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there is a limit to the accuracy. However, use of spec-
troscopic data for evaluating atomic energies will help,
but is not at all essential from a theoretical point of
view.

In a forthcoming paper, we shall discuss how our
approach can be simplified for application to more
complicated systems. Vfe shall consider the accuracy

of further approximation by comparing with the cor-
responding simplification in the orbital approach.
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l. INTRODUCTION

HK most accurate method of determining dis-
sociation energies of diatomic molecules is from

the analysis of their band spectra. In favorable cases,
when this analysis is unambiguous, values accurate to
within 0.001 ev may be obtained Le.g., Os Herzberg
(1950)'). However, for many molecules of thermo-
chemical interest the analysis of the spectra is ambig-
uous and leads to several possible values for the dis-
sociation energy. One of the most important examples
of this is provided by the carbon monoxide molecule.
Here the spectroscopic data are consistent with just
three values for D, (CO), namely, 9.28 ev jHerzberg
(1950)$, 9.74 ev (Hagstrum (1947)j, and 11.24 ev
LGaydon (1947)j.

In this situation, relatively crude estimates of the
dissociation energy may be of value in distinguishing
between the possible spectroscopic values. Various
experimental techniques have been employed for this

purpose; for example, mass-spectrometric analysis of
the ions resulting from the electron bombardment of
carbon monoxide (Hagstrum (1951, 1955)j and the
direct thermochemical measurement of the latent heat
of sublimation of graphite PChupka and Inghram
(1953, 1955)), this quantity being related to D, (CO) by
well-established thermochemical quantities,

In this paper two theoretical calculations of the
binding energy and ground state wave function of
carbon monoxide are described. The 6rst is an ab zeiA'0

orbital calculation and the second employs the intra-
atomic correlation correction (ICC), introduced by the
author (Hurley (1956a, 1958a)j, as a necessary modi-
fication of the method of atoms in molecules LMoffitt

(1951)],The orbital calculation (Sec. 2) is carried out
in such a way as to facilitate the transition to the ICC
theory in later sections. The key quantity in this tran-
sition is the transformation matrix 7.

'
LEq. (2.21)J.

' References are giv~ in alphabeticaI order in the Bibliography.

2. ORBITAL CALCULATION

(a) Atomic Qrbitals

The basic atomic orbitals are taken as orthogonalized
Slater-type functions centered on the carbon and oxygen
nuclei.

o-type

x-type

X-type

~ =h.=(i- '/ )"-p( f")-,
ps= hc= (f s'/sr)' exp( —i src),

Ps = so =E&(fss/3') &ro exp( i sro)—nihss)—,

44= sc=Ssf (ass/3sr) &rc exp( —i src) —ashc},

ys=oo= (gs'/v)'so «p( —i'sro), (2.1)

ys—-oc= (f'ss/v. )lsc exp( —fsrc),

4v ——xo = (t'ss/sr) & xo exp( —. l'sro),

ps= xc= (Pss/v)'xc exp( —f'src},

4s= yo= (t s'/~) 'yo exp( —&sro)

4is= yc= (l s'/v)'yc exp( —isrc).

Here (xo,yo, so), (xc,yc,zc) are Cartesian coordinates
centered on the oxygen and carbon nuclei; the z axes
are directed inwards along the internuclear axis and
the x, (y) axes on the two centers are parallel:

ro= (xo'+yos+so')', rc= (xc'+yes+so')'.

The orbital exponents i have values which minimize
the energy of the ground state dissociation products
O(s'p' 'P), C(s'P 'P) [Roothaan (1955)].

0: f 7.F6, f's =2.25, ps= 2.23,
C: i s=5.67, i 4=1.61, ps=1.57. (2.2)

All the basic atomic integrals involving the orbitals
(2.1) were evaluated for the equihbrium nuclear
separation R=2.1319 atomic units (a.u.) LHerzberg
(1950)j, and are listed in Appendix II.



S TRUCTtJRE OF CARBON MONOXIDF.

(b) Valence-Bond Basis

As in previous calculations on the ground states of
the first-row hydrides LHurley (1958b)j, the valence-
bond basis functions vfere chosen froln RD cxpRDslon of
the self-consistent field molecular orbital function.
This single determinant @rave function 0' may be
expressed as the Rntisymxnctrized product of a wave
function for the ten o electrons and a wave function for
the four m electrons,

0'= gQ'0 )

0 =
f
018101010'40'40'40'40'40'4

f

(2.3)

o-= f~.~.~„~„f. (2.5)

The form of Eq. (23) enables us to consider the ex-
pansions of 0 and 0 separately,

Each of the molecular orbitals r» 05 appearing
ln 0~ ls some linear comblllRtloD of thc 0'"type atomic
orbitals 4t I ~ p0 tEq. (2.1)$. If this single determinant
is now expanded in terms of valence-bond functions,
and if all functions not shorving two electrons in each
of tllc llillcl' shell orbitals $1(=ko) Rnd pl(= kc) Rrc
discarded, the following set of valence-bond vrave

fuDctloDS ls obtained:

so sc &o

fo fo fo ,
sp sg 0'o

sc 0'o

+,.=2-i fo fo
so sc &c

Here the generalized notation for valence-bond
structures introduced by McWeeny (1954) has been
used. The inner-shell orbitals kp, kc, which are doubly
occupied in all the wave functions, have been omitted.
In order to define the structures appearing in Eq. (2.6)
uniquely, we must specify the ordering of the orbitals
in the elementary determinants (McWeeney). In Eq.
(2.6) and all subsequent equations, the natural ordering

4"=L+I'. 4&"]. (2.&)

%e consider also a sct of orthogonalized valence-bond
functions

II4 + e e s H P (2.8)

which are obtained from (2.6) by replacing the basic
RtoIlllc orbitals ko(QI) ' ' '0'o(=$4) by SchII11dt ol'tllo-
gonalized atomic orbitals 8» ~ .86 dehned by the equa-
tions

o ~ ~

~ 0 ~

is employed.
The vvave functions 4'9' and 4'»0' will interact with

the functions 4» Rnd %4 even for in6nite nuclear
separation, and are therefore omitted from the basis,
If included, these weave functions would have a small
CIIFect on the result of the orbital calculation, but
almost Do efFect on the result of. the ICC calculation

f
cf. Hurley, (1959) and Sec. 4(e)].

The remaining eight valence-bond functions (2.6)
Rl'c rcpl'esentcd Rs R row vcctol'

+4 ——2-i fo

so sc
~,.= fo fo

so sc

so

sc &0

0'p

Cc
fo,
Oc

so 0'p

Oc Op

0'o &c

sc 0'c

~.=E 4P ., (C= & 6),

t8„8,d0= 8„,

(26} The nonzero elements of the matrix t are given in
TRblc I. Tllc basic fllllctloIls (2.7) Rlld (2.8) Rl'e 1'clatcd
by a matrix transformation

0 =O'T 4'= O'S' 5'= (2" )-' (2 10)

T~LE I. Schmidt orthogona1ized atomic orbitals.
sc

e, =2-i fO

sg
fo,

sp 0'o 0'c

fo fo ,
sc 0'o 0'g

e, = fo fo fo

~tl

&Is

~14

~16

~16

4s

1.00000—0.00009
0.00000—0.05605
0.02216—0.15355
1.00000

A. ~ Orbitals t Eq. (2.9)j
43

~2$

4s
~33

$34

~Ni

—0.05017
0.02401—0.09942
0.10222
1.00126—0.47897
0.19383

B. ~ orbitals LEq. (2.15)j

46

4a
$4s

t;s
4e

—0.99910
1.10994—0.43873
0.64369
1.07903—0.62722
1.41082

sc 0'o

+10 = fo fo fo
so Oo

~77 ~99

~7S~&9, aO

4S=tIO, IO.

