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1. INTRODUCTION

OFFITT' has pointed out the difhculty of calcu-.. . . lating electronic energy levels of molecules by
the orbital approach and proposed a new method
called method of atoms in molecules. The idea is as
follows. If we calculate, for instance, the energy differ-

ence between the 'Z„+ and 'Z„states of an 02 mole-

cule by the molecular-orbital method, we obtain a very
poor result of about 10 ev, as compared with an ob-
served value of 2 ev. Here the 'Z„+ state is mostly built

up from the covalent structure 0+0, hut the sZ„—

state has essentially an ionic structure 0++0 . If we

repeat the calculation at in6nite internuclear distance,
then we obtain the energy of two 0 atoms for the
'Z„+ state and the sum of energies of 0+ and 0 ions

for the 'Z„state. The discrepancy between the calcu-

lated energy difference of 20 ev and the observed one
of 11.6 ev remains the same as before. Mofhtt has as-

sumed then, that the difhculty is not a molecular

problem, but atomic in origin; that is, the correlation

energy included in two ions 0+ and 0 is about 10 ev

greater than the correlation energy in two 0 atoms, at
both the equilibrium distance and infinite separation.

The error due to omitting the correlation energy for the

sZ„state is therefore 10 ev greater than the error for

the 'Z„+ state, which has appeared in both calculations.

*Present address: Quantum Chemistry Group, Uppsala Uni-

versity, Uppsala, Sweden.' W. MoKtt, Proc. Roy. Soc. (London) A210, 224, 245 (1951).
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If eigenfunctions of atoms and ions are used as basis of
molecular wave functions instead of orbital functions,
we can eliminate the difhculty, because then the
correlation energy in atoms and ions is fully included.
Although eigenfunctions of atoms and ions are not
available for molecular calculations, it may be possible
to use a perturbation method, because the interatomic
interaction is much smaller than the intra-atomic
energy. In the new method, Mofhtt has introduced an
interatomic interaction operator.

Unfortunately, the interatomic interaction is not so
small as compared with the sought for energy differ-
ence, and depends on the choice of approximate atomic
functions, with which the operator is calculated. A
conventional method suggested by MoKtt' gives quite
unsatisfactory results' for that reason. This does not
mean, however, that the method is essentially wrong
or useless. 4 Several people have revised the method
and remarkably good results have been obtained by
them.

As an example, we have proposed the use of cor-
related atomic functions as basis of a molecular prob-
lem. Here the interatomic interaction may be ap-
proximately calculated by neglecting higher terms, but
the atomic energy should be evaluated more carefully.
We have separated the eigenvalues of the atoms and
suggested to use observed values of atomic spectra for
them. Even if observed values are used, the method
is not empirical, because the values are not adjustable
parameters nor quantities which include an uncer-
tainty from the physical or mathematical viewpoints;
it is certain that the atomic eigenvalues obtained by
quantum mechanics should be equal to the values ob-
tained by spectroscopy.

Recently, several arguments have been given against
or about these methods. ' If we give explicit expressions
of approximate wave function for molecules and
integrate the molecular Hamiltonian exactly by using
the wave function, we are assured that the calculated

~%. Mofhtt, Proc. Roy. Soc. {London) A218, 486 (1953);
W. MoStt and J. Scanlan, ibid. A218, 464 (1953); A220, 530
(1953); W. MoStt, Repts. Progr. Phys. 17, 173 (1954).' G. W. Scherr, J. Chem. Phys. 22, 149 (1954); A. C. Hurley,
Proc. Phys. Soc. (London) A68, 149 (1955);A. Rahman, Physica
20, 623 {1954).

4 R. Pauncz, Acta Phys. Acad. Sci. Hung. 4, 237 (1954).
s A. C. Hurley, Proc. Phys. Soc. (Londonl A69, 49, 301, /67

(1956).
6 Y. Arai, J. Chem. Phys. 26, 435, 451 (1957); 28, 32 (1958).
7 For instance, M. Kotani et al. , Ann. Rev. Phys. Chem. 9,

245 (1958); S. Huzinaga, Prog. Theor. Phys. (Kyoto) 20, 15
(1958).
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energy is always higher than observation because of
the variational principle. Then it may be possible to see
the accuracy of the wave function by comparing the
calculated energy with observed value. If we make an
approximation in the course of calculating matrix
elements, this is not necessarily true. In our method
the interatomic part is approximately calculated and
therefore the calculated energy could be lower than the
observed value. Consequently, it is dificult to interpret
our results. Even if we get reasonable results, it may
happen that the accuracy of the wave function used in
calculating matrix elements is not good enough, but
that the calculated energy has dropped by accumu-
lating errors due to approximation. Such questions have
arisen particularly because the simple process sug-
gested by Mo%tt has turned out to be a poor approxi-
mation.

In connection with this argument, these methods are
regarded as an empirical approach and their results are
therefore not comparable with results obtained by
nonempirical methods. Although we have suggested
use of spectroscopic data for calculating atomic ener-
gies, it is not at all essential, because we can calculate
atomic energies theoretically. We need more accurate
energies of atoms than interatomic interaction energy,
and therefore we have to use more accurate atomic
functions. We could consider that spectroscopy here is
a very advanced automatic computer for the atomic
problem.

In this paper, we describe a method to construct
atomic functions which include correlation between
electrons fully. By using the atomic functions, we con-
struct molecular wave function and calculate the
energy matrix. Here we provide some devices so that
we can separate the intra-atomic energy from the
interatomic interaction. Up to this point, the pro-
cedure is rigorous from a mathematical viewpoint.
The more basic functions are taken into our calcula-
ti:on, the more accurate solutions for molecules are
obtained, As we describe in Sec. 2, atomic functions
are expressed as linear combinations of an infinite
number of basic functions and then the energy matrix
for molecules can be expanded into an inhnite number
of terms; each of them is an energy matrix described
by the same basic functions, from which the atomic
functions are constructed. If we solve the atomic
problem, we can evaluate in principle the energy
matrix up to a desired decimal point accurately. For
practical purposes however, the series expansion should

cut oG at a certain point. We describe several possi-
bilities of cutting oft higher terms and discuss such
approximations from physical and mathematical view-

points. From the argument it will become clear what
kinds of assumptions have been made and what kinds
of differences there are between various methods of
atoms in molecules. The so-called nonempirical ap-
proach is also discussed by comparing it with our

method. As long Rs orbital fulletlons Rre used Rs bRsls
it is dificult to obtain any physical quantity with
accuracy satisfactory in mathematical sense, because
the absolute value of an energy calculated by the
orbital approach is far above the experimental value.
By aid of an empirical assumption, we used to estimate
the accuracy of the wave functions that made up
orbitals. From our point of view, we discuss the phy-
sical meaning to be expected from such approximate
wave functions and the reliability of the empirical

assumption used in the nonempirical method.
Although our approach is a practical way to calcu-

late simple molecules like a CO molecule and may be
free from difhculties included in the traditional non-
empirical method based on orbital functions, it is still
too dificult to apply it to more complicated molecules
or crystals. In the following paper we shall try to
simplify our treatment, so that we can apply it for
investigating electronic structures of larger molecules.
Furthermore, we shall investigate the physical and
mathematical background of semiempirical approaches,
such as the Pariser and Parr method. s Extension of our
approach to crystals will also be carried out.

