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there is a limit to the accuracy. However, use of spec-
troscopic data for evaluating atomic energies will help,
but is not at all essential from a theoretical point of
view.

In a forthcoming paper, we shall discuss how our
approach can be simplified for application to more
complicated systems. We shall consider the accuracy
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of further approximation by comparing with the cor-
responding simplification in the orbital approach.
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1. INTRODUCTION

HE most accurate method of determining dis-
sociation energies of diatomic molecules is from
the analysis of their band spectra. In favorable cases,
when this analysis is unambiguous, values accurate to
within 0.001 ev may be obtained [e.g., O» Herzberg
(1950)Y]. However, for many molecules of thermo-
chemical interest the analysis of the spectra is ambig-
uous and leads to several possible values for the dis-
sociation energy. One of the most important examples
of this is provided by the carbon monoxide molecule.
Here the spectroscopic data are consistent with just
three values for D,(CO), namely, 9.28 ev [Herzberg
(1950)], 9.74 ev [Hagstrum (1947)], and 11.24 ev
[Gaydon (1947)].

In this situation, relatively crude estimates of the
dissociation energy may be of value in distinguishing
between the possible spectroscopic values. Various
experimental techniques have been employed for this
purpose; for example, mass-spectrometric analysis of
the ions resulting from the electron bombardment of
carbon monoxide [Hagstrum (1951, 1955)7] and the
direct thermochemical measurement of the latent heat
of sublimation of graphite [Chupka and Inghram
(1953, 1955)7, this quantity being related to D,(CO) by
well-established thermochemical quantities.

In this paper two theoretical calculations of the
binding energy and ground state wave function of
carbon monoxide are described. The first is an ab initio
orbital calculation and the second employs the intra-
atomic correlation correction (ICC), introduced by the
author [Hurley (1956a, 1958a)], as a necessary modi-
fication of the method of atoms in molecules [Moffitt
(1951)7, The orbital calculation (Sec. 2) is carried out
in such a way as to facilitate the transition to the ICC
theory in later sections. The key quantity in this tran-
sition is the transformation matrix T [Eq. (2.21)].

1 References are given in alphabetical order in the Bibliography.

2. ORBITAL CALCULATION
(a) Atomic Orbitals

The basic atomic orbitals are taken as orthogonalized
Slater-type functions centered on the carbon and oxygen
nuclei.

o-type  ¢1=ko= ({1*/m)* exp(—{wo),
$o2=kc= ({*/m)¥ exp(—¢arc),
¢3=50=N1{{s%/3m)*ro exp(—{aro) —aike},
¢a=sc=No{ ({45/3m)rc exp(—{arc) —askc},
¢s=00= (§s°/7)*50 exp(—{wro), (2.1)
$s=0c= ({s*/m)¥c exp(—{erc),

a-type  ¢r=x0= ({s*/m)? xo exp(—{wro),
$s=1xc= ({s"/m) xc exp(—{erc),

y-type  ¢o=yo0=({s*/7)*yo exp(—{sro),

$10="yc=(e¥/m) yc exp(—Sorc).

Here (x0,y0,%0), (¥c,¥c,3c) are Cartesian coordinates
centered on the oxygen and carbon nuclei; the 5 axes
are directed inwards along the internuclear axis and
the #,(y) axes on the two centers are parallel:

ro= (x0*+yo’*+2o?) 5, ro= (ac*+yc*+ac)t.

The orbital exponents { have values which minimize
the energy of the ground state dissociation products
O(s2p4, 3P), C(s*f?% *P) [Roothaan (1955)7.

0: §H=7.66, {(3=2.25 ¢5=2.23,
C: =567, t4=161, ¢=1.57. 2.2)

All the basic atomic integrals involving the orbitals
(2.1) were evaluated for the equilibrium nuclear
separation R=2.1319 atomic units (a.u.) [Herzberg
(1950)], and are listed in Appendix II.
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(b) Valence-Bond Basis

As in previous calculations on the ground states of
the first-row hydrides [Hurley (1958b)], the valence-
bond basis functions were chosen from an expansion of
the self-consistent field molecular orbital function.
This single determinant wave function Q¢ may be
expressed as the antisymmetrized product of a wave
function for the ten o electrons and a wave function for
the four = electrons,

Q= @QQ", (2.3)
where
Qo= 101610’25’20’35'30'4540'55'5| (24)
and
Q7= | T FamryTy ). (2.5)

The form of Eq. (2.3) enables us to consider the ex-
pansions of 27 and Q~ separately.

Each of the molecular orbitals ¢, --¢5 appearing
in ©° is some linear combination of the o-type atomic
orbitals ¢;- - -¢¢ [Eq. (2.1)]. If this single determinant
is now expanded in terms of valence-bond functions,
and if all functions not showing two electrons in each
of the inner shell orbitals ¢;(=%0) and ¢2(=kc) are
discarded, the following set of valence-bond wave
functions is obtained:

o Sc 0o
V,0= IO |0‘ |0 ,
SO0 Sc 0o

So Sc oo

ve=2-0 [0 ||
So S¢c oOc

So Sc o©Oo

V=274 [0 | !0}
' So o0c 0o
So Sc oc
\1’4"= |0 10 IO],
So Sc oc

Sc¢ SO0 00]]
=270 | o],

| Sc 0c 00 ]

(2.6)
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S¢ 0o O¢C
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Here the generalized notation for valence-bond
structures introduced by McWeeny (1954) has been
used. The inner-shell orbitals ko, kg, which are doubly
occupied in all the wave functions, have been omitted.
In order to define the structures appearing in Eq. (2.6)
uniquely, we must specify the ordering of the orbitals
in the elementary determinants (McWeeney). In Eq.
(2.6) and all subsequent equations, the natural ordering

1 3 ...
2 4 ...
is employed.

The wave functions ¥y and ¥¢° will interact with
the functions ¥, and ¥, even for infinite nuclear
separation, and are therefore omitted from the basis.
If included, these wave functions would have a small
effect on the result of the orbital calculation, but
almost no effect on the result of the ICC calculation
[cf. Hurley. (1959) and Sec. 4(e)].

The remaining eight valence-bond functions (2.6)
are represented as a row vector

=[],

2.7

We consider also a set of orthogonalized valence-bond
functions

@ =[O, - 057, 2.8)

which are obtained from (2.6) by replacing the basic
atomic orbitals Zo(¢1): - -oc(=¢s) by Schmidt ortho-
gonalized atomic orbitals 8;- - -8 defined by the equa-
tions

3
0:1=Z=1¢ptpq: (g=1---6), (2.9)

f 0,0,dv="2,

lpe=0 (?>9)-

The nonzero elements of the matrix ¢ are given in
Table I. The basic functions (2.7) and (2.8) are related
by a matrix transformation

where

and

O =WT, Wr=0757, So=(T9)1. (2.10)
TaBLE I. Schmidt orthogonalized atomic orbitals.
A. o orbitals [Eq. (2.9)]
I 1.00000 ta3 —0.05017 t36 —0.99910
tio —0.00009 bay 0.02401 tay 1.10994
hs 0.00000 tas —0.09942 1793 —0.43873 -
lig —0.05605 2 0.10222 tig 0.64369
hs 0.02216 i3z 1.00126 tss 1.07903
L —0.15355 134 —0.47897 ts6 —0.62722
ta 1.00000 35 0.19383 tes 1.41082
B. = orbitals [Eq. (2.15)]
t77 = tsg 1.00000
tig=19,10 —0.28099
tss=1t0, 10 1.03873
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The elements of the matrix S° may be obtained from
the equations [Hurley (1958a)]

Sif= f @{"I’j”dﬁ.