1.00000—0.28099
1.03873
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The elements of the matrix S' may be obtained from
the equations [Hurley (1958a)]

Again the bases (2.12) and (2.14) are related by a
triangular matrix transformation

S"t=
J

Q~.t+ tdt with

Qlt 1I —+IPT1l +Ã —0&%S1l.
9 9

T,;.=S;;.=0 (i&j).

(2.16)

Alternatively, the expansion formulas for valence-
bond structures developed by McWeeny (1954) may be
used. In the latter method, the matrices T and S are
evaluated independently in terms of the ma, trices t

[Eq. (2.9)] and s(=t '). The relation

The valence-bond basis functions for the ground state
of carbon monoxide are now obtained as antisym-
metrized products of the functions 4,' [Eq. (2.7)] and
%j; [Eq. (2.12)]:

ST =j.
At

+('.~) = ~+"+~' (i=1 8; j=1 6). (2.17)

T,;.=S,,'=O (2.11)

In the same way, the single determinant function 0
[Eq. (2.5)] is expanded in terms of the valence-bond
basis

then provides a useful numerical check.
With the ordering of the functions 4' and 0"' defined

by Eq. (2.6), the triangular form of the matrices t and s
implies that the matrices T' and S are also triangular:

This basis of forty-eight functions is represented as
a row vector + with inverse dictionary ordering:

[+(11)I+(2,1)I ' ' '
I +(81)I+(12)I ' ' '

I +(86)] (2 18)

Similarly, the orthogonalized valence-bond basis
At At

0=[0(») 0(21) ''' 0(86)] (219)

is constructed from the functions 0~, (2.8) and Oj
(2.14):

with

1ljt—[+ Ij. . .+ t]

Sp
II' 1

sc
!

yp

yc

Sp yp
!0 !0,
xo yp
' ~p yp ~o yo

o !+! fo
xc yc Ãc yp

&p yc &c yo
~,.=2—: fo fo + !o fo

&p yc &c yp

(2.12)

(2.13)

= eO'0- (i=1 ~ ~ 8; j=1 ~ 6). (2.20)

The 48&&48 transformation matrices T and S relating
the bases (2.18) and (2.19),

O'=VTI 4=0'S, S= T ' (2.21)

are now just the direct products of the 8&(8 matrices
T, S' and the 6&6 matrices T and S:
that is,

T(i,k) (j,&) Tij Tkl

S(*,2) (jl) =S(j ,SjI l

TaX Tm S So)(Sar ~

(i,j=1 8; ll, t=1 .6).

(2.22)

These matrices are completely triangular in the sense
that

sc yp sp
fo I +

f
fo

&c yc &c yc

~c yc
~6-= fo fo.

sc yc

The orthogonal basis

QII t—[0~ t. . .
Ql

is obtained by replacing the atomic orbitals

, (2.14)

T;,(2;),(=1)S,,(k),(j=1)ounlessi &j and 0& l. (2.23)

This property of the transformation matrices, which
stems from the use of Schmidt orthogonalized atomic
orbitals, is very convenient for calculations employing
the intra-atomic correlation correction. It permits us to
truncate the bases (2.18) and (2.19) simultaneously
without destroying the linear dependence between
them. For example, Eq. (2.23) shows that the first
functions in each basis are simply multiples of each
other:

e,=p ltj„t„((t=7,8)

10

g, =g y„t„, (q=9, 10)
@=9

t„,=o (p) q).

(2.15)

6( j(=*o) 4 16(=yc)

by the Schmidt orthogonalized orbitals [Table I(B)]

At

0(~,~) —+(~,~) T(»,»)

If we had used some other transformation to ortho-
gonalize the basic atomic orbitals, it would have been
impossible to truncate the bases in this way. Thus, if
Lowdin's (1950) symmetrical orthogonalization had
been employed the expansion of 0+(&,&) wouM have
involved all 48 of the functions 4(;,;) together with 12
wave functions constructed from the functions +9 and
+,6 [Eq. (2.6)].
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The importance of this truncation of the basis in
ICC calculations lies in the treatment of highly ionized
states of the dissociation products. Thus the full
valence-bond basis (2.18) includes many states of the
ions C', C~, C' . It is clearly impossible to obtain
reliable experimental estimates of the energies of these
states. In a previous calculation of the binding energy
of Ns LHurley (1956b)$, this difficulty was circum-
vented by using an extrapolation technique to dispense
with empirical estimates of the energies of various
states of the ions N' and N' . Nevertheless, the
presence of these states in the total wave function led
to some uncertainty in the Anal results.

Here it is possible to eliminate these troublesome
states entirely. First it is shown that they have a
negligible eGect on the total energy in the orbital cal-
culation. These states are then omitted from the ICC
calculations by truncating the bases in accordance with

Eq. (2.23).
Of course, it is always possible to truncate the basis

in an ICC calculation after transforming the full

energy matrix explicitly into the valence-bond basis,
regardless of what process of orthogonalization is
employed. However, this is a much less efIj.cient pro-
cedure than exploiting the properties of Schmidt ortho-
gonalization.

(c) Energy Matrix

The energy matrix H(O~) in the basis of orthogonalized
valence-bond functions (2.19) was evaluated by using
McWeeny's (1954) generalization of the cycle-diagram
method. This somewhat arduous task was greatly sim-

pliied by taking full advantage of the special reductions
in the formulas which result from the factorization of
the wave functions into antisymmetrized products of
O (i=1 8) and 0, (j=1 6) t Kq. (2.20)j. In
this way the 48X48 matrix B(O') may be evaluated
with little more work than is required for one SX8
matrix and one 6)(6 matrix. As these special reductions
are simple examples of McWeeny's (1960) recent
analysis of density matrices for generalized product
functions, they are not discussed further.

(d) Total Energy and Binding Energy

The total molecular wave function 0 and energy E
in the orbital calculation are now given by the usual
secular equations,

0= Of'

det(H(O~) —81}=0 (lowest root) (2.24)

(H(e) —E»r =0.
The binding energy D, is obtained from the equation

D.=Wo 8, —(2.25)

where S'G is the total energy of the ground state
O(s'p' 'P)C(s'p' 'P) of the dissociation products cal-
culated by using the atomic orbitals (2.1).

TAnLE II. Total energy and binding energy (orbital calculation).

Basis functions

23 terms' C'+lP, C+0, Co, C 0+
39 terms C~+0 C' 0'+
48 terms C'+0 ~ ~ C' 04+
SCFMO Moser (1960)
SCFMO Ransil (1960)

B {a.u.)

—112.437—112.4384—112.4385—112.343—112.344

De(ev) b

7.45
7.50
7.50
4.9
4.9'

a See Table III.
b 1 a.u. =27.210 ev.
o Relative to C(s'p'. 'P), O(sgp4, gP) calculated with optimum Slater

functions )Hurley (1959)j.

