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I. GENERAL: STATIONARY STATES AND
TIME-DEPENDENT MEASUREMENTS

A. Introduction

OLECULAR quantum mechanics and molecular
spectroscopy have concerned themselves prin-
cipally with the description of stationary states of
molecules and of transitions between these states. One
chooses a Hamiltonian operator 3C containing the
information one has about a system and then derives
an approximate solution to the time-independent Schroe-
dinger equation, subject to limitations of machine
capacity, approximations in 3¢, and restrictions on the
functional form of the solution.

Let us first consider the restrictions applied to the
Hamiltonian. These take a variety of forms. In calcu-
lating electronic energy levels, one usually tries to use
the Born-Oppenheimer approximation; in this case the
system becomes the set of electrons, and the Hamil-
tonian contains charges, masses, and internuclear
distances as fixed parameters. Going one step further,
when we calculate energy levels for a vibrating rotor,
we no longer fix the actual interparticle vectors, but
treat them as operators. We generally do use the small-
oscillation approximation, however, so that equi-
librium positions appear as parameters in 3¢ and the
actual distances are in effect constrained to the vicinity
of the equilibrium positions. We cannot always do this
alone but must often allow particle statistics to enter;
the rotation-vibration energy levels of a homonuclear
diatomic can only be determined if we include the
quantum statistics of the nuclei. Further still, the
hindered rotors like ethane and the inverting um-
brellas like ammonia form classes of molecules whose
spectra demand that we write certain internuclear
coordinates such as the azimuthal angle of C.Hg or
the nitrogen-to-base-plane distance of NHj as true
operators. In dealing with molecules like these we
continue to treat most internuclear distances in the
small-oscillation approximation, but the existence of the
tunneling motions of internal rotation and inversion
force us to leave the range of certain operators un-
restricted.

We proceed to the question of specifying stationary
states of a molecule, with particular reference to the
kind of approximations associated with restrictions on
the Hamiltonian. With this, we must bear in mind the
complementary problems of the detection of a molecule
in a nonstationary state: when can we expect to observe

* Presented at the William E. Moffitt Memorial Session.

a nonstationary state; and what circumstances and
molecular properties might be used to distinguish
nonstationary and stationary states? Our discussion of
these questions generally is stated in terms of the
states of a set of nuclei in a molecule, although the same
considerations would hold for any quantum mechanical
system of several particles. We cite a few examples of
molecules to which the argument might apply. In the
second major part, we discuss the ozone molecule as one
of the very simplest systems for Wthh the v1ewpomt
developed here might be helpful. -

B. Criteria for Statlonary States

In his discussion of molecular spectra, Hund! pointed
out that rotation and small-amplitude vibrations would
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Fic. 1. A schematic diagram of the relation between line width
and stationary states.

not always suffice to describe the dynamics of nuclear
motion. Molecules having two or more minima on their
vibrational potential energy surfaces would, under
favorable circumstances, exhibit tunneling, and their
spectra could only be interpreted fully if this were taken
into account. Hund investigated the relation of nuclear
masses to tunneling frequencies and pointed out the
equivalence of tunneling frequencies and the splittings
of stationary states. The argument is the classical one
for the energy-time form of the uncertainty principle,
AEAi>1/2. A fast measurement of some property ®
requires a small interval, A¢, and has a large associated

1 F. Hund, Z. Physik 43, 805 (1927).
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AE; if AE is large compared with the separation of
several stationary states, we may observe the value
(® ) appropriate to mixtures of the stationary states.
On the other hand, a slow measurement of ®, requiring
a long interval A¢, may have a small associated un-
certainty in energy; in this case AE may be much less
than the separation of stationary states so that (®)
is that appropriate to stationary states. These two
cases are shown schematically in Fig. 1. On the left,
the drawing indicates two transitions between widely
separated levels; these might be energy levels of the
electrons in a molecule. On the right is indicated a set
of levels very closely spaced, such as hyperfine levels in
a molecule might be. In the transition shown, the AE
of the process, indicated by the shaded tail of the arrow,
is sufficient to eradicate any significance of the hyper-
fine levels.

A variety of examples have been discussed in terms of
tunneling. The hindered rotor and ammonia inversion
problems mentioned previously are well known?™;
closely allied to the ammonia problem is the inversion
of optical isomers.? Still another example is the pseudo-
rotation of cyclopentane.’