Alternatively, the expansion formulas for valence-
bond structures developed by McWeeny (1954) may be
used. In the latter method, the matrices 77 and S° are
evaluated independently in terms of the matrices ¢
[Eq. (2.9)] and s(=¢"). The relation

SeT7=1
then provides a useful numerical check.

With the ordering of the functions ¥* and ©7 defined
by Eq. (2.6), the triangular form of the matrices ¢ and s
implies that the matrices 7 and S° are also triangular:

Ti#=Si7=0 (1>]). (2.11)

In the same way, the single determinant function Q~
[Eq. (2.5)] is expanded in terms of the valence-bond
basis

Y= [\Illﬂ'- . .\I/G"l'],

X0 Yo
V= [ |0 |0],
X0 Yo
%o Yo X0 Yo
¥c Yo Xc Yo
Yo Yc ¥c Yo
%o Yo Xc Yo (2.13)
Yo Yo
w=[ ’ 7 ]
¥c JYc
Xc Yo X0 Yo
w:{[ o] Hl IO]},
¥c Yc Yc Yo

Xc Ycl
\1/6”=|:IO IO .

X¥c Yo

(2.12)
with

The orthogonal basis
O =[O0, - - 057]
is obtained by replacing the atomic orbitals
¢1(=w0)" - - p10(=yc)
by the Schmidt orthogonalized orbitals [Table I(B)]

(2.14)

8
0,=2 dplpa (¢=7,8)

=7
10

0,=2 ¢plps (¢=9,10) (2.15)
p=9

tpe=0 (p>9).
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Again the bases (2.12) and (2.14) are related by a
triangular matrix transformation

=77, ¥"=0"S", (2.16)
with
T =Sy;7=0 (©> E
The valence-bond basis functions for the ground state
of carbon monoxide are now obtained as antisym-
metrized products of the functions ¥.,° [Eq. (2.7)] and
¥;7 [Eq. (2.12)7]:

‘i’(i,j)z- QYo" (’L= 1. '8; j= 1.- 6) (217)

This basis of forty-eight functions is represented as
a row vector ¥ with inverse dictionary ordering:

V=¥, %, ¥en, Yo, ¥Yenl (2.18)
Similarly, the orthogonalized valence-bond basis
0=[0u.1, O, -+, 00l (2.19)

is constructed from the functions ®, (2.8) and ©;~
(2.14):

Oup=a070;7 (i=1---8; j=1---6). (2.20)

The 4848 transformation matrices T and S relating
the bases (2.18) and (2.19),

O=¥T, ¥=0Ss, S=7-, (2.21)

are now just the direct products of the 8 X8 matrices
T°, S° and the 6X6 matrices 7™ and S7:

T=TXT", S=S"XS"; (2.22)

that is,

Tiwman=TsTu"
Sk G,0) =S57Sr”

These matrices are completely triangular in the sense
that

(G,j=1---8; ki=1---6).

T(i,k)(j,l)=S(¢,k)(j,l)=0 unless 7 S] and kS l. (223)

This property of the transformation matrices, which
stems from the use of Schmidt orthogonalized atomic
orbitals, is very convenient for calculations employing
the intra-atomic correlation correction. It permits us to
truncate the bases (2.18) and (2.19) simultaneously
without destroying the linear dependence between
them. For example, Eq. (2.23) shows that the first
functions in each basis are simply multiples of each
other: K _
@(1.1)=‘I’(1,1)T(11,u)-

If we had used some other transformation to ortho-
gonalize the basic atomic orbitals, it would have been
impossible to truncate the bases in this way. Thus, if
Lowdin’s (1950) symmetrical orthogonalization had
been employed the expansion of ®;, would have
involved all 48 of the functions ¥; ;) together with 12
wave functions constructed from the functions ¥, and
\ 2T [Eq (26)]
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The importance of this truncation of the basis in
ICC calculations lies in the treatment of highly ionized
states of the dissociation products. Thus the full
valence-bond basis (2.18) includes many states of the
ions C?~, C*, C*. It is clearly impossible to obtain
reliable experimental estimates of the energies of these
states. In a previous calculation of the binding energy
of N [Hurley (1956b)], this difficulty was circum-
vented by using an extrapolation technique to dispense
with empirical estimates of the energies of various
states of the ions N2~ and .N3-. Nevertheless, the
presence of these states in the total wave function led
to some uncertainty in the final results.

Here it is possible to eliminate these troublesome
states entirely. First it is shown that they have a
negligible effect on the total energy in the orbital cal-
culation. These states are then omitted from the ICC
calculations by truncating the bases in accordance with
Eq. (2.23).

Of course, it is always possible to truncate the basis
in an ICC calculation after transforming the full
energy matrix explicitly into the valence-bond basis,
regardless of what process of orthogonalization is
employed. However, this is a much less efficient pro-
cedure than exploiting the properties of Schmidt ortho-
gonalization.

(c) Energy Matrix

The energy matrix A (©) in the basis of orthogonalized
valence-bond functions (2.19) was evaluated by using
McWeeny’s (1954) generalization of the cycle-diagram
method. This somewhat arduous task was greatly sim-
plified by taking full advantage of the special reductions
in the formulas which result from the factorization of
the wave functions into antisymmetrized products of
0 (i=1---8) and O;7 (j=1---6) [Eq. (2.20)]. In
this way the 48X 48 matrix H(©) may be evaluated
with little more work than is required for one 8X8
matrix and one 6X 6 matrix. As these special reductions
are simple examples of McWeeny’s (1960) recent
analysis of density matrices for generalized product
functions, they are not discussed further.

(d) Total Energy and Binding Energy

The total molecular wave function { and energy £
in the orbital calculation are now given by the usual
secular equations, .

(=08r
det{H(O)—E1}=0 (lowest root)
{H(0)—E1}T'=0.
The binding energy D, is obtained from the equation
D,=Ws—E, (2.25)

where We is the total energy of the ground state
O(s2pt, 3P)C(s?p? °P) of the dissociation products cal-
culated by using the atomic orbitals (2.1).

(2.24)
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TasLE II. Total energy and binding energy (orbital calculation).

Basis functions E (au) 5a(ev)b
23 terms® C?+*02~, C*O~, CO, C-O* —112.437 7.45
39 terms C2*Q2~...C2-Q2+ —112.438, 7.50
48 terms C2tQ%~. . .C+ O —112.438; 7.50
SCFMO EMoser (1960)% —112.343 49
SCFMO [Ransil (1960) —112.344 4.9¢

a See Table III.

b1 a.u, =27.210 ev,

o Relative to Cgﬁp’,’P), O(s2p4,3P) calculated with optimum Slater
functions [Hurley (1959)7].

The results obtained from Egs. (2.24) and (2.25) by
using different numbers of functions in the basis (2.19)
are shown in Table II. The results of self-consistent
field molecular orbital calculations [Moser (1960),
Ransil (1960)] are shown for comparison. The orbital
exponents ({1=7.7, (3=(5=2.275, §(2=5.7, {4=¢
=1.625) used by Ransil differ slightly from those of Eq.
(2.2), which were also used by Moser.

