there is a limit to the accuracy. However, use of spectroscopic data for evaluating atomic energies will help, but is not at all essential from a theoretical point of view.

In a forthcoming paper, we shall discuss how our approach can be simplified for application to more complicated systems. We shall consider the accuracy

REVIEWS OF MODERN PHYSICS

of further approximation by comparing with the corresponding simplification in the orbital approach.

ACKNOWLEDGMENT

The author wishes to express his sincere thanks to Professor R. G. Parr for his continuous encouragement and deep interest in this work.

VOLUME 32, NUMBER 2

APRIL, 1960

Electronic Structure and Binding Energy of Carbon Monoxide

A. C. HURLEY

Division of Chemical Physics, Commonwealth Scientific and Industrial Research Organization, Fishermen's Bend, Melbourne, Australia

1. INTRODUCTION

THE most accurate method of determining dissociation energies of diatomic molecules is from the analysis of their band spectra. In favorable cases, when this analysis is unambiguous, values accurate to within 0.001 ev may be obtained [e.g., O₂ Herzberg (1950)¹]. However, for many molecules of thermochemical interest the analysis of the spectra is ambiguous and leads to several possible values for the dissociation energy. One of the most important examples of this is provided by the carbon monoxide molecule. Here the spectroscopic data are consistent with just three values for $D_e(CO)$, namely, 9.28 ev [Herzberg (1950)], 9.74 ev [Hagstrum (1947)], and 11.24 ev [Gaydon (1947)].

In this situation, relatively crude estimates of the dissociation energy may be of value in distinguishing between the possible spectroscopic values. Various experimental techniques have been employed for this purpose; for example, mass-spectrometric analysis of the ions resulting from the electron bombardment of carbon monoxide [Hagstrum (1951, 1955)] and the direct thermochemical measurement of the latent heat of sublimation of graphite [Chupka and Inghram (1953, 1955)], this quantity being related to $D_o(CO)$ by well-established thermochemical quantities.

In this paper two theoretical calculations of the binding energy and ground state wave function of carbon monoxide are described. The first is an *ab initio* orbital calculation and the second employs the intraatomic correlation correction (ICC), introduced by the author [Hurley (1956a, 1958a)], as a necessary modification of the method of atoms in molecules [Moffitt (1951)], The orbital calculation (Sec. 2) is carried out in such a way as to facilitate the transition to the ICC theory in later sections. The key quantity in this transition is the transformation matrix T [Eq. (2.21)].

2. ORBITAL CALCULATION

(a) Atomic Orbitals

The basic atomic orbitals are taken as orthogonalized Slater-type functions centered on the carbon and oxygen nuclei.

$$\sigma\text{-type} \quad \phi_{1} = k_{0} = (\zeta_{1}^{3}/\pi)^{\frac{1}{2}} \exp(-\zeta_{1}r_{0}),$$

$$\phi_{2} = k_{C} = (\zeta_{2}^{3}/\pi)^{\frac{1}{2}} \exp(-\zeta_{2}r_{C}),$$

$$\phi_{3} = s_{0} = N_{1}\{\zeta_{3}^{5}/3\pi)^{\frac{1}{2}}r_{0} \exp(-\zeta_{3}r_{0}) - \alpha_{1}k_{0}\},$$

$$\phi_{4} = s_{C} = N_{2}\{(\zeta_{4}^{5}/3\pi)^{\frac{1}{2}}r_{C} \exp(-\zeta_{4}r_{C}) - \alpha_{2}k_{C}\},$$

$$\phi_{5} = \sigma_{0} = (\zeta_{5}^{5}/\pi)^{\frac{1}{2}}z_{0} \exp(-\zeta_{5}r_{0}), \qquad (2.1)$$

$$\phi_{6} = \sigma_{C} = (\zeta_{6}^{5}/\pi)^{\frac{1}{2}}z_{0} \exp(-\zeta_{6}r_{C}),$$

$$x\text{-type} \quad \phi_{7} = x_{0} = (\zeta_{5}^{5}/\pi)^{\frac{1}{2}}x_{0} \exp(-\zeta_{5}r_{0}),$$

$$\phi_{8} = x_{C} = (\zeta_{6}^{5}/\pi)^{\frac{1}{2}}x_{0} \exp(-\zeta_{5}r_{0}),$$

$$y\text{-type} \quad \phi_{9} = y_{0} = (\zeta_{5}^{5}/\pi)^{\frac{1}{2}}y_{0} \exp(-\zeta_{5}r_{0}),$$

$$\phi_{10} = y_{C} = (\zeta_{6}^{5}/\pi)^{\frac{1}{2}}y_{C} \exp(-\zeta_{6}r_{C}).$$

Here (x_0, y_0, z_0) , (x_C, y_C, z_C) are Cartesian coordinates centered on the oxygen and carbon nuclei; the z axes are directed inwards along the internuclear axis and the $x_i(y)$ axes on the two centers are parallel:

$$r_{\rm O} = (x_{\rm O}^2 + y_{\rm O}^2 + z_{\rm O}^2)^{\frac{1}{2}}, \quad r_{\rm C} = (x_{\rm C}^2 + y_{\rm C}^2 + z_{\rm C}^2)^{\frac{1}{2}}.$$

The orbital exponents ζ have values which minimize the energy of the ground state dissociation products $O(s^2p^4, {}^{3}P), C(s^2p^2, {}^{3}P)$ [Roothaan (1955)].

All the basic atomic integrals involving the orbitals (2.1) were evaluated for the equilibrium nuclear separation R=2.1319 atomic units (a.u.) [Herzberg (1950)], and are listed in Appendix II.

¹ References are given in alphabetical order in the Bibliography.

(b) Valence-Bond Basis

As in previous calculations on the ground states of the first-row hydrides [Hurley (1958b)], the valencebond basis functions were chosen from an expansion of the self-consistent field molecular orbital function. This single determinant wave function Ω^t may be expressed as the antisymmetrized product of a wave function for the ten σ electrons and a wave function for the four π electrons,

$$\Omega^t = \alpha \Omega^\sigma \Omega^\pi, \qquad (2.3)$$

where

$$\Omega^{\sigma} = \left| \sigma_1 \bar{\sigma}_1 \sigma_2 \bar{\sigma}_2 \sigma_3 \bar{\sigma}_3 \sigma_4 \bar{\sigma}_4 \sigma_5 \bar{\sigma}_5 \right|$$
(2.4)

and

$$\Omega^{\pi} = |\pi_x \bar{\pi}_x \pi_y \bar{\pi}_y|. \qquad (2.5)$$

The form of Eq. (2.3) enables us to consider the expansions of Ω^{σ} and Ω^{π} separately.

Each of the molecular orbitals $\sigma_1 \cdots \sigma_5$ appearing in Ω^{σ} is some linear combination of the σ -type atomic orbitals $\phi_1 \cdots \phi_6$ [Eq. (2.1)]. If this single determinant is now expanded in terms of valence-bond functions, and if all functions not showing two electrons in each of the inner shell orbitals $\phi_1(=k_0)$ and $\phi_2(=k_c)$ are discarded, the following set of valence-bond wave functions is obtained:

$$\begin{split} \Psi_{1}^{\sigma} &= \begin{bmatrix} s_{0} & s_{C} & \sigma_{0} \\ |0 & |0 & |0 \\ s_{0} & s_{C} & \sigma_{0} \end{bmatrix}, \\ \Psi_{2}^{\sigma} &= 2^{-\frac{1}{2}} \begin{bmatrix} s_{0} & s_{C} & \sigma_{0} \\ |0 & |0 & | \\ s_{0} & s_{C} & \sigma_{C} \end{bmatrix}, \\ \Psi_{3}^{\sigma} &= 2^{-\frac{1}{2}} \begin{bmatrix} s_{0} & s_{C} & \sigma_{0} \\ |0 & | & |0 \\ s_{0} & \sigma_{C} & \sigma_{0} \end{bmatrix}, \\ \Psi_{4}^{\sigma} &= \begin{bmatrix} s_{0} & s_{C} & \sigma_{C} \\ |0 & |0 & |0 \\ s_{C} & \sigma_{C} & \sigma_{C} \end{bmatrix}, \\ \Psi_{5}^{\sigma} &= 2^{-\frac{1}{2}} \begin{bmatrix} s_{C} & s_{0} & \sigma_{0} \\ |0 & | & |0 \\ s_{C} & \sigma_{C} & \sigma_{C} \end{bmatrix}, \\ \Psi_{6}^{\sigma} &= 2^{-\frac{1}{2}} \begin{bmatrix} s_{0} & \sigma_{0} & \sigma_{C} \\ |0 & | & |0 \\ s_{C} & \sigma_{0} & \sigma_{C} \end{bmatrix}, \\ \Psi_{7}^{\sigma} &= 2^{-\frac{1}{2}} \begin{bmatrix} s_{0} & \sigma_{0} & \sigma_{C} \\ |0 & | & 0 \\ s_{C} & \sigma_{0} & \sigma_{C} \end{bmatrix}, \\ \Psi_{8}^{\sigma} &= 2^{-\frac{1}{2}} \begin{bmatrix} s_{0} & \sigma_{0} & \sigma_{C} \\ |0 & |0 \\ s_{C} & \sigma_{0} & \sigma_{C} \end{bmatrix}, \\ \Psi_{9}^{\sigma} &= \begin{bmatrix} s_{0} & \sigma_{0} & \sigma_{C} \\ |0 & |0 & |0 \\ s_{C} & \sigma_{0} & \sigma_{C} \end{bmatrix}, \\ \Psi_{10}^{\sigma} &= \begin{bmatrix} s_{0} & \sigma_{0} & \sigma_{C} \\ |0 & |0 & |0 \\ s_{0} & |0 \end{bmatrix}, \end{split}$$

so σο σc

Here the generalized notation for valence-bond structures introduced by McWeeny (1954) has been used. The inner-shell orbitals k_0 , k_c , which are doubly occupied in all the wave functions, have been omitted. In order to define the structures appearing in Eq. (2.6) uniquely, we must specify the ordering of the orbitals in the elementary determinants (McWeeney). In Eq. (2.6) and all subsequent equations, the natural ordering

$$\begin{bmatrix} 1 & 3 & \cdots \\ 2 & 4 & \cdots \end{bmatrix}$$

is employed.