2. ATOMIC WAVE FUNCTIONS

Before describing our method to calculate the elec-
tronic structure of molecules and crystals, we have to
look carefully into atomic wave functions, from which
the wave functions of molecules and crystals are made
up. Here we neglect spin-dependent interaction, and
therefore the Hamiltonian of atoms is given by

in which m is the electron mass; 5 is Planck's constant
divided by 2m,' r;; is the distance between the positions
of electrons i and j, and V;(r;) is the potential function
representing the interaction of electron i with the
nucleus.

Because of our spin-independent Hamiltonian, the
eigenfunctions 4 of atoms are separable into spin
eigenfunctions and functions of positions of S electrons
such that

(2.2)

where e~ are f linearly independent spin eigenfunctions
of E electrons for a given spin total angular momentum
S, and its s component S„and the functions of posi-
tions%'I, are de6ned as coe@cients accompanied by spin
elgenfunctlons OI,.

The number f of independent spin functions is de-
termined by the number of electrons E and the total
spin angular momentum S.Although there is no unique
set of independent spin functions, because linear com-

8 R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466, 767 (1953);
28, 711 (1955); R. Pariser, ibid. 21, 568 {1953);F. G. Fumi and
R. G. Parr, ibid. 21, 1864 (1953).
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binations of them are also eigenfunctions of the spin
system, the arbitrariness does not aGect our discussion.
As described in several papers, ' spin functions are easily
built up in certain systematical ways. Although it is
impossible to obtain an explicit expression of the func-
tions 4'&, we can describe them by using a complete
set of functions f~((P1,2 ~ ~ ~ iV) of positions of
electrons, as follows:

%~ ——g gp»((P1, 2 ~ ~ ~ 1V) c»~((P). (2.3)
z

Here the functions f»((P) are factorized in the follow-
ing way:

(1) Functions f»((Pp), f K((Pt), ' ' 'f»((Pt y) with
the same E, but distinguished by (Pe, (P~, ~ ~ ~ (Pt &, are
obtained from each other by permuting positions of
electrons such that

(Pp»(P;1, 2 ~ E) =p»(+,ag, az ~ a~)

=$»(5';1, 2 ~ 1V),

where (P) (P;, and (P; are permutation operators as-
sociated with each other as follows:

(P(P;=6';.

If we choose one of them as a standard function f»
therefore, all others are obtained from it by operating,
one by one, independent permutation operators. Each
set of functions Ac(Po), Ac(Px), O'K(Pt —1) in Eq
(2.3) is replaced by newly created functions,

4»t +1/»t +24»' ' '+t 1$»—

where

%»"=gc»q(6') Pfz(1, 2 S),

e,— = Q Q c».~((P) O'p». (1, 2 ~ ~ X),
zfgz

then our wave function is also separated into two:

~' =@'K+@'

4'z =0" %z,
O„ iIJ —z

+zg + —z

~z= ', +z,

,+Kf,

LIJ
—z .y -z,

—zif

e= (e e, "e,).

It is easily proved that the E component +z of our
wave function is also antisymmetric with respect to
permutations of electrons because of the linear inde-
pendence of the basic functions p», as described in (2).
From this reason, together with the symmetry of spin
eigenfunctions, a set of the 1 functions &p» described
in (1) is not entirely independent in our wave function
C, but only r(r&f ) of them are independent. We
prove this in the following.

At first, we separate the permutation operator (P into
two parts 6, and (P, where 6' is an operator for per-
muting spin coordinates and (P is the corresponding
operator which permutes coordinates of positions of
electrons. Then we have

The number t of independent permutations will be g t

if the function p» does not have any symmetry whatso-
ever and every possible permutation gives independent
functions. On the other hand, if we have, for instance,

(P (12)f» (123 ~ S)=f» (213 ~ S)=f» (123 ~ S),

where
(P@z= s+z = (P,O(P %'z)

for even permutations

e=—1, for odd permutations,

(2.4)

then the permutation (P(12) is not independent of the
unit operator E, and the number t may decrease, at
most into (S—1)!,depending upon some other sym-
metry observed in $».

(2) Functions f» and $» are linearly independent,
such that possible values of cz and cz which satisfy
the relation

and each element (P,O& of (P,O can be expressed linearly
in terms off original spin eigenfunctions eq.

f
o.e.=ge, v.,(o ),

because O~ is a complete set of spin functions for given
S and S„and is commutative with S2 and S,. Then we
have

C»le»+ CK'~K' =0 o.e=eV(o ). (2.5)

are zero only as long as E'&E'.
Because electrons are Fermi particles, the wave

function C given by Eq. (2.2) should be antisym-
metric with respect to permutation of electrons. If we
separate the Eth functions f» from the others in Eq.
(2.3) as follows,

By inserting the relation (2.5) into Eq. (2.4), it is
found that

~»= eO~V((P)(P. %».

Comparing the equation with Wz ——0%'z, we have

+k +Kk++Ic e e =eV(a ')e»=U (a)ez, (2.6)

where U((P) = aVt'((P ') is an irreducible representation' For instance, M. Kotani et al. , Table oj Molecular Integral s
(Marnzen Company, Ltd. Tokyo, Japan, 1955). matrix of the permutation group. U" ((P) here means
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a transpose of U((P). The functions 4'zo are therefore
linear combinations of Pz, (Putz ~ (P~ gP» and should
satisfy Eq. (2.6). It is obvious that a set of functions

%zoo Q——Uoo((P)(PQ» k=1, 2 ~ r, r&f (2.7)

The r functions thus obtained are linearly independent.
If fz does not have any symmetry, then r may be equal
to f and U((P) may be obtained from V(P) by the
relation (2.6). If there exists some symmetry in fz,
some of the functions Pzo may disappear. In order to
eliminate such cases, we have to omit the corresponding
part of U((P) matrices to make reduced ones. Such a
technique has been discussed elsewhere. "

From each of the basic functions Pz, we can generate
rK independent functions CKy, . The number rK depends
on the symmetry of fz but cannot exceed f If w.e take
all these functions obtained from every possible fz
used in Eq. (2.3), they may become a complete set of
functions for spin and position coordinates of X elec-
trons associated with a given S and S,. The formal
solution is then given by

Q QC'zoczo ) (2.9)
K

where the coefficients cKI, are obtained by minimizing
the energy. By deiningCI, as

4'o= gg%zooczo, (2.10)
K h

it is found that

c = ge,e,. (2.11)

The function C is an exact eigenfunction of an atom and
it is built up from an infinite series of position co-
ordinates functions fo, f~ ~ f» ~ . If we use only one
of them, we obtain r approximate functions. For in-
stance,

C»i= QC'zoczo )
h

i= 1, 2, ~ ~ r. (2.12)

Then
O'= QQC'z;cz ~ (2.13)

We define Co as the function obtained from Po and the
best approximation among CK; to the atomic eigen-
function C. If we build fo from a product of orbitals
and choose the orbitals suitably so that Cp gives an
optimum energy, then Cp will be the Hartree-Fock
"See reference 9; also T. Arai (unpublished).

is a satisfactory solution. Here U&o(IP) is a kk element
of a Hermitian conjugate Uj'((P) of U(6'). The spin-
orbit functions NK are given by the following row
matrix:

4» 0%—» ol 4»Ia= geo%'zoo, h= 1, 2 r. (2.8)

function and the coeflicient cp corresponding to Cp in
the exact function will be dominant. That is,

c,=1,
I
cz I ((1, K~O. (2.14)

For convenience in the later discussion, we define a
primitive function ~C or &I, as a function obtained from
Eqs. (2.10) and (2.11) by replacing %z&o with Pz as
follows:

%=Qf»czk) (2.15)

(2.16)

In case only the first term fo of the summation (2.15)
is used, we obtain the primitive function of the Hartree-
Fock function such that

~oo=focoo,

'C'o = geo'%o.

