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S OME work has recently been done in this Laboratory
in order to get new information on the nature of the

chemical bonds of small molecules. Two topics have
been selected for this discussion: (1) the effect of
binding on electronic density of small molecules; (2) the
force constants of some simple hydrides.

EFFECT OF BINDING ON ELECTRONIC DENSITY
OF SMALL MOLECULES

A chemical bond has been characterized' by means of
the function 5(R) defined as

~(R) =t (R)—t '(R).

p(R) is the electronic density at a point R, and p (R)
that which would result if two atoms making up the
molecule could be added together without perturbing
each other. The function h(R) is a measure of the dis-
tortion of the atomic electronic clouds subsequent to
the bond formation. In a region where 5(R) is positive,
there is an accumulation of electrons while the opposite
is true where 5(R) is negative. A number of molecules for
which good wave functions are available were analyzed

by this method.

(1) H, Molecule

James and Coolidge's wave function' was used for
this molecule. In this case 8 was found to be positive
along the line joining the two H atoms as shown in
Fig. 1. This agrees mell with the I.ewis notation for a

I"&G. 2. The function
8(R) calculated for H2
along the molecular axis.
The corresponding Lewis
formula is added.

' M. Roux, S. Besnainou, and R. Daudel, J. chirn. phys. 228
(2956).' H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 {2933).

single covalent bond. In a bond of this type, there is an
increase of the electronic density between the nuclei. '

(2) ¹
Molecule

Scherr's SCF wave function' was used in this case,
and 5 was calculated on a plane passing through the two
atoms. One finds (Fig. 2) that 5 is negative along the
molecular axis but positive in an annular region centered
on the molecular axis and in regions appearing at each
"end" of the molecule. The triple bond in N2 is therefore
annular in some sense. The presence of the "end"
regions is probably due to the existence of unshared
pairs of electrons. Finally, the description of the bond
in N2, given by 5(R) is in fair correlation with the usual
Lewis formula of N2 (Fig. 2).

(3) 02 Molecule

The wave function based on a con6guration inter-
action with 6ve terms obtained by Kotani and his
colleagues' has been used in calculating p, p~, and 8

for this system. All these quantities were calculated in
a plane passing through the molecular axis. There is a
difFiculty concerning the definition of the 5 function in
this case; the electronic density of the free oxygen
atome is not spherical and it is not very clear how to
form p". The definition has been adopted according to
which p~ is to be formed with the help of atomic den-
sities averaged over all orientations in the space; in

this way, the spherical symmetry is reintroduced. As

for N2, no increase of electronic density is found along

the molecular axis (Fig. 3). The 0, bond is again of the
annular type. However, the annular regions are placed

in a diferent way. There are three in number: two at
the "ends" of the molecule and one between them. The
behavior at the "end" regions is probably due to the

fact that on each oxygen atom there are four unshared

electrons. This leads to a strong repulsion between the
electrons of the same spin. Once more the results are

in good qualitative agreement with the Lewis classical

scheme (Fig. 3).
' Reference 1, p. 939.
4 C. W. Scheer, J. Chem. Phys. 23, 569 (j.955).' M. Kotani, Y. Mizuno, K. Kayama, and E. Ishiguro, J. Phys.

Soc. Japan 12, 707 I', 1957).
' The fundamental state of 0 is a 'I'2 state.
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tions in the united atom, say in the SCF approximation,
the molecular wave function P; can be written

4'i=2 dis4s, (2)

where d;, are the expansion coeKcients. The corre-
sponding energy derivatives can be calculated. ' The
results are particularly simple if one introduces the
usual hypothesis of the perturbation theory (H;; -+ H;, ,
H q~XH q E &E'+—XE'+ ). This gives (see the
Appendix)

Ep=H;/+X' 2 Q' H, ,H;.*
B,,—EI„

Bls
(H*—H *)

(H;;—H„)'
I 3

FzG. 2. The function B(R) calculated for N2 in a plane passing
through the molecular axis. The regions where 8(R) is positive
are designated by crosses. The corresponding Lewis formula is
added.