The wave functions $\Psi_{\theta'}$ and Ψ_{10} will interact with the functions Ψ_{1} and Ψ_{4} even for infinite nuclear separation, and are therefore omitted from the basis. If included, these wave functions would have a small effect on the result of the orbital calculation, but almost no effect on the result of the ICC calculation [cf. Hurley (1959) and Sec. 4(e)].

The remaining eight valence-bond functions (2.6) are represented as a row vector

$$\Psi^{\sigma} = \left[\Psi_1^{\sigma} \cdots \Psi_8^{\sigma} \right]. \tag{2.7}$$

We consider also a set of orthogonalized valence-bond functions

$$\Theta^{\sigma} = \left[\Theta_1^{\sigma} \cdots \Theta_8^{\sigma} \right], \qquad (2.8)$$

which are obtained from (2.6) by replacing the basic atomic orbitals $k_0(\phi_1)\cdots\sigma_C(=\phi_6)$ by Schmidt orthogonalized atomic orbitals $\theta_1\cdots\theta_6$ defined by the equations

$$\theta_q = \sum_{p=1}^{6} \phi_p t_{pq}, \quad (q = 1 \cdots 6),$$
 (2.9)

where

and

 $t_{pq} = 0 \quad (p > q).$

 $\int \theta_p \theta_q dv = \delta_{pq}$

(2.6) The nonzero elements of the matrix t are given in Table I. The basic functions (2.7) and (2.8) are related by a matrix transformation

$$\Theta^{\sigma} = \Psi^{\sigma} T^{\sigma}, \quad \Psi^{\sigma} = \Theta^{\sigma} S^{\sigma}, \quad S^{\sigma} = (T^{\sigma})^{-1}.$$
(2.10)

TABLE I. Schmidt orthogonalized atomic orbitals.

t_{11}	1.00000	t_{23}	-0.05017	t_{36}	-0.99910
t_{12}	0.00009	t_{24}	0.02401	t44	1.10994
t_{13}	0.00000	t_{25}	-0.09942	t45	-0.43873
l_{14}	-0.05605	t_{26}	0.10222	t_{46}	0.64369
t_{15}	0.02216	t_{33}	1.00126	t_{55}	1.07903
t_{16}	-0.15355	t_{34}	-0.47897	t_{56}	-0.62722
t_{22}	1.00000	t_{35}	0.19383	t ₆₆	1.41082
		Β. πο	rbitals [Eq. (2.15)	3	
		$t_{77} = t_{99}$	1.000	00	
		$t_{78} = t_{9,10}$	-0.280	99	
		$t_{88} = t_{10, 10}$	1.038	73	

with

The elements of the matrix S^{σ} may be obtained from the equations [Hurley (1958a)]

$$S_{ij}{}^{\sigma} = \int \Theta_i {}^{\sigma} \Psi_j {}^{\sigma} dt.$$

Alternatively, the expansion formulas for valencebond structures developed by McWeeny (1954) may be used. In the latter method, the matrices T^{σ} and S^{σ} are evaluated independently in terms of the matrices t[Eq. (2.9)] and $s(=t^{-1})$. The relation

 $S^{\sigma}T^{\sigma} = 1$

then provides a useful numerical check.

With the ordering of the functions Ψ^{σ} and Θ^{σ} defined by Eq. (2.6), the triangular form of the matrices t and s implies that the matrices T^{σ} and S^{σ} are also triangular:

$$T_{ij}^{\sigma} = S_{ij}^{\sigma} = 0 \quad (i > j).$$
 (2.11)

In the same way, the single determinant function Ω^{π} [Eq. (2.5)] is expanded in terms of the valence-bond basis $\Psi^{\pi} = \left[\Psi_1^{\pi} \cdots \Psi_6^{\pi} \right],$

with

$$\begin{split} \Psi_{1}^{\pi} &= \begin{bmatrix} x_{0} & y_{0} \\ |0 & |0 \\ x_{0} & y_{0} \end{bmatrix}, \\ \Psi_{2}^{\pi} &= \frac{1}{2} \left\{ \begin{bmatrix} x_{0} & y_{0} \\ |0 & | \\ x_{C} & y_{C} \end{bmatrix} + \begin{bmatrix} x_{0} & y_{0} \\ |0 & | \\ x_{C} & y_{0} \end{bmatrix} \right\}, \\ \Psi_{3}^{\pi} &= 2^{-\frac{1}{2}} \left\{ \begin{bmatrix} x_{0} & y_{C} \\ |0 & | \\ x_{0} & y_{C} \end{bmatrix} + \begin{bmatrix} x_{C} & y_{0} \\ |0 & | \\ x_{C} & y_{0} \end{bmatrix} \right\}, \quad (2.13) \\ \Psi_{4}^{\pi} &= \frac{1}{2} \left\{ \begin{bmatrix} x_{0} & y_{0} \\ | & | \\ x_{C} & y_{C} \end{bmatrix} \right\}, \\ \Psi_{5}^{\pi} &= \frac{1}{2} \left\{ \begin{bmatrix} x_{0} & y_{0} \\ |0 & | \\ x_{C} & y_{C} \end{bmatrix} + \begin{bmatrix} x_{0} & y_{C} \\ | & | \\ x_{C} & y_{C} \end{bmatrix} \right\}, \\ \Psi_{6}^{\pi} &= \begin{bmatrix} x_{C} & y_{C} \\ |0 & | \\ x_{C} & y_{C} \end{bmatrix}. \end{split}$$

The orthogonal basis

$$\Theta^{\pi} = \begin{bmatrix} \Theta_1^{\pi} \cdots \Theta_6^{\pi} \end{bmatrix}$$
(2.14)

is obtained by replacing the atomic orbitals

$$\phi_7(=x_{\rm O})\cdots\phi_{10}(=y_{\rm C})$$

by the Schmidt orthogonalized orbitals [Table I(B)]

$$\theta_{q} = \sum_{p=7}^{8} \phi_{p} t_{pq} \quad (q=7, 8)$$

$$\theta_{q} = \sum_{p=9}^{10} \phi_{p} t_{pq} \quad (q=9, 10) \quad (2.15)$$

$$t_{pq} = 0 \quad (p > q).$$

Again the bases (2.12) and (2.14) are related by a triangular matrix transformation

$$\Theta^{\pi} = \Psi^{\pi} T^{\pi}, \quad \Psi^{\pi} = \Theta^{\pi} S^{\pi}, \quad (2.16)$$

$$T_{ij}^{\pi} = S_{ij}^{\pi} = 0 \quad (i > j).$$

The valence-bond basis functions for the ground state of carbon monoxide are now obtained as antisymmetrized products of the functions Ψ_i^{σ} [Eq. (2.7)] and Ψ_i^{π} [Eq. (2.12)]:

$$\tilde{\Psi}_{(i,j)} = \alpha \Psi_i {}^{\sigma} \Psi_j {}^{\pi} \quad (i = 1 \cdots 8; j = 1 \cdots 6). \quad (2.17)$$

This basis of forty-eight functions is represented as a row vector $\tilde{\Psi}$ with inverse dictionary ordering:

$$\tilde{\Psi} = \begin{bmatrix} \tilde{\Psi}_{(1,1)}, \tilde{\Psi}_{(2,1)}, \cdots, \tilde{\Psi}_{(8,1)}, \tilde{\Psi}_{(1,2)}, \cdots, \tilde{\Psi}_{(8,6)} \end{bmatrix}.$$
 (2.18)
Similarly, the orthogonalized valence-bond basis

$$\tilde{\Theta} = [\tilde{\Theta}_{(1,1)}, \tilde{\Theta}_{(2,1)}, \cdots, \tilde{\Theta}_{(8,6)}], \qquad (2.19)$$

is constructed from the functions Θ_i^{σ} (2.8) and Θ_i^{π} (2.14):

$$\tilde{\Theta}_{(i,j)} = \alpha \Theta_i{}^{\sigma} \Theta_j{}^{\pi} \quad (i = 1 \cdots 8; j = 1 \cdots 6). \quad (2.20)$$

The 48×48 transformation matrices T and S relating the bases (2.18) and (2.19),

$$\tilde{\Theta} = \tilde{\Psi}T, \quad \tilde{\Psi} = \tilde{\Theta}S, \quad S = T^{-1},$$
 (2.21)

are now just the direct products of the 8×8 matrices T^{σ} , S^{σ} and the 6×6 matrices T^{π} and S^{π} :

$$T = T^{\sigma} \times T^{\pi}, \quad S = S^{\sigma} \times S^{\pi}; \quad (2.22)$$

that is,

(2.12)

$$T_{(i,k)(j,l)} = T_{ij}^{\sigma} T_{kl}^{\pi} \\ S_{(i,k)(j,l)} = S_{ij}^{\sigma} S_{kl}^{\pi}$$
 $(i,j=1\cdots 8; k,l=1\cdots 6).$

These matrices are completely triangular in the sense that

$$T_{(i,k)(j,l)} = S_{(i,k)(j,l)} = 0$$
 unless $i \le j$ and $k \le l$. (2.23)

This property of the transformation matrices, which stems from the use of Schmidt orthogonalized atomic orbitals, is very convenient for calculations employing the intra-atomic correlation correction. It permits us to truncate the bases (2.18) and (2.19) simultaneously without destroying the linear dependence between them. For example, Eq. (2.23) shows that the first functions in each basis are simply multiples of each other:

$$\tilde{\Theta}_{(1,1)} = \tilde{\Psi}_{(1,1)} T_{(11,11)}$$

If we had used some other transformation to orthogonalize the basic atomic orbitals, it would have been impossible to truncate the bases in this way. Thus, if Löwdin's (1950) symmetrical orthogonalization had been employed the expansion of $\tilde{\Theta}_{(1,1)}$ would have involved all 48 of the functions $\tilde{\Psi}_{(i,j)}$ together with 12 wave functions constructed from the functions Ψ_9^{σ} and Ψ_{10}^{σ} [Eq. (2.6)].