The results obtained from Kqs. (2.24) and (2.25) by
using difFerent numbers of functions in the basis (2.19)
are shown in Table II. The results of self-consistent
field molecular orbital calculati'ons $Moser (1960),
Ransil (1960)$ are shown for comparison. The orbital
exponents (pi= 7 7, f .s= t' s2.275, ps= 5 7, f4. = t's
= 1.625) used by Ransil dier slightly from those of Eq.
(2.2), which were also used by Moser.

We see from Table II that the binding energy ob-
tained by Ransil and Moser is increased by about 2.5 ev
by the 23-term valence-bond calculation. However, the
further reduction in energy brought about by all the
chemically unreasonable structures involving more than
one negative charge on the carbon nucleus is very
small. The 23-term basis, which was used in the sub-
sequent calculations, is speci6ed in detail in Sec. 3
(Table III).

(e) Validity of Valence Coupling

Even the full valence-bond basis (2.18) contains only
a small fraction of the total number of 'Z+ wave func-
tions which can be constructed from the basic atomic
orbitals (2.1). Indeed, an application of the correlation
rules of Wigner and Witmer (1928) to all possible states
of the dissociation products (subject to the restriction
that the inner-shell orbitals ko, kz are both doubly
occupied) shows that a complete basis for the 'Z+

ground state of carbon monoxide contains 177 terms.
The additional functions are of two types:

(i) Functions with the same orbital assignments as
the functions (2.18) but with difFerent spin couplings.
In the valence-bond basis, the spin coupling is always
between electrons in orbitals of the same symmetry type
(o, x, or y). The relaxation of this restriction leads to a
large number of additional functions which show spin
couplings between orbitals of diferent symmetries.

Additional functions of this type must be included if
we wish to resolve the valence-bond basis functions in
terms of approximate composite functions PMoffttt
(1954)g. This would be important for a calculation at
large nuclear separations since it would lead to disso-
ciation products in true stationary states rather than in
the valence states which result from the basis (2.18)
(cf. Table III).

However, the eGect of these extra functions on the
energy of the ground state at the equilibrium nuclear
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YAM.E III. Wave functions for the 23-term calculations.

Basis
functionsa

C~s,+P

Dissociation products.
Ionicity Valence states&
c"+ c 0 (W, -W,')e

Coefficients in total wave function
Orbital calculation ICC calculation

I'(e) r(e) 6 I (e) p(+)

1 1,1
2 21
3 3,1
4 4,1
5 5,1
6 6,1
7 7,

'1

8 1,2
9 2,2

10 32
11 4,2
12 5,2
13 6,2
14 7,2

2 s'Vp
1 s pVI
2 spVp
0 s'x'Vp

s2p Vi
sx2V1

0 s'x'Vp

1 s2p V1
0 s'xyV2

p2 V'

—1 s xyV1
0 s'xyV2
0 sx yV2—1 s'x'yV1

s2pB V
s2p6V1

2PB Vp
sxy Vp
spBV
s2p6 V
sp6Vp

s2p6 V
s'x'ys U2
S2p6 V1
s2x2y Vi
sp6V2
s2x2ys V2
p4V *

—0.6184
—0.2453—0.5992—0.0746—0.4784—0.2505
—0.2087

—0.2454—0.0102
—0.2658

0.0027—0.1393—0.0574
—0.1031

0.3883
0.2804—0.1301
0.0722
0.0547
0.0643

—0.0146

0.6350
0.3434—0.2025
0.0515
0.0608
0.0646—0.0033

—0.0025
0.0904—0.0225
0.0677
0.0322
0.0524—0.0338

0.1490
0.3053—0.1342
0.0392
0.1035
0.1565—0.0090

-0.001
0.029
0.007
0.012
0.011
0.013
0.010

0.085
0.188
0.083
0.012
0.075
0.071
0.005

0.5063
0.2868—0.2002
0.0708
0.0591
0.0701—0.0208

0.6092
0.2793

—0.2289
0.0506
0.0421
0.0549—0.0272

0.0566 0.020
0.1283 0.048—0.0922 0.037
0.0503 0.010
0.0720 0.033
0.0875- 0.026—0.0146 0.005

0.2805 0.168
0.1642 0.099—0.2346 0.154
0.0503 0.015
0.0305 0.023
0.1040 0.047—0.0749 0.040

15 1,3
16 2,3
17 33
18 5,3

19 1,4
20 24
21 34
22 54

0

0—1

0

0—1

s2x2Up
s'x'yV1

p3 V
S2x'yV1

s'xy V2
s2xys V3
sp3 V'

s2xys V3

s'x'y'Vo
s'x'yV1
s2x2y2 Vp
sx2y2V1

s2x2ys U2
s2xys V3
s2x2yg V2
sx yzV3

—0.0746
0.0027—0.1419—0.0754

—0.0102
0.0702

—0.0959—0.0132

0.1691 0.1184 0.035
0.0516 0.0666 0.020

—0.0475 —0.0891 0.028
0.0049 0.0107 0.004

0.3333 0.2360 0.114
0,1100 0.1489 0.071—0.0924 —0.1690 0.084
0.0139 0.0304 0.018

0.1392 0.0836 0.024
0.0454 0.0546 0.015

-0.0467 —0.0840 0.025
0.0085 0.0186 0.006

0.2420 0.1483 0.064
0.0804 0.0946 0.039—0.0853 —0.1542 0.071
0.0149 0.0326 0.017

23 1,5 —1 s'x'yV1 s2x2yU, 0,0027 0,0550 0.0886 0.026 0.0407 0.0656 0.016

& There are 30 functions in the bases (2,18) (2.19) which show not more than one negative charge on the carbon atom. However, some of these are mixed
with states of higher ionicity by the transformations (2.21) and are omitted from the Table. This mixing could be avoided by changing the order of P4
and $5 in the Schmidt orthogonalization.

b sp2V&~ =)2D+g 2P, spIVp*~) 1Do+$ 'Po, sp~V2~ =$ 3Do+$ 3So+$ 1Do, sp4V&*=~4 ~D+g ~P, all other valence states are listed in terms of stationary
states by MofFitt (1954).

e Relative to the ground state dissociation products C(s2p2, 3P), O(slp4, 3P) for which Wg -8'g' = —0.8013.

separation is certainly small and probably very small
((0.05 ev). The eGect on the total energy of three
states of this type, derived by altering the spin coupling
in the most important valence-bond functions (Table
III), was estimated by second-order perturbation theory
to be less than 0.01 ev.

(ii) Functions with orbital assignments which differ
from those of the valence-bond functions (2.18). These
functions arise from the molecular orbital configurations
o'x', o'x', and o'm' and also from the functions 0 g and
+10', which we have discarded. The effect of these
functions on the total energy will be very small, except
for those functions which represent atomic coniguration
interaction; for example, interaction between C (s'p', 'P),
C(p4, 'P) or 0+(s'p' 'P) 0+(p' 'P). This atomic con-
figuration interaction will have an appreciable effect
( 0.5 ev) on the total energy in the orbital calculation
but almost no e8ect on the results of the ICC calcu-
lation t Hurley (1959)].