We see from Table II that the binding energy ob-
tained by Ransil and Moser is increased by about 2.5 ev
by the 23-term valence-bond calculation. However, the
further reduction in energy brought about by all the
chemically unreasonable structures involving more than
one negative charge on the carbon nucleus is very
small. The 23-term basis, which was used in the sub-
sequent calculations, is specified in detail in Sec. 3
(Table III). ’

(e) Validity of Valence Coupling

Even the full valence-bond basis (2.18) contains only
a small fraction of the total number of =+ wave func-
tions which can be constructed from the basic atomic
orbitals (2.1). Indeed, an application of the correlation
rules of Wigner and Witmer (1928) to all possible states
of the dissociation products (subject to the restriction
that the inner-shell orbitals ko, k¢ are both doubly
occupied) shows that a complete basis for the =+
ground state of carbon monoxide contains 177 terms.
The additional functions are of two types:

(i) Functions with the same orbital assignments as
the functions (2.18) but with different spin couplings.
In the valence-bond basis, the spin coupling is always
between electrons in orbitals of the same symmetry type
(o, %, or ). The relaxation of this restriction leads to a
large number of additional functions which show spin
couplings between orbitals of different symmetries.

Additional functions of this type must be included if
we wish to resolve the valence-bond basis functions in
terms of approximate composite functions [Moffitt
(1954)]. This would be important for a calculation at
large nuclear separations since it would lead to disso-
ciation products in true stationary states rather than in
the valence states which result from the basis (2.18)
(cf. Table III).

However, the effect of these extra functions on the
energy of the ground state at the equilibrium nuclear
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TasLE III. Wave functions for the 23-term calculations.
Basi Dissociation products Coefficients in total wave function

fu:cs:?ons' Ionicity ~ Valence statesb - _ Orbital calculation ICC calculation

vi WO Cn+ (o o (Wi —Wi)e T'(®) () v 1(8) I(¥) v

1 1,1 2 sV, $2p8V, —0.6184 0.3883 —0.0025 —0.001 0.5063 0.0566 0.020
2 2,1 1 sV, 28V —0.2453 0.2804 0.0904 0.029 0.2868 0.1283 0.048
3 3,1 2 spVo 28V, —0.5992 —0.1301 —0.0225 0.007 —0.2002 —0.0922 0.037
4 41 0 %2V 222V, —0.0746 0.0722 0.0677 0.012 0.0708 0.0503 0.010
5 5,1 1 2V, sptV,y —0.4784 0.0547 0.0322 0.011 0.0591 0.0720 0.033
6 6,1 1 22V, s2p5V, —0.2505 0.0643 0.0524 0.013 0.0701 0.0875- 0.026

7 71 0 22V, sp*Vo —0.2087 —0.0146 —0.0338 0.010 —0.0208 —0.0146 0.005
8 1,2 1 spVy s2pSV, —0.2454 0.6350 0.1490 0.085 0.6092 0.2805 0.168
9 2,2 0 stxyVs s2x2yz Vo —0.0102 0.3434 0.3053 0.188 0.2793 0.1642 0.099
10 3,2 1 spPV* S2pOVy —0.2658 —0.2025 —0.1342 0.083 —0.2289 —0.2346 0.154
11 4,2 -1 sty ¥V, sty V, 0.0027 0.0515 0.0392 0.012 0.0506 0.0503 0.015
12 5,2 0 stxyVs speVs —0.1393 0.0608 0.1035 0.075 0.0421 0.0305 0.023
13 6,2 0 sx¥yV, s*tyzV o —0.0574 0.0646 0.1565 0.071 0.0549 0.1040 0.047
14 72 -1 sty V,y spAV ¥ —0.1031 —0.0033 —0.0090 0.005 —0.0272 —0.0749 0.040
15 1,3 0 222V, s22y2V —0.0746 0.1691 0.1184 0.035 0.1392 0.0836 0.024
16 2,3 -1 sty V,y sty ¥V, 0.0027 0.0516 0.0666 0.020 0.0454 0.0546 0.015
17 3,3 0 PV o* S22V -—0.1419 —0.0475 —0.0891 0.028 —0.0467 —0.0840 0.025
18 5,3 -1 syl sx*y?V, —0.0754 0.0049 0.0107 0.004 0.0085 0.0186 0.006
19 1,4 0 s2xyVo s2ax2yz Vs —0.0102 0.3333 0.2360 0.114 0.2420 0.1483 0.064
20 2,4 —1 s2xyz Vg skeyz Vs 0.0702 0.1100 0.1489 0.071 0.0804 0.0946 0.039
21 3,4 0 PV ¥ st2yzV —0.0959 —0.0924 —0.1690 0.084 —0.0853 —0.1542 0.071
22 5,4 -1 s2xyz Vs sx2yz Vs —0.0132 0.0139 0.0304 0.018 0.0149 0.0326 0.017
23 1,5 -1 S22y ¥V, sty Vy 0.0027 0.0550 0.0886 0.026 0.0407 0.0656 0.016

s There are 30 functions in the bases (2.18) (2.19) which show not more than one negative charge on the carbon atom. However, some of these are mixed
with states of higher ionicity by the transformations (2.21) and are omitted from the Table. This mixing could be avoided by changing the order of ¢4

and ¢s in the Schmidt orthogonalization.

bsp2Vy* =% 2D 4§ 2P, sp3Vo* =} 1D0+4 1P, sp3V ok =} 3D04 35041 1D0, spaV ik =} 2D +§ 2P, all other valence states are listed in terms of stationary

states by Moffitt (1954).

oRelative to the ground state dissociation products C(s2p23P), O(s2p4,3P) for which Wa —Wa'=—0.8013.

separation is certainly small and probably very small
(<0.05 ev). The effect on the total energy of three
states of this type, derived by altering the spin coupling
in the most important valence-bond functions (Table
IIT), was estimated by second-order perturbation theory
to be less than 0.01 ev.

(ii) Functions with orbital assignments which differ
from those of the valence-bond functions (2.18). These
functions arise from the molecular orbital configurations
o*r8, o®r2, and o?#® and also from the functions ¥y* and
W%, which we have discarded. The effect of these
functions on the total energy will be very small, except
for those functions which represent atomic configuration
interaction ; for example, interaction between C(s%p?, P),
C(p4 *P) or Ot (s*p%, 2P), OF(p®, 2P). This atomic con-
figuration interaction will have an appreciable effect
(~0.5 ev) on the total energy in the orbital calculation
but almost no effect on the results of the ICC calcu-
lation [Hurley (1959)].

It appears therefore, that as far as the ICC calcu-
lation is concerned, the 23-term valence-bond basis for
the ground state of carbon monoxide (Table III) is
almost complete in the sense that additional functions
constructed from the atomic orbitals (2.1) would affect
the calculated total energy by less than 0.1 ev. How-
ever, this result has not been established as unequiv-
ocally as in the much simpler case of the first-row

hydrides [Hurley (1958b, 1959), Krauss and Wehner
(1958)].