402

The importance of this truncation of the basis in ICC calculations lies in the treatment of highly ionized states of the dissociation products. Thus the full valence-bond basis (2.18) includes many states of the ions C²⁻, C³⁻, C⁴⁻. It is clearly impossible to obtain reliable experimental estimates of the energies of these states. In a previous calculation of the binding energy of N₂ [Hurley (1956b)], this difficulty was circumvented by using an extrapolation technique to dispense with empirical estimates of the energies of various states of the ions N²⁻ and N³⁻. Nevertheless, the presence of these states in the total wave function led to some uncertainty in the final results.

Here it is possible to eliminate these troublesome states entirely. First it is shown that they have a negligible effect on the total energy in the orbital calculation. These states are then omitted from the ICC calculations by truncating the bases in accordance with Eq. (2.23).

Of course, it is always possible to truncate the basis in an ICC calculation after transforming the full energy matrix explicitly into the valence-bond basis, regardless of what process of orthogonalization is employed. However, this is a much less efficient procedure than exploiting the properties of Schmidt orthogonalization.

(c) Energy Matrix

The energy matrix $\tilde{H}(\Theta)$ in the basis of orthogonalized valence-bond functions (2.19) was evaluated by using McWeeny's (1954) generalization of the cycle-diagram method. This somewhat arduous task was greatly simplified by taking full advantage of the special reductions in the formulas which result from the factorization of the wave functions into antisymmetrized products of Θ_i^{σ} $(i=1\cdots 8)$ and Θ_j^{π} $(j=1\cdots 6)$ [Eq. (2.20)]. In this way the 48×48 matrix $\tilde{H}(\Theta)$ may be evaluated with little more work than is required for one 8×8 matrix and one 6×6 matrix. As these special reductions are simple examples of McWeeny's (1960) recent analysis of density matrices for generalized product functions, they are not discussed further.

(d) Total Energy and Binding Energy

The total molecular wave function $\tilde{\Omega}$ and energy \tilde{E} in the orbital calculation are now given by the usual secular equations,

$$\tilde{\Omega} = \tilde{\Theta}\tilde{\Gamma}$$

$$\det\{\tilde{H}(\Theta) - \tilde{E}1\} = 0 \quad (\text{lowest root}) \quad (2.24)$$
$$\{\tilde{H}(\Theta) - \tilde{E}1\}\tilde{\Gamma} = 0.$$

The binding energy \tilde{D}_{e} is obtained from the equation

$$\tilde{D}_{\rm e} = \tilde{W}_{\rm G} - \tilde{E}, \qquad (2.25)$$

where \tilde{W}_{G} is the total energy of the ground state $O(s^2p^4, {}^{3}P)C(s^2p^2, {}^{3}P)$ of the dissociation products calculated by using the atomic orbitals (2.1).

TABLE II. Total energy and binding energy (orbital calculation).

Basis functions	${ ilde E}$ (a.u.)	$\widetilde{D}_{e}(ext{ev})^{ ext{b}}$
23 terms ^a C ²⁺ O ²⁻ , C ⁺ O ⁻ , CO, C ⁻ O ⁺	-112.437	7.45
39 terms $C^{2+}O^{2-}\cdots C^{2-}O^{2+}$	-112.438_{4}	7.50
48 terms $C^{2+}O^{2-}\cdots C^{4-}O^{4+}$	-112.438_{5}	7.50
SCFMO [Moser (1960)]	-112.343	4.9
SCFMO [Ransil (1960)]	-112.344	4.9°

* See Table III. b 1 a.u. =27.210 ev. • Relative to $C(s^2p^2, s^2P)$, $O(s^2p^4, s^2P)$ calculated with optimum Slater functions [Hurley (1959)].

The results obtained from Eqs. (2.24) and (2.25) by using different numbers of functions in the basis (2.19)are shown in Table II. The results of self-consistent field molecular orbital calculations $\lceil Moser (1960) \rangle$, Ransil (1960)] are shown for comparison. The orbital exponents $(\zeta_1 = 7.7, \zeta_3 = \zeta_5 = 2.275, \zeta_2 = 5.7, \zeta_4 = \zeta_6$ = 1.625) used by Ransil differ slightly from those of Eq. (2.2), which were also used by Moser.

We see from Table II that the binding energy obtained by Ransil and Moser is increased by about 2.5 ev by the 23-term valence-bond calculation. However, the further reduction in energy brought about by all the chemically unreasonable structures involving more than one negative charge on the carbon nucleus is very small. The 23-term basis, which was used in the subsequent calculations, is specified in detail in Sec. 3 (Table III).

(e) Validity of Valence Coupling

Even the full valence-bond basis (2.18) contains only a small fraction of the total number of Σ^+ wave functions which can be constructed from the basic atomic orbitals (2.1). Indeed, an application of the correlation rules of Wigner and Witmer (1928) to all possible states of the dissociation products (subject to the restriction that the inner-shell orbitals k_0 , k_c are both doubly occupied) shows that a complete basis for the Σ^+ ground state of carbon monoxide contains 177 terms. The additional functions are of two types:

(i) Functions with the same orbital assignments as the functions (2.18) but with different spin couplings. In the valence-bond basis, the spin coupling is always between electrons in orbitals of the same symmetry type $(\sigma, x, \text{ or } y)$. The relaxation of this restriction leads to a large number of additional functions which show spin couplings between orbitals of different symmetries.

Additional functions of this type must be included if we wish to resolve the valence-bond basis functions in terms of approximate composite functions [Moffitt (1954)]. This would be important for a calculation at large nuclear separations since it would lead to dissociation products in true stationary states rather than in the valence states which result from the basis (2.18) (cf. Table III).

However, the effect of these extra functions on the energy of the ground state at the equilibrium nuclear

Basis Dissociation products		products	Coefficients in total wave function				on				
fu	nctions	Ionic	ity Valence	e states ^b	~	~ ~ ~	Prbital calcul	ation	1	CC calculati	on
Ψi	Ψi ^σ ,Ψi ^π	C^{n+}	С	Ο	$(W_i - W_i')^{\circ}$	$\Gamma(\Theta)$	$\widetilde{\Gamma}(\Psi)$	ν	Γ(Θ)	$\Gamma(\Psi)$	ν
1	1,1	2	s^2V_0	$s^2 p^6 V_0$	-0.6184	0.3883	-0.0025	-0.001	0.5063	0.0566	0.020
2	2.1	1	$s^2 p V_1$	$s^2 p^5 V_1$	-0.2453	0.2804	0.0904	0.029	0.2868	0.1283	0.048
3	3.1	2	$s \hat{p} V_0$	$s^2 p^6 V_0$	-0.5992	-0.1301	-0.0225	0.007	-0.2002	-0.0922	0.037
4	4.1	0	$s^2 x^2 V_0$	$s^2 x^2 v^2 V_0$	-0.0746	0.0722	0.0677	0.012	0.0708	0.0503	0.010
5	5.1	1	$s^2 p V_1$	s \$ 06 V 1	-0.4784	0.0547	0.0322	0.011	0.0591	0.0720	0.033
6	6.1	1	sx^2V_1	$s^{2} p^{5} V_{1}$	-0.2505	0.0643	0.0524	0.013	0.0701	0.0875	0.026
7	7,1	Ō	$s^2 x^2 V_0$	sp^5V_0	-0.2087	-0.0146	-0.0338	0.010	-0.0208	-0.0146	0.005
8	1.2	1	$s^2 p V_1$	$s^2 p^5 V_1$	-0.2454	0.6350	0.1490	0.085	0.6092	0.2805	0.168
ğ	2.2	Ō	$s^2 x v V_2$	$s^2 x^2 v z V_2$	-0.0102	0.3434	0.3053	0.188	0.2793	0.1642	0.099
10	32	1	s the V .*	S2 15 V	-0.2658	-0.2025	-0.1342	0.083	-0.2289	-0.2346	0.154
11	4.2	-1	$s^2 x^2 v V_1$	$s^2 x^2 v V_1$	0.0027	0.0515	0.0392	0.012	0.0506	0.0503	0.015
12	5.2	- Õ	$s^2 x v V_2$	sto5V2	-0.1393	0.0608	0.1035	0.075	0.0421	0.0305	0.023
13	6.2	Ŏ	sx^2vV_2	$s^2 x^2 v z V_2$	-0.0574	0.0646	0.1565	0.071	0.0549	0.1040	0.047
14	7,2	-1	$s^2 x^2 y V_1$	$sp^4V_1^*$	-0.1031	-0.0033	-0.0090	0.005	-0.0272	-0.0749	0.040
15	1.3	0	$s^2 x^2 V_0$	$s^2 x^2 v^2 V_0$	-0.0746	0.1691	0.1184	0.035	0.1392	0.0836	0.024
16	23	—ľ	$s^2 x^2 v V_1$	$s^2 x^2 y V$	0.0027	0.0516	0.0666	0.020	0.0454	0.0546	0.015
17	33	Ô	sto Vo*	$s^2 x^2 y^2 V_0$	-0.1419	-0.0475	-0.0891	0.028	-0.0467	-0.0840	0.025
18	5,3	-1	$s^2 x^2 y V_1$	$sx^2y^2V_1$	-0.0754	0.0049	0.0107	0.004	0.0085	0.0186	0.006
19	1.4	0	$s^2 x v V_{2}$	$s^2 x^2 v z V_2$	-0.0102	0.3333	0.2360	0.114	0.2420	0.1483	0.064
20	24	— 1	$s^2 r v z V_2$	$s^2 r v z V_2$	0.0702	0.1100	0 1489	0.071	0.0804	0.0946	0.039
21	3.4	Ô	sto Va*	$s^2 x^2 y z V_0$	-0.0959	-0.0924	-0.1690	0.084	-0.0853	-0.1542	0.071
$\overline{22}$	5,4	-1	$s^2 x y z V_3$	sx^2yzV_3	-0.0132	0.0139	0.0304	0.018	0.0149	0.0326	0.017
23	1,5	-1	$s^2 x^2 y V_1$	$s^2 x^2 y V_1$	0.0027	0.0550	0.0886	0.026	0.0407	0.0656	0.016

TABLE III. Wave functions for the 23-term calculations.