It appears therefore, that as far as the ICC calcu-
lation is concerned, the 23-term valence-bond basis for
the ground state of carbon monoxide (Table III) is
almost complete in the sense that additional functions
constructed from the atomic orbitals (2.1) would affect
the calculated total energy by less than 0.1 ev. How-
ever, this result has not been established as unequiv-
ocally as in the much simpler case of the first-row

hydrides [Hurley (1958b, 1959), Krauss and Wehner
(1958)].

3. INTRA-ATOMIC CORRELATION CORRECTION

In the ICC theory, the energy matrix H in the
valence bond basis 4 (2.18) is given by the equation
LHurley (1958a)]

H =8+,'$M(W W')+ '(W-W')3f—] (4' basis—). (3.1)

Here B, 3/I are the energy and overlap matrices
calculated directly from the orbital wave functions, 8'
is a diagonal matrix whose elements are the empirical
energies of the appropriate dissociation products, and
lV' is a similar matrix formed from the energies calcu-
lated for the dissociation products by.using the orbital
wave functions (2.18) with optimum values of the
parameters f~, fq, f'3, f'4, fq, f'6. That is, in calculating W',
these parameters are varied to minimize the energy of
each state of the dissociation products.

In Eq. (3.1) the valence-bond basis is restricted to
the 23 functions shown in Table III; the functions are
speci6ed by the values of i and j in Eq. (2.17) (column
2).The valence state corresponding to each function and
the numerical value of the correction term O';—S
LEq. (3.1)] are given in columns 3 and 4. The evalu-
ation of these correction terms is described in Appendix
I.
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To simplify the calculations, Eq. (3.1) is transformed
into the orthogonal valence-bond basis 0~ (2.19), which
in virtue of Kqs. (2.23) also contains just 23 functions
with the same values of i and. j as for the 0' basis:

H(Q~) =8'(Q')+/{ (W—W')'+ (W—W')'t) (3.2)

where

ICC calculation

Spectroscopic

Total energy (a.u.)-113.368

—113.377'
—113.322"

113305o

Binding energy De(ev))11.00

11.24'
9.74b
9 28c

TABLE IV. Total energy and binding energy
(23-term ICC calculation).

(W—W')'= S(W W')—T. (3 3) a Gaydon (1947). b Hagstrum (1947). e Herzberg (1950),

Here and in all subsequent matrix equations, the
matrices are for the truncated 23&23 basis of Table
III; 8 and T are the transformation matrices of Eqs.
(2.22); the symbol t denotes the Hermitian conjugate.

The coeScients of the total wave function in the
orthogonal basis 0~ are listed in Table III, column 5
(orbital calculation) and column 8 (ICC calculation).
For the orbital calculation these coefficients f(0) are
given by Eqs. (2.24), whilst for the ICC calculation,
F(0') is given by the corresponding equations with
H(O~) replacing B(O~):

0= OF (0~)

det{B(0~)—E1l =0 (lowest root) (3.4)

{&(e)—&I)F(o")=o.

The remaining columns of Table III give the coef-
ficients of the total wave function in the valence-bond
basis and the occupation numbers v, s of the valence-
bond structures. These quantities are determined from
the equations

F(%')=TI'(0), r(+)=Tl'(0),

v;=p f', (e)M,,r, (e) =I', (e) p S,,r, (O),

(3 5)

(3 6)
v, =g r;(e)3f,,r, (e)=r, (e) p S,,r, (O).

In practice, the second form of Eqs. (3.6), which derives
from the equation M =StS, is the more convenient
since the matrix S is triangular.

The values of the occupation numbers v; enable us
to estimate the eGect hE on the ICC total energy of
any uncertainties 68'; in the empirical values of the
valence-state energies. To first order, we have

DE= Q v;hW;.

In the present calculation the only appreciable
uncertainty of this kind arises from the states of
O' (4'i and% 8). For these states, the value —6.63+0.3
ev [Morris (1957)$ was used for the double-electron
affinity of oxygen. The small values of vi and va (Table
III, final column) indicate that this uncertainty will
have a very small effect (&0.05 ev) on the calculated
total energy.

The total energy E and the binding energy D, which
result from the 23-term ICC calculation are given in
Table IV together with three spectroscopic values

which have been put forward. The total energy is given

by Eq. (3.4) and the binding energy by the equation

(3 7)

where 5'0 is the experimental energy of the ground
state dissociation products 0('E), C('P). Since the
ICC binding energy is calculated relative to the experi-
mental energy of the dissociation products, it is a lower
limit to the true value to within the accuracy of the
approximation underlying the basic equation of the
ICC theory (3.1). For the simple systems, H2 [Hurley
(1955, 1956a), Pauncz (1954), Arai (1957)j, HeH+
[Hurley (1956c), Evett (1956)], and Li, [Arai and
Sakamoto (1958)], it has been shown that the errors
underlying Kq. (3.1) are very small ((0.02 ev).
Furthermore, calculations on the ground state of N~
[Hurley (1956b)J and on a large number of states of
the first-row hydrides LiH, SH, CH, NH, OH, and
FH [Hurley (1958b, 1959), Krauss and Wehner
(1958)j each lead to a total molecular energy which is
above the experimental value, that is, to a binding
energy D, which is a lower limit to the true value.

However, more re6ned calculations on the ground
state of FH [Krauss and Ransil (1960),Hurley (1960)j,
in which the orbital exponents are varied to minimize
the total energy, show that under certain circumstances
Eq. (3.7) may give binding energies which exceed
the true value by 0.2—0.8 ev. This implies an error of
at least this amount in Eq. (3.1).These calculations on
HF have been analyzed, and it has been shown that the
errors arise from discrepancies between Slater-type
functions such as (2.1) and atomic and ionic Hartree-
Fock functions. Such discrepancies, which are negli-
gible for the simple systems mentioned above, some-
times lead to an overestimate of the correction for
ionic states.

On the basis of this analysis, it is concluded that the
uncertainty in the lower limit to the binding energy of
carbon monoxide given in Table IV should not exceed
0.5 ev. Since a much larger uncertainty is needed to
reconcile the ICC binding energy with either of the
lower spectroscopic values, the present calculations
indicate that the high value D,=11.24 ev is correct.

This result is in accord with a direct determination
of the heat of sublimation of graphite [Chupka and
Inghram (1955)j, which is linked to D, (CO) by well-
established thermochemical quantities. Until recently
it was thought that this high value for D.(CO) was
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inconsistent with electron-impact data [Hag strum
(1951)]. However, when these data were reanalyzed
[Hagstrum (1955)]using a new value (1.45 ev) for the
electron amenity of oxygen [Branscomb and Smith
(1955)],most of the discrepancies disappeared and the
high value for D.(CO) became generally accepted.