(2.1'/)

(2.18)

As the primitive function

'Too(1, 2 ~ lV) =go(1, 2 ~ S)coo

is built up from a product of orbitals as follows,

A(1, 2" &) =4 (1)4 (2)" 4.(&),

each electron is associated with an orbital in ~Cp or
'%pg. For instance, electron 1 is located in orbital 1,
electron 2 in orbital 2, and so on. In &~, the higher
terms fz are included and it is not so simple. However,
the coefficient of the first term cp is dominant, as shown
in Eq. (2.14), and then each electron can still be as-
sociated mainly with one orbital as in &p&. The charge
distribution described by &I, or ~C is also approxi-
mately obtained by &pI, or ~Cp.

In the exact eigenfunction, electrons are indistinguish-
able and each of them is not associated with a particular
orbital. However, its primitive function ~C can be
treated as if it is built from a simple product of orbitals,
and therefore it is convenient to pick up a particular
electron associated with a particular orbital.

3. WAVE FUNCTIONS IN MOLECULES

As we are still dealing with the spin-independent
Hamiltonian, a wave function for molecules is de-
scribed exactly the same as the C obtained for atoms
by Eq. (2.11). If we could take so many basics fz
that the set of functions CKI,y, generated is complete
for describing the motion of E electrons in the mole-
cules considered, then the wave function C can be an
exact solution.

As a complete set of spin functions e is easily ob-
tained, the difhculty we have here is again how to con-
struct basic functions fz of positions of X electrons,
which will converge more quickly so that we may
expect a result within satisfactory limits of error, even
if we cut off the series of functions f» at a certain
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term and neglect the higher terms. There are no func-
tions which can be handled up to an infinite limit for
our problem nor is there a mathematical technique to
expand wave functions +~~~ by a limited number of
functions, which are manageable for integrating the
Schrodinger equation.

At first, we consider a case where the basic functions
for a molecule are constructed from products of spin-
free functions of the atoms, from which the molecule
is made up. For simplifying explanation and notation,
we consider a diatomic molecule, made up from atoms
A and B. This does not imply any difhculty of extend-

ing our discussion to polyatomic molecules. Then we

may write

QPqk (1, 2 ~ NA+NB)

=4k.A&o) (1, 2 ~ ~ ~ NA)+k" ' o'(NA+1 ~ ~ ~ NA+NB)

k= (k', k"). (3.1)

Here, 4'k A&O) and 0'k B&P O) are defined in Eq. (2.10).
A spin-free part of the basic function is then given by

+Pgka= QUka(&) ~k A'o)+k "P o).

Here it is possible to divide the permutation operator

(P into three parts as follows:

+AB+A+Bp

where (PA is an operator which permutes electrons
1, 2 ~ SA, and a set of (PA is equivalent to a set of
independent operators 6' for atom A and (PB is a cor-
responding one applied to atom 8, whereas O'AB is one
which operates between electrons 1, 2 ~ SA and
NA+1" NA+NB.

A set of spin eigenfunctions BBMk for NA+NB
electrons is obtained from products of eigenfunctions
for NA+NB electrons such that

BBM ——QhMM. BS.M k. (1, 2 ~ NA)
~l

Bs-M"k-(NA+1, N +N ), (3.2)

where k=k'fs +k"andfs isthenumberof independent
Bs M Mk", then a representation matrix U(PB) is
made up from one for atom 8, repeating fs times
diagonally, where fs. is the number of independent
Bs M k. A corresponding one U((PA) is similarly made
up from one for atom A, but interchanging columns
suitably to get matching order of spin functions O&~I,

given by Eq. (3.2) .Then it is easily found that our wave
function could be factorized as follows:

(3 4)

@poa QBsMA soka

+hMM' Q Q Q Q Q Q Ukk'(6A ) Uk'k" (GAPA) Uk"a(+ )+ABB '+Amok' Bk"+B+k"
k k~ aII

hMM Q QUka(+AB)+ABQBa+kA'o)QBk +k" '" o) (3.3)
k~ HI

by considering Eq. (3.2) and the structure of the representation matrices U((PA) and V((PB). As summations

over gk and gk. are wave functions of atoms A and 8, respectively, we have

4PQa= phMM' p QUka(tPAB)PAB4 C'

From Eq. (3.2) it is found that k=1, 2' ' 'fs&fs 'fs '
As basis for molecular wave functions, we may have r
independent functions CPoa(h=1, 2 ~ r(fs) made up
from atomic functions CA&@ and CB(~ @. By taking
every possible combination of atomic functions CA(@

and C (~ @ for atoms A and 8, we are able to obtain
a complete set for the molecules. Because of symmetry
of molecules, however, the functions obtained from

every possible I', Q, h are not linearly independent
and basics of molecules may be written in a reduced
form if we take suitable combinations of functions

C~g@ such as

C (T ) Q~'poadpoa
PQA

Particularly if we consider ionic structures or when we

are dealing with a homopolar molecule, we have to
eliminate some of the basics C~@~ in order to avoid

difhculties caused by overcompleteness. In practice,
however, it may not be necessary to worry about it,
because we are able to use only a limited number of
terms, whereas the expansion of functions originating

at A into those at 8 may need an infinite number of
terms. For simplicity we may use, instead of 4y~,
Cz =—Cp@I; as basics of molecules.

There are several possibilities of constructing basic
functions Cz. We may construct basics Plr A and f)r B

of atoms from Hylleraas-Kinoshita's functions" Lease

(I)g or from products of orbitals Lease (II)$. If we
take a complete set of functions as basis of each atom,
then 4"'@ and 4 ( @, used in Cz, became exact
eigenfunctions of atoms A and B. Therefore, we can
expect exactly the same results for a molecule by
using either case (I) or (II). We specify these cases as
(I ) and (II ), respectively.

It is also possible to use approximate atomic functions
as basis. For instance, we may use Cp"(@ and Cp ( @

as defined in Eq. (2.12) by omitting the higher terms
»d Px B(&'WO, IC"WO). Then we can write

down explicitly the molecular wave function C z'p

and it is possible to calculate the energy matrix exactly.
If we construct the basics foA and ktoB from a product

"T. Kinoshita, Phys. Rev. 105, 1490 (1957).
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of the Hartree-Pock orbitals, then Co"&@ and Co ' @

are Hartree-like functions and a molecular wave
function Cyo obtained is a simple Heitler-London func-
tion. We may call this case (IIo). We can construct
Pp~ and /os from the Hylleraas-Kinoshita functions,
which are called case (Ip) .

Irrespective of the basis used, we may be able to
obtain an exact solution for a molecule if we take so
many basics Cz that they constitute a complete set for
the molecule. But the convergency in methods (Ip)
and (IIp) is much slower than in methods (I ) and
(II ). If we take a limited number of Cr and neglect
the higher terms, we can therefore expect better results
from cases (I„) and (II ) than from cases (Ip) and
(IIp).