^a There are 30 functions in the bases (2.18) (2.19) which show not more than one negative charge on the carbon atom. However, some of these are mixed with states of higher ionicity by the transformations (2.21) and are omitted from the Table. This mixing could be avoided by changing the order of ϕ_4 and ϕ_5 in the Schmidt orthogonalization. ^b sp?I/s= $\frac{1}{2}D + \frac{1}{2}P$, $\frac{1}{2}P$, $\frac{1}{2}P^{-\frac{1}{2}}P^{-\frac{1}{$

• Relative to the ground state dissociation products $C(s^2p^2, {}^3P)$, $O(s^2p^4, {}^3P)$ for which $W_G - \tilde{W}_G' = -0.8013$.

separation is certainly small and probably very small (<0.05 ev). The effect on the total energy of three states of this type, derived by altering the spin coupling in the most important valence-bond functions (Table III), was estimated by second-order perturbation theory to be less than 0.01 ev.

(ii) Functions with orbital assignments which differ from those of the valence-bond functions (2.18). These functions arise from the molecular orbital configurations $\sigma^4 \pi^6$, $\sigma^8 \pi^2$, and $\sigma^2 \pi^8$ and also from the functions Ψ_9^{σ} and Ψ_{10} , which we have discarded. The effect of these functions on the total energy will be very small, except for those functions which represent atomic configuration interaction; for example, interaction between $C(s^2p^2, {}^{3}P)$, $C(p^4, {}^{3}P)$ or $O^+(s^2p^3, {}^{2}P)$, $O^+(p^5, {}^{2}P)$. This atomic configuration interaction will have an appreciable effect $(\sim 0.5 \text{ ev})$ on the total energy in the orbital calculation but almost no effect on the results of the ICC calculation [Hurley (1959)].

It appears therefore, that as far as the ICC calculation is concerned, the 23-term valence-bond basis for the ground state of carbon monoxide (Table III) is almost complete in the sense that additional functions constructed from the atomic orbitals (2.1) would affect the calculated total energy by less than 0.1 ev. However, this result has not been established as unequivocally as in the much simpler case of the first-row

hydrides [Hurley (1958b, 1959), Krauss and Wehner (1958)].

3. INTRA-ATOMIC CORRELATION CORRECTION

In the ICC theory, the energy matrix H in the valence bond basis Ψ (2.18) is given by the equation [Hurley (1958a)]

$$H = \tilde{H} + \frac{1}{2} \left[\tilde{M} (W - \tilde{W}') + (W - \tilde{W}') \tilde{M} \right] \quad (\Psi \text{ basis}). \quad (3.1)$$

Here \tilde{H} , \tilde{M} are the energy and overlap matrices calculated directly from the orbital wave functions. W is a diagonal matrix whose elements are the empirical energies of the appropriate dissociation products, and \tilde{W}' is a similar matrix formed from the energies calculated for the dissociation products by using the orbital wave functions (2.18) with optimum values of the parameters $\zeta_1, \zeta_2, \zeta_3, \zeta_4, \zeta_5, \zeta_6$. That is, in calculating \tilde{W}' , these parameters are varied to minimize the energy of each state of the dissociation products.

In Eq. (3.1) the valence-bond basis is restricted to the 23 functions shown in Table III; the functions are specified by the values of i and j in Eq. (2.17) (column 2). The valence state corresponding to each function and the numerical value of the correction term $W_i - W_i'$ [Eq. (3.1)] are given in columns 3 and 4. The evaluation of these correction terms is described in Appendix I.

To simplify the calculations, Eq. (3.1) is transformed into the orthogonal valence-bond basis Θ (2.19), which in virtue of Eqs. (2.23) also contains just 23 functions with the same values of *i* and *j* as for the Ψ basis:

$$H(\Theta) = \tilde{H}(\Theta) + \frac{1}{2} \{ (W - \tilde{W}')^{0} + (W - \tilde{W}')^{0\dagger} \}, \quad (3.2)$$

where

$$(W - \tilde{W}')^0 = S(W - \tilde{W}')T.$$
 (3.3)

Here and in all subsequent matrix equations, the matrices are for the truncated 23×23 basis of Table III; S and T are the transformation matrices of Eqs. (2.22); the symbol \dagger denotes the Hermitian conjugate.

The coefficients of the total wave function in the orthogonal basis Θ are listed in Table III, column 5 (orbital calculation) and column 8 (ICC calculation). For the orbital calculation these coefficients $\tilde{\Gamma}(\Theta)$ are given by Eqs. (2.24), whilst for the ICC calculation, $\Gamma(\Theta)$ is given by the corresponding equations with $H(\Theta)$ replacing $\tilde{H}(\Theta)$:

$$\Omega = \Theta \Gamma(\Theta)$$

det{ $H(\Theta) - E1$ } = 0 (lowest root) (3.4)
{ $H(\Theta) - E1$ } $\Gamma(\Theta) = 0.$

The remaining columns of Table III give the coefficients of the total wave function in the valence-bond basis and the occupation numbers $\tilde{\nu}$, ν of the valence-bond structures. These quantities are determined from the equations

$$\tilde{\Gamma}(\Psi) = T\tilde{\Gamma}(\Theta), \quad \Gamma(\Psi) = T\Gamma(\Theta), \quad (3.5)$$

$$\tilde{\nu}_{i} = \sum_{j} \tilde{\Gamma}_{i}(\Psi) \widetilde{M}_{ij} \tilde{\Gamma}_{j}(\Psi) = \tilde{\Gamma}_{i}(\Psi) \sum_{j} S_{ji} \tilde{\Gamma}_{j}(\Theta),$$

$$\nu_{i} = \sum_{j} \Gamma_{i}(\Psi) \widetilde{M}_{ij} \Gamma_{j}(\Psi) = \Gamma_{i}(\Psi) \sum_{j} S_{ji} \Gamma_{j}(\Theta).$$
(3.6)

In practice, the second form of Eqs. (3.6), which derives from the equation $\tilde{M} = S^{\dagger}S$, is the more convenient since the matrix S is triangular.

The values of the occupation numbers ν_i enable us to estimate the effect ΔE on the ICC total energy of any uncertainties ΔW_i in the empirical values of the valence-state energies. To first order, we have

$$\Delta E = \sum_{i} \nu_i \Delta W_i.$$

In the present calculation the only appreciable uncertainty of this kind arises from the states of $O^{2-}(\Psi_1 \text{ and } \Psi_3)$. For these states, the value -6.63 ± 0.3 ev [Morris (1957)] was used for the double-electron affinity of oxygen. The small values of ν_1 and ν_3 (Table III, final column) indicate that this uncertainty will have a very small effect (<0.05 ev) on the calculated total energy.

The total energy E and the binding energy D_e which result from the 23-term ICC calculation are given in Table IV together with three spectroscopic values

TABLE IV. Total energy and binding energy (23-term ICC calculation).

ICC calculation	Total energy (a.u.) -113.368	Binding energy $D_{\theta}(ev)$ >11.00
Spectroscopic	-113.377*	11.24ª
	—113.322ь	9.74 ^b
	-113.305°	9.28°

^a Gaydon (1947). ^b Hagstrum (1947). ^o Herzberg (1950).

which have been put forward. The total energy is given by Eq. (3.4) and the binding energy by the equation

$$D_{\mathbf{e}} = W_{\mathbf{G}} - E, \qquad (3.7)$$

where $W_{\rm G}$ is the experimental energy of the ground state dissociation products $O(^{3}P)$, $C(^{3}P)$. Since the ICC binding energy is calculated relative to the experimental energy of the dissociation products, it is a lower limit to the true value to within the accuracy of the approximation underlying the basic equation of the ICC theory (3.1). For the simple systems, H_2 [Hurley (1955, 1956a), Pauncz (1954), Arai (1957)], HeH+ [Hurley (1956c), Evett (1956)], and Li₂ [Arai and Sakamoto (1958), it has been shown that the errors underlying Eq. (3.1) are very small (<0.02 ev). Furthermore, calculations on the ground state of N₂ [Hurley (1956b)] and on a large number of states of the first-row hydrides LiH, BH, CH, NH, OH, and FH [Hurley (1958b, 1959), Krauss and Wehner (1958)] each lead to a total molecular energy which is above the experimental value, that is, to a binding energy $D_{\rm e}$ which is a lower limit to the true value.

However, more refined calculations on the ground state of FH [Krauss and Ransil (1960), Hurley (1960)], in which the orbital exponents are varied to minimize the total energy, show that under certain circumstances Eq. (3.7) may give binding energies which exceed the true value by 0.2–0.8 ev. This implies an error of at least this amount in Eq. (3.1). These calculations on HF have been analyzed, and it has been shown that the errors arise from discrepancies between Slater-type functions such as (2.1) and atomic and ionic Hartree-Fock functions. Such discrepancies, which are negligible for the simple systems mentioned above, sometimes lead to an overestimate of the correction for ionic states.

On the basis of this analysis, it is concluded that the uncertainty in the lower limit to the binding energy of carbon monoxide given in Table IV should not exceed 0.5 ev. Since a much larger uncertainty is needed to reconcile the ICC binding energy with either of the lower spectroscopic values, the present calculations indicate that the high value $D_e=11.24$ ev is correct.