As a starting point, we refer to a discussion given by
Wilson® regarding the problem of “catching” an ethane
molecule in one of its three potential wells. Wilson
pointed out that a molecule in such a state would be in
a nonstationary state of a special sort; this non-
stationary state can be constructed exactly by super-
posing the three lowest stationary states, one 4; and
two E, in equal proportions. By using a measuring
process or condition such that the AE of the process is
larger than the splitting of the torsional levels, we can
observe the nonstationary state of a molecule “caught”
in one well. On the other hand, observation of a sta-
tionary state of ethane requires a measurement tech-
nique whose photons are fairly monochromatic, and,
having only a narrow band of Fourier components, are
quite extended in space. Such photons obviously take a
relatively long time interval Af to pass the system in
question, so we see again that as low measurement is
associated with detection of stationary states. Such slow
and high-resolution measurements are especially char-
acteristic of the radio-frequency techniques: microwave,
electron spin resonance, nuclear magnetic resonance,
and electric quadrupole resonance spectroscopy.

It might be helpful to examine explicitly some
criteria regarding the possibility of observing non-
stationary states. We could then use methods like those

2 G. Herzberg, Infrared and Raman Specira (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1945).

3 C. H. Townes and A. L. Schawlow, Microwave Spectroscopy
(McGraw-Hill Book Company, Inc., New York, 1955).

4 E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular
Vibrations (McGraw-Hill Book Company, Inc., New York,
1955). Also see the material to which references 24 refer.

8 J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, J. Am. Chem.

Soc. 69, 2483 (1947).
¢ E. B. Wilson, Jr., Bull. Am. Phys. Soc. Ser. II, 4, 164 (1959).
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of Hund! or Wilson” to select the circumstances under
which such states would be detectable, and then to
decide how results of such measurements would differ
from stationary state observations. For certainly they
must give information not readily accessible from the
stationary states alone if nonstationary states are
worth explicit characterization. The criteria we seek are
related to the information contained in the Hamil-
tonian and how we deal with this information.

From one viewpoint, the Hamiltonian JC contains
just two kinds of information; first, it expresses all the
force laws for interactions between the parts of the
system, and second, it contains all the data regarding
the symmetry of the problem. We are concerned with
the treatment of the symmetry and so should see
exactly how this information appears in 3C. An exact
Hamiltonian gives only two kinds of symmetry informa-
tion, by way of its own invariances; an exact Hamil-
tonian is invariant to a change of external coordinate
system and also to an interchange of two identical
particles. The spatial symmetry, as Ramsey has pointed
out,? leads directly to the conclusion that in a stationary
state the expectation value of a molecular electric di-
pole moment y is zero. Only when the molecular state is
nonstationary can we measure an electric dipole. We
can do this by applying external electric fields so that
the molecule is no longer the entire system. The mole-
cule then goes into a nonstationary state composed of a
mixture of excited electronic and rotational states,
whose superposition allows us to measure g in a mole-
cule-fixed coordinate system.

It is the particle symmetry rather than the spatial
symmetry which we investigate. As the beginning of
this discussion indicated, we frequently use our intui-
tions to decide how to restrict the operators of 3¢ so that
a given problem is made easier. At the same time, we
destroy the full permutation symmetry of 3C. The Born-
Oppenheimer approximation is the most stringent kind
because it forbids any interchange of nuclei, even by
over-all rotation of the molecule. The numerical
parameters in JC fix the geometry and therefore the
symmetry of the nuclear framework. (We do actually
make use of rotational symmetry in this case because it
makes problems easier, not harder.) The small-oscilla-
tion approximation allows the molecule to rotate so
that some interchange of identical particles may be
permitted as dynamical motions. The symmetry of 3C,
however, is dictated again by numerical parameters of
distance as well as of mass and charge so that the
operator has geometric rather than full permutational
symmetry. In the ultimate case, the only particle
symmetry JC can show is the dynamical equivalence of
particles of the same kind, the permutation symmetry.
All interparticle coordinates must appear as operators;
only mass and charge (and perhaps higher electric

7 E. B. Wilson, Jr., J. Chem. Phys. 3, 276, 818 (1935).

8N. F. Ramsey, Nuclear Moments (John Wiley & Sons, Inc.
New York, 1953).
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and magnetic moments) may appear as identifying
parameters in an “exact’” molecular Hamiltonian.
When restrictions of the small-oscillation variety are
placed on the Hamiltonian, it no longer transforms as an
invariant under the full rotation-permutation group G,
but rather, under some subgroup g. If g is a proper sub-
group of G, the irreducible representations v of g are
often no longer irreducible representations I' of G; there

are elements of G excluded from g which can mix two or,

more ¥’s to give a single I'. Consequently, a matrix of 3¢
which is diagonal in the approximation that g is the
group. of JC is often not diagonal when all the group
elements of G are allowed. This is simply a way of
saying that JC is only diagonal if the problem is solved,
but perhaps it sheds light on the relation between
restrictions on symmetry and the determination of
stationary states.