In case a limited number of basics Cy is used, it is
thus important to introduce factors which may induce
much faster convergency. For instance, the ground
state of the H atom is described by the wave function
pp

——or '*e " exactly, but the wave function of the Hs
molecule is not well described by an antisymmetrized
function of the simple product Pp

——Pp" (1)&ps(2). The
dissociation energy calculated by this function is
D,=2.9 ev including the ionic term. Instead, antisym-
metrizing a function fp(p) =go~(1, p)&os(2, p), where

pp(1, p) = (ss/or)&e —*", z=1.193, we obtain the better
description of the charge distribution as well as the
better energy of D,=4.02 ev." The function fp(p) is
obtained from the original one fp by multiplying by a
function po(1, 2) =po" (1)poe(2), where pp(1) = z~ e p'.

In the orbital approach, the primitive function ~C

of atoms is built up from the basics fp=gq(1) Qs(2)
p„($), where the p's are Hartree-Pock orbitals, so
that the energy of the atom is minimized and the
charge distribution of electrons in the free state is well
described by the function. In molecules, however, the
charge distribution of the atoms is distorted by the
interaction between neighboring atoms. It is therefore
not advantageous to build up the molecular wave
function from the atomic functions Co in the free states,
but it is much better if we make up the modified atomic
orbitals P(i, p) in which the change in the charge dis-
tribution is taken into account, and set up the atomic
function

4' (p) =+++8 U (P)(P'% (p), (3.6)

%s(p) =p'QQKcKI =p' %. (3 &)

The modified atomic function 4(p) thus obtained is
therefore similar to the function Cp(p) made up from
the modified atomic orbitals, and the charge distribu-
tion can be changed arbitrarily by choosing a suitable
correction function p. The function 4 (p) can be
defined even if the Hylleraas-type functions are used
as basis. Mathematically, the function 4 (p) depends on
the basis. If we set p=1, however, we obtain an exact
eigenfunction of a free atom, regardless of the choice
of basic functions. Therefore 4 (p) is a more generalized
function than C.

Instead of exact atomic eigenfunctions C~&@ and
C & @,we therefore use the modified atomic functions
4"+&(p) and Ce' Q&(p) as basis of the molecular wave
function. Then we have

~oa(p) =P'4'ocos= p' %a,

where p(1, 2 S)fp(1, 2 S)=fp(1, 2 ~ .7 p). The
modified atomic function Cp(p) made up from the
modified atomic orbitals, which can be chosen arbi-
trarily, is therefore interpreted as a function built up
from the primitive function of a free atom multiplied
by the correction function p.

In case an exact atomic function C is concerned, the
primitive function eC or &s gives a close description of
the charge distribution of atoms in the free state, and
still each electron is associated with a definite orbital.
The Hartree-Pock function is also considered a fairly
good approximation to describe the charge distribution.
This means that the charge distribution described by
the primitive function ~C of the exact eigenfunction is
approximately described by the primitive function
~CD in the Hartree-Pock approximation. By multiplying

Co by the correction function p, the charge distribution
is changed. Similarly, the charge distribution given by
the exact function ~C will be changed by multiplying it
by the same function p. Antisymmetrizing the function
p ~C, we obtain the modified atomic function,

4(p) = ggge, U„(O)nm. (p),
a

A(p) =4'i(1 P)4's(2 P)"'4' (» P)

for use as the basis of the molecular wave function.
We can define the correction function p as follows:

p(1, 2 .S)=go(1, 2 .E; p)/lgo(1, 2 N)

where

4zQp(p) =+p "Q'(p)+p-'" Q'(p),

+s "~Q (p) = QQ+irp p(p) exp,

+zp p(p) = Q&p s(cp) happ"'QVx,

(3.8)

=pi(1)ps(2)" p-(&) (35)

where pi(1) =Pi(1, p)/Pi(1). The modified atomic
function is then built up by

"S. C. Wang, Phys. Rev. 81, 579 (1928l; S. Weinbaum, J.
Chem. Phys. 1, 593 (1933).

instead of pi Q& given by Eq. (3.1).Then

CT(p) CPQs Z~MM' Z Z Ups(+AB) epAE@' @(P)

4"""(p), (3 9)
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=p(1', 2' ~ N')%), (1, 2" N),

where 4"&Q)(p) and Cs&" Q)(p) are the modified atomic where
functions given by Eq. (3.7). As 4"&Q) and 4s&~—Q&

are exact eigenfunctions of atoms, they satisfy the ~)»(1» 2' ' '»» 1» 2 ' ' '~~'
» p)

Schrodinger equation exactly. For instance,

3 A.C,A. (Q) @A.(Q)~(Q)

But 4&"&Q)(p} and C)s&" Q)(p) are not solutions of the
preceding equation. Instead, they satisfy an equation
which includes a binary operator. To derive this, we
introduce a function in which the primitive function
&),(1, 2 ~ N) and the correction function p(1',
2' ~ 1P) are described by independent different co-
ordinates as follows:

C (1, 2 ~ N; 1', 2'" 1P; p)

=gg+B&,U),&, ((P)(Py(P,&),(1, 2 "N; 1', 2' ~ ~ 1P; p),
a h

%&,(1, 2 ~ N) = QP)r(1, 2 ~ N) cg&„

6'=5'y6'„and 5'y is a permutation operator of coordi-
nates 1, 2 ~ S and 5', is the corresponding permutation
operator of coordinates 1'2' ~ E'. This function be-
comes equal to C (p) if the coordinates 1', 2'. ~ N' are
equal to 1, 2 ~ X, respectively. Then

C(1 2 ~ ~ ~ N p)

= l&n b» ~ &&» C (1, 2 ~ N 1' 2' ~ ~ ~ 1P p) (3 11)

(3.10) Then

X"(1, 2, "N) W&Q) (1, 2 ~ ~ N; p) =X"(1, 2" N) bu 822 ~ ~ ~ 8» C."&Q) (1,2" N; 1', 2' ~ ~ ~ 1P; p)

= bn 8» ~ &)» {X (1, 2. ~ N)+()" (1» 2. ~ N» 1» 2 " N; I

XC"«)(1 2 "N 1' 2'" N' p) (312)

N'

m/fi2g" (1,2" N; 1', 2' ~ N') = —Q(h j2}—Q'7~V,
I

and 6 and 1,' operate on the coordinate i', while '7; operates on the coordinate i As X."+b~ is symmetric and
commutative with the permutation operator, we have

X"(1, 2 ~ N) C "«& (1, 2 "N; p)

=t'&a 8»" &&».PPQB&Ug((P)(P)(P, {E"&Q)+(&"+(X"—P(Q))Ip(1', 2' "N') 'e&(1, 2" N)
h

=g~(Q)~(Q)(1 2. ..N p)

+I)u 8» ~ ~ ~ 8» QQQB&, Uy&, ((P)(Py(P, fg (12.~ N;1'2'" N') p(1'2' ~ N') ~»1),(1 2" N)
h

+p(1'2' "N') {X~(12 ~ N) —8"(Q)I&&,(1 2" N) j
Therefore we can write

X"(1 2" N)C"&Q&(1 2 ~ N p)=P(Q)C"&Q)(1 2. ~ N. p)

+&&ni822i' ' '&)» Lg (12'' 'N» 1'2 ' ''N )+{X (1» 2' ''N) —8 &Q)I]C» &Q)(1» 2' ''N; 1» 2 ' ''N'; p). (3 13)