This result is in accord with a direct determination of the heat of sublimation of graphite [Chupka and Inghram (1955)], which is linked to $D_o(CO)$ by wellestablished thermochemical quantities. Until recently it was thought that this high value for $D_o(CO)$ was inconsistent with electron-impact data [Hagstrum (1951)]. However, when these data were reanalyzed [Hagstrum (1955)] using a new value (1.45 ev) for the electron affinity of oxygen [Branscomb and Smith (1955), most of the discrepancies disappeared and the high value for $D_0(CO)$ became generally accepted.

4. ANALYSIS OF THE TOTAL WAVE FUNCTION

The specification of the total wave functions by the coefficients $\tilde{\Gamma}(\Theta)$, $\tilde{\Gamma}(\Psi)$, $\Gamma(\Theta)$, and $\Gamma(\Psi)$ is not very convenient for physical interpretation or for the calculation of further properties. The most useful derived quantities for this purpose are the first-order density matrices $[\tilde{\rho}_{pq}]$, $[\rho_{pq}]$ for the orbital and ICC calculations, respectively. These may be defined from the expressions for the total charge densities $\tilde{\rho}$, ρ in terms of the basic atomic orbitals (2.1) [Löwdin (1955)]:

$$\tilde{\rho} = \sum_{p} \sum_{q} \tilde{\rho}_{pq} \phi_{p} \phi_{q}, \qquad (4.1)$$

$$\rho = \sum_{p} \sum_{q} \rho_{pq} \phi_{p} \phi_{q}. \tag{4.2}$$

These density matrices were evaluated for the total wave functions of Table III and are given by the following equations:

$$\begin{bmatrix} \tilde{\rho}_{pq} \end{bmatrix} = \begin{bmatrix} \tilde{\rho}^{\sigma} & 0 & 0 \\ 0 & \tilde{\rho}^{\star} & 0 \\ 0 & 0 & \tilde{\rho}^{\star} \end{bmatrix}, \quad \begin{bmatrix} \rho_{pq} \end{bmatrix} = \begin{bmatrix} \rho^{\sigma} & 0 & 0 \\ 0 & \rho^{\star} & 0 \\ 0 & 0 & \rho^{\star} \end{bmatrix}, \quad (4.3)$$

where²

$$\tilde{\rho}^{\sigma} = \begin{bmatrix} 2.0040, & 0.0038, & 0.0119, & -0.0409, & -0.0553, & -0.0229 \\ & 2.0109, & -0.0646, & 0.0178, & -0.0919, & -0.0571 \\ & 2.0015, & -0.3846, & -0.4296, & 0.0875 \\ & 1.8764, & 0.0181, & -0.6283 \\ & 1.3645, & 0.6344 \\ & 0.6364 \end{bmatrix}, \\ \tilde{\rho}^{x} = \tilde{\rho}^{y} = \begin{bmatrix} 1.1472, & 0.6664 \\ & 0.4923 \end{bmatrix}, \\ \rho^{\sigma} = \begin{bmatrix} 2.0028, & 0.0039, & 0.0028, & -0.0275, & -0.0507, & -0.0168 \\ & 2.0117, & -0.0639, & 0.0127, & -0.1021, & -0.0549 \\ & 1.9329, & -0.2871, & -0.3966, & 0.1364 \\ & 1.7587, & 0.0204, & -0.7144 \\ & 1.4675, & 0.5787 \\ & & 0.6163 \end{bmatrix}, \end{bmatrix}$$

(4.5)

and

 $\rho^x = \rho^y = \begin{bmatrix} 1.2667, & 0.6504 \\ & 0.3814 \end{bmatrix}.$

The matrices (4.3) enable us to calculate the expectation values $\langle \tilde{f} \rangle$, $\langle f \rangle$ of any one electron operator f for the ground state wave functions given by the orbital and ICC calculations

$$\begin{split} \langle \tilde{f} \rangle &= \sum_{p} \sum_{q} \tilde{p}_{pq} f_{pq}, \qquad (4.4) \\ \langle f \rangle &= \sum_{p} \sum_{q} \rho_{pq} f_{pq}, \qquad (4.5) \end{split}$$

where

$$f_{pq} = \int \phi_p f \phi_q dv.$$

The net and gross atomic populations $[\tilde{N}(p), \tilde{n}(p);$ N(p), n(p) and the overlap populations $[\tilde{n}(pq), n(pq)]$ for the orbital and ICC wave functions were derived from the matrices (4.3) by using the following equations [Mulliken (1955), Hurley (1958b)]:

$$\begin{split} \tilde{n}(p) &= \tilde{\rho}_{pp}, \quad n(p) = \rho_{pp}, \\ \tilde{n}(pq) &= 2m_{pq}\tilde{\rho}_{pq}, \quad n(pq) = 2m_{pq}\rho_{pq}, \\ \tilde{N}(p) &= \tilde{n}(p) + \frac{1}{2}\sum_{q \neq p} \tilde{n}(pq), \quad N(p) = n(p) + \frac{1}{2}\sum_{q \neq p} n(pq), \end{split}$$

where

$$m_{pq} = \int \phi_p \phi_q dv.$$

Since these populations are obtained so simply from the matrices (4.3) and the overlap integrals m_{pq} (Appendix II), they are not listed separately. The alternative expressions for the gross atomic populations N(p), N(p)in terms of the occupation numbers $\tilde{\nu}_i$, ν_i of the valencebond structures [Hurley (1958b)],

$$\widetilde{N}(p) = \sum_{i} \widetilde{\nu}_{i} n_{i}(p), \quad N(p) = \sum_{i} \nu_{i} n_{i}(p), \quad (4.6)$$

provide a very useful check on the evaluation of the density matrices (4.3) and on the electron-population analysis. In Eqs. (4.6), $n_i(p)$ is the occupation number (0, 1 or 2) of the atomic orbital p in the valence-bond function Ψ_i (Table III, column 3).

The natural orbitals for the two calculations and their occupation number $\mathfrak N$ were obtained as the latent vectors and latent roots of the matrices (4.3) [Löwdin (1955)]. They are shown in Table V together with the self-consistent field molecular orbitals of Moser (1960).

² These matrices are all symmetrical.

Natural	Occupation		Coefficients of atomic_orbitals						
orbital	number N	ko	k _C	20	8 C	σο	σ _C	$x_{\rm O}(y_{\rm O})$	$x_{\rm C}(y_{\rm C})$
õ,	2	1	•••	• • • •		• • •	•••	• • •	
$\tilde{\sigma}_2$	2	•••	1	• • •	• • •	• • •	• • •	• • •	
$\tilde{\sigma}_3$	1.9998	-0.0069	-0.0302	0.8886	0.2573	-0.1722	-0.0712	• • •	
$\tilde{\sigma}_{4}$	1.9967	-0.0320	-0.0118	-0.4230	0.8436	0.3970	-0.1240		
$\tilde{\sigma}_{5}$	1.9809	-0.0258	-0.0650	0.1354	-0.3907	0.7000	0.5305		•••
$\tilde{\sigma}_6$	0.0225	-0.1596	0.1347	-1.1317	0.9530	-0.9383	1.2994	• • • •	
$\tilde{x}_1(\tilde{y}_1)$	1.9424			• • •	• • •	• • •		0.7587	0.4777
$\tilde{x}_2(\tilde{y}_2)$	0.0576	• • •	• • •	•••	•••	• • •		-0.7094	0.9224
σ_1	2	1	•••	•••	• • •	• • •			• • •
σ_2	2	•••	1	•••	•••	• • •	• • •		• • •
σ_3	1.9996	-0.0084	-0.0355	0.8991	0.2244	-0.1145	-0.0337	• • •	• • •
σ_4	1.9962	-0.0335	-0.0494	-0.2718	0.4475	-0.7581	0.1273	•••	•••
σ_5	1.9894	-0.0054	-0.0450	0.2740	-0.7907	0.3764	0.5289		• • •
σ	0.0149	-0.1612	0.1330	-1.1447	0.9813	-0.9101	1.3013		• • •
x_1	1.9717	•••	•••	•••	•••	•••		0.7976	0.4249
x_2	0.0283	•••	•••	•••	•••	•••		-0.6655	0.9478
SCFMO ⁸	a								
· · ·	\$ 1σ	1	•••		•••		•••	•••	• • •
ç	\$2σ	•••	1 1	•••	•••	•••	•••	•••	• • •
ç	\$ 3σ	-0.0245	-0.0573	0.7477	0.2198	0.2380	0.1558	• • •	
ć	$\phi_{4\sigma}$	-0.0320	-0.0209	-0.6355	0.5254	0.6349	0.0603		• • • *
ć	Φ 5σ	-0.0106	-0.0355	-0.0400	-0.7430	0.4515	0.5613		• • •
ç	Φ 6σ	-0.1597	0.1358	-1.1416	0.9811	-0.9455	1.2836	•••	• • •
$\phi_{1x} \ \phi_{2x}$	(ϕ_{1y}) (ϕ_{2y})							$0.7709 \\ -0.6962$	0.4617 0.9305

TABLE V. Natural orbitals and self-consistent field molecular orbitals.

^a Moser (1960).

The occupation numbers of the higher natural orbitals $(\tilde{\sigma}_6, \tilde{x}_2, \tilde{y}_2; \sigma_6, x_2, y_2)$ provide an absolute measure of the departure of the total wave function from the form of a single determinant, that is, a measure of the irreducible configuration interaction which cannot be eliminated by a transformation of the one-electron functions. We see that, as in previous calculations, configuration interaction is much less important in the ICC calculation than in the orbital calculation.