E *~=H "*~+X' 2 P (H, ,H, ,*~+H,,*H,.p)H"—H

Conclusion

The results obtained by use of elaborate wave func-
tions agree qualitatively with what could be expected
from simple chemica1 intuition. It is important, how-
ever, that this agreement is not quantitative: the charge
localized in the annular region is much smaller than the
classical formula suggests; in the annular region of N2
the binding leads to an increase of no more than 0.01
electron. Recent experimental works on benzene lead to
similar conclusions. ~

In these formulas E,'= BE/BS, and EP"=B'E/BS,BS„
are the derivatives of the energy of the molecular elec-
tronic state i (ground state) with respect to S, and S„;
5, and S„are the nuclear coordinates, by preference the

O
~ ~ ~

~ 0 0

FORCE CONSTANTS OF SOME SIMPLE HYDRIDES

It has been shown (Platt ) that the force constants of
diatomic hydrides MH can be calculated surprisingly
well by a simple model of the united-atom type. This
section examines the following questions: (a) How can
Platt's model be incorporated into the perturbation-
theory scheme based on the united-atom orbitalsP (b)
What can such a theory say about the factors influencing
the force constants of the diatomic moleculesP (c) How
can this method be extended to the case of polyatomic
hydrides in order to investigate the bending and inter-
action force constants?

I+

+
I

0

(I) General Theory

If the electrons of a diatomic or polyatomic molecule
are strongly concentrated on one of the atoms (which
is the case for hydrides) it is reasonable to develop the
molecular wave function into a series of the united-
atom wave functions. If &0, g~, etc. are the wave func-

7 W. Cochran, Acta Cryst. 9, 924 {1956).
J. R. Platt, J. Chem. Phys. 18, 932 (1950).

Fro. 3. The function B(R) calculated for 02 in a plane passing
through the molecular axis. The regions where 8(R) is positive
are designated by crosses. The corresponding Lewis formula is
added.

~ S. Bratoz, Calcel des Fonctions d'onde Molecgluires (Colloques
internationaux du CNRS, Paris, j.958), p. 287.
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4xr pdr=ZM.
Jo&':=(~/». ) &4 'I &IV.), &'.*"=(~/».».) &4'I FJI 4.)

symmetry coordinates. " H;, is the matrix element For the equilibrium distance Ii=0 or

&P;IHIP, ) and P is the total molecular Hamiltonian;
H;,* and H;,*& are the corresponding derivatives

(7)

The force E as well as the force constant E ~ are
composed as expected of a zero-order term associated
with the diagonal matrix elements H, , and H;;*& as
well as of second-order terms associated with nondiag-
onal elements. Here it is convenient to separate the
discussion into the sections dealing, respectively, with
the diatomic and polyatomic molecules.

(2) Diatomic Hydrides MH —Formal Derivation
of Platt's Formula

If one neglects the second-order terms, Eqs. (3) re-

duce to the form

dEr/dS, = F=dH—r r/dS, ; d'Er/dS~'= d'Err/dS~', (4)

The integral Jeakrr'pdr gives the number of electrons
contained in a sphere with radius E centered on the
united atom. Equation (7) then indicates that the
equilibrium R is the radius in the united atom at which
the effective nuclear charge is unity. This is the radius
beyond which lie a total number of 1.0 electron. This is

just the first Platt hypothesis. If one diGerentiates Eq.
(6) with respect to R, one finds

( ~B

( dF/dR—) = harp
—(2/R')

I
err'pdr ZM I.—(8)

E~, )

The force constant is then

E=47rp,

where we have put i=1. This approximation corre-
sponds to Platt's theory. This can be easily proved if
one considers the atom M as fixed in space; the position
of the H with respect to M is described by the coor-
dinate S,=E, the distance between M and H. The
atomic wave functions centered on the fixed atom M
do not depend on E; neither do the kinetic energy and
the electronic repulsion operators. The force acting on
the H nucleus is then

which is the second Platt hypothesis. It is therefore
shown that (1) the Platt model corresponds to the
leading term of the perturbation development based on
the united-atom wave functions; (2) Platt's formula is

obtained only for a spherical charge distribution. On

the contrary, the independence of the atomic wave

function on R is not essential. Platt's formulas also
could be obtained with atomic functions containing
parameters which depend on R (e.g. , orbital coeK-
cients), provided they have been chosen in a way which

satisfies the variation principle. "It should be stressed,
however, that this formal justification of the Platt
theory does not completely explain its success. It is

not clear, for example, why the experimental and not
the theoretical R must be used to get agreement with

experience. An analysis of the higher-order terms would

be necessary to clarify this point.

