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are approximately parallel around the equilibrium
distance in agreement with the Hellmann-Feynman
theorem.

Finally, an example is given in which spin-orbit
coupling appears to be important. As indicated in
Table I and Fig. 2, the 6rst excited state of the NO
molecule is split into two states of total angular
momentum —,

' and —,
' to such an extent that the equi-

librium distances diGer by 0.063 A. This seems to be
an extreme case of coupling. As previously mentioned,
the calculation of this eGect requires the evaluation of
the expectation value of terms such as 8(s A.)/M. The
treatment of this subject is deferred to a future pub-
lication. An extension of the present results to poly-
atomic molecules where the Jahn-Teller effect may be
important is also contemplated.
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l. INTRODUCTION

'HE bond alternation in the conjugated polyene
chain has been the subject of many investigations.

A classical paper on this subject was published by
Lennard-Jones in 1937, in which it is concluded that
in long chains the bond lengths tend to become equal
to 1.38 A. In the present paper we correct this incorrect
conclusion and show that in long chains the bond alter-
nation does remain and the two asymptotic bond lengths
are 1.40 A and 1.36 A if we adopt Lennard-Jones' ap-
proximations in treating the conjugated chains. After the
completion and the preliminary publication' (in
Japanese) of the present investigation, an important
paper of Longuet-Higgins- and Salem' appeared. Their
investigation is essentially on the same line as ours.
Now that the excellent discussions on the present
subject are supplied by Ooshika, 4 Labhart, ' and
Longuet-Higgins and Salem, ' which seem to cover
almost completely what we wish to say, we describe our
investigation only brieQy in the following.

2. CHAINS WITH 2N (EVEN) CARBON ATOMS

In this case the secular equation to be solved is'

s' —P '—P '= —2PtPs cosh8,

a sinhN8 —sinh(N+1)8=0.

(4)

Let us denote the E real solutions thus obtained by 8
(m= 1, 2, , N). Then the ground state energy of the
x-electron system is

Here and in the following we denote two alternate bond
lengths by x& and x2 and the corresponding exchange
integrals by Pt and Ps.t s=tt —E, a and E being the
Coulomb integral and one m-electron energy, respec-
tively.

If we put
s' Pt' Ps—'= 2P—tPs «»8,

the solutions of (1) can be expressed through 8's
(0&8&s) which satisfy the equation,

a sinN8+sin(N+1)8=0, tt=—p,/p, . (3)

Equation (3) gives N real solutions when tt&1+ (1/N).
In case that a) 1+(1/N), we get N 1real soluti—ons
from (3). An additional real solution (8/0) which cor-
responds to a so-called "surface state" is given by the
following equations:

1

pl s p2

ps s pt

p2 s pl
pl s sN

=0.

N.E.t, 't=2 No2 P (PP+Ps'+2PtP, cos8„)i. (6)

(1)
On the other hand, it seems natural to express the total
0-bond energy as
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Et,t.t' NE, (xt)+ (N 1)——E,(xs). —

Our task is to determine the bond lengths x~ and x2
which minimize the total energy of the system:

ET Etotal +Etotsl

A straightforward way of doing this is to draw the
energy surface (x&, xs) numerically under suitable
assumptions for P(x) and E,(x). Using Lennard-Jones'
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TAsLK I. Calculated bond lengths (in A). This formula tells us that if BP/Bx) 0, we find the real
minimum point of the energy surface in the positive
side of p, namely, in the region of xi(» for finite
values of E.

1.34 1.41
1.35 1.40
1.35 1.40
1.36 1.40
1.36 1.39

1.38 138

1.34 1.43
1.34 1.42

1.34 1.43
3. INFINITELY LONG CHAINS (N~~)

This case requires and permits separate treatment.
Now it is justifiable to replace the sum in P) by the

1 4{) integral

a First approximation of Lennard-Jones.
b Second approximation of Lennard-Jones.
e Present calculations.

expressions for p(x) and E,(n) we have actually drawn
tile cIlcl'gy sill'faces fol'. JV=2 (butadlcnc) RIld IV=5
(decapentane) and found the minimum points. The
case of E~ ~ is explained separately in the next
section. The results are listed in Table I together with
the values obtained by Lennard-Jones. '

Next let us consider the subject more generally. The
actual shapes of the energy surfaces we have drawn

suggest that for intermediate and large values of X we

may put safely as

XI=»—t, »=»+$,

where xo is the bond length which minimizes the total
energy under the restriction of x~=x2. Then at g=co
we have the relation

0= BEr/Boo (21V—1)(BE./Bx)

+I 4(2Ã+ I)/~7(BP/Bx), {9)

(Er/Ã) +2n -(2/—Ir) t (P o+P '+2PIP cos8)&d8

+E.(xi)+E,(») (1.3)

=2n —(4/m) I PI+pi l
E{',~,Io)

+E.(xi)+E.(»).