For simplification, we write this as

where

X&@&(Q) (p) —1» ~(Q)C»~ &Q) (p) +/+/I+ (Q) (p) +»I&C»»((Q) (p)

O'C &Q)(p) =@i~»""~»g"(1,2" N; 1'2'" N')e «&(1, 2" N; 1', 2'".N; p),
+"C'"(Q)(p) = ~u~f)»" 4w {X (12 N) —&"&Q) I C'"&Q) (1 2 .N; 1', 2' ~ N' p)

(3.14)

4. CALCULATION OF THE ENERGY MATRIX

As in cases (Io) and (II&)), a molecular wave function
is constructed from approximate atomic functions
Co"(@ and Co~("—q), made up from a single term, and it
is not dificult to calculate the energy matrix. In
case exact atomic functions are used as basis, however,
it is impossible to handle the calculation of the energy
matrix exactly because an in6nite number of terms is

involved. We therefore have to expand the energy
matrix into series of terms. The first term is so dorm-
nant that it is possible to estimate the value of the
energy matrix by taking the erst term only. But if it is
necessary, it is possible to improve the approximation
by taking more terms. To do this, we separate the
energy into inter- and intra-atomic energies.

H we apply the Hamiltonian operator of a molecule
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to our basic wave function C)r(p) as given by Eq. (3.9),
it is easily found that the Hamiltonian is separable into
three parts 3.'", X~, and 'U as follows:

XC'r (p) = Q&i«))f QQ&~) ((P~s) (P~a(X"+X'+'U)
Pz~ I(:

~ 4 (o)(1 2 "Sg' p)Cs(~ o)(Kg+1 ~ ~ ~ 1Vg+Ss p)

because X, is commutative with the permutation
operator 6'~~. In the expression

(Q) (1 2 ~ il)g' &)Cs(~ Q) (gal+1 ~ yg+gs' &)

the coordinates of the electrons 1, 2 ~ E@ appear only
in the first part C"(o)(t, 2 X~, p) but not in the
second Part Cs( o)(&V~+1 ~ E~+Xs, P), and those
of electrons X~+1.~ S~+Ss are in the second part
C~'~ @ but not in the first part 4 (@.Then X~ is an
operator consisting of coordinates of electrons 1, 2 ~ .X~
and equivalent to the Hamiltonian for atom A in a free
state; 3'.~ is the corresponding Hamiltonian for atom 8,
whereas 'U is an operator which depends on both atoms
A Rild 8 RQd represents Rn lQtcrRtomic interaction.

An energy matrix is therefore separated into three
parts as follows:

&, =(&i~)2)=fr,"xe

Here we are considering to solve the molecular problem
only approximately by using a limited number 3f of
functions Cy as basis. Then there is no fundamental

difhculty for solving the secular equation and the
linear equation, as given by Eqs. (4.2) and (43), if
we could evaluate values of the matrices H and S.

As an atomic function is made up from a linear
combination of function CK~, consisting of single terms
Pz as is shown in Eqs. (2.7)—(2.9), a molecular wave
function given by Eq. (3.9) is also written as a linear
sum of functions 4r(I('O', E"h") obtained by replacing
atomic functions C"(@(p)C (~ @(p) by

C'z')'" (p)C'ziivi ( o)(«))

in Eq. (3.9). Then

@'r=Q@rz&z,
K

where

@rz=@i(&'O'E"Ii")

(44)

where the cocScients yp are determined by solving the
linear equations

Q(&sr &&—ar)yr=o &=1 2 ~ "M (43)

=(ZIX&r)+{ZIXsr)+(ZI ~r),
where

(4 1)

CK= CK'h'Z"h'«= CK«A«CK««h»

.QQU'~a((p~s) (p~s&~(o) («))@"(~ («)) &r

Then the matrix (4.1') is expanded as follows:

(2 I
X

I T)=QQ (R« I
X

I
Tz)c«*(;z

IH —xs I
=0, (4 2)

where H and 8 are matrices made up from Bsr ——

(E I
X I

T ) and

Sar (&) T) fea' &'=rd~=

The wave function C is given by

C =&+mr,

2=X~, X~, and

Putting Eq. (3.14) into Eq. (4.1), we get

(zIxI r)=z (zI r)+{zIgr)
+ (Z I

rT)+ {Z I
Vr ), (4.1')

where

gr =g"(o)+Es(I' o) g=8~+gs, and —O'= %~+Ps.

An energy of the molecule is obtained by solving the
secular equation

Each term in Eq. (4.1') is also written as

(R I
2 T)= QQ(E« I

arz)c«*cz.

Here the notation (R« I
X I Tz) and (gz I g Tz) indi

cates that CpK and Cgg are used instead of Cp and Cg. .

(~& I x I Tz) and (~& I rz) are Hermitian as well as
(E I

X
I T) and (E I T). Even if we take the summa-

tion E', appearing in Eq. (4.4), up to a limited number
Eo of terms instead of in6nite number and neglect
the higher terms, the secular equation (4.2) therefore is
Hermitian. But each term in (E I

X
I T) given by Eq.

(4.1') is not Hermitian. Thus, if we take the summation
E in the wave function {4.4) up to infinity and sepa-
rate the matrix into terms as in Eq. (4.1'), then, if we
cut oG the summations appearing in, for instance,
(8 I 8T) and (R I

'UT) at the Joth and Eoth terms,
and neglect thc higher terms, but calculate others,
Er, (R I T), and (R

I Sr), exactly by taking summa-
tions up to in6nity, the approximate matrix obtained
(R IXT).„„.is no longer Hermitian. In order to
eliminate this difhculty, we may make a skew Her-
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mitian and add it to Eq. (4.1') such that

(zlxl T),
=-', I (z I

se
I T)+ (T I

x
I z) f

=l(E.+E.) &~I T&+!I«IST&+(TIO~&I

+-,'I (z I aT)+ (T I
5:z)I

+-', I(z I vT)+(T I ~z) I,
where Er E"+——&+Es'~ o& and

E~(@= 4"(@*X~4(@dr.

(@IXIT&„ is exactly t e same as &Zlsel T) if we
take the summations in Eq. {4.4) up to the infinite
limit, and we can obtain exactly the same solution as
before. Here each of the expressions ', (Er+E~)-(E

I T),
—',I (E I ZT)+(T I ZR)I, 2=5', g, and '0 is Hermitian
too. Then even if we cut off summations included in
some of them at a 6nite point, we can always obtain a
Hermitian matrix. %e use this matrix throughout the
article so that we can apply reasonable approximations
for evaluating the value of (E I

BC
I T). The difference

between &El&I T) and &El&I T)-is o»y in the
ways they are factorized in case they are expanded into
series as Eq. (4.4), and therefore there is no difFerence
in physical meaning unless we apply an approximation
to them.