dHyi COSOA; ZM

8 l&l~)= ~ S
dR dE ~ ~A:H E2

I
cosO ZM=

J p dn ;(5)-R"

(3) Diatomic Hydrides —Study of Factors
In6uencing the Force Constantsk

M

H

In this section we examine how the electrons of difer-
ent orbitals inhuence the force constant. It is convenient

to start from the fact that in the single determinant
approximation, the electronic density is composed addi-
tively of contributions associated with diferent orbitals.
One has

and p the electronic density; F can be evaluated easily
if one supposes that the charge distribution is spherical. "
With the help of a well-known theorem of classical
electrostatics, one finds (10)p= 2pr, +2p2, +

ryH is the distance between the electron k and the
proton, 81, is the angle

~B
F= (1/R') Mr'—pdy —(ZM/R')

The force with which the electrons attract the proton
can be decomposed correspondingly:

( ~B
= (1/R2)

I
4gpy2pdr —ZM

I (6) F"= pdo/R2 =—2 pr, do/Re+2~ peg(&+

"This choice of the nuclear coordinates conserves the usual
symmetry arguments in calculating the matrix elements.

"The atomic charge distribution is spherical only for 8 states.

= —2F„"—2F„"— . (11)

"A. C. Hurley, Proc. Roy. Soc. (London) A226, 173 (1957).
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Pro. 4. The force Jig,
"with which the charge associated with an

orbital k attracts the proton, as a function of R: curve a, united-
atom model; curve b, uniformly charged sphere approximation.

It is now stated that FJ,"=0 for R=O and g= ~, For
g=0 this is due to the fact that in the united-atom
situation there is a center of symmetry. For E= ~
one has —Fs"=I/R', which proves the statement. As
the forces FI,"are attractive, hence negative, —FJ,

"has
(at least) one maximum (Fig. 4, curve a). The corre-
sponding contributions to the force constant d'Es"/dR'
are then obtained by differentiation (Fig. 5, curve a).
d'Es"/dR' can be negative as well as positive; it is
small in the neighborhood of the point where —FI," is
maximum. An orbital whose attractive force is the

Mole-
cule

2/R'
(10'

dyne
cm ') Exptl.

Mole-
cule

2/R3
(105

dyne
cm ') Exptl.

I.iH
BH
NaH
KH
RbH

1.14
2.48
0.68
0.41
0.37

1.01
3.04
0.78
0.56
0.51

CsH
Li~ '
Nam '
K2'

0.30
0.24
0.16
0.08

0.47
0.25
0.17
0.10

a The molecules Lie, Na&, and K& have been included although they are
not hydrides

largest possible does not contribute to the force
constant. It can be shown that, in the uniformity
charged-sphere approximation, the maximum binding
force (or zero force-constant contribution) corresponds
to the point where the proton begins to penetrate into
the sphere (Figs. 4 and 5, curve b).

The way the electrons of diferent orbitals inRuence
the force constants now can be readily explained. The
core orbitals being "small" with respect to the M —H
distance, one is on the right side of the curves of
Fig. 5. Their contribution to the force constant is
essentially 2/R'. The effect of the core orbitals is
therefore to screen the nuclear charge of the atom M,
which is an expected result. As the charge "dimensions"
of the orbitals increase, one is shifting progressively to
the left (Fig. 5). It follows that the bond orbitals con-
tribute less to the force constants than do the core
orbitals; their contribution to the force constants may
become very small. Another way to express the same
idea is to say that the bond orbital energy varies less
rapidly in the neighborhood of the equilibrium E. than
does the core orbital energy; it may vary even in a
quasi-linear fashion. " In some cases, these considera-

TABLE I.

Radiosof ~

the upbeat e t r

Y

tions lead to surprising results. If, e.g., for an essentially
dielectronic bond, the valence orbital contribution to
the force constant is small, it can be neglected and one
has approximately X=2/R', i.e., the same result as if
there were no valence electrons at all (Table I). If the
bond is not essentially dielectronic, the results are less
simple and the 2/R' law is not expected to hold.