4. ANALYSIS OF THE TOTAL WAVE FUNCTION

The specification of the total wave functions by the
coeScients I'(0'), I'(@), I'(0'), and I'(@) is not very
convenient for physical interpretation or for the cal-
culation of further properties. The most useful derived
quantities for this purpose are the first-order density
matrices [P„,], [p„,] for the orbital and ICC calcu-
lations, respectively. These may be de6ned from the

expressions for the total charge densities P, p in terms
of the basic atomic orbitals (2.1) [Lowdin (1955)]:

p=Z Z paddy. , (4.1)

p=E Z p.A.4' (4.2)

0'
P

[p-]= o
0

where'

0 0 p' 0 0
p 0, [p,q]= 0 p 0, (4.3)
0 p& 0 0 p~

These density matrices were evaluated for the total
wave functions of Table III and are given by the fol-

lowing equations:

P

2.0040, 0.0038, 0.0119, —0.0409, —0.0553,
2.0109, —0.0646, 0.0178, —0.0919,

2.0015, —0.3846, —0.4296,
1.8764, 0.0181,

1,3645,

1.1472, 0.6664
0.4923 '

—0.0229
—0.0571

0.0875
—0.6283

0.6344
0.6364

2.0028, 0.0039, 0.0028, —0.0275,
2.0117, —0.0639, 0.0127,

1.9329, —0.2871,
1.7587,

—0.0507,
—0.1021,
—0.3966,

0.0204,
1.4675,

—0.0168
—0.0549

0.1364
—0.7144 '

0.5787
0.6163

1.2667, 0.6504
0.3814

'
where

m~, = P~P,dv.

The matrices (4.3) enable us to calculate the expecta-
tion values (f), (f) of any one electron operator f for
the ground state wave functions given by the orbital
and ICC calculations

(f)=Z Pp-fn. ,

(f)=Z Z».f-,
where

fee=
J

&uf'kd~

The net and gross atomic populations [S'(p), n(p);
&(p), n(p) ]and the overlap populations [n(pq), n (pq)]
for the orbital and ICC wave functions were derived
from the matrices (4.3) by using the following equations
[Mulliken (1955), Hurley (1958b)]:

n(p) =p,„, n(p) =p,„,
n(pq) =2m„p„„n(pq) =2m„p„,
&(P) =n(p)+2 2 n(pq), &(P) =n(p)+4 Z n(Pq),

Since these populations are obtained so simply from
the matrices (4.3) and the overlap integrals m„, (Ap-
pendix II), they are not listed separately. The alternative
expressions for the gross atomic populations g(p), E(p)
in terms of the occupation numbers v;, ~; of the valence-
bond structures [Hurley (1958b)],

&(P)=E ~'n'(P), &(P) =2 ~'n'(P), (4 6)

provide a very useful check on the evaluation of the
density matrices (4.3) and on the electron-population
analysis. In Eqs. (4.6), n, (p) is the occupation number

(0, 1 or 2) of the atomic orbital p in the valence-bond
function %', (Table III, column 3).

The natural orbitals for the two calculations and
their occupation number X were obtained as the latent
vectors and latent roots of the matrices (4.3) [Lowdin
(1955)].They are shown in Table V together with the
self-consistent Geld molecular orbitals of Moser (1960).

' These matrices are all symmetrical.
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TABLE V. Natural orbitals and self-consistent held molecular orbitals.

Natural
orbital

Occupation
number g ko ko So

CoeKcients of atomic orbitals
So &0 ~o(~o)

2
2

1.9998
1.9967
1.9809
0.0225
1.9424
0.0576

2
2

1.9996
1.9962
1.9894
0.0149
1.9717
0.0283

0'2

0'3
0'4

0'6
0'6

~1($1}
xg{yg)

01
0'2

03
04
0'e

0'6

X].
g2

SCFMOa

@2~

q4»
$4~
$6o
Q6~

4i*(4i.)
4~(4»)

~ ~ ~

—0.0069—0.0320—0.0258—0.1596

~ ~ ~

—0,0084—0.0335—0.0054—0.1612

1
~ ~

—0.0245
—0.0320—0.0106—0.1597

~ ~ ~

1
—0.0302—0,0118—0.0650

0.1347

~ ~ ~

—0.0355—0.0494—0.0450
0.1330

~ ~ ~

~ ~ ~

—0.0573
—0.0209—0.0355

0.1358

~ ~ ~

0.8886—0.4230
0.1354—1.1317

~ ~ ~

0.8991—0.2718
0.2740—1.1447

~ ~ ~

0.7477—0.6355—0.0400—1.1416

~ ~ ~

0.2573
0.8436—0.3907
0.9530

~ ~ ~

0.2244
0.4475—0.7907
0.9813

~ ~ ~

~ ~ ~

0.2198
0.5254—0.7430
0.9811

~ ~ ~

—0.1722
0.3970
0.7000—0,9383

~ ~ ~

—0.1145—0.7581
0.3764—0.9101

~ ~ ~

0.2380
0.6349
0.4515—0.9455

~ ~ ~

—0.0712—0.1240
0.5305
1.2994

~ ~ ~

—0.0337
0.1273
0.5289
1.3013

~ ~ ~

0,1558
0.0603
0.5613
1.2836

~ ~ ~

0.7587—0.7094

~ ~ ~

0.7976—0.6655

~ ~ ~

0.7709—0.6962

~ ~ ~

0.4777
0.9224

'~ ~ ~

0.4249
0.9478

~ ~ ~

0.4617
0.9305

a Moser (1960).

= (0.99949)'(0.99985)'(0.99985)'

=0.9984.

(4 9)

A close similarity between the functions (4.7) and
(4.8) is expected on general grounds

I
Lodwin (1955)j.

The occupation numbers of the higher natural orbitals
(o6, x2, y» o6, x» y2) provide an absolute measure of
the departure of the total wave function from the form
of a single determinant, that is, a measure of the irre-
ducible configuration interaction which cannot be
eliminated by a transformation of the one-electron
functions. We see that, as in previous calculations,
configuration interaction is much less important in the
ICC calculation than in the orbital calculation.

The approximate equality of the higher natural
orbitals o6, x2, y2 to the unoccupied molecular orbitals
p6„p2, &2„ensures that the first term in the natural
expansion of the total orbital wave function, namely,

I
o gn, o Q, o.~, o 2P, o'3n, o'3P, o'4n, o'4P, o'gv, o'gP,

X tin) +lpga yln) ylP I ) (4.7)

is very similar to the self-consistent 6eld function

I4~~) 4~.P, 42~, 42.P~43~) 43 P~ 44~) 44 P,
X4~~& A P~ 4'~~) 4~*P~ 4'~a~ 4'~ pI o(4 8)

Indeed, by using the techniques developed by
Lowdin (1955), it is readily shown that the overlap
between the functions (4.7) and (4.8) is simply

( t &'f't' & (1'
~ y242.do

I'JiJ )E& "i

Thus, the large values of the overlap integrals (4..9)
provide a valuable check on the consistency of the
present orbital calculation with Moser's self-consistent
field calculation.

On the other hand, there are quite large differences
between the occupied self-consistent field orbitals

and the corresponding natural orbitals
o1 ~ o-5. This suggests that the orbital energies of self-
consistent field functions are not very reliable guides
in setting up a simple wave function to allow for con-
figuration interaction. For example, it is to be expected
that the double substitution 45,' —+4o,' would be
considerably less eGective than o.&'~ o-6' in lowering
the total energy of the single determinant wave function.

5. DIPOLE MOMENT

Perhaps the simplest qualitative picture of the wave
functions is that of resonance between the structures
C'+O', C+—0, C=O, C =—0+ (Table VI). The occu-
pation numbers of these structures are obtained from
Table III by summing v™,and ~, for states of the same
ionicity.