The restrictions placed on operators appearing in 3C
reduce the complexity of a problem by letting the
Hamiltonian carry some of the burden of describing the
physical system which rightfully belongs to the wave
function. The exact Hamiltonian should always trans-
form under the totally symmetric representation of its
full group G. A wave function may transform under
other irreducible representations of G and therefore
show how the physical system displays its geometric
symmetry; the Hamiltonian cannot do this in general
without violating the principle of the dynamical
equivalence of particles of the same kind. (We can
find simple special cases like molecules whose nuclei
are all different, and homonuclear diatomics or equi-
lateral-triangular triatomics whose Hamiltonians do
satisfy the required permutation symmetry. No mole-
cule containing four or more identical nuclei, however,
can be entirely described by the small-oscillation
model.?)

The foregoing argument has been introduced to
show explicitly how a Hamiltonian matrix generally is
nondiagonal if its basis functions were derived with
restrictions on particle coordinates appearing in JC.
Suppose we want to make an observation which utilizes
or measures some dissimilarity in sites which identical
nuclei may occupy. It is a well-known theorem that two
Hermitean operators have simultaneous eigenfunctions
if and only if they commute.? This is easily restated to
fit our present line of reasoning: if an Hermitean
operator ®} has eigenfunctions which are %ot basis func-
tions for the irreducible representations of the Hamil-
tonian, then these functions are not eigenfunctions of
JC. Therefore ® and 3¢ do not commute. Hence any
measurement of ® must be a measurement of a non-
stationary state. This, together with the previous dis-
cussion, shows that any state in which we can identify
nonequivalent siles of identical nuclei must be a non-
stationary state.

9E. C. Kemble, The Fundamental Principles of Quantum Me-
chanics (McGraw-Hill Book Company, Inc., New York, 1937),
Sec. 37c, p. 28.
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The degree to which a state i$ nonstationary is a
matter of the energy separation of the actual stationary
states, the permutation frequency, or the size of the
potential barrier, or of the degree to which the Hamil-
tonian is nondiagonal in a representation based on
eigenfunctions of ®. To see this, we write a matrix
element of [®, 3¢] using basis functions ¢ such that

®R¢r= Ry, (1)
Then

(¢ | [®, 3] | 1) = (Re—R1) (| 3C | 1),  (2)

vanishing when 3C is diagonal.

We may measure any nonstationary property ®
that we choose for a molecule, but if the stationary
states are far from each other with respect to the AE
associated with the time it takes to measure ®, then we
observe essentially the expectation value (®) char-
acteristic of the stationary states. Even if the appro-
priate AE does cover a number of stationary states,
these states may be based on a vast number of eigen-
states of ®, or they may each be based on eigenstates
of ® which contribute to none of the other stationary
states. In either of these situations, we still learn little
or nothing more than we would have by observing
stationary states alone. If, however, the AE associated
with a measurement of ® spans a set of stationary states
which can combine to give a small number of eigen-
states of ®, then direct observation of ® displays these
eigenstates, whose properties often are quite different
from those of the stationary states.

With the above discussion as a basis, we can look for
molecules which might exhibit tunneling as a mecha-
nism for establishing equivalences of identical nuclei.
We simply look for molecules having identical nuclei
occupying nonequivalent sites. The commonest of
these are the hydrocarbons; in general, we expect
tunneling rates for carbon nuclei in hydrocarbons to be
extremely low, well below anything we could detect.
Cations of hydrocarbons, however, have been observed
to show rapid rearrangement in the gas phase. These
rearrangements might be due to tunneling processes.
The phosphorus pentahalides also might serve as
examples. A number of these molecules have been
studied with NMR techniques by Gutowsky et al.0
The tetragonal pyramids BrFs and IF show two fluo-
rine resonance peaks with intensities in the ratio of
4:1; these were assigned to the four fluorine nuclei of
the base and the one at the apex, respectively, so that
tunneling is not observed in these cases. The trigonal
bipyramid PFy shows only one fluorine resonance peak
(split into a doublet due to coupling to the phosphorus
nucleus) despite the geometric nonequivalence of the
equatorial and polar fluorines. Therefore the fluorine
nuclei must all be occupying both kinds of sites, by