The question could be raised as to whether the appli-
cation of Platt's theory is justified in this connection.
The answer is afhrmative as the essential point, i.e.,
the fact that d'Es"/dR' vanishes for some R, is com-
pletely independent from Platt's hypothesis. It is
simply a consequence of the fact that the electron-
nuclei attractive forces have somewhere their maximum;
in this point one has —(dF/dR)=X=0. A complete
SCF-CI calculation on H2 and LiH led to similar
results. '4"

Pro. 5. d'EIe'/dR' as a function of R: curve a, united-atom
model; curve b, uniformly charged sphere approximation,

"This has nothing to do with the stability of the molecule.
Even a linear electronic potential would ensure the stability of
the molecule although giving a zero contribution to the force
constant."G. Bessis and S. Bratoz, Compt. rend. 24, 1592 (1958)."S. Bratoi and G. Bessis, J. chim. phys. 1042 (1959).
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The OH distance has been taken equal to 0.97 A and

FIG. 6. The interaction of
$ and p wave functions in-
troduces a density of p type.

Instead, the following symmetry coordinates will be
used":

S,=2 '(rou+roH ); HS„=o,
~H

8.=2 &(roH —ron). (12)

(4) Polyatomic Hydrides —Force
Constants of HtO

The first-order theory, successful for diatomic
hydrides, is clearly insufhcient for the polyatomic
hydrides. The reasons are: (1) The united atom asso-
ciated, e.g. , with H~O is Ne. As its charge distribution
is spherical, it cannot ensure the stability of a bent
triatomic molecule such as 820. This can be made only
if one allows the mixture of the fundamental 8 state
with other states having symmetry I', D, etc. (Fig. 6).
(2) It is impossible to get a nonvanishing electronic con-
tribution to the interaction constants of stretching-
stretching type if the wave function is not allowed to
follow the nuclear motion. This is due to the fact that
in the case considered, no molecular integral depends
simultaneously on two di6'erent bond distances:
d'E"/dEdR' is necessarily zero.

The constants E,Eg, and Egg of 820 are therefore
studied by using the complete (second order) procedure

(3). In this problem the 0 atom is considered as being
fixed in space; the nuclear configuration is then com-

pletely described by three coordinates:
H

roH, roH, and 0,0& .

E
EIt
Eau

Boys and
colleagues'

0.86—0.35—0.62

This work

0.87
0.36—0.07

Exptl. b

0.77
0.25—0.11

a See footnote 2i.
b C. A. Coulson, J. Duchesne, and G. Manneback, Volume Commemoratif

Victor Henri (Maison Desoer, Liege, Belgium, 1948), p. 33.

has been simplified in one point, replacing the difference
H» —H» by the calculated value of the first ionization
potential of 820; this probably does not introduce
serious errors as even the smallest III~—Hy~ close to
this value. The results are given in Table III, which
also reproduces the results of Boys and colleagues"
obtained by a complete SCF-CI calculation. As in the
diatomic case, the agreement with experience is satis-
factory if the experimental values are used for the
internuclear distances.

Some interesting conclusions can be drawn from this
calculation. One observes, first of all, that the separation
of the force constants E, Eg, and Egg into zero-
and second-order terms, coincides with the separation

angle to j.04'30'. The atomic orbitals used are the
orthogonalized Slater orbitals with the orbital coef-
ficients taken from the work. of Sanyard and March":
it.=7.670, 1'2, ——2.630, i'2@at =1.885."For 3s,p orbitals
the value i'e„y=0.620 has been chosen; this value is
close to the value given by the Slater's rule when applied
to the united atom (0.68). All integrals, including their
derivatives, have been calculated analytically by using
Kotani's and Roothaan's formulas. ""The configura-
tions of the states which have been included in the
calculations are given in the Table II. All other con-
figurations of the M shell have been found to give small
contributions and have been neglected. The procedure

TABLE III. (Calculations in 105 dyne cm '.)

TABLE II.