These results may be compared with the picture of
Pauling (1940), which leaves out the structure C'+0'
and gives equal weight to each of the other three. In
constructing this picture Pauling made use of the fact
that the dipole moment of carbon monoxide is almost
zero. He considered only the formal moment py, and
it is clear that this will be zero if these three structures
have equal weight. However, as MofBtt (1949) has
pointed out, there is a large contribution to the moment
from the carbon atomic dipole —so that a zero formal
moment does not correspond to a zero total moment.
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TABLE VI. Resonating structure and dipole moment {C 0+).

Structure

C'+0
C+—0
C=O
C ~O+

Dipole
Pf
pc
Po
+co

1148CFMO

Orbital calculation

0.006
0.221
0.617
0.156

—0.42D
2.94D—1.43D—0.08D
1.00D

Pexptl. —0 12D

ICC calculation

0.057
0.428
0.367
0.148

—2.13D
3.34D—1.32D—0.25D

—0.37D

Pauling

a Ransil (1960}.

We see this clearly from thepresent results(Table VI).
For both calculations, the carbon atomic dipole p~ is

the largest single contribution. The oxygen atomic
dipole p, o is also fairly large, whilst the covalent dipole

p&o is small. These dipole moments were evaluated by
using the expressions (4.4), (4.5), the density matrices
(4.3), and the dipole moment integrals (Appendix II).
The contributions pf, p~, p, o, pro are obtained by an
obvious grouping of the terms in Eqs. (4.4) and (4.5)
LHurley (1958)j.

For the orbital calculation, the total moment is of
the right sign but much too large; its value 6ts in well

with that obtained by Ransil (1960) in a self-consistent

field molecular orbital calculation.
The total moment from the ICC calculation is small

but of the wrong sign. The relative values of the orbital
and lCC moments are consistent with the results for
the 6rst-row hydrides t Hurley (1958b)j.Here also, the
eGect of the intra-atomic correlation correction is to
alter the orbital moment in the right direction but by
an amount which is rather too large. This overcorrection
of the dipole moment is attributable, at least in part,
to errors arising from the discrepancies between the
Slater-type functions (2.1) and Hartree-Fock atomic
orbitals [Hurley (1960)j.
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APPENDIX I TAaLK VIII. One-electron integrals.

1,1
12
1.3
1,4
1,5
1,6
22
23
2,4
2,5
2,6
33
3,4
3,5
3,6

4,5
4,6
5,5
5,6
6,6TABLE VII. Energies of stationary states of the ions

C , 0 , 0 (a.u. ).
77
7,8

Calc energy S" Exptl. energy 8'State

The calculated and experimental energies of the
stationary states. of the atoms C and 0 and of the
positive ions C+, C~, 0+ were obtained from the tables
of Roothaan (1955). The calculated and experimental
energies of the stationary states of the negative ions
C, 0, and 0' are given in Table VII. In all cases the
calculated energies are those obtained by using the
orbitals (2.1) with optimum values of the parameters

f'0 for each state.
The experimental energies of the negative ion states

were obtained from the electron affinities EA(O) = 1.465
+0.005 ev, EA(C) = 1.12+0.05 ev given by Branscomb,
Hurch, Smith, and Geltman (1958), the value —6.63
+0.3 ev for the double-electron a%nity of oxygen
LMorris (195'I)], and spectroscopic intervals extra-
polated from the tables of Moore (1949).

1
0.00009

0
0.05050

0
0.08579

1
0.05011

0
0.08313

0
1

0.43044
0

0.50815
1

0,32824
0
1

0.28880
1

1
0.28880

1

(4 pf4e)'

-34.75659—0.00297—7.69622—1.65416—0.07029—2.87949—21.69807—1.03235—4.51873—1.75901—0.11806—10.95760—4.45051—0.82671—5.53923—8.02746—3.48869—1.36060—9.57767—3.17960—7.77696

—9.06222
—2.25027—6.74949

(e,fe,)

—34.75659
0.00002
0.35259—0.10150

—0.03414—0.12450—21.69807
0.02690
0.25395—0.05195

—0.06660—9.75262
0.13422—0.90416
0.46304—6.96866—0.68772—0.65810—9.36043
0.41650—7.03055

—9.06222
0.20894—6.68430

(4'pt&4tt)

—1.06595
—0.00004

0—0.05010
0.05324

—0.08550
1.06595
0.04312

0
0.07252

—0.06708—1.06595—0.12875
0.64963—0.34175
1.06595
0.17787—0.91495—1.06595
0.08235
1.06595

—1.06595
—0.06476

1,06595

C (s~p', 4S'}
llao)
QPO)

0 (s'p, 'P')
0-(sP6, 'S)
04 (sgPe 15}

—37.5742—37.4899—37.4349—74.3043—73.5290—73.6202

—37.8962—37.8446—37.8202—75,1628—74.6206—74.8653

' In this column only the integrals with P, q =3, 4 are for the nodeless 25
functions gas», $4+.

Here p is the s coordinate of the electron relative to
the center of the CO bond.

The calculated and empirical energies of the valence
states of Table III (column 4) are now obtained from
the expressions for these states in terms of stationary
states (Table III, footnote a). Since the additional
valence-bond functions required to resolve the basis
functions 4, in terms of approximate composite func-
tions are all orthogonal to the functions 4;, this pro-
cedure is equivalent to using a basis of approximate
composite functions throughout the calculations )Hurley
(1958b, Appendix) ].

APPENDIX II

Atomic Intearals

(a) One-Electron Integrals (Table VID)

Potation Overlap integ. rais: (ab) = J'abdk,

Core integrals: (afb) =J'afbdz1,

f= k'I' (6/rc) —(8/ro—)—
Dipole moment integrals: (atsb) =J'atsbdo.

Orbitals: 1t „defined by Eqs. (2.1).

8„defined by Eqs. (2.9) and

(2.15) (Table I).

1tg4=2 ~(4g+Qg), 814=2 «(8g+i8g),

4tgg. =2 l (4p, 44pg),
—

8g* —2 l (8, ——i8g), —

g&04=2 ~(1t10+i4bzg), 804=2 '*(80+z810),

$10* 2 '(Qs z1b10) ) 810" 2 (8$ 1810)~

(b) Tzoo Electron -Integrals (Table IX)

I4Iotation. Lab, cd]=J'J'a(1)b*(1)(1/rig)

&&c(2)d*(2)dz11deu,

1t *=(t' 0/3gr)"ro exp( —i rp), 8 =8,
4t 4*= ($44/3gr) &rc exp( —$4rc), 844 ——84,
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TAaLz IX. Electron repulsion integrals,

Pg~~~

ii, ii
12,11
13',11
14*,11
15,11
16,11
22)11
23*,11
24*,11
25,11
26,11
3*3*,11
3*4'',11
3~5,11
3*6,11
4*4*,11
4*5,11
4*6)11
55,11
56,11
66,11
12,12
13*,12
14*,12
15,12
16,12
22 12
23~)12
24*,12
25,12
26,12
3*3*,12
3*4*,12
3*5,12
3*6,12
4*4*,12
4*5,12
4*6,12
55,12
56,12
66,12
13*,13*