3. INTRA-ATOMIC CORRELATION CORRECTION

In the ICC theory, the energy matrix H in the
valence bond basis ¥ (2.18) is given by the equation
[Hurley (1958a)]

H=H+LT(W—-W)+W—-W')M] (¥ basis). (3.1)

Here H, M are the energy and overlap matrices
calculated directly from the orbital wave functions, W
is a diagonal matrix whose elements are the empirical
energies of the appropriate dissociation products, and
W' is a similar matrix formed from the energies calcu-
lated for the dissociation products by .using the orbital
wave functions (2.18) with optimum values of the
parameters {1, $a, &3, C4y $5, $6- That is, in calculating W7,
these parameters are varied to minimize the energy of
each state of the dissociation products.

In Eq. (3.1) the valence-bond basis is restricted to
the 23 functions shown in Table III; the functions are
specified by the values of ¢ and j in Eq. (2.17) (column
2). The valence state corresponding to each function and
the numerical value of the correction term W;—W,
[Eq. (3.1)] are given in columns 3 and 4. The evalu-
ation of these correction terms is described in Appendix
1.
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To simplify the calculations, Eq. (3.1) is transformed
into the orthogonal valence-bond basis ® (2.19), which
in virtue of Egs. (2.23) also contains just 23 functions
with the same values of ¢ and j as for the ¥ basis:

H(®)=H(®)+{(W-W)+W-W"}, (3.2)

where B B
W-WwH=SW-Ww"T. (3.3)

Here and in all subsequent matrix equations, the
matrices are for the truncated 23)X23 basis of Table
III; S and T are the transformation matrices of Egs.
(2.22) ; the symbol T denotes the Hermitian conjugate.

The coefficients of the total wave function in the
orthogonal basis © are listed in Table III, column 5
(orbital calculation) and column 8 (ICC calculation).
For the orbital calculation these coefficients I'(®) are
given by Egs. (2.24), whilst for the ICC calculation,
I'(®) is given by the corresponding equations with
H(®) replacing H(0):

Q=0I(0)
det{H(®)—E1}=0 (lowest root)
{H(®)—E1}T(0)=0.

The remaining columns of Table III give the coef-
ficients of the total wave function in the valence-bond
basis and the occupation numbers #, » of the valence-

bond structures. These quantities are determined from
the equations

F'(¥)=Tr(0), T(¥)=Tr(0),
=2 Ty(W) M, T5(¥) =T(¥) 2z S;:I5(0),

(3.4)

(3.5)

~ (3.6)
Vi=z; Ti(W) M T;(¥) =T:(¥) Z S;'(0).

In practice, the second form of Egs. (3.6), which derives
from the equation M/ =S'S, is the more convenient
since the matrix S is triangular.

The values of the occupation numbers »; enable us
to estimate the effect AE on the ICC total energy of
any uncertainties AW, in the empirical values of the
valence-state energies. To first order, we have

AE=3 v,AW ;.

In the present calculation the only appreciable
uncertainty of this kind arises from the states of
O* (¥ and ¥;). For these states, the value —6.63+0.3
ev [Morris (1957)7] was used for the double-electron
affinity of oxygen. The small values of »; and »; (Table
III, final column) indicate that this uncertainty will
have a very small effect (<0.05 ev) on the calculated
total energy.

The total energy E and the binding energy D. which
result from the 23-term ICC calculation are given in
Table IV together with three spectroscopic values
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TasBLE IV. Total energy and binding energy
(23-term ICC calculation).

Total energy (a.u.) Binding energy Do(ev)
—113.368 >11.00

ICC calculation

Spectroscopic —113.377» 11.24»
—113.322b 9.74b
—113.305¢ 9.28°

a Gaydon (1947). b Hagstrum (1947). ¢ Herzberg (1950).

which have been put forward. The total energy is given
by Eq. (3.4) and the binding energy by the equation

De= WG"“E, (37)

where Wg is the experimental energy of the ground
state dissociation products O(*P), C(®P). Since the
ICC binding energy is calculated relative to the experi-
mental energy of the dissociation products, it is a lower
limit to the true value to within the accuracy of the
approximation underlying the basic equation of the
ICC theory (3.1). For the simple systems, H, [Hurley
(1955, 1956a), Pauncz (1954), Arai (1957)], HeH*
[Hurley (1956c), Evett (1956)7], and Li, [Arai and
Sakamoto (1958)7, it has been shown that the errors
underlying Eq. (3.1) are very small (<0.02 ev).
Furthermore, calculations on the ground state of N,
[Hurley (1956b)] and on a large number of states of
the first-row hydrides LiH, BH, CH, NH, OH, and
FH [Hurley (1958b, 1959), Krauss and Wehner
(1958)] each lead to a total molecular energy which is
above the experimental value, that is, to a binding
energy D, which is a lower limit to the true value.

However, more refined calculations on the ground
state of FH [Krauss and Ransil (1960), Hurley (1960) ],
in which the orbital exponents are varied to minimize
the total energy, show that under certain circumstances
Eq. (3.7) may give binding energies which exceed
the true value by 0.2-0.8 ev. This implies an error of
at least this amount in Eq. (3.1). These calculations on
HF have been analyzed, and it has been shown that the
errors arise from discrepancies between Slater-type
functions such as (2.1) and atomic and ionic Hartree-
Fock functions. Such discrepancies, which are negli-
gible for the simple systems mentioned above, some-
times lead to an overestimate of the correction for
ionic states.

On the basis of this analysis, it is concluded that the
uncertainty in the lower limit to the binding energy of
carbon monoxide given in Table IV should not exceed
0.5 ev. Since a much larger uncertainty is needed to
reconcile the ICC binding energy with either of the
lower spectroscopic values, the present calculations
indicate that the high value D.=11.24 ev is correct.

This result is in accord with a direct determination
of the heat of sublimation of graphite [Chupka and
Inghram (1955)7], which is linked to D,(CO) by well-
established thermochemical quantities. Until recently
it was thought that this high value for D,(CO) was
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inconsistent with electron-impact data [Hagstrum
(1951)7]. However, when these data were reanalyzed
[Hagstrum (1955)7] using a new value (1.45 ev) for the
electron affinity of oxygen [Branscomb and Smith
(1955)7], most of the discrepancies disappeared and the
high value for D,(CO) became generally accepted.

4. ANALYSIS OF THE TOTAL WAVE FUNCTION

The specification of the total wave functions by the
coefficients T'(®), T'(¥), I'(®), and T'(¥) is not very
convenient for physical interpretation or for the cal-
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expressions for the total charge densities p, p in terms
of the basic atomic orbitals (2.1) [Léwdin (1955)7:

5=Z Z Ppe®sPas (4-1)

=22 PP P (4-2)

These density matrices were evaluated for the total
wave functions of Table III and are given by the fol-
lowing equations:

culation of further properties. The most useful derived p” 0 0 p° 0 0
quantities for this purpose are the first-order density ' [ﬁpq]=[0 p* 0 ], [Pm:|=[0 ® 0 }: (4.3)
matrices [fpq], [ppe] for the orbital and ICC calcu- 0 0 p 0 0 p
lations, respectively. These may be defined from the where?
2.0040, 0.0038, 0.0119, —0.0409, —0.0553, —0.0229
20100, —0.0646, 00178, —0.0919, —0.0571
e 2.0015, —0.3846, —0.4296, 0.0875
Fe 1.8764, 00181, —0.6283 |
1.3643, 0.6344
0.6364
e [1.1472, 0.6664]
L 0.4923 |’
and
2.0028, 0.0039, 0.0028, —0.0275, —0.0507, —0.0168
20117, —00639, 00127, —0.1021, —0.0549
. 19329, —0.2871, —0.3966,  0.1364
P 1.7587,  0.0204, —0.7144)’
14675,  0.5787
0.6163
o g [1.2667, 0.6504] where
0.3814 M= f boedv.