Ke try to calculate our matrix elements up to a
certain decimal point correctly so that we are able to
estimate the accuracy. First, we examine the order of
magnitude of the terms included in Eq. (4.5).Although
the 6rst term is extremely large as compared with the
rest—for instance, it may be more than 4000 ev if we
consider 02—this does not imply a very precise calcula-
tion of (E I T). In fact, we are interested in solving the
secular equation (4.2), but not in the matrix (8 I

X
I T)

itself. Then

(E I
a Z

I T),=-,'(E,—+E,—2X) {Z I T)
+!I &E IOT)+ &T I S&&I

+!I(E I»&+(T I»))
+lI &E I &T)+(T l «)I (46)

Here the 6rst and last terms have the same order of
magnitude —say, 5 to 20 ev times (R I T) for 02—as
long as we are considering lower excited structures. If
(E I T) and (E I

'UT) are evaluated with an accuracy
of 0.5%, then these parts may give an error of less than

O.I ev. If more higher structures are needed, the
perturbation method may become more useful. There
we may not need very much accuracy and the conver-
gency of the perturbation treatment may be quick. We
discuss such a case later. The first term may be called
an intra-atomic energy, and the last one is an inter-
atomic interaction. The energy loss of atoms in mole-
cules due to deformation p is obtained from the second
and third terms. Their values depend on the choice of

gA (Q) @A(Q)+~8@8(Q)d

= QQExa" i@&so'.

Ul

C
tLi

3 1S SS

'S

FIG. i. Observed and
calculated energy levels of
the C atom. (Reproduced
from the second of refer-
ences 1 vrith the permission
of the Royal Society of
London. )

Ob~ SCF anatyt

p. Atoms in molecules are supposed. to preserve most of
their own character in the free states, and therefore the
deformation of the charge cloud when in molecules may
not be so extraordinary. Then use of p, which introduces
a rather small deformation, should be quite satis-
factory. The energy loss due to p is of the order of a few
ev, and an accuracy of a few percents is enough to
calculate them. Of course, it is possible to introduce as
p any function which may produce large correction
terms.

(1) Atomic Energy (Zr+Zii)

Here we have to be careful about the fact that Er+
E~ 2X and —(E I PT) consist of differences between
large values. The first one is the diGerence between the
sum of energies of the atoms in the free state 2 (Er+E~)
and the molecular energy X. If we use Slater orbitals for
calculating 2(Ez+E-z), we may get a large error of
about 40 ev in the case of 02. This error then appears in
our final result X. If we use Ã basic functions, then
mathematica11y, errors in ) could accumulate up to
40&X ev. This is too much exaggerated, because
the variational method for calculating atomic energies
assures that the calculated energy is always higher
than the real value. Then the error (E..&.

—E...) is
always positive. Besides, we know empirically that the
error is almost constant for various atomic states. Al-
though there is no mathematical proof, one assumes
that the error is constant in order to be able to give
some physical meaning to the results obtained by the
orbital approach. This is neither correct nor satis-
factory. For instance, if we calculate energy levels
of the C atom by applying the orbital approach, the
energy differences between levels are not given cor-
rectly, as shown in Fig. 1. This means that the error,
included in the energy calculation, is not constant, but
fluctuates between about 4 and 7 ev. Therefore we have
to calculate this part carefully by taking higher terms:



GENERAL ANALYSIS

Calculation of atomic energy may not be so compli-
cated as a molecular or crystal problem, but it is still
dificult to obtain a satisfactory result. Apart from that,
we are not primarily interested in the atomic problem.
Instead, spectroscopic data give correct values for the
atomic energy. The accuracy is far better than we
may expect from calculated values by using an elec-
tronic computer. In fact, the energy obtained here is an
eigenvalue of a much more accurate Hamiltonian, in
which the spin-orbit interaction and relativistic eGects
are included. Therefore we can employ in our method a
more accurate Hamiltonian of molecules, in which the
spin-dependent part is explicitly included. The main
contribution of the relativistic e6ect in molecules may
appear in the intra-atomic part, which is treated
exactly by the use of spectroscopic data. The eGect on
the interatomic interaction is small and is evaluated by
the perturbation method.

(2) Exchange Correction Due to Deformation
of Atoms (R { FT)

In order to see the character of (R
~
fT), we recall

that C~(@ is an eigenfunction of the Hamiltonian 3!",
which satishes the Schrodinger equation exactly as
follows:

O (&i(&A EA(Q) ) C&A(Q)

= (XA—E"(Q))QggesU»((P)(Psfs .
a

As (P is commutative with X",we find that

QQQBsU»((P)(P{ (K"—E"~Q )'Ps" }=0 (4 7)
a

By multiplying p"'@ by the preceding equation and
adding it to %AC "(Q& (p) given in Eq. (3.14), it is found
that

PAC&A(Q) (p)

= ZZZesU»((p) { (P {p"(Q) (3('"—E"'")Vs"}

pA(Q) {(p(&)CA EA(Q))&sf A}j
Then we may separate it into two parts:

pAC&A(Q) (p) P AC&A(Q) (p) EA(Q)P AC&A(Q) ( )
(3: AC&A(Q) (p)

+gee U»((P) ((PpA(Q) pA(Q)(P)3(&A()P„A

~

'%sA(Q)*% "(Q)—& "(Q)* (1()s"(Q&
~
dr(6 (5.1)

so that there exists a function psA(Q) which satisfies

~
~ A(Q) ~ A(Q)

~

&1~
~

&Sy A(Q)
~

(5.2)

where sgsA(Q) is normalized in the same manner as
~Cp~(@, that is,

a~,.(a&w~,a(a&gf~ ((»*~, ~((»d, =p,

the overlap metric (R
~
T), calculated by the wave func-

tions in deformed states instead of one obtained by
functions p"C~. The F" term is the diGerence between
the total change Fi" and the main part P2" and is usually
expected to be very small. "In any case, both terms are
small and do not depend appreciably on the correlation
energy in atoms, because they are related to exchange
interaction between diferent orbitals, where the cor-
relation energy is expected to be small. The discussion
given in the next section applies to this term too.

5. APPROXIMATION AND ITS ACCURACY

From the arguments just given it is clear that the
energy matrix may be calculated with an accuracy
satisfactory enough for obtaining wave functions and
energy levels even if we cut off the series expansion
(4.4) at a certain point and neglect the higher terms,
as long as we calculate (Er+ E&r) very accurately. How
many terms Czz in Cp we should take depends on the
accuracy desired and also on the molecule considered.
However, it is not easy to get accurate atomic functions
and, if possible, simplification is preferable for applica-
tion to more complicated molecules and crystals.
Such approximations are not always necessary. It may
be found that our way of expanding the energy matrix
is the most convenient method in a highly accurate
calculation.