E(-',s,k) = (1—k' sin'y) "d@, io'=—4Py,/PI+P, ]',

I

g2 g0+I

4 B'P B'E,
+ +— +

) gg =go=go or BÃ Bx

is the complete elliptic integral of the second kind.
Again let us expand the final expression of (13) with
respect to $. By using (10) and an expansion formula

of E(-',Ir,k), we find that

Er (x)= (2X—1)E.(x) +21Vn+2P P cosl mm/(2M+1) j.
4 (1 4l pl q (Bp/Bxq '

+-I --»g
IBP/Bxl) & p

4 (BP/Bx) '
+-Ipll I &'logl&l, (&~")Next, assuming that $ is small, we expand P(») and

P(»):
BP 1 B'P

P(&I) Po 5+——
8x 2 Bx'

BP 1 B'P
p(*.)=p+—&+- p,8$2 Bg

where the sign of the erst term in the second bracket
{10) coincides with the sign of p Bp/Bx and we neglect the

terms higher than 0(P). The formula (14) is an even

fllIlctlon of $ Rnd B(Er/$)B$=0 Rt )=0. Fill't11cl', lf

BP/Bx/0, we always find that

we 6naHy arrive at the next expression for finite values

of E after some manipulations,

4(2K+I) BP—log
t9$

BEr 4
I

21V+1

Bp orl2$ —1
(12)

where Po—=p(go). &y using these expressions and the
approximate formula for 8 due to Lennard-Jones, '

Py
8 — Ir—(2K+1) 'I 1——

I
tan, (11)

21V+1 PI) 2++ 1.

( ./&)."'.::*.: ' (E./~)* =* =* P ) {5)

provided that I)I is appropriately smaIL This means

that the energy surface (gz, go) of Er/Q (i' ~ oo) has

a saddle point at @~=@2=co and the true minimum

point should be found in the oR'-diagonal region where

$/0. In other words we always have bond alternation

in very long chains when BP/Bxg0 regardless of the
functional forms of p(x) and E,(x).

The actual values of xj and x2 which give the true

minimum point can be obtained either by using the
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l.44
turns out to be

Er 2NE, (xs)+N(8'E, /Bx') (

I.40 +(2N+1)n —4iPi P cos
2(N+1)

O'P & m7r
+2 P cos

Bx' =r 2(N+1)

1.52

l.56 1.40

X P sin'
m=t 2(N+1)

mar
cos ~ P. (17)

2(N+1)

If we put the following approximate formula (with
Fzo. 1. Energy contours for Er/N; (N -+ ~l (distance in A and q~0.5) tnto (17),

energy in kcal/Inole).

formula (14) or by drawing the energy surface directly.
We have done both by adopting Lennard-Jones' ex-
pressions for P (x) and E,(x) and found that xt ——1.36 A
and x2=1.40 A, while so=1.38 A. In this case we have
two minimum points situated symmetrically with
respect to the ridge x&=x2. We show schematically how
the energy surface looks in Fig. 1.

4. CHAINS WITH 2%+1 (ODD) CARBON ATOMS

The discussion of the preceding section (N-+ oo)

includes both even and odd number carbon chains.
However, there seems to be actually no bond alter-
nation in shorter odd number carbon chains. I et us

try to Qx the critical number of carbon atoms theo-
retically at which the bond alternation begins to emerge
as a bulk effect in the odd carbon chain.

According to Coulson, ' the total energy of 2N+1
carbon chain is given as

Er ——N{E.(xt)+E.(xs))+ (2N+1)n

—2 P IPts+Pss+2PrPs cos[ms/(N+1) jI &. (16)

As in the foregoing, we expand Er in terms of $ in the
neighborhood of the minimum point xo of the diagonal
line (x&=xs) of the energy surface (xr,xs). The result

6 C. A. Coulson, Proc. Roy. Soc. (London) A164, 383 (1938).

P cos[m7r/2(N+1) j 2(N+1)/rr,
m=1

sin' cos
2 (N+1) 2 (N+1)

2 (N+1) 4(N+1)
log +rf, (0&q &1),

and again adopt Lennard-Jones' P(x) and E,(x), we
can Gnd that the critical number is X~20. That is, in
the chains with odd (2N+1) carbon atoms the bond
alternation occurs when S&20. Labhart's conclusion'
is that E&31.

S. CONCLUDING REMARK

The primary purpose of our investigation was to
correct the wrong conclusion of Lennard-Jones' paper. '
We have given the corrected numerical values and also
general discussions on the conditions for the occurrence
of the bond alternation.

Finally, it is to be noted that the reasoning of
Lennard-Jones gives the right answers to shorter
chains in which BEr/Brc/0. This is seen in Table I:
The second approximation of Lennard-Jones does
actually give the correct values of x& and x2 in the case
of X=2. The same would be expected also for other
cases of finite E. Unfortunately, however, in the case
of N &~ where 8(Eq/N)/—cia=0, his procedure of
successive approximation does not seem to work
smoothly.