The matrices (4.3) enable us to calculate the expecta-
tion values (f), (f) of any one electron operator f for
the ground state wave functions given by the orbital
and ICC calculations

<f> = Zp: ;iﬁqum:
= ; Zq: Poaf pas

(4.4)
(4.5)

where

Sou= [ 258un

The net and gross atomic populations [NV (p), 7(p);

N (p), n(p)] and the overlap populations [7(pg), #(pq) ]
for the orbital and ICC wave functions were derived

from the matrices (4.3) by using the following equations
[Mulliken (1955), Hurley (1958b)]:
ﬁ(?) =pppy (D) =Ppps
7i(pg) =2Mpapps, 1(PQ)=2Mpgppq,
N(p)=a(p)+3 g i(pg), N(p)=n(p)+3 é n(pg),
a>=p q7=Pp

Since these populations are obtained so simply from
the matrices (4.3) and the overlap integrals m,, (Ap-
pendix II), they arenot listed separately. The alternative
expressions for the gross atomic populations N (p), N (p)
in terms of the occupation numbers #;, »; of the valence-
bond structures [Hurley (1958b)],

N (p) =2 #mi(p), N(p)=2 vini(p), (4.6)

provide a very useful check on the evaluation of the
density matrices (4.3) and on the electron-population
analysis. In Egs. (4.6), 7:;(p) is the occupation number
(0, 1 or 2) of the atomic orbital p in the valence-bond
function ¥; (Table III, column 3).

The natural orbitals for the two calculations and
their occupation number 9T were obtained as the latent
vectors and latent roots of the matrices (4.3) [Lowdin
(1955)]. They are shown in Table V together with the
self-consistent field molecular orbitals of Moser (1960).

2 These matrices are all symmetrical.
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TasLE V. Natural orbitals and self-consistent field molecular orbitals.
Natural Occupation Coefficients of atomic_orbitals
orbital number N ko ko S0 sc a0 ag x0(¥0) xo(¥e)
# 2 1 %
;i 1.9998 —0.0069 —0.0302 0.8886 0.2573 —0.1722 —0.0712
G4 1.9967 —0.0320 —0.0118 —0.4230 0.8436 0.3970 —0.1240
G5 1.9809 —0.0258 —0.0650 0.1354 —0.3907 0.7000 0.5305
Ge 0.0225 —0.1596 0.1347 —1.1317 0.9530 —0.9383 1.2994 s e
%1(51) 1.9424 e e e e 0.7587 0.4777
£2(32) 0.0576 cee —0.7094 0.9224
o1 2 1 .. . cee
o2 2 1
a3 1.9996 —0.0084 —0.0355 0.8991 0.2244 —0.1145 —0.0337
o4 1.9962 —0.0335 —0.0494 —0.2718 0.4475 —0.7581 0.1273
a5 1.9894 —0.0054 —0.0450 0.2740 —0.7907 0.3764 0.5289
ag 0.0149 —0.1612 0.1330 —1.1447 0.9813 —0.9101 1.3013 e e
%1 1.9717 e e e oo o oo 0.7976 0.4249
% 0.0283 —0.6655 0.9478
SCFMOs#
P10 1 . 1 .
b2
b —00245  —0.0573 0.7477 0.2198 0.2380 0.1558
bio —0.0320 —0.0209 —0.6355 0.5254 0.6349 0.0603
Do —0.0106 —0.0355 —0.0400 —0.7430 0.4515 0.5613
Peo —0.1597 0.1358 —1.1416 0.9811 —0.9455 1.2836 s e
$12(d14) 0.7709 0.4617
b2 (d2y) —0.6962 0.9305

a Moser (1960).

The occupation numbers of the higher natural orbitals
(s, X2, F2; 06, %2, ¥2) provide an absolute measure of
the departure of the total wave function from the form
of a single determinant, that is, a measure of the irre-
ducible configuration interaction which cannot be
eliminated by a transformation of the one-electron
functions. We see that, as in previous calculations,
configuration interaction is much less important in the
ICC calculation than in the orbital calculation.

The approximate equality of the higher natural
orbitals &, X2, 7. to the unoccupied molecular orbitals
6o, P2z, Py ensures that the first term in the natural
expansion of the total orbital wave function, namely,

| G100, 13, Gaar, G20, s, 733, Tuet, 740, s, T,

Xﬁflay 9?16, 71‘1) §IB| ) (47)
is very similar to the self-consistent field function
I¢Iva; ¢1ft,3a ¢2,,Ot, ¢2¢B; ¢3da; ¢3uﬁ; ¢4va, ¢4aﬁ)

X ooty 548, P12, $1:8, b1, d1,8|.  (4.8)

Indeed, by using the techniques developed by
Lowdin (1955), it is readily shown that the overlap
between the functions (4.7) and (4.8) is simply

(Jrowa) ([ (fro)

= (0.99949)?(0.99985)2(0.99985)?
=0.9984.

A close similarity between the functions (4.7) and
(4.8) is expected on general grounds [Loédwin (1955)].

Thus, the large values of the overlap integrals (4.9)
provide a valuable check on the consistency of the
present orbital calculation with Moser’s self-consistent
field calculation.

On the other hand, there are quite large differences
between the occupied self-consistent field orbitals
¢1° @5, and the corresponding natural orbitals
1+ - - @5 This suggests that the orbital energies of self-
consistent field functions are not very reliable guides
in setting up a simple wave function to allow for con-
figuration interaction. For example, it is to be expected
that the double substitution ¢s2— ¢g,2 would be
considerably less effective than #2— &g in lowering
the total energy of the single determinant wave function.

5. DIPOLE MOMENT

Perhaps the simplest qualitative picture of the wave
functions is that of resonance between the structures
CH0*, C+—0~, C=0, C~ =0t (Table VI). The occu-
pation numbers of these structures are obtained from
Table III by summing #; and »; for states of the same
ionicity.

These results may be compared with the picture of
Pauling (1940), which leaves out the structure C2+Q2—
and gives equal weight to each of the other three. In
constructing this picture Pauling made use of the fact
that the dipole moment of carbon monoxide is almost
zero. He considered only the formal moment s, and
it is clear that this will be zero if these three structures
have equal weight. However, as Moffitt (1949) has
pointed out, there is a large contribution to the moment
from the carbon atomic dipole—so that a zero formal
moment does not correspond to a zero total moment.
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TaBLE VI. Resonating structure and dipole moment (C~O™).

Structure Orbital calculation ICC calculation Pauling
cror 0.006 0.057 0
Ct—0~ 0.221 0.428 4
C=0 0.617 0.367 1
C-=0+ 0.156 0.148 5
Dipole

ur —0.42D —2.13D 0

ue 294D 3.34D

Mo —1.43D —1.32D

HCO —0.08D —0.25D

e 1.00D —0.37D

uscrM0*=0.73D, pexpt1. =0.12D

a Ransil (1960).

We see this clearly from the present results (Table VI).
For both calculations, the carbon atomic dipole uc is
the largest single contribution. The oxygen atomic
dipole uo is also fairly large, whilst the covalent dipole
uco is small. These dipole moments were evaluated by
using the expressions (4.4), (4.5), the density matrices
(4.3), and the dipole moment integrals (Appendix II).
The contributions wy, uc, 4o, #co are obtained by an
obvious grouping of the terms in Egs. (4.4) and (4.5)
[Hurley (1958)7].