Here we consider case (II„),where orbital functions
are used as basis and use only the 6rst term in calcu-
lating the energy matrix (4.1') except (Er+E@). In
order to estimate the error produced by using this ap-
proximation, we assume that Hartree's function &0~ is
the best approximate function made up from orbital
functions for describing the charge distribution of the
primitive function ~% ~ of the exact eigenfunction, and
that its deviation from exact one is less than a small
number e«1 (assumption):

PsAC&A(Q) (p) —QQQe U s((P) ((Pp (Q) p (Q)(P)
Ic h

As both expressions are zero when 6'= E, the 5' term is
the change of the intra-atomic exchange energy due to
deformation of an atom. The main contribution 52~ of
the change is already included in the 6rst term rs(Ez+
Es) (E

~
T) of the energy matrix (4.5) by the use of

» In case (II), the primitive function Wf, & is made up from
Hartree-Fock orbitals pf which satisfy the equation

ggt4t=«4 t,

where t is the Hartree-Fock Hamiltonian. Then we can replace
3.& in Eq. (4.S) by

Zet'I+ZZ(rg, ) '—ZVg~
t t&e

as shown in Eq. (5.T3). (pp"&~~ —p"&~)p) is expanded as Eq.
(5.12l. Therefore iE ( PT l is evaluated by the use of Eq. (5.13'l.
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In order to support the 6rst half of the assumption, we

may refer to the work by Green et al. '4 Equation (5.1)
may be written as

I
sip &(Q)+oCr &(Q)