The approximate equality of the higher natural orbitals $\tilde{\sigma}_6$, \tilde{x}_2 , \tilde{y}_2 to the unoccupied molecular orbitals $\phi_{6\sigma}$, ϕ_{2x} , ϕ_{2y} ensures that the first term in the natural expansion of the total orbital wave function, namely,

$$\begin{array}{l} \left| \tilde{\sigma}_{1}\alpha, \tilde{\sigma}_{1}\beta, \tilde{\sigma}_{2}\alpha, \tilde{\sigma}_{2}\beta, \tilde{\sigma}_{3}\alpha, \tilde{\sigma}_{3}\beta, \tilde{\sigma}_{4}\alpha, \tilde{\sigma}_{4}\beta, \tilde{\sigma}_{5}\alpha, \tilde{\sigma}_{5}\beta, \right. \\ \left. \times \tilde{x}_{1}\alpha, \tilde{x}_{1}\beta, \tilde{y}_{1}\alpha, \tilde{y}_{1}\beta \right|, \quad (4.7) \end{array}$$

is very similar to the self-consistent field function

$$\begin{array}{c} |\phi_{1\sigma}\alpha,\phi_{1\sigma}\beta,\phi_{2\sigma}\alpha,\phi_{2\sigma}\beta,\phi_{3\sigma}\alpha,\phi_{3\sigma}\beta,\phi_{4\sigma}\alpha,\phi_{4\sigma}\beta, \\ \times\phi_{5\sigma}\alpha,\phi_{5\sigma}\beta,\phi_{1x}\alpha,\phi_{1x}\beta,\phi_{1y}\alpha,\phi_{1y}\beta|. \end{array}$$
(4.8)

Indeed, by using the techniques developed by Löwdin (1955), it is readily shown that the overlap between the functions (4.7) and (4.8) is simply

$$\left(\int \tilde{\sigma}_{6} \phi_{6\sigma} dv \right)^{2} \left(\int \tilde{x}_{2} \phi_{2x} dv \right)^{2} \left(\int \tilde{y}_{2} \phi_{2y} dv \right)^{2}$$

$$= (0.99949)^{2} (0.99985)^{2} (0.99985)^{2}$$

$$= 0.9984.$$

$$(4.9)$$

A close similarity between the functions (4.7) and (4.8) is expected on general grounds [Lödwin (1955)].

Thus, the large values of the overlap integrals (4.9) provide a valuable check on the consistency of the present orbital calculation with Moser's self-consistent field calculation.

On the other hand, there are quite large differences between the occupied self-consistent field orbitals $\phi_{1\sigma}\cdots\phi_{5\sigma}$ and the corresponding natural orbitals $\tilde{\sigma}_1\cdots\tilde{\sigma}_5$. This suggests that the orbital energies of selfconsistent field functions are not very reliable guides in setting up a simple wave function to allow for configuration interaction. For example, it is to be expected that the double substitution $\phi_{5\sigma}^2 \rightarrow \phi_{6\sigma}^2$ would be considerably less effective than $\tilde{\sigma}_5^2 \rightarrow \tilde{\sigma}_6^2$ in lowering the total energy of the single determinant wave function.

5. DIPOLE MOMENT

Perhaps the simplest qualitative picture of the wave functions is that of resonance between the structures $C^{2+}O^{2-}$, C^+-O^- , C=O, $C^- \equiv O^+$ (Table VI). The occupation numbers of these structures are obtained from Table III by summing $\tilde{\nu}_i$ and ν_i for states of the same ionicity.

These results may be compared with the picture of Pauling (1940), which leaves out the structure $C^{2+}O^{2-}$ and gives equal weight to each of the other three. In constructing this picture Pauling made use of the fact that the dipole moment of carbon monoxide is almost zero. He considered only the formal moment μ_f , and it is clear that this will be zero if these three structures have equal weight. However, as Moffitt (1949) has pointed out, there is a large contribution to the moment from the carbon atomic dipole—so that a zero formal moment does not correspond to a zero total moment.

TABLE VI. Resonating structure and dipole moment $(C^{-}O^{+})$.

Structure	Orbital calculation	ICC calculation	Pauling
C2+O2-	0.006	0.057	0
Č+-0-	0.221	0.428	4
$\tilde{C} = 0$	0.617	0.367	1
C-≡0+	0.156	0.148	1/3
Dipole			
ш <i>г</i>	-0.42D	-2.13D	0
<u>що</u>	2.94D	3.34D	
#0	-1.43D	-1.32D	
HCO	-0.08D	-0.25D	
μ_{t}	1.00D	-0.37D	
µscfmo ^a =	$0.73D, \ \mu_{\text{exptl.}} = 0.12D$		

* Ransil (1960).

We see this clearly from the present results (Table VI). For both calculations, the carbon atomic dipole $\mu_{\rm C}$ is the largest single contribution. The oxygen atomic dipole μ_0 is also fairly large, whilst the covalent dipole μ_{CO} is small. These dipole moments were evaluated by using the expressions (4.4), (4.5), the density matrices (4.3), and the dipole moment integrals (Appendix II). The contributions μ_{f} , μ_{C} , μ_{O} , μ_{CO} are obtained by an obvious grouping of the terms in Eqs. (4.4) and (4.5)[Hurley (1958)].

For the orbital calculation, the total moment is of the right sign but much too large; its value fits in well with that obtained by Ransil (1960) in a self-consistent field molecular orbital calculation.

The total moment from the ICC calculation is small but of the wrong sign. The relative values of the orbital and ICC moments are consistent with the results for the first-row hydrides [Hurley (1958b)]. Here also, the effect of the intra-atomic correlation correction is to alter the orbital moment in the right direction but by an amount which is rather too large. This overcorrection of the dipole moment is attributable, at least in part, to errors arising from the discrepancies between the Slater-type functions (2.1) and Hartree-Fock atomic orbitals [Hurley (1960)].

6. ACKNOWLEDGMENTS

This work was made possible by the generous hospitality and assistance of Professor Slater and the Solid State and Molecular Theory Group (Massachusetts Institute of Technology) and the Laboratory of Molecular Structure and Spectra (University of Chicago). The two-electron exchange integrals were evaluated on the Whirlwind digital computer using a program written by Mr. Merriman. The remaining two-electron integrals were evaluated at the Laboratory of Molecular Structure and Spectra, University of Chicago, by Dr. Ransil. The author is also indebted to Dr. Moser and Dr. Krauss for the communication of their results before publication, to Dr. Maslen for checking the matrix elements of the Hamiltonian, and to the staff of the Adolph Basser Computation Laboratory (University of Sydney) for assistance with the numerical computations.

BIBLIOGRAPHY

- T. Arai, J. Chem. Phys. 26, 451 (1957).
- T. Arai and M. Sakômoto, J. Chem. Phys. 28, 32 (1958).
 L. M. Branscomb, D. S. Burch, S. J. Smith, and S. Geltman, Phys. Rev. 111, 504 (1958).
- W. A. Chupka and M. G. Inghram, J. Chem. Phys. 21, 1313 (1953); J. Phys. Chem. 59, 100 (1955).
- A. A. Evett, J. Chem. Phys. 24, 150 (1956). A. G. Gaydon, *Dissociation Energies* (Chapman and Hall, Ltd., London, 1947).
- H. G. Hagstrum, Phys. Rev. 72, 947 (1947); Revs. Modern Phys. 23, 185 (1951); J. Chem. Phys. 23, 1178 (1955). G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand
- G. INETZDERG, Spectra of Diatomic Molecules (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950).
 A. C. Hurley, Proc. Phys. Soc. (London) A68, 149 (1955); A69, 49 (1956) (a); A69, 767 (1956) (b); A69, 868 (1956) (c); J. Chem. Phys. 28, 532 (1958) (a); Proc. Roy. Soc. (London) A248, 119 (1958) (b); A249, 40 (1959); (unpublished) (1960).
 M. Krauss and B. Ransil, (Boulder Conference, unpublished) (1960)
 - (1960).
- M. Krauss and J. F. Wehner, J. Chem. Phys. 29, 1287 (1958). P. O. Löwdin, J. Chem. Phys. 18, 365 (1950); Phys. Rev. 97, 1474 (1955)
- McWeeny, Proc. Roy. Soc. (London) A223, 306 (1954); R. (Boulder Conference, unpublished) (1960)
- W. Moffitt, Proc. Roy. Soc. (London) A196, 524 (1949); A210, 245 (1951); Repts. Progr. Phys. 17, 173 (1954).
- C. M. Moore, Natl. Bur. Standards (U. S.) Circ. 467 (1949).
- D. F. C. Morris, Proc. Roy. Soc. (London) A242, 116 (1957).
- C. Moser, (Boulder Conference, unpublished) (1960).
- L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1940).
- R. Pauncz, Acta Phys. Acad. Sci. Hung. 4, 237 (1954).
- B. Ransil (Boulder Conference, unpublished) (1960).
- C. C. J. Roothaan, Tech. Rept. Laboratory of Molecular Structure and Spectra, University of Chicago (unpublished) (1955).
- E. Wigner and E. E. Witmer, Z. Physik 51, 859 (1928).

p,q

1,1

 $(\phi_p \phi_q)$

APPENDIX I

The calculated and experimental energies of the stationary states of the atoms C and O and of the positive ions C⁺, C²⁺, O⁺ were obtained from the tables of Roothaan (1955). The calculated and experimental energies of the stationary states of the negative ions C⁻, O⁻, and O²⁻ are given in Table VII. In all cases the calculated energies are those obtained by using the orbitals (2.1) with optimum values of the parameters $\zeta_1 \cdots \zeta_6$ for each state.

The experimental energies of the negative ion states were obtained from the electron affinities EA(O) = 1.465 ± 0.005 ev, EA(C) = 1.12 ± 0.05 ev given by Branscomb, Burch, Smith, and Geltman (1958), the value -6.63 ± 0.3 ev for the double-electron affinity of oxygen [Morris (1957)], and spectroscopic intervals extrapolated from the tables of Moore (1949).

TABLE VII. Energies of stationary states of the ions C^- , O^- , O^{2-} (a.u.).