15,13*
16,13~
22) 13~

13+
24~,13*
25,13*
26,13*

3*5,13*
3~6,13*
4*4*,13*
4*5,13*
4*6,13*
55,13*
56,13*
66,13*
14*,14*
15,14*
16)14*
22,14*

14+
24~, 14*
25,14*
26,14'
3ofc3+

3*4*,14*
3'5,14'
3*6,14'

L4n4aA«4" j
4.78750
0.00017
0.67556
0.15396
0.00000
0.26991
0.46907
0.02552
0.10275
0.04322
0,01476
1.11739
0.35/48
0.00000
0.50408
0.45309
0.23360
0.16903
1.10765
0.26100
0.53558
0.00000
0.00003
0.00001
0.00001
0.00001
0.00006
0.00000
0.00001
0.00001
0.00000
0.00008
0.00003
0.00002
0.00005
0.00005
0.00003
0.000Q2
0.00009
0.00003
0.00006
0.12149
0.02650
0.00000
0.04636
0.10849
0.00590
0.02377
0.00999
0.00341
0.24929
0.08080
0.00000
0.11330
0.10437
0.05359
0.03835
0.24731
0.05963
0.12257
0.00588
0.00117
0.01029
0.02398
0.00131
0.00525
0.00222
0,00078
0.05312

. 0.01760
0.00229
0.02464
0.02289
0.01221

Qy4.Ms]

4.78750—0.00024
—0.44432

0.11929—0.04913
0.19060
0.46906
0.00272—0.00130
0.00509
0.01545
1.12232

—0.14168
0.05847—0.19522
0.43135
0.10522
0.11563
1.13448—0.23597
0.5878/
0.00000
0.00003—0.00001
0.00001

—0.00002
O.OQQ02—0.00000—0.00000
0.00000
0.00000

—0.00002
0.00001
0.00002
0.00001
0.00001—0.00000
0.00001

—0.00001
0.00001
0.00001
0.06895—0.01874
0.00771—0.03009—0.00001

—0.00001
0.00002—0,00000
0.00000—0.01763
0.00484—0.00199
0.00779—O.OQ137
0.00001

—0.00192
—0.01043

0.00550—0,00559
0.00517—0.00070
0.00755
0.00097
0.00001—0.00001
0.00002
0.00006
0.00457

—0.00078
0.0028/

—0.00245
0.00079—0.00040

PQ )'&

4*6,14*
55,14*
56,14*

15,15
16,15
22, 15
23~)15
24*',15
25,15
26,15
3*3*,15
3'4*,15
3*5,15
3*6,15
4*4',15
4*5,15
4*6,15
55,15
56,15
66,15
16,16
22,16
23+)16
24*,16
25,16
26,16
3~3*,16
3~4*,16
3*5,16
3*6 16

4*5,16
4*6,16
55,16
56,16
66,16
22 22
23' 22
24*,22
25 22
26,22

3*5,22
3*6,22
4*4*,22
4~5,22
4*6,22
55,22
56,22
66,22
23*,23*
24+
25,23*
26,23*
3*3~,23*
3*4*,23*
3+5 23+
3*6,23*
4g4p~

4*5,23~
4*6,23*
55,23*
56,23~
66)23~

25,24*
26,24*
3Q3Q

3*4',24*
3'5,24*
3*6,24~
4*4*,24*

$4ykq, @«gsg

0.00854
0.05285
0,01385
0.02697
0.02500
0.00196
0.01172
0.00071
0.00257
0.00120
0.00074
0.00000
0,00577
0.03840
0.00762
0.00928
0.01222
0.00533
0.00000
0.01812
0.01220
0.01800
0.04164
0.00227
0.00912
0.0038S
0.00136
0.09257
0.03062
0.00378
0.04289
0.03978
0.02118
0.01483
0.09213
0.02402
0.04687
3.54375
0.11009
0.47079
0.19063
0.00000
0.46648
0.27694
0.13706
0.29523
0.80007
0.30097
0.00000
0.52276
0.25542
0.78055
0.00426
0.01802
0.00734
0.00159
0.02498
0.01434
0.00772
0.01606
0.03760
0.01540
0.00325
0.02816
0.01424
0.03721
0,08006
0.03106
0.00000
0.10182
0.05942
0.02940
0.06408
0.16940

0.00079
0.00299

—0.00174
0.00244
0.02885—0.01623
0.01226
0.00015—0.00007
0.00029
0.00078

—0.00193
0.00711
0.03518—0.00653
0.00522

—0.00645
0.00386
0.00333—0,00543
0.01358
0.01909

—0.00481—0.00006
0.00003

—0.00011
—0.00031

0.00721
—0.0046/—0.01412

0.00008—0.00154
0.00279—0.00089
0.00247
0.00047—0.0035/
3,54375

—0.06451—0.31667
0.01270—0.07193
0.46506
0.08448
0.11337
0.04453
0.79968—0.03627
0.03869
0.50531
0.08111
0,83981
0.00206
0.00931—0.00005
0.00412
0.00222

—0.00032
0.00121—0.00013

—0.00322
0,00128
0,00204
0.00254—0,00078—0,00154
0.04736—0.00236
0.01016—0.00167—0.00229—0.00067—0.00129—0.01131

4*5,24*
4'6,24*
55,24'
56,24~

66,24*
25,25
26,25
3*3*,25
3*4+)25
3~5,25
3*6,25
4*4*,25
4*5,2S
4*6,25
55,25
56,25
66,25
26,26
3*3*,26
3*4*,26
3~5,26
3*6,26

4*5,26
4*6,26
55,26
56,26
66,26
3+3+

3g4g 3g3g

3+3)fc

4*5,3*3*
4*6,3*3*

56,3'3*
66,3~3~

3+5 3g4g
3*6,3*4*

55,3*4*
56,3*4*
66,3*4'

3*6,3'5

4*6,3*5
55,3*5
56,3*5
66,3*5
3*6,3*6

4*5,3*6
4~6,3*6
55,3*6
56,3*6
66,3*6

4'6,4*4*

56 4g4g

66,4'4*
4+5

55,4*5
56,4*5
66,4*5
4*6,4*6

E4) kcA«4" j
0.06378
0.00000
0.11345
0.05496
0.16559
0.01265
0.00269
0.04238
0.02440
0.01312
0.02727
0.06430
0.02625
0.00535
0.04781
0.02419
0.06360
0.01556
0.01378
0.00733
0.00719
0.01158
0.00000
0.00825
0.02474
0.01754
0.01340
0.00000
0.81738
0.29183
0.00000
0.39355
0.43290
0.20717
0.13704
0.81373
0.21954
0.48343
0.12402
0.04250
0.15829
0.22439
0.10617
0.05497
0.29762
0.11084
0.23725
0.17984
0.04948
0.09442
0.07833
0.03781.
0.00000
0.10287
0.10585
0.20842
0.25432
0.12996
0.08415
0.39947
0.14180
0.27935
0.58488
0.21894
Q.OOOOD

0.45644
0.19557
0.57748
0.10731
0.04728
0.22313
0.11389
0.22689
0.12757

0.00014—0.00369—0.00167
—0.00095—0.00872

0.00085
0.00327
0.00444
0.00037
0.00236
0.00033—0.00104
0.00215
0.00498
0.00503—0.00091
0.00094
0.02498
0.01442
0.00127
0.00738
0.00220—0.00747
0.00857
0.02225
0.01539—0.00362—0.00108
0.79659—0.06214
0.02518—0.07265
0.40348
0.08272
0,08778
0.80078—0.10336
0.47870
0.02860
0.03913
0.01807
0.03610—0.01718
0.00299—0.05751
0.02611
0.03148
0.16440

—0.01919
0.05924—0.02123
0.03058
0.03459

—0.00566
0.09624
0.03166
0.01253

—0.00456
0.00050—0.06824
0.03205—0.002'?6
0.56765—0.028/4—0.01191
0.42492
0.03928
0.57238
0.03255
0.03428
0.08780—0.02360—0.01597
0.09503



STRUCTURE OF CARBON MONOX I DE

TAsz.z IX.—Continued.