10 H. S. Gutowsky, D. W. McCall, and C. P. Slichter, J. Chem,
Phys. 21, 279 (1953),
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(a) (b)
Fi6. 2. Pseudorotation in a trigonal bipyramid. The apex atoms
1 and 2 of (a) move 15° out, while the equatorial atoms 3 and 4
move 15° back toward the plane of the paper.

means of either chemical exchange or a tunneling pro-
cess. If tunneling does occur, a motion like that shown
in Fig. 2 would accomplish the desired exchange; the
motion as shown carries the molecule of Fig. 2(a) into a
rotated, permuted form of itself.!! This process might
occur at a sufficiently high frequency so that all five
fluorine nuclei are equivalent after a very short time
interval, say 10~ sec or less. If such a process does
occur, it must be reconciled with the kinetic data for
the PCl; molecule given by Downs and Johnson.!?
They report that the chlorine atoms of PCl;, also a
trigonal bipyramid, exhibit two different rates of
exchange with isotopic chlorine; three Cl’s exchange
extremely rapidly, while the other two require ca 100
min for 909, reaction. A comparison of tunneling rates
for PCls and PFj5, based on the WKB method as formu-
lated by Dennison and Uhlenbeck,* shows that the
difference in mass, bond lengths, and vibration fre-
quencies’™1® make the large difference in rates a reason-
able one.”

Other molecules in which tunneling might be ob-
served are CIF3, a bent-tee structure, and SFy, which has
the Cy structure of a highly distorted tetrahedron.
These systems, which have been discussed by Muet-
terties and Phillips,®® have NMR spectra which are
compatible with the tunneling hypothesis and even
show transitions from single-line to multiple-line
absorptions when the samples are cooled. These data
are, however, at least as well explained in terms of
chemical exchange (known to occur for ClF3), and it is
probably best to assume that tunneling has not yet
been observed in these cases. The NMR data do require
that the tunneling rates for both CIF; and SF; be con-

11 This possibility was first brought to the attention of the author
by Dr. Felix T. Smith.

12 T 7. Downs and R. E. Johnson, J. Chem. Phys. 22, 143 (1954).

187, J. Downs and R. E. Johnson, J. Am. Chem. Soc. 77, 2098
(13515))..M. Dennison and G. E. Uhlenbeck, Phys. Rev. 41, 313
(1932). Also see references 2 and 3.

B H, S. Gutowsky and A. D. Liehr, J. Chem. Phys. 20, 1652
(lgs_TZ.)k. Wilmshurst and H. J. Bernstein, J. Chem. Phys. 27,
661 (1957).

17 R. S. Berry (to be published).

8 E, L. Muetterties and W. D. Phillips, J. Am. Chem. Soc.
79, 322 (1957).

19 E, L. Muetterties and W. D. Phillips, J. Am. Chem. Soc. 81,
1084 (1959).
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siderably lower than for PFs. This is expected since, in
the chlorine and sulfur compounds the heavy nuclei
do not lie at the centers of mass and therefore must
move when tunneling occurs. The tunneling frequency
depends in such a sensitive way on the effective mass
that the observed rates or limits on rates are quite
compatible. '

Still another example is cyclopentane. This molecule,
whose carbon skeleton forms a puckered pentagon, has
at any instant one unique carbon nucleus and two pairs
of equivalent carbons. The motion which converts a
unique carbon into a paired carbon corresponds to a
permutation of the nuclei and a rotation of the penta-
gon. This process, often called pseudorotation, appears
to have a measurable effect on the specific heat of
cyclopentane.®

Our final example is perhaps the simplest case of a
molecule, in which identical nuclei occupy nonequiva-
lent sites. The isosceles triangle of ozone is amenable to
more extensive study than the systems just mentioned
and is the subject of the second part of this discussion.

TasLE I. Constants for the ozone molecule Oj36.

Constant Value
70-0® 1.278 A
Apex angles 116° 49’

a 0.53 debye
P 1110 cm™
7 705 cm™
vsP 1043 cm™
e 5.7007 md/A
faofd2e 1.2847 md/A
Jaa/d® 0.3324 md/A
Faa® 1.5233 md/A

8 See reference 24.
b See reference 20.
¢ See reference 23.

II. STATIONARY STATES AND TUNNELING IN THE
OZONE MOLECULE

A. Description of the Problem

The structure of the ozone molecule is now well estab-
lished on the grounds of infrared® and microwave?"?
studies, and the vibrational constants have been deter-
mined.?% The molecule is an isosceles triangle with
0-0 bond lengths of 1.277 A and an angle of 116°49'.
The molecule has a dipole moment of 0.53 debye.?
(Data pertinent to our discussion are collected for
convenience in Table I.) This is clearly a case in which
the apex position is quite different from the two base
positions, so that the O; molecule does satisfy the condi-
tion of having nonequivalent sites for identical nuclei.