State	Calc energy $\widetilde{W'}$	Exptl. energy W
$\begin{array}{c} C^{-}(s^{2}p^{3}, \frac{4}{5}^{0}) \\ , & 2D^{0}) \\ p^{2}p_{0}) \\ O^{-}(s^{2}p^{5}, \frac{2}{5}^{p_{0}}) \\ O^{-}(sp^{6}, \frac{2}{5}) \\ O^{2}^{-}(s^{4}p^{6}, \frac{1}{5}) \end{array}$	$\begin{array}{r} -37.5742 \\ -37.4899 \\ -37.4349 \\ -74.3043 \\ -73.5290 \\ -73.6202 \end{array}$	$\begin{array}{r} -37.8962 \\ -37.8446 \\ -37.8202 \\ -75.1628 \\ -74.6206 \\ -74.8653 \end{array}$

The calculated and empirical energies of the valence states of Table III (column 4) are now obtained from the expressions for these states in terms of stationary states (Table III, footnote a). Since the additional valence-bond functions required to resolve the basis functions $\tilde{\Psi}_i$ in terms of approximate composite functions are all orthogonal to the functions $\tilde{\Psi}_i$, this procedure is equivalent to using a basis of approximate composite functions throughout the calculations [Hurley (1958b, Appendix)].

APPENDIX II

Atomic Integrals

(a) One-Electron Integrals (Table VIII)

Notation. Overlap integrals: $(ab) = \int abdv$,

Core integrals: $(afb) = \int afb dv$, $f = -\frac{1}{2}\nabla^2 - (6/r_{\rm C}) - (8/r_{\rm O}).$ Dipole moment integrals: $(a\mu b) = \int a\mu b dv$.

1.1	1	-34.75659	-34.75659	-1.06595
1,2	0.00009	-0.00297	0.00002	-0.00004
1.3	0	-7.69622	0.35259	0
1,4	0.05050	-1.65416	-0.10150	-0.05010
1,5	0	-0.07029	-0.03414	0.05324
1,6	0.08579	-2.87949	-0.12450	-0.08550
2.2	1	-21.69807	-21.69807	1.06595
2,3	0.05011	-1.03235	0.02690	0.04312
2,4	0	-4.51873	0.25395	0
2,5	0.08313	-1.75901	-0.05195	0.07252
2,6	0	-0.11806	-0.06660	0.06708
3,3	1	-10.95760	-9.75262	-1.06595
3,4	0.43044	-4.45051	0.13422	-0.12875
3,5	0	-0.82671	-0.90416	0.64963
3,6	0.50815	-5.53923	0.46304	-0.34175
4,4	1	-8.02746	-6.96866	1.06595
4,5	0.32824	-3.48869	-0.68772	0.17787
4,6	0	-1.36060	-0.65810	-0.91495
5,5	1	-9.57767	-9.36043	-1.06595
5,6	0.28880	-3.17960	0.41650	0.08235
6,6	1	-7.77696	-7.03055	1.06595
7,7	1	-9.06222	-9.06222	-1.06595
7.8	0.28880	-2.25027	0.20894	-0.06476
8,8	1	-6.74949	-6.68430	1.06595

TABLE VIII. One-electron integrals.

 $(\phi_p f \phi_q)^{a}$

-34.75659

 $(\theta_p f \theta_q)$

34.75659

^a In this column only the integrals with p, q=3, 4 are for the nodeless 25 functions \$\$\phi_3*, \$\phi_4*.

Here μ is the z coordinate of the electron relative to the center of the CO bond.

Orbitals: ϕ_p defined by Eqs. (2.1).

 θ_p defined by Eqs. (2.9) and (2.15) (Table I).

(b) Two-Electron Integrals (Table IX)

Notation. $[ab,cd] = \int \int a(1)b^*(1)(1/r_{12})$ $\times c(2)d^*(2)dv_1dv_2$

$$\phi_{3*} = (\zeta_3^{5}/3\pi)^{\frac{1}{2}}r_{\rm O} \exp(-\zeta_3 r_{\rm O}), \quad \theta_{3*} = \theta_3,$$

$$\phi_{4*} = (\zeta_4^{5}/3\pi)^{\frac{1}{2}}r_{\rm C} \exp(-\zeta_4 r_{\rm C}), \quad \theta_{4*} = \theta_4,$$

$$\phi_{7*} = 2^{-\frac{1}{2}}(\phi_7 + i\phi_9), \quad \theta_{7*} = 2^{-\frac{1}{2}}(\theta_7 + i\theta_9),$$

$$\phi_{9*} = 2^{-\frac{1}{2}}(\phi_7 - i\phi_9), \quad \theta_{9*} = 2^{-\frac{1}{2}}(\theta_7 - i\theta_9),$$

$$\phi_{8*} = 2^{-\frac{1}{2}}(\phi_8 + i\phi_{10}), \quad \theta_{8*} = 2^{-\frac{1}{2}}(\theta_8 + i\theta_{10}),$$

$$\phi_{10*} = 2^{-\frac{1}{2}}(\theta_8 - i\phi_{10}), \quad \theta_{10*} = 2^{-\frac{1}{2}}(\theta_8 - i\theta_{10}).$$

 $(\phi_p \mu \phi_q)$

-1.06595

A. C. HURLEY

TABLE IX. Electron repulsion integrals.

pq,rs	$[\phi_p \phi_q, \phi_r \phi_s]$	$\left[\theta_{p}\theta_{q},\theta_{r}\theta_{s}\right]$	pq,rs	[\$pp\$q\$,\$\$pr\$\$]	$\left[\theta_p\theta_q, \theta_r\theta_s\right]$	pq,rs	[\$\phi_p \phi_q, \phi_r \phi_s]	$[\theta_p \theta_q, \theta_\tau \theta_s]$
11,11	4.78750	4.78750	4*6,14*	0.00854	0.00079	4*5,24*	0.06378	0.00014
12,11	0.00017	-0.00024	55,14*	0.05285	0.00299	4*6,24*	0.00000	-0.00369
13*,11	0.67556	-0.44432	56,14*	0.01385	-0.00174	55,24*	0.11345	-0.00167
14*,11	0.15396	0.11929	66,14*	0.02697	0.00244	56,24*	0.05496	-0.00095
15,11	0.00000	-0.04913	15,15	0.02500	0.02885	66,24*	0.16559	-0.00872
16,11	0.26991	0.19060	16,15	0.00196	-0.01623	25,25	0.01265	0.00085
22,11	0.40907	0.40900	22,15	0.01172	0.01220	20,25	0.00209	0.00527
23,11	0.02332	-0.00272	23,15	0.00071	-0.00013	3*4* 25	0.04238	0.00444
25.11	0.04322	0.00509	25.15	0.00120	0.00029	3*5.25	0.01312	0.00236
26.11	0.01476	0.01545	26.15	0.00074	0.00078	3*6.25	0.02727	0.00033
3*3*,11	1.11739	1.12232	3*3*,15	0.00000	-0.00193	4*4*,25	0.06430	-0.00104
3*4*,11	0.35748	-0.14168	3*4*,15	0.00577	0.00711	4*5,25	0.02625	0.00215
3*5,11	0.00000	0.05847	3*5,15	0.03840	0.03518	4*6,25	0.00535	0.00498
3*6,11	0.50408	-0.19522	3*6,15	0.00762	-0.00653	55,25	0.04781	0.00503
4*4*,11	0.45509	0.43133	4*4*,15	0.00928	0.00522	50,25	0.02419	0.00091
4'5,11	0.23300	0.10522	4'5,15	0.01222	0.00043	26.26	0.00500	0.00094
55 11	1 10765	1.13448	55 15	0.00000	0.00333	3*3* 26	0.01378	0.01442
56.11	0.26100	-0.23597	56.15	0.01812	-0.00543	3*4*.26	0.00733	0.00127
66,11	0.53558	0.58787	66,15	0.01220	0.01358	3*5,26	0.00719	0.00738
12,12	0.00000	0.00000	16,16	0.01800	0.01909	3*6,26	0.01158	0.00220
13*,12	0.00003	0.00003	22,16	0.04164	-0.00481	4*4*,26	0.00000	-0.00747
14*,12	0.00001	-0.00001	23*,16	0.00227	-0.00006	4*5,26	0.00825	0.00857
15,12	0.00001	0.00001	24*,16	0.00912	0.00003	4*0,20	0.02474	0.02225
10,12	0.00001	-0.00002	25,10	0.00385	-0.00011	56.26	0.01734	0.00362
23* 12	0.00000	-0.00002	3*3* 16	0.00150	0.00721	66.26	0.00000	-0.00108
24*.12	0.00001	-0.00000	3*4*.16	0.03062	-0.00467	3*3*,3*3*	0.81738	0.79659
25,12	0.00001	0.00000	3*5,16	0.00378	-0.01412	3*4*,3*3*	0.29183	-0.06214
26,12	0.00000	0.00000	3*6,16	0.04289	0.00008	3*5,3*3*	0.00000	0.02518
3*3*,12	0.00008	-0.00002	4*4*,16	0.03978	-0.00154	3*6,3*3*	0.39355	-0.07265
3*4*,12	0.00003	0.00001	4*5,10	0.02118	0.00279	4*4*,5*5*	0.43290	0.40348
3*6.12	0.00002	0.00002	55.16	0.01465	0.00247	4*6 3*3*	0 13704	0.08778
4*4* 12	0.00005	0.00001	56.16	0.02402	0.00047	55.3*3*	0.81373	0.80078
4*5,12	0.00003	-0.00000	66,16	0.04687	-0.00357	56,3*3*	0.21954	-0.10336
4*6,12	0.00002	0.00001	22,22	3.54375	3.54375	66,3*3*	0.48343	0.47870
55,12	0.00009	-0.00001	23*,22	0.11009	-0.06451	3*4*,3*4*	0.12402	0.02860
56,12	0.00003	0.00001	24*,22	0.47079	-0.31007	3*5,5*4*	0.04250	0.03913
00,12	0.00000	0.00001	25,22	0.19003	-0.07270	1*4* 3*4*	0.13829	0.01607
14* 13*	0.02650	-0.00893	3*3* 22	0.46648	0.46506	4*5.3*4*	0.10617	-0.01718
15.13*	0.00000	0.00771	3*4*.22	0.27694	0.08448	4*6,3*4*	0.05497	0.00299
16,13*	0.04636	-0.03009	3*5,22	0.13706	0.11337	55,3*4*	0.29762	-0.05751
22,13*	0.10849	-0.00001	3*6,22	0.29523	0.04453	56,3*4*	0.11084	0.02611
23*,13*	0.00590	-0.00001	4*4*,22	0.80007	0.79968	06,3*4*	0.23725	0.03148
24*,13*	0.02377	0.00002	4*5,22	0.30097	-0.03027	3*6 3*5	0.17984	-0.01919
26,13*	0.00999	0.0000	55 22	0.50000	0.50531	4*4*.3*5	0.09442	0.05924
3*3*.13*	0.24929	-0.01763	56,22	0.25542	0.08111	4*5,3*5	0.07833	-0.02123
3*4*,13*	0.08080	0.00484	66,22	0.78055	0.83981	4*6,3*5	0.03781	0.03058
3*5,13*	0.00000	-0.00199	23*,23*	0.00426	0.00206	55,3*5	0.00000	0.03459
3*6,13*	0.11330	0.00779	24*,23*	0.01802	0.00931	56,3*5	0.10287	-0.00566
4*4*,13*	0.10437	-0.00137	25,23*	0.00734		3*6 3*6	0.10585	0.09024
4*5,15*	0.03339	0.00101	20,25	0.00139	0.00412	4*4* 3*6	0 25432	0.01253
55 13*	0.03833	-0.01043	3*4*.23*	0.01434	-0.00032	4*5.3*6	0.12996	-0.00456
56.13*	0.05963	0.00550	3*5,23*	0.00772	0.00121	4*6,3*6	0.08415	0.00050
66,13*	0.12257	-0.00559	3*6,23*	0.01606	-0.00013	55,3*6	0.39947	-0.06824
14*,14*	0.00588	0.00517	4*4*,23*	0.03760	-0.00322	56,3*6	0.14180	0.03205
15,14*	0.00117	-0.00070	4*5,23*	0.01540	0.00128	00,3*0	0.27935	0.00270
10,14*	0.01029	0.00755	55 23*	0.00323	0.00254	4*5 4*4*	0.21894	-0.02874
23*.14*	0.00131	0.00001	56.23*	0.01424	-0.00078	4*6,4*4*	0.00000	-0.01191
24*,14*	0.00525	-0.00001	66,23*	0.03721	-0.00154	55,4*4*	0.45644	0.42492
25,14*	0.00222	0.00002	24*,24*	0.08006	0.04736	56,4*4*	0.19557	0.03928
26,14*	0.00078	0.00006	25,24*	0.03106	-0.00236	00,4*4*	0.57748	0.57238
5*5*,14* 2*1* 11*	0.05312	0.00457	20,24"	0.00000		4*6 4*5	0.10731	0.03233
3*5 14*	0.01700	0.00287	3*4* 24*	0.05942	-0.00229	55,4*5	0.22313	0.08780
3*6.14*	0.02464	-0.00245	3*5,24*	0.02940	-0.00067	56,4*5	0.11389	-0.02360
4*4*,14*	0.02289	0.00079	3*6,24*	0.06408	-0.00129	66,4*5	0.22689	-0.01597
4*5,14*	0.01221	-0.00040	4*4*,24*	0.16940	-0.01131	4*0,4*0	0.12757	0.09503