For the orbital calculation, the total moment is of
the right sign but much too large; its value fits in well
with that obtained by Ransil (1960) in a self-consistent
field molecular orbital calculation.

The total moment from the ICC calculation is small
but of the wrong sign. The relative values of the orbital
and ICC moments are consistent with the results for
the first-row hydrides [Hurley (1958b)]. Here also, the
effect of the intra-atomic correlation correction is to
alter the orbital moment in the right direction but by
an amount which is rather too large. This overcorrection
of the dipole moment is attributable, at least in part,
to errors arising from the discrepancies between the
Slater-type functions (2.1) and Hartree-Fock atomic
orbitals [Hurley (1960)].
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APPENDIX 1

The calculated and experimental energies of the
stationary states of the atoms C and O and of the
positive ions C+, C*, O+ were obtained from the tables
of Roothaan (1955). The calculated and experimental
energies of the stationary states of the negative ions
C—, 07, and O* are given in Table VII. In all cases the
calculated energies are those obtained by using the
orbitals (2.1) with optimum values of the parameters
{17+« ¢ for each state.

The experimental energies of the negative ion states
were obtained from the electron affinities EA (Q)=1.465
=+0.005 ev, EA(C)=1.12+0.05 ev given by Branscomb,
Burch, Smith, and Geltman (1958), the value —6.63
+0.3 ev for the double-electron affinity of oxygen
[Morris (1957)7], and spectroscopic intervals extra-
polated from the tables of Moore (1949).

TasLE VII. Energies of stationary states of the ions

, 0, (a.u.).

State Calc energy W’  Exptl. energy W
C (5?3, 48) —37.5742 —37.8962
, 2DP) —37.4899 —37.8446
, 2P0) —37.4349 —37.8202
O~ (s2p%, 2P?) —74.3043 —75.1628
O~ (sp%, 2S) —73.5290 —74.6206
0% (525, 15) —73.6202 —74.8653

The calculated and empirical energies of the valence
states of Table III (column 4) are now obtained from
the expressions for these states in terms of stationary
states (Table III, footnote a). Since the additional
valence-bond functions required to resolve the basis
functions ¥; in terms of approximate composite func-
tions are all orthogonal to the functions ¥;, this pro-
cedure is equivalent to using a basis of approximate
composite functions throughout the calculations [Hurley
(1958b, Appendix) ].

APPENDIX II
Atomic Integrals
(@) One-Electron Integrals (Table VIII)

Notation. Overlap integrals: (ab) =/ abdyv,
Core integrals: (afb) =/ afbdy,
f=—=3V2—=(6/rc)— (8/70).

Dipole moment integrals: (aubd) =/ aubdv.

409

TaBLE VIIIL. One-electron integrals.

pa ($rda) (#pfda)* (CP3)) (Ppuda)
1,1 1 —34.75659 —34.75659 —1.06595
1,2 0.00009 —0.00297 0.00002 —0.00004
1.3 0 —7.69622 0.35259 0

1,4 0.05050 —1.65416 —0.10150 —0.05010
1,5 0 —0.07029 —0.03414 0.05324
1,6 0.08579 —2.87949 —0.12450 —0.08550
2,2 1 —21.69807 —21.69807 1.06595
2,3 0.05011 —1.03235 0.02690 0.04312
24 0 —4.51873 0.25395 0

2,5 0.08313 —1.75901 —0.05195 0.07252
2,6 0 —0.11806 —0.06660 —0.06708
3,3 1 —10.95760 —9.75262 —1.06595
3,4 0.43044 —4.45051 0.13422 —0.12875
3,5 0 —0.82671 —0.90416 0.64963
3,6 0.50815 —5.53923 0.46304 —0.34175
44 1 —8.02746 —6.96866 1.06595
4,5 0.32824 —3.48869 —0.68772 0.17787
4,6 0 —1.36060 —0.65810 —0.91495
5,5 1 —9.57767 —9.36043 —1.06595
5,6 0.28880 —3.17960 0.41650 0.08235
6,6 1 —17.77696 —7.03055 1.06595
7,7 1 —9.06222 —9.06222 —1.06595
7,8 0.28880 —2.25027 0.20894 —0.06476
8,8 1 —6.74949 —6.68430 1.06595

= In this column only the integrals with p, ¢ =3, 4 are for the nodeless 25
functions ¢gx, dex.

Here 4 is the z coordinate of the electron relative to
the center of the CO bond.

Orbitals: ¢, defined by Egs. (2.1).

6, defined by Egs. (2.9) and
(2.15) (Table I).

(b) Two-Electron Integrals (Table IX)

Labed]= S S a(1)b*(1) (1/r12)
XC(Z)d* (Z)d'l)ld‘vg,

b3=(£5°/3m) 0 exp(—(aro),
Gue= (£45/3m) o exp(—{arc), Ow=0s,
G=2"4(prticy),  Ore=2"4(671416s),
Gy =2"4(pr—1icps),  Box=2"4(67—16,),
¢u=2"H(pstigp10), O+=2"%(0s+1610),
brox=2"(ps—ip10), BOr0+=2"4(0s—1010).

Notation.

03*= 03,



410

A. C. HURLEY

Tasre IX. Electron repulsion integrals.