Pq.rs

55,4*6
56,4*6
66,4*6
55,55
56,55
66,55
56,56
66,56
66,66

77,11
78,11
88,11
77,'12
78,12
88,12
77,13*
78,13*
88,13*
77,14*
78,14*
88,14*
77,'15
78,15
88,15
77,16
78,16
88,16
77',22
78,22
88,22
77,23*
78,23*
88,23*
77,24*
78,24*
88,24*
77,25
78,25
88,25
77,26
78,26
88,26
77,3*3*
78,3*3*
gg 3)fc3+

77 3Q4g

78,3*4*
88,3*4*
j7,3*5
78,3*5
88,3*5
77,3*6
78,3*6
88,3*6

Bj4c4 4 7

0.14556
0.07240
0.00000
0.87284
0.23864
0.51034
0.13159
0.21412
0.61451

1.10765
0.18434
0.40899
0.00008
0.00002
0.00004
0.24731
0.04231
0.09458
0.05261
0.00918
0.02069
0.00000
0.00262
0.00752
0.09168
0.01597
0.03595
0.43810
0.15391
0.78055
0.02336
0.00795
0.03653
0.09594
0.03344
0.16559
0.03961
0.01352
0.06247
0.01184
0.00345
0.00000
0.81373
0.16445
0.40426
0.28757
0.07137
0.21472
0.00000
0.02278
0.08547
0.03837
0.08968
0.23868

Leper, egegj

0.08185—0.02701
—0.00414

0.87286—0.11512
0.51105
0.05339
0.02486
0.63325

1.10765
—0.11975

0.42112—0.00002
0.00001
0.00001—0.00914
0.00222—0.00055
0.00211

—0.00031
0.00067—0.00088
0.00307
0.00684
0,00310—0.00194—0.00254
0.43810
0.03677
0.78692
0.00204—0.00010—0.00180—0.00102—0.00027—0.00558
0.00386—0.00005—0.00080
0.01264
0.00037

—0.00172
0.80217—0.05561.
0.40297

—0.06678
0.01967
0.04151
0.02768
0.01740
0.06813—0.08190
0.01630
0.01592

Pq, rs

77 4Q4Q

78,4*4*
88,4*4*
77,4*5
78,4*5
88,4*5
77,4*6
78,4*6
88,4*6
77,55
78,55
88,55
77,56
78,56
88,56
77,66
78,66
88,66

71,71
81,71
72', 71
82,71
73*,71
83*,71
74*,71
84*,71
75,71
85,71
76,71
86,71
81,81
72,81
82,81
73*,81
g3*,81
74*,81
84*,81
75,81
85,81
76,81
86,81
72', 72
82,72
73*,72
83*,72
74*,72
84*,72
75,72
85,72
76,72
86,72
82,82
73*,82
83*,82

L4n4eA~4~ j
0.42053
0.13355
0.57748
0.19847
0.06050
0.21046
0.13192
0.02985
0.00000
0.77876
0.16336
0.42442
0.20891
0.06133
0.18233
0.46886
0.13738
0.54827

0.02500
0.00086
0.00005
0.00037
0.03840
0.00448
0.00934
0.00415
0.00000
0.00262
0.01470
0.00304
0.00003
0.00000
0.00002
0.00169
0,00024
0.00046
0.00025
0.00021
0.00017
0.00070
0,00018
0.00005
0.00076
0.00051
0.00045
0.00037
0.00156
0.00031
0.00060
0.00040
0.00035
0.01556
0.00423
0.00539

pepeq, e~e~5

0.39411
0.01868
0.56943
0.07800—0.01170—0.02651
0.08603

—0.00021
0.01321
0.77933—0.05092
0.42068—0.10507
0.01993
0.03604
0.46782
0.01076
0.56322

0.02500—0.00613
0.00005
0.00037
0.03357

—0.00487
—0.00685

0.00450
0.00285
0.00261

—0.01044
0.00381
0.00151—0.00001—0.00008

—0.00784
0.00118
0.00165—0.00102

—0,00046—0.00065
0.00241

—0.00086
0.00005
0.00077
0.00050
0.00030
0.00016
0.00139
0.00027—0.00003
0.00010
0.00064
0,01635
0.00426
0.00382

Pq, rs

74*,82
84*,82
75,82
85,82
76,82
86,82
73~,73*
83*,73*
74+ 73+
84*,73*
75,73*
85,73*
76,73*
86,73*
83+ 83+
74*,83*
84*,83*
75,83*
85,83*
76,83*
86,83*
74*,74*
84+ 74+
75,74*
85,74*
76,74*
86,74~
84*,84*
75,84*
85,84*
76,84*
86,84*
75,75
85,75
76,75
86,75
85,85
76,85
86,85
76,76
86,76
86,86
7Q7Q 7+7+
7+8+ 7Q7g
gggg 7Q j)jc

7*8*,7*8*
8*8*,7*8
gggg gggg

9Q7Q 7Q9Q

9*8*,7*9*
10484 7494
9*8*,7*10*

10*8*,8*10*

I&4'c 4'~4'~ j
0.00377
0.02474
0.00253
0.00760
0.00345
0.00000
0.17984
0.03363
0.05372
0.04295
0.00000
0.02278
0.07857
0.02605
0.01337
0.01553
0.03166
0.00929
0.01365
0.01967
0.01060
0.02063
0.02891
0.00980
0.01392
0.02794
0.01285
0.12757
0.01806
0.03816
0.02985
0.00000
0.04704
0.01351
0.01201
0.01060
0.01604
0.01645
0.01070
0.03918
0.01762
0.03312

0.82580
0.16444
0.39393
0.04259
0.13004
0.58139

0.09408
0.01459
0.01164
0.00471
0.01029
0.06624

fe„e„e,e,j
0.00208
0.02273
0.00187—0.00252
0.00144
0.00519
0.17303

—0.01339
—0.02444

0.03980
0.01038
0.01140

—0.03374
0.02658
0.00846
0.00818
0.01857
0.00721—0.00221
0.00738
0.00763
0.00916
0.01003
0.00821

—0.00269
0.00814
0.00396
0.12548
0.01000—0.01592
0.00550
0.02106
0.04679—0.00363

—0.00996
0.01017
0.00748—0.00025
0.00646
0.01536
0.00165
0.03545

0.82580
—0.06123

0.39424
0.01516
0.02263
0.58463

0.09408—0.01128
0.01147
0.00399
0.00664
0.06699