pq,rs	[\$pp\$\$q\$,\$\$r\$\$s]	$\left[\theta_{p}\theta_{q},\theta_{r}\theta_{s}\right]$	pq,rs	[\$pp\$\$q\$,\$\$r\$\$s]	$[\theta_p \theta_q, \theta_r \theta_s]$	pq,rs	$[\phi_p \phi_q, \phi_\tau \phi_s]$	$\left[\theta_{p}\theta_{q_{s}}\theta_{r}\theta_{s}\right]$
55.4*6	0.14556	0.08185	77.4*4*	0.42053	0.39411	74*.82	0.00377	0.00208
56.4*6	0.07240	-0.02701	78.4*4*	0.13355	0.01868	84*.82	0.02474	0.02273
66.4*6	0.00000	-0.00414	88.4*4*	0.57748	0.56943	75.82	0.00253	0.00187
55.55	0.87284	0.87286	77.4*5	0.19847	0.07800	85.82	0.00760	-0.00252
56.55	0.23864	-0.11512	78.4*5	0.06050	-0.01170	76.82	0.00345	0.00144
66.55	0.51034	0.51105	88.4*5	0.21046	-0.02651	86.82	0.00000	0.00519
56,56	0.13159	0.05339	77.4*6	0.13192	0.08603	73*.73*	0.17984	0.17303
66,56	0.21412	0.02486	78.4*6	0.02985	-0.00021	83* 73*	0.03363	-0.01339
66,66	0.61451	0.63325	88.4*6	0.00000	0.01321	74*.73*	0.05372	-0.02444
00,00	0101101		77.55	0.77876	0.77933	84*.73*	0.04295	0.03980
77 11	1.10765	1.10765	78.55	0.16336	-0.05092	75.73*	0.00000	0.01038
78 11	0.18434	-0.11975	88.55	0 42442	0 42068	85 73*	0.02278	0.01140
88 11	0.40899	0.42112	77.56	0.20891	-0.10507	76.73*	0.07857	-0.03374
77 12	0.00008	-0.00002	78.56	0.06133	0.01993	86.73*	0.02605	0.02658
78 12	0.00002	0.00001	88.56	0.18233	0.03604	83*.83*	0.01337	0.00846
88,12	0.00004	0.00001	77.66	0.46886	0.46782	74*.83*	0.01553	0.00818
77 1.3*	0.24731	-0.00914	78.66	0.13738	0.01076	84*.83*	0.03166	0.01857
78 13*	0.04231	0.00222	88.66	0.54827	0.56322	75.83*	0.00929	0.00721
88 13*	0.09458	-0.00055	00,00	010 10-11	0.00011	85.83*	0.01365	-0.00221
77 14*	0.05261	0.00211	71.71	0.02500	0.02500	76.83*	0.01967	0.00738
78 14*	0.00918	-0.00031	81.71	0.00086	-0.00613	86.83*	0.01060	0.00763
88 14*	0.02069	0.00067	72.71	0.00005	0.00005	74*.74*	0.02063	0.00916
77 15	0.00000	-0.00088	82.71	0.00037	0.00037	84* 74*	0.02891	0.01003
78 15	0.00262	0.00307	73* 71	0.03840	0.03357	75.74*	0.00980	0.00821
88,15	0.00752	0.00684	83* 71	0.00448	-0.00487	85 74*	0.01392	-0.00269
77 16	0.09168	0.00310	74* 71	0.00934	-0.00685	76.74*	0.02794	0.00814
78 16	0.01597	-0.00194	84* 71	0.00415	0.00450	86 74*	0.01285	0.00396
88 16	0.03595	-0.00254	75.71	0.00000	0.00285	84*.84*	0.12757	0.12548
77 22	0.43810	0 43810	85 71	0.00262	0.00261	75 84*	0.01806	0.01000
78 22	0 15301	0.03677	76 71	0.01470	-0.01044	85 84*	0.03816	-0.01592
88 22	0 78055	0.78692	86 71	0.00304	0.00381	76.84*	0.02985	0.00550
77 23*	0.02336	0.00204	81 81	0.00003	0.00151	86.84*	0.00000	0.02106
78 23*	0.00795	-0.00010	72,81	0.00000	-0.00001	75.75	0.04704	0.04679
88 23*	0.03653	0.00180	82,81	0.00002	-0.00008	85.75	0.01351	-0.00363
77 24*	0.09594	-0.00102	73* 81	0.00169	-0.00784	76,75	0.01201	-0.00996
78 74*	0.03344	-0.00027	83* 81	0.00024	0.00118	86.75	0.01060	0.01017
88 24*	0.16559	-0.00558	74*.81	0.00046	0.00165	85.85	0.01604	0.00748
77 25	0.03961	0.00386	84*.81	0.00025	-0.00102	76.85	0.01645	-0.00025
78 25	0.01352	-0.00005	75.81	0.00021	-0.00046	86.85	0.01070	0.00646
88 25	0.06247	-0.00080	85.81	0.00017	-0.00065	76.76	0.03918	0.01536
77 26	0.01184	0.01264	76.81	0.00070	0.00241	86.76	0.01762	0.00165
78,26	0.00345	0.00037	86.81	0.00018	-0.00086	86.86	0.03312	0.03545
88 26	0.00000	-0.00172	72.72	0.00005	0.00005		0.00000	0.00010
77 3*3*	0.81373	0.80217	82.72	0.00076	0.00077	7*7*,7*7*	0.82580	0.82580
78,3*3*	0.16445	-0.05561	73*.72	0.00051	0.00050	7*8*,7*7*	0.16444	-0.06123
88,3*3*	0.40426	0.40297	83*.72	0.00045	0.00030	8*8*,/*/*	0.39393	0.39424
77,3*4*	0.28757	-0.06678	74*.72	0.00037	0.00016	7*8*,7*8*	0.04259	0.01516
78 3*4*	0.07137	0.01967	84*.72	0.00156	0.00139	8*8*,7*8*	0.13004	0.02263
88.3*4*	0.21472	0.04151	75.72	0.00031	0.00027	8*8*,8*8*	0.58139	0.58463
77.3*5	0.00000	0.02768	85.72	0.00060	-0.00003	9*7*.7*9*	0.09408	0.09408
78.3*5	0.02278	0.01740	76.72	0.00040	0.00010	9*8* 7*9*	0.01459	-0.01128
88.3*5	0.08547	0.06813	86.72	0.00035	0.00064	10*8*.7*9*	0.01164	0.01147
77.3*6	0.03837	-0.08190	82.82	0.01556	0.01635	9*8*,7*10*	0.00471	0.00399
78.3*6	0.08968	0.01630	73*.82	0.00423	0.00426	10*8*.7*10*	0.01029	0.00664
88,3*6	0.23868	0.01592	83*.82	0.00539	0.00382	10*8*.8*10*	0.06624	0.06699
,			<u> </u>			1		

TABLE IX.—Continued.