bpa,rs [podadrds] [0000,016+]
i be.rs [brbadrés]
i%%l 478750 478750 | 4%6,14* - [0502,010:] bars [ésbadrds]  [0p00,000:]
1211 000017  —0.00024 | 551i4* 0.00854 000079 | 45,24 0.06378 000
1 4,;}} 8-?§§56 044432 | 56,14* 8'8%32 8'80299 476,24 0.00000 Pyoass:
; -15396 0.11929 '14* : —0.00174 | 55,24* ; Y
15,11 0.00000 0 66,14 0.02697 0.0 ’ 0.11345  —0.00167
’ - —0.04913 15.15 .00244 56,24* 0.0
16,11 0.26991 0 . 0.02500 0.0 4 05496 —0.00095
- .19060 16.15 .02885 66,24* 0
22,11 046907 0 . 0.00196 -0 ' 16559 —0.00872
: 46906 | 22,15 01623 | 25,25 0
23*11 0.02552 0 ) 0.01172 0.0 4 01265 0.00085
) . .00272 23* 15 01226 26,25 0
24% 11 0.10275 0.0 ) 0.00071 000015 | 3%3* 00269 0.00327
25,11 0.04322 —000130 | 24%15 000257  —0.00 3%,25 0.04238 0.00444
; ! 00509 | 25,15 00007 | 3*4*25 0.02
26,11 0.01476 s ) 0.00120 0.000 j 02440 0.00037
. .01545 26,15 .00029 3*5,25 00
3¥3% 11 111739 11 ) 0.00074 0.000 ’ 01312 0.00236
’ . 12232 *3% A 78 3%6.25
%11 035748 : 3*3%,15 0.00000 —0.00 ) 0.02727 0.00033
] . —0.14168 | 3*4* 00193 | 4*4*25 0.0
35,11 0,00000 o0 15 0.00577 0.00 j 06430 —0.00104
’ - .05847 3*5,15 .00711 4*5,25 0.0
3*6,11 0.50408 0.1 , 0.03840 0.03518 | 46, 02625 0.00215
4*4* 11 045300 —0‘ 9522 3*6,15 0.00762 —0.00 6,25 0.00535 0.00498
! - 43135 | 4x4* 00653 | 55,25 0.0
5,11 0.23360 o4 15 0.00928 000522 | 56, 04781 0.00503
, : ) ~ 25
#6,11 0.16903 010322 | 475,15 001222  —0.00 : 002419  —0.00091
) . 11563 4*%6.15 00645 66,25 0.06.
55,11 1.10765 11 : 0.00533 0.00 06360 0.00094
. 13448 | 5515 00386 | 26,26 0.01
56,11 0.26100 o3 ) 0.00000 0.00. 01556 0.02498
g . —023597 | 5615 00333 | 3*3%,26 0.0137
60,11 0.53558 0.58787 : 001812  —000543 | 3*4%2 01378 0.01442
12,12 0.00000 0.00 8 66,15 0.01220 001358 | 3*S 2’66 0.00733 0.00127
13*12 0.00003 0'00000 16,16 0.01800 001900 | 3*62 0.00719 0.00738
14%,12 0.00001 0'00003 22,16 0.04164 —0.00481 o8 001158 0.00220
: —0.00001 | 23*16 00481 ) 4*4%26 0.0000 -
15,12 0.00001 0.000 , 000227  —0.00006 | 4*5 00000 0.00747
16,12 0.00001 0 ooog1 24%16 0.00912 0.00003 | 4*6.2 - 0.00857
} —0. : 26 0.02474
22,12 0.00006 o000 | 2is 000385  —000011 | 5526 002225
234,12 0.00000 000008 | 298 000136 —0.00031 | 562 001754 0.01539
’ : —0. ! 6
244,12 0.00001 0.0000 313,16 0.09257 000721 | 662 0.01340 —0.00362
; : —0. ! 6
2512 0.00001 P 0 3*4* 16 0.03062 — 000467 0,4 0.00000 —0.00108
’ ‘ 00000 | 3*5,16 ; 3x3% 33 0.81738
26,12 0.00000 0.000 ) 0.00378 —001412 | 3% 0.79659
: ! : 3*3* 0.2918 -
3*3%,12 0.00008 0.00 00 | 36,16 0.04289 000008 | 3* 3 0.06214
’ y —0.00002 | 4*4*16 : 3%5,3%3* 0.00000
3*4* 12 0.00003 0.000 ; 0.03978 —0.00154 * ' 0.02518
; . 00001 | 4*5,16 : 3*6,3*3* 0.39355 -
3*5,12 0.00002 0.0000 ) 0.02118 000279 | 4*4* y 0.07265
' . : : ,3*3% 0.43290
3,12 0.00005 000002 | 516 001483  —0.00089 | 4* o 0.40348
; . 00001 | 5516 : 4*5,3%3* 0.20717
4412 0.00005 0.0 g 0.09213 0.00247 * 0.08272
. 00001 | 56,16 : 4%6,3*3* 0.13704
4%5,12 0.00003 5 o ) 0.02402 0.00047 * 0.08778
) X —0.00000 | 66,16 / 55,3*3* 0.81373
4%6,12 0.00002 0.0000 . 0.04687 —0.00357 | 56,3*3* 0.80078
55,12 0.00009 00000 | 2222 3.54375 3.54375 3uge 021954 —0.10336
' - —0.00001 | 23*22 : 66,3*3 0.48343
56,12 0.00003 0.00 s 0.11009 —0.06451 1k 3% 0.47870
) : 00001 | 24*22 : r4x 3r4x 0.12402
66,12 0.00006 0.0000 ; 0.47079 —031667 | 3*53%4* 0.02860
13% 13+ 0.12145 0.00001 | 2522 0.19063 001270 | 3%6.3* 004250 0.03913
. 06895 26.22 - 3*6,3*4* 0.15829
14*,13* 0.02650 0 ) 0.00000 —0.07193 *4k 0.01807
) : —0.01874 | 3*3*22 : 4x4* 3 4* 0.22439
15,13* 0.00000 0:00 : 0.46648 0.46506 x5 3% 0.03610
) ! 00771 | 3%4*22 - 4%5,3*4* 0.10617 -
16,13 0.04636 0.03 \ 0.27694 0.08448 %6 3+ 0.01718
: —0.03009 | 3*5,22 : 4%6,3*4* 0.05497
22,13* 0.10849 —0.00 : 0.13706 011337 | 553%4* 0.00299
’ . —0.00001 | 4*4*22 : 56,3*4* 0.11084
24*,13* 0.02377 0.00 ; 0.80007 0.79968 * 0.02611
; ! 00002 | 4*522 y 06,3*4* 0.23725
25,13* 0.00999 —0.000 : 0.30097 —003627 | 3*53*5 0.03148
26,13* 000341 0.00000 | 42622 0.00000 003860 | 3%6.3% 0.17984 0.16440
3435 13* 02493 00 0 | 8522 0.52276 050531 | a*4*3* 0.04948 —0.01919
’ - —0. y ,3*5 0.09442
3xar,13 0.08080 0.0 63 | 56,22 0.25542 0.08111 ¥5 45 0.05924
{ : 00484 | 66,22 ' 4%5,3*5 0.07833 -
3*5,13* 0.00000 0.0 ) 0.78055 0.83981 G 3* 0.02123
’ : —0.00199 | 23*23* : 4%6,3*5 0.03781
3*6,13* 0.11330 0.0077 : 0.00426 000206 | 553*S 0000 0.03058
x4, 13 0.10437 0.00 9 | a2 0.01802 0.00931 3% 0.00000 0.03459
; : —0.00137 | 25,23* ; 56,3*5 0.10287 _
45,13 0.05359 0.000 ' 0.00734 —0.00005 x 0.00566
: 00001 | 26,23* ; 66,3*S 0.10585
4%6.13* 0.03835 0.00 0 ) 0.00159 0.00412 wr 2k 0.09624
; ! —0.00192 | 3%3*23* : 3%6,3*6 0.20842
55,13* 0.24731 0.0 : 0.02498 0.00222 wgk 3# 0.03166
’ . —0.01043 3k4* )3 . 4*4* 3%6 0.25432
56,13* 0.05963 0.005 ; 0.01434 —0.00032 *5 3% 0.01253
‘ : 00550 | 3*5,23* ‘ 4%5,3%6 0.12996 -
66,13* 0.12257 —0.00559 o 0.00772 000121 | 4%6.3% 0.00456
; . 00517 | 4%4* 23* - 55,3%6 0.30947 -
15,14* 0.00117 0.0007 ) 0.03760 —0.00322 * 0.06824
: —0.00070 | 4*5,23* ' 56,3*6 0.14180
16,14* 0.01029 0.00755 5, 0.01540 000128 | 66,3% 0.03205
22,14* 0.02398 ooy | 0.00325 000204 | 4%A* g%4* 027935 —0.00276
23% 14* 0.00131 0-0003 55,23* 0.02816 0.00254 %2 Akgk 0.58488 0.56765
’ : 00001 | 56,23* ' %544 0.21894 -
24*,14* 0.00525 —0.00001 ' 0.01424 —0.00078 | 4%64*4* 0.02874
25,14* 0.00222 0.00002 06,23* 0.03721 —000154 | 554%4* 0.00000 —0.01191
26,14* 0.00078 0.0000 24*24* 0.08006 004736 | 56.4*4* 0.45644 0.42492
33+ 14+ 0.05312 0004 5? 25,24* 0.03106 —000236 | 664*4* 0.19557 0.03928
3*4* 14% 001760 —0.0007 22,%‘.4* 0.00000 0.01016 4%5 4*5 0.57748 0.57238
3*5,14* ©0.00229 000078 | avih 010182  —0.00167 | 4*6.4*5 0.10731 0.03255
36 14* 002464 0-0028 3*4*,24* 0.05942 —0.00229 i 0.04728 0.03428
: : —0.00245 | 3*5,24* : 55,4%5 0.22313
4*4* 14* 0.02289 0.00079 L 0.02940 —0.00067 56.4*5 0.08780
) X —0.00040 4x4* 24* 01 Y 66,4*5 0.22689 —001
16940 001131 | 4*6,4%6 0.12757 e