20 M. K. Wilson and R. M. Badger, J. Chem. Phys. 16, 741
(1?‘412). Trambarulo, S. N. Ghosh, C. A.Burrus, Jr., and W. Gordy,
J. Chem. Phys. 21, 851 (1953).

22 R, H. Hughes, J. Chem. Phys. 24, 131 (1956).

2 E. K. Gora, J. Mol. Spectroscopy 3, 78 (1959).

24 1. Pierce, J. Chem. Phys. 24, 139 (1956).
% A. Danti and R. C. Lord, J. Chem. Phys. 30, 1310 (1959).
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() (b)
Fi16. 3. Pseudorotation in an isosceles triangle. The pseudoro-
tated figure (b) corresponds to sending (a) through a clockwise
rotation of 37 and permuting nuclei 1—-3, 3—2, and 2—1.

Some internal motion, such as that shown in Fig. 3,
must be possible so that the equivalence of the oxygen
nuclei can be established. Just as in the case of PF;
or cyclopentane, the necessary motion is, in general,
equivalent to a permutation of nuclei and a rotation of
the molecule as a whole. We refer to such motion as
pseudorotation, following the usage of reference 5.
The success of the small-oscillation model and the large
amplitudes of nuclear motion necessary to produce
pseudorotation in ozone make it apparent that the
process involves tunneling, and occurs at a frequency
quite low relative to those for NH; or C;Hs, for example.
In fact, we are faced with the question of whether tun-
neling in ozone could be observed at all.

In the two following sections, we investigate the
tunneling problem. First we find a favorable path and
estimate the potential barrier along this direction.
Finally, we consider the possibility of observing tun-
neling in the ozone molecule.

B. Potential Barrier

We consider the molecule as shown in Fig. 3(a) and
allow the nuclei to undergo large-amplitude motions.
The molecule may reach a configuration which could
have been attained equally as well from some other
starting configuration, such as the permuted and
rotated form shown in Fig. 3(b). When the nuclei
return from their distorted configuration, they could
return to the equilibrium configuration of Fig. 3(a)
or to that of Fig. 3(b). The latter is the tunneling for
which we seek. But there are infinitely many possible
large-amplitude motions which could lead to tunneling;
we must find the most favorable. That is, we must
explore the full potential surface separating 3(a) from
3(b) and find the geometry and potential energy of
that molecular configuration along the crest of the
potential surface for which the potential energy is
lowest; we want to find the saddle of the potential
energy surface.

We assume that after tunneling has occurred the
molecule is in a configuration derived by a cyclic (132)
permutation of nuclei, followed by a rotation of .
The permutation is a result of our choice of numbering
and introduces no loss of generality. The 37 angle is
chosen so that three applications of the clockwise
pseudorotation carry a molecule back into itself. This
is a real restriction, and there is no e priori reason
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(a) (b)

F16. 4. The intersection of two paraboloids. The dotted line
shows the path from one potential minimum to the saddle and
down to the other minimum. The heavy smooth curve beneath it
indicates the cosine curve used to approximate a realistic barrier.

why the most probable tunneling motion could not
leave the molecule rotated by any angle ¢. In fact,
the angle ¢ could perfectly well be incommensurate
with 27 so that no amount of pseudorotation in one
direction would return the molecule to its original
configuration. The restriction that ¢=3%x is introduced
strictly for computational convenience.

In order to search the potential surface for a saddle,
we assume that the molecular geometry at the true
saddle point is essentially the same as it is beneath
the saddle formed by the paraboloids of the normal
harmonic vibrations. The normal coordinates of ozone
have been determined by Pierce,® so that we can
construct the harmonic potential hypersurfaces for the
molecules of Fig. 3. These are shown schematically in
Fig. 4; the figure can show surfaces for only two vibra-
tions of each form and can therefore be no more than a
crude analog of the real situation. The two surfaces
intersect, and their surface of intersection is the crest
of the barrier separating one form of the molecule from
the other. Therefore, to find the saddle we do the
following:

(a) express the normal coordinates Qi’ of the pseudo-
rotated molecule as linear combinations of the normal
coordinates Q; of the original molecule;

(b) construct the expressions for the potential sur-
faces V(Q') and V(Q) and equate them to find their
intersection; .

