3hh) (1—6—sP6/3) '
' rH (gb(rkH) 5(r&lr ) So S(), (23)

since EEo is zero in this case. By using Eq. (23) for
aJIII and expanding the ground-state wave function
+p in terms of a set of canonical valence-bond singlet
structures C,p, we find that A~II. in cps is equal to the
expression"

AH~ = (6hd, ) '(16sph/3)'yrrsplr(0) fir (0)

where c, is the coefficient for contribution of f,o to 4'oo,

2e is the number of electrons, i„ is the number of
islands in the superposition diagram for structures r
and s, fir(0) and PIr (0) represent the electron density
at nuclei H and H', respectively, and f„,(Pzz~. ) is the
exchange factor for orbital H and H' in the (rs) super-
position diagram. From the form of Eq. (24) and the

"M. Karplus and D. H. Anderson, J.Chem. Phys. 30, 6 (1959).
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meaning of the exchange factor in valence-bond theory,
it is evident that if H and H' cannot be represented as
bonded together in any of the structures with a non-
zero coeflicient [f«(prr~ ) =——,

' for all r, sj, Alrrr is

equal to zero. Conversely, for chemically nonbonded
atoms, a value of AIIII diferent from zero implies that
structures other than the perfect pairing structure
contribute to the ground-state wave function.

Applying this approach to the ethane molecule, we
have calculated the coupling constant for a pair of
protons attached to diGerent carbon atoms. Contribu-
tions to +0' of all the possible nonionic structures x„.
in the HCC'H' fragment model of ethane were evalued

by standard variational techniques, 6 was set equal
to twice the C—H bond energy, and P~(0), Plr (0)
were obtained from hydrogen atom wave functions.
The resulting expression for AII~ as a function of the
dihedral angle P between the HCC' and CC'H' plane is

given approximately by the equation '

8.5 cos'P —0.28 0&&&900
(25)

9.5 cos'p —0.28 90'&/&180',

Experiments by a number of workers" have shown

that the form of Eq. (25) is correct, although the
coefhcients of the cos'0 terms are probably in the
neighborhood of 12 and 14 instead of the theoretical
values of 8.5 and 9.5, respectively. Since H and JI'
are not bonded together in the perfect pairing struc-
ture, these values for the coupling constant provide
direct evidence for the occurrence of deviations from
perfect pairing in ethane. Using the valence-bond

~' M. Karplus, J. Chem. Phys. 30, 11 (1959).
~ R. U. Lemiux, R. K. Kullnig, and R. Y. Moir, J. Am. Chem.

Soc. 80, 2237 (1958); E. J. Corey (private communication);
N. Sheppard (private communication) .

calculations, we find that the additional structures
contribute 3.18 kcal of "hyperconjugation energy to
the ground state. Although this value is probably not
exact, the general agreement between the coupling-
constant theory and experiment indicates that it is of

~ the correct order of magnitude. Similar results have
been found for a number of systems ""Further, if
the coupling constants for atoms other than hydrogen
are considered, information concerning orbital hy-
bridization and bond polarization can be obtained. '4

CONCLUSION

Ke have tried to demonstrate that the study of weak
interactions can play an important role in molecular
theory. Then formulated in terms of perturbation
theory, they can be of considerable utility in the analysis
of electronic wave function. Now that there are a
number of groups actively engaged in the determina-
tion of approximate wave functions by automatic high-
speed computer methods, an increased concern with
weak-interaction measurements is to be expected.

From the results available at present, it seems that
quite accurate theoretical values for at least some of
the weak interactions are within the range of possi-
bility. To obtain such reliable values, it will be neces-

sary to consider the form of the weak-interaction

operator that is being calculated and to introduce the
appropriate flexibility into the approximate wave
function. The magnitudes determined for the weak
interactions by such a careful approach should then be
of sufhcient accuracy to aid in the interpretation of
microwave and radio-frequency spectra.

» T. C. Farrar and M. Karplus (to be published).
2'M. Karplus and D. M. Grant, Proc. Natl. Acad. Sci. U.S.

45, 1269 (1959).