STRUCTURE OF CARBON MONOXIDE 411
TaBLE IX.—Continued.
bars [ppda,prdel [0764,0:64] DS [ppda,preel [6284,0+64] bars [brda.prds] [6904,6:0:]
55,4*%6 0.14556 0.08185 77 ,4%4* 0.42053 0.39411 74* 82 0.00377 0.00208
56,4*6 0.07240 —0.02701 78,4*4* 0.13355 0.01868 84* 82 0.02474 0.02273
66,4*6 0.00000 —0.00414 88 4¥4* 0.57748 0.56943 75,82 0.00253 0.00187
55,55 0.87284 0.87286 77,4*5 0.19847 0.07800 85,82 0.00760 —0.00252
56,55 0.23864 —0.11512 78,4*5 0.06050 —0.01170 76,82 0.00345 0.00144
66,55 0.51034 0.51105 88,4*5 0.21046 —0.02651 86,82 0.00000 0.00519
56,56 0.13159 0.05339 71,4*6 0.13192 0.08603 73*73* 0.17984 0.17303
66,56 0.21412 0.02486 78,4*6 0.02985 —0.00021 83* 73* 0.03363 —0.01339
66,66 0.61451 0.63325 88,4*6 0.00000 0.01321 74*73% 0.05372 —0.02444
71,55 0.77876 0.77933 84* 73* 0.04295 0.03980
77,11 1.10765 1.10765 78,55 0.16336 —0.05092 75,73 0.00000 0.01038
78,11 0.18434 —0.11975 88,55 0.42442 0.42068 85,73* 0.02278 0.01140
88,11 0.40899 0.42112 71,56 0.20891 —0.10507 76,73* 0.07857 —0.03374
77,12 0.00008 —0.00002 78,56 0.06133 0.01993 86,73* 0.02605 0.02658
78,12 0.00002 0.00001 88,56 0.18233 0.03604 83*,83* 0.01337 0.00846
88,12 0.00004 0.00001 77,66 0.46886 0.46782 74* 83* 0.01553 0.00818
77,13* 0.24731 —0.00914 78,66 0.13738 0.01076 84* 83* 0.03166 0.01857
78,13* 0.04231 0.00222 88,66 0.54827 0.56322 75,83* 0.00929 0.00721
88,13* 0.09458 —0.00055 85,83* 0.01365 —0.00221
77,14* 0.05261 ~0.00211 71,71 0.02500 0.02500 76,83* 0.01967 0.00738
78,14* 0.00918 —0.00031 81,71 0.00086 —0.00613 86,83* 0.01060 0.00763
88,14* 0.02069 0.00067 72,71 0.00005 0.00005 74> 74* 0.02063 0.00916
77,15 0.00000 —0.00088 82,71 0.00037 0.00037 84* 74* 0.02891 0.01003
78,15 0.00262 0.00307 73*71 0.03840 0.03357 75,74* 0.00980 0.00821
88,15 0.00752 0.00684 83*,71 0.00448 —0.00487 85,74* 0.01392 —0.00269
77,16 0.09168 0.00310 7471 0.00934 —0.00685 76,74* 0.02794 0.00814
78,16 0.01597 —0.00194 84* 71 0.00415 0.00450 86,74* 0.01285 0.00396
88,16 0.03595 —0.00254 75,71 0.00000 0.00285 84* 84* 0.12757 0.12548
77,22 0.43810 0.43810 85,71 0.00262 0.00261 .| 75,84* 0.01806 0.01000
78,22 0.15391 0.03677 76,71 0.01470 —0.01044 85,84* 0.03816 —0.01592
88,22 0.78055 0.78692 86,71 0.00304 0.00381 76,84* 0.02985 0.00550
77,23*% 0.02336 0.00204 81,81 0.00003 0.00151 86,84* 0.00000 0.02106
78,23* 0.00795 —0.00010 72,81 0.00000 —0.00001 75,75 0.04704 0.04679
88,23* 0.03653 —0.00180 82,81 0.00002 —0.00008 85,75 0.01351 —0.00363
77,24* 0.09594 —0.00102 73*,81 0.00169 —0.00784 76,75 0.01201 —0.00996
78,24* 0.03344 —0.00027 83* 81 0.00024 0.00118 86,75 0.01060 0.01017
88,24* 0.16559 —0.00558 74* 81 0.00046 0.00165 85,85 0.01604 0.00748
77,25 0.03961 0.00386 84* 81 0.00025 —0.00102 76,85 0.01645 —0.00025
78,25 0.01352 —0.00005 75,81 0.00021 —0.00046 86,85 0.01070 0.00646
88,25 0.06247 —0.00080 85,81 0.00017 —0.00065 76,76 0.03918 0.01536
77,26 0.01184 0.01264 76,81 0.00070 0.00241 86,76 0.01762 0.00165
78,26 0.00345 0000:;; ?6,?1 0.0001% — 08?)8(8)2 86,86 0.03312 0.03545
88,26 0.00000 —0.001 2,72 0.0000. 0. SR TETE

77, 3%3% 0.81373 080217 | 8272 0.00076 000077 | TILTE 082s80 082580
78,3*3* 0.16445 —0.05561 73*,72 0.00051 0.00050 8*8*’7*7* 0'39393 0‘39424
88,3*3* 0.40426 0.40297 83* 72 0.00045 0.00030 7*8*’7*8* 0'04259 0'01516
77,3*4* 0.28757 —0.06678 74* 72 0.00037 0.00016 8*8*’7*8* 0' 13004 0.02263
78,3*4* 0.07137 0.01967 84* 72 0.00156 0.00139 8*8*,8*8* 0'58139 0-58463

88,3%4* 0.21472 0.04151 75,72 0.00031 0.00027 4 : .
77,3*5 0.00000 0.02768 85,72 0.00060 —0.00003 O¥7* THQ* 0.09408 0.09408
78,3*5 0.02278 0.01740 76,72 0.00040 0.00010 O*g* THo* 0.01459 —0.01128
88,3*5 0.08547 0.06813 86,72 0.00035 0.00064 10*8* 7*g* 0.01164 0.01147
77,3*6 0.03837 —0.08190 82,82 0.01556 0.01635 9*8* 7*10* 0.00471 0.00399
78,3*6 0.08968 0.01630 73*,82 0.00423 0.00426 10*8* 7*10* 0.01029 0.00664
88,3*6 0.23868 0.01592 83* 82 0.00539 0.00382 10*8* 8*10* 0.06624 0.06699