(c) set equal to zero the derivatives of the equation
of the intersection surface with respect to two of the
normal coordinates Q; and finally

(d) solve the simultaneous quadratic equations to
determine the geometry of the saddle point.

Knowing the desired geometry, we may replace the
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unrealistic parabolic potential with a much smoother
one, suitably fitted, and estimate the barrier from the
latter. '

We have the potential of the original molecule:

2V (Q1, @2, Qs) =NQr* N0+ N0, (3a)
and similarly for the molecule after pseudorotation:
2V(Qr, Qo 08') =MO1 24022 40eQs%  (3b)

The normal coordinates Q' are most conveniently
expressed as linear combinations of the original normal
coordinates Q;,

3

O¥'= Eliakaf, 4)
if we use a succession of transformations as indicated
in the following. We simply express each coordinate
set in terms of the set immediately following it, working
our way from the final normal coordinates through
symmetry coordinates and local Cartesian coordinates
to center-of-mass Cartesian coordinates, and then back
along the corresponding path to the initial normal
coordinates. As symmetry coordinates we have used
those of a valence force field, to correspond to the

constants given by Pierce.*
We have-

Q' (normal coordinates)

!

S’ (valence force field symmetry coordinates)

1’ (local Cartesian coordinates, with origins at
equilibrium positions of nuclei)

R’ (center-of-mass Cartesian coordinates)

(rotated center-of-mass Cartesian coordinates)

!

R

!

r (local Cartesian coordinates)
!

S (symmetry coordinates)

!

Q (normal coordinates).

The actual transformations are completely straight-
forward* and simply involve bookkeeping. For con-
venience we give two of the intermediate steps as well
as the final transformation.

The normal coordinates Qi, Qs2, and Qs can be ex-
pressed in terms of the symmetric stretching motion S;
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and bending motion S» and the asymmetric stretching
mode S;:

0:1X109=0.3602.5;-40.2951 S5, (5a)
(02X 109=—0.0696.5110.3273.S., (5b)
QgX 1019=0.3287 Ss. (SC)

The primed normal coordinates in terms of the
unprimed local Cartesian coordinates are as follows:
(The Cartesian coordinates are collected into sym-
metry coordinate form.)

01/ X109=0.525—0.169 (st,— ) —0.293 (31— 5)

—40.142 (142 — 205) — 0.082 (y1+ 32— 2y3), (6a)
0 X 109= —0.461—0.046 (21— x5) —0.080 (y:— y2)

4-0.306 (w1422—223) —0.177 (y1+y2—2y3), (6b)
04X 10°=0.135+0.105 (21— x5) — 0.061 (y:— y2)

—0.099 (1+22— 2263) —0.172 (y1+y2—2y3) . (6¢)

The entire transformation of primed normal co-
ordinates into unprimed normal coordinates is as fol-
lows:

0/ =—0.525—0.0770,—0.4110:+0.94305,  (7a)
0/ = —0.461—1.1990,40.5290,+0.9750;,  (7b)
04'=0.135--0.0650;-+0.2930.— 0.1940;. (7¢)

We substitute the preceding values into the equation

MO 2HNQ24NsQs?
=>\1(z:_:dl"QiV'l-?\z(;02"(21‘)24-?\3(20:03"@7')2- 8

This gives us a polynomial equation

f(Qh Q27 Q3) =0. (9)

We set
(af/aQI) @.,0,=0 and (af/an) e.¢;:=0 (10a,b)

and solve the three simultaneous equations. (Graphical
solution was used.) These conditions give a saddle?
at the points

01=—0.22X 101, (11a)
Q2= —0.380X 10", (11b)
05=0.086X 10", (11c)

26 The saddle point determined by the present method is not a
point of symmetry; in fact,

Q1,= —0.27,
0y'=—0.315,
05'=—0.007,

This is at least in part due to the inaccuracy of the graphical solu-
tion of the equations but could also be due to flat regions of the
surface of intersection. Note that the asymmetric Q' vibration
has its sign opposite to that of Qs, corresponding to pseudorotation
in the opposite direction.
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These displacements have little intuitive significance in
their present units, and are more easily understood if
they are rescaled in units of their dimensionless clas-
sical vibration amplitudes A;, Az and Az These units
prove useful later in evaluating tunneling frequencies
also. In these terms, we have

O1=—9.84, (12a)
Q,=—13.5A,, (12b)
Qs=3.74s. (12¢)