Configuration

(1$)2(2$)2(2pg)&{2P7r)2(2P7r )2
(1$)2 (2$)2 (2pg) (2P7r) 2 (2P7r') 2 (3$)
(1$)'(2$)'(2pg) (2P7r)'(2P7r')'(3pg. )
(»)'(»)'(2P~)'(2p~) (2p~')'(3p~)

Symmetry

A1
A1
Ai
Ai

Configuration

(»)'(»)'(2P~)'(2P~)'(2P~') (3p~')
(»)'(»)'(2P~) {2P~)'(2P~')'(3p~)

(1$)'(2$)'(2pg)'(2P7r) (2P71-')'(3pg)

Symmetry

A1

BI

"Compare with footnote 10.
'7 K. E. Banyard and N. H. March, Acta crystal. 9, 385 (1956).
'8 They have been determined minimizing the H20 molecular energy.
' M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura, TaMe of Molecglar I1ztegrals (Maruzen Company, I.td. , Tokyo, 1955).
'0 C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951)."S.F. Boys, G. B.Cook, C. M. Reeves, aud L Shavtt, Nature 178, 1207 (1956),
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TABLE IV. (Calculations in 10~ dyne cm '.) E,' =Pd d,H,*+P't2/(E, —E,))
Nuclear con-

tribution
Electronic

contribution Total stst
X(P d;.ds~H, P)(g d;.ds~H, ~"). (b)

E
&aa
ERR'

0.88
0.31
1.04

—0.01
0.05—1.11

0.87
0.36—0.07

into the nuclear repulsion and electron-attraction
terms. One finds, in fact, that the nuclear terms are
exceptionally large for E and Ea " (Table IV). The
result is unexpected but not entirely new. The fact
that the bending frequency v2 of the tetrahedral
hydrides MH4 can be reproduced reasonably well by a
formula depending only on EMH (Longuet-Higgins
and Brown" ) is due to the same reason. The electronic
correction is, on the contrary, important for the stretch-
ing-stretching interaction constant Egg where it re-
verses the sign of the zero-order term. As the electronic
term measures the electronic rearrangement during
vibration, it follows that the negative sign of Egg is
due to the "electronic relaxation. "'4 It seems that
the matters are similar in the case of other hydrides.
One finds that the nuclear repulsion terms reproduce
well the constants E and Eg but not Egg . However,
the electron rearrangement contribution to Egg is not
necessarily larger than the nuclear term; these constants
are therefore positive or negative, but small.

H, g~= B'/BS,BSs(P, l
H

l gg);

E =BE/BS;
E*&=B'E/BS,BS„.

(c)

For an exact wave function f;, i.e., for a development
which is not truncated, formula (b) coincides with one
given by Brown. "Formulas (a) and (b) can be simpli-
fied considerably if one supposes that the nondiagonal
matrix elements (as well as then derivatives) are of order
X with respect to the diagonal terms. By substituting
XH;& for H;&(iWk) into the system of the linear equa-
tions which determines the d;„one gets the simplified
expressions for the con6guration interaction expansion
coeScients:

d"= &
—~s-' Z' [Ks'/(K,—Hss)'1+, (d)

Here d;„d;~, etc. are the expansion coefficients of the
CI wave function f, into (finite) sum of determinants
P„H, ~ are the matrix elements (tt, l Hler), H being the
total molecular Hamiltonian. One also has

H P=(BIBSs)(y.lHly~)'

APPENDIX
d s=&LH s/(H" —H~s) j+" . (e)

For a configuration interaction wave function the
derivatives of the energy E; with respect to the nuclear
coordinates S and S„are given by the following
formulas'.

Formulas (d) and (e) have a more similar structure
than those given by the ordinary perturbation theory.
Substituting (d) and (e) into (a) and (b), one obtains
the formulas (3) of the text.

E~ =Z da sditHst, ' (a) ACKNOWLEDGMENTS

"Compare with footnote 13.
"H. C. Ionguet-Higgins and D. A. Brown, J. Org. Nuclear

Chem. 1, 60 (1955).
'4 I. B. Mills, Mol. Phys. 1, 107 (1958).
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V short-range intermolecular forces we mean those
forces whose potential energy is in the range of a

few tenths of an electron volt to a few electron volts.
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Such forces are important in determining most proper-
ties at very high temperatures and a few properties at
ordinary temperatures that are selective for high-energy
molecular collisions. At present there is an especially
great need for information on the transport properties