The paraboloid barrier at the saddle has a height
Vo=124 000 cm™. A more reliable estimate of the
barrier height is probably that which we obtain when
we replace the paraboloid surface with a cosine function

V=31VL(1—cost). (13)

We determine the scale of £ by requiring that V=
V=0 at £=0, and that V; reach its maximum at the
saddle of V. We determine V¢ by first supposing that
the path on the V surface from potential minimum
directly to the saddle can be approximated as a simple
parabola V’(x) reaching 124 000 cm™ at the saddle,
where x=x;. We then require that V; have the same
second derivative as V’(x) at the origin. That is,

Ve=3V[1—cos(mx/x1) ] (14)
and
(0°V¢/322) |omo= (8*V'/042) |cmo. (15)
This gives
Vo= (4/7*)Vy, (16)

so that the cosine barrier is 0.417 times as high as the
parabolic barrier. In our case we find that V2 is 51 700
cm™! or 148 kcal/mole. The parabolic and cosine
curves are indicated in Fig. 4.

The value of 148 kcal/mole -should be interpreted
only as an order-of-magnitude estimate, not as a quan-
titative determination. The parabolic barrier value is
probably reliable as an upper limit; it is unlikely that
the true potential would rise more steeply than the
paraboloid. The cosine curve has as its justification only
its simplicity, its smooth form, and its success in
representing potential barriers for hindered internal
torsion.?

C. Detection of Tunneling in Ozone

The ozone barrier of 150 kcal/mole is quite high by
comparison with the 1- to 3-kcal barriers commonly
observed for hindered rotors. In fact, it is quite im-
probable that tunneling occurs at any detectable rate
in the ground state of ozone. This is shown by applica-
tion of the WKB method as modified by Dennison and
Uhlenbeck.!* They showed that if », is the vibrational
frequency along the tunneling coordinate, = the

( td D). R. Herschbach and J. D. Swalen, J. Chem. Phys. 29, 761
1958).
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effective mass of the tunneling system, V (m) its po-
tential, and E its total energy, then the tunneling rate »
is given by

v=(n/7)e’, (17)
with
80
I=F f (2m[V (s) — E]}ds. (18)
e _
The integration is carried out over the entire classically
forbidden range of the displacement s which lies under
the potential barrier. In the case of a cosine barrier, the
integration may be carried out in terms of the complete
exponential integrals K (k) and E(k). We find that

I=[42a JLas (mV )i JLE (k) — (E/Vo)K (k) ], (19)

with
k=[(Vo—E)/V, . (20)

In general, the form of the WKB approximation de-
mands that the tunneling rate be of the form

v=ygr! expl:_ o*f (o, E) i (21)

where p is the distance from the equilibrium position
to the potential maximum at the center of the barrier,
measured in the dimensionless units of classical har-
monic oscillator displacement amplitudes, and f(p, E)
is a very slowly varying function of p when Vy>>E.
The tunneling rate for ozone in its ground state is then
of the order of 10~% sec if we use the vector displace-
ment determined in the last section, which gives p~17.
The rate depends sensitively on p and on the magnitude

“of f(p, E); the latter, in turn, depends on the shape

of the barrier. Since » does depend so sensitively on p
and f, we feel that no credence should be given to the
value of the tunneling rate just given, except insofar as
it gives an order-of-magnitude estimate of the ex-
ponent. The correct value of I could easily be smaller
by a factor of 5 or even 10, but is very improbably a
factor of 50 or 100 smaller than the estimated value.?®
The tunneling rate of course rises sharply as E in-
creases, so that we should look for tunneling processes
in excited vibrational states of ozone, if they are to be
found at all. Polo® has pointed out that one might find
indications of tunneling by observing excited-state
transitions of the bending mode, whose fundamental
frequency is 705 cm™.% The anharmonicity constant of
this vibration might well be anomalous, so that as
bending amplitudes get larger, it becomes easier to
decrease the O-O-O angle. (The usual case corresponds
to increasing mutual repulsions of the two outer atoms
as the vibrational energy goes up.) Sufficiently highly
excited states could perhaps be found in an electric
discharge, possibly even in the discharge in which ozone
is being produced.

2 If, for example, we are successful in finding a much smaller
p, perhaps taking the molecule into a form rotated by an angle
other than %, then this value might be very much diminished.

# S, R. Polo (private communication).
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We turn to other methods of detecting tunneling in
ozone, assuming now that the actual rate is low but not
as low as our crude calculations indicated. Alternatively
we may suppose that experiments may be performed
with molecules in highly excited vibrational states. To
carry out this examination we return to the problem of
stationary states. Ozone is similar to the hindered rotors
like ethane which have threefold symmetry. Any one
oxygen nucleus may be at the apex of the triangle, so
that there are three independent states with numbered
nuclei assigned to specific sites. We label these ¥4, s,
and s with the subscript denoting which oxygen
nucleus is in the unique position. As in the hindered
rotor case, the stationary states are linear combinations
of the ¥,’s; we may write them as

W1=N1(Yr+¥ot¥s), (22a)

V1= N (Y1+exp (3ni) Yotexp(—3wi)ys, (22b)
and

Viir= N (Y1+exp(—3mi)Yotexp(3ri)gs.  (22¢)

Only the first of these is totally symmetric with respect
to all nuclear permutations; the latter two can be trans-
formed into each other by exchanging nuclei 2 and 3, for
example. The existence of the finite barrier causes ¥1
to have an energy slightly different from W11 and ¥y,
and conceivably, a slow enough measurement would
show this splitting. Most ordinary observations would,
however, correspond much more closely to observations
of the ¥;’s than of the ¥’s.

Let us consider an observation of ozone containing
only O nuclei. In order that our results be detectably
different from the observation of a true stationary state,
the observed state would have to be a superposition of
the stationary states. But the O nucleus is a Bose-
Einstein particle of spin zero, so the stationary states
of ozone must be totally symmetric with respect to
nuclear permutations. Therefore, of the lowest three
states, only W1 can be populated, ¥1r and i1 can never
contribute and there is no way of detecting a non-
stationary state of O3 based on these three functions.
Actually, this is almost a triviality; O has no electric
or magnetic moments so it cannot be used as a probe;
hence, there is no way of distinguishing the two kinds
of sites with nuclear properties.

If pure O;! cannot betray its barrier in direct experi-
ments, perhaps ozone containing OY or O® nuclei
might. First, let us compare the molecule O*%-0%-0*
with pure O¥-O%-0%, The lower symmetry of the
former permits it to occupy the rotational states for-
bidden to the latter, so that the unsymmetrical mole-
cule has a richer microwave spectrum than the latter.

STEPHEN BERRY

In the small-oscillation approximation, the molecule
O1-0O®-0 must satisfy the same selection rules as the
pure O species. If tunneling is permitted, then the
wave functions for O®-O®¥-Q¥ and O®¥-O¥-0O®B mix,
and the strict selection rules of O3 no longer hold.
Therefore we might expect “forbidden’ lines of very
low intensity to appear in the O%-0®-Q% microwave
spectrum, corresponding to transitions involving the
“unallowed” levels. Again, it might be necessary to
look at highly excited vibrational states in order to
detect these weak lines.

One other technique suggests itself. The extremely
high resolution of nuclear resonance might permit
observation of tunneling. At first sight this seems
straightforward; a sample containing O%-0%-0Y and
O1-0"-0% is examined. If one OV resonance occurs,
tunneling is relatively rapid; if two peaks appear,
tunneling is slow. Like the molecules SF; and CIF;,
however, ozone could suffer chemical exchange; or it
could experience collision-induced tunneling. Both of
these are likely processes in solution and would be
difficult to distinguish from natural tunneling. There-
fore a gas-phase study of the hyperfine spectrum of O
(containing O) would be less unambiguous.

Finally, McConnell® has pointed out that even the
stationary states of ozone molecules containing one OV
should show two nuclear resonance frequencies, one
appropriate to ¥ and the other, to Y1 and ¥yrr. This
comes about because ¥1 has symmetry differing from
that of ¥y and ¥y and, in terms of perturbation
theory, has a different set of nonvanishing matrix
elements with higher excited states. Such a splitting
would, in the case of ozone, be expected to be quite
small compared with the splitting characteristics of
the nonstationary states. Since ozone has a dipole
moment of 0.53 debye unit,? the electrical environment
of the unique apex oxygen is almost surely quite differ-
ent from that of the two base oxygens. This suggests
that the relative chemical shift of the two positions
would be quite large in the nonstationary states. In all
three stationary states, any one nucleus spends two-
thirds of its time in a base position and one-third at
the apex; the only way the stationary states can be
affected in different ways is by means of second-order
perturbation terms which distinguish their symmetries.
Consequently, it seems reasonable (and we cannot
say more than that) to expect a relatively large split-
ting of the OY resonance, perhaps as much as 150 ppm
for the nonstationary states, and a small splitting
(indetectably small if we use PF; as an example®®) for
the stationary states.

3% H. M. McConnell (private communication).