II ~ &(Q) ~ &(Q)
I

d

As %os"(Q) is supposed to be a good approximation to
~~~(Q)

I ~,"(Q)
II ops" (Q)—~o„&(q)

I «
and

have values of the same order of magnitude, and
therefore Eq. (5.2) is expected naturally. Here oft"(Q)

is also a function similar to ~%~~(@ and &p~"(@,except
for the vicinity of nodes that may exist in ~%'pI, (. So
we can estimate the magnitude of integrals including
o(&(s~(q) by replacing it with '%s"(Q) or '%os"(Q).

From the assumption it is naturally found that there
exists a function which satis6es

I
~(q)(p& —Co"'"(p)

I &le I
~"'"(p)

I

everywhere in space, where

y&(Q) e(f)&(Q)«= 1

and where P (Q)(p) is approximated by C'"(Q)(p) or
Co"(Q&(p) in order to estimate the magnitude of inte-

grals involving (t "(Q)(p). This is reasonable because

Co"(Q)(p) etc. As the molecular wave functions Cs(p)
and Cr(p) are constructed from atomic functions
~(Q') (p) cps(I"—Q') (p) and cy~(Q) (p) @s(I'—Q) (p)
spectively, as is shown in Eq. (3.4), we use a notation
in which composite atomic functions are speci6ed,
such as

(R I
~2'&=—(O'P'

I &QP &

(Ro I ~~o &= (Qo'Po'
I &QoPo &

where Qo represents Co"&Q& (p) and so on. Then we have

~~=I &Q'P'
I
~QP&- &Q.'Po'

I ~Q.Po& I

&1(e'P'
I ~QP&- &Q'P'

I ~QP. & I

+1&e'P'
I ~QP )- (Q'P'

I ~Q.Po& I

+1&e'P'
I ~Q.P.&- &e'P.' I ~Q.P.& I

+1&e'P.'
I ~Q.P.)-(e.'P.'

I ~QoPo) I. (5 6)

Therefore we estimate the order of magnitude of the
four terms in Eq. (5.6) instead of Eq. (5.5). These
four terms are of the same order of magnitude in the
sense of the assumption made. I'or instance, the second
term is

~~.= I
&Q'P'

I ~QPo&- &e'P'
I ~Q.Po& I

&
I & I

O'P'
I II & ll Q—Qo II Po I& I

& oeq I
(O'P'

ll &
I @QPo & I.

In (Q'P'
ll & 1&tqPo&,

"(fq is approximated with Q, and
the approximate atomic functions Qo', Po', and Qo

may be used for estimating the integrals. Then we have

I QQQUss((P) (P&s"~q'(p) II
&s"~q' (p) —@os"(Q) (p) I

dr

Therefore

«ZZZ I o~(» I f~ I
p 'a

I

(5.4)

Now we estimate the magnitude of an error produced
in the calculation of the matrix element (4.1') by using

the assumption mentioned previously. To do this we

calculate

&&»=
I (R I &»—&Ro I

~2'o
& I

for @=Er X, 8, P, and 'U. In Eq. (—5.5) Ro and To

represent the molecular wave functions C'zo(p) and

Cro(p) made up from approximate atomic functions

~4 L. C. Green et al. , Phys. Rev. 85, 65 (1952); 91, 35 (1953);
93, 27' (~954).

~«-'(en+or) I &Ro II &
I

2'o& I, (5.7)

where er=eq+eI and e)t=eq +eI .
Here we examine the signs of the operators 2=

Er—
X& (I, P, and 'U. The first one, Ez —X, is simPle,

» The notation [ g ( for a dit'ierential operator here means, that
the absolute value of the differentiated function is obtained.

~~ &(eq/2) I
&Qo'Po' ll &

I QoPo& I.

By repeating the same argument for the other three
terms in Eq. (5.6), it is easily found that
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because it is a constant throughout space. If we are considering the ground state of a stable molecule, then
Ez &X; therefore, Ez —) &0. The last one is written as

U= g g{{(e'/rg) —(e'/r~~)] —
{ (e'/re;) —(e'/R)]}~

iC A j~B

where g;c-~ is a summation over all electrons associated with atom A. Here each term is expanded as

f(ij) =r,; ' -r~—; '=-g(r„'/r, P+') P.(cos8;;"),
n=l

(rA' /rA 'n+1) P (cos8. ,A)
n=l

rA;&AA;,

g(i) =re(-' —R '= Q-(rgg"/R"+') P„(cos8;e")
n 1

rA;(R,

= Q(R"/r~ "+')P (cos8 e')
n 1

(5.8)

where 8;, = ZiAj It i.s possible to separate terms f&&(ij) and g&&(i) which operate on 1s electron j from others,
because the permutation operators (P are commutative with 'U, and we can consider '0 as operating on products
of primitive functions of atoms, such that 'V~CA+)~CB&~ @.As a 1s electron is localized at the vicinity of a nucleus,
the contribution from rA;& R or r&;&r» is negligible. By neglecting the second expansion, we find that

f&,(ij) g»(—i) = g$(rz;"/rz p+') —(rz;"/R"+') ]P (cos8e")+g (rz p/rz p+') I P„(cos8;,&) P(cos8;&—")}
n 1 n=l

P(r~;"re; /R™+1)[(1/R")+ (1/R" 'rz;)+ ~ ~ + (1/rzP) ]P (cos8gg )P (cos8~e), re;& R,
n 1 m=1

=Q Q(rz;"R /reap+') D 1/R~)+(1/R" 'rzg)+ ~ ~ +(1/reap)P„(cos8je")P (cos8;g )) re;) R.(5.9)
n=1 m 1

If electron j is also in a is orbital, then r»&R, r»= R and it is found that

f»(ij) —g&, (i) =g g[(e+1)rz;"re; /R"+"+']P„(cos8je ) P (cos8jg ).
n=l m 1

(5.10)

If we evaluate g&, (i) and f»(ij) by using 1s orbitals, we obtain almost zero contribution, because the is orbital is
spherically symmetric and the overlap between neighboring atoms is small. However, the exact wave function Cz
is expanded as

CT= QC'TgPa(cos8iB ) Pen(cos8jA )co~

and then we find nonzero contribution of the g~, and fq, integrals. The results are written as

(R { (f&.—g») T)=g P{(e +1)/ R+"+'](R„~ { (rzPre;")T„„.)c„"*c„„r,if both i and j are in 1s orbi-
n~1 m=1 tais

= Q (R„.
~
((rj P/rg "+')—(rgP/R"+') ]T„-)c„.~'c; r

n=l
if electron i is in 1s orbital and
electron j is not in .is orbital.

Instead of Kqs. (5.9) and (5.10), we use the following expression to estimate the error (5.7) resulting from f»
and g1, '.

If~.(ij)—g~'(i) I
=2 Z{:(~+1)/R"+"+'](r~'")(~w")

n=1 m 1
if both i and j are in 1s orbital,

=Q(r~ "){(1/rg "+')+(1/R"+')]
n~1

if i is in 1s orbital but j is not.
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For the other electrons, the contributions from rA;) R or rA; )rA; are not negligible, and it is necessary to consider
Eq. (5.8) explicitly in order to estimate the error correctly; also, the convergence is slow. We consider 1/r@ and
1/rA; or 1/rs; separately. Then the interatomic interaction operator 'U is divided into three parts, such that

1s

'UI=PZ Z If1 (oi) —gl. (o) I+le'Z Z Ifl.(oi) —gl (I) I

iC:A jC:B ic:A jc B

iC:A jC',B

Vo= —Q Q'L(Zs —2) e'/rI), j, (5.11)

where g;c-A" is taken over the is electrons in atom A and g;~A' means a summation over all electrons in atom
A except the is orbital. Then it is found that 'UI&0, 'U2&0, and 'US&0.

In order to examine b, we recall that p is a function of r and can be expressed approximately as N exp (—QI8(r(),
as is shown in Eq. (3.5) . The primitive function &z, made up from Hartree-Fock orbitals may be approximated

by Slater orbitals
y, =y„,I, ,——N. ,r ~

—' exp( —s(rg) VI, , (eo ).
Then we have

P@oo(P) =(iI'/)oo)g{ —Io&IP(1, 2 & N) Moo(1, 2 '&'''N) —VIP(1 2'' )I'''N)V'I'%oa(1 2'''&'''N)}

= (P/~) Q {—&I(sI+ o&I)+ (~(&I/rI) }'+oo(p).

HCI'C SI, ()I, NI~ and fg al'C posltlvC all(i tllell —()g(SI+SBI)+(IIISI/fg))0 lf f'I&olg/(SI+ohI). Fol' tllC 11ydl'OgC11-

like orbitals sI——1/nI In gen. eral, sI& 1/III and 5, &sI. Therefore the condition for g) 0 is rI&2NI for every electron t.
Contribution from the region r~)2nI to the II integral is negligible as compared with the main part, obtained
inside the region rI&2nI. For estimating the error, therefore, we. may assume that g)0 for the whole space.
This can be true even if we use Hartree-I'ock orbitals and more complicated wave functions.

Finally, we look into the 5 integral given by Eq. (4.8). As the correction factor p is written as

p=N exp( —+l'IIrI),

it is found that

((ppA(o) —p"(o)(p) = (PI 1—exp{—p(i)(p, —i) )r }jp (

(5.12)

where 6'» is the number which appears in place of t after the permutation O'. The Hamiltonian K" operates on the
primitive function of atom A in the free state, If we use the approximate functions Cyo for estimating an error

resulting from the 5: integral, the primitive function is a simple product of Hartree-Fock orbitals (t I which satis-
the following equation:

~AyA oAyA

~IA= —S~I—(&A/T'AI)+ ~IA
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Then we find that

K"~oo~= (QK~"+QQ (1/r~s) Q—V~")~o~"

(Q» A+QQ(]/r ) QP A)~ „A (5.13)

By the use of Eqs. (5.12) and (5.13), Eq. (4.8) is rewritten as

~"@ '(u) =f "c'""'(~)—f"c '(~)
fi"4'"'o'(p) = (go~" 8—"~@)Pg+8oUai (+)+I P(—1/ni) l

—g(bs, —8~) r~l "1~A"

Here

H, instead of

is used in fq" and fo~, then fq~) 0 and fo~) 0.
In conclusion, we can estimate the upper limit of the expected error by using the following equation":

&(3'—&)»=~~(os+or) (»mr++»zr ),

»»+=o(E~+~r —2~) I &&o I
2'o& I+of I (~o I

82'o) I+ I
&2'o

I B~o& I l

+-'I I &~o I
f~2'o & I + I

P'o If~&o) I /+-:I I (~o I
U~2'o

& I + I
&2'o

I U~~o& I )

+o l I «o I &o~o& I + I
&2'o

I Uo~o& I l,

»» =ol I «o Iform'o& I+ I
&2'o lfo~o& I }+ll I &&o I &ohio& I+ I

&2'o
I Uo~o& I l

1 1 1 p 2 2 2

Here To and Eo mean 4yo and C go obtained by neglect-
ing the second and higher terms of the molecular wave
functions (4.4) by putting co——1 and ca ——0(EWO).

The error h(3'.—))» depends essentially on the
magnitude of og and or, which are de6ned in Eq. (5.1).
Although the exact atomic functions 4"(@)or ~+I,"(
are not known, we can estimate the value of e by as-
suming that the Hylleraas function is accurate enough
for the purpose. According to Green et al. ,"a Hylleraas-

'6 The operators appearing here are all positive, so it is not
necessary to take the absolute value of the operators in Eq. (S.'1).

type function CH for helium is expanded by

C'H = QC'Eccxy

where the 6rst term Co=—CHp is a Hartree-Pock func-
tion. Values of coe%cients c~ are listed in Table I. As
Crr corresponds to C&,. in Eq. (2.13), Eq. (5.1) is
written as

r I Q Q elr*CJr. c~*c~. C'up*cup(1 —cup ) I
dr(o.—

X=1X~=1
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He Li+

TABLE I. CoeKcients c& in the expansion Ca= ZCKCK.
K Fock function becomes diferent from Cp(Li+) ob-

tained for the Li+ ion. The deviation is taken into
account by C(Li+), which is orthogonal to C,(Li+) ~

James has also shown that

co
Cy

cg
Cl
Z;c2

CHF

0.993206
0.115067
0.016245
0.005375
0.999991

0.969074

0.997467
0.070256
0.010387
0.003501
0.999996

0.994907

0.998806
0.048251
0.007179
0.002426
0.999998

0.998124

ap ——(1—8p')&, 8p«p(Li+). (5.20)

The coefficient of the term g~e(PCp(Li+) C(2s; Li) is
therefore cp(Li)ap. This is also calculated from Eq.
(5.17) together with Eq. (5.15), which gives the
expression cp(Li+) cp (Li). Then we find that

CoefI cients of the Hartree-Fock functions.

As the first and second terms in the preceding equation
compensate each other, it is quite satisfactory to
assume that

~=1—cHp' ——0.0102.

Although except for He and Li atoms, good ap-
proximate functions of atoms have not yet been
obtained, it is possible to estimate the order of magni-
tude of e in the following manner.

The wave function of the Li+ ion is given by

C(Li+) =QCx(Li+)cx(Li+), (5.15)

where
cp(Li+) =f1—c(Li+)]&. (5.16)

This is approximately equal to cp(He) for the He atom.
James'~ has shown that the wave function of the Li
atom is written as an antisymmetrized product of
C(Li+) and 2s orbital in good approximation, because
the correlation between 1s and 2s electrons is neg-
ligibly small. Then the exact wave function of the Li
atom is given by

C(Li) =QCs'(Li) cs'(Li), (5.17)

where

Cp'(Li) =ps(PC(is'Li+) C(2s; Li),

cp(Li) ap=cp(Li+)cp'(Li).

By inserting Eqs. (5.16), (5.18), and (5.20) into the
preceding equation, it is found that

cp(Li) =IL1—p(Li+)]L1—2p(2s; Li)]I'/(1 —bp)&.

Then the value of p=i —cpP(Li) for the Li atom is
given by

p=1—cp'(Li) =Lp(Li+)+2p(2s; Li)]/(1 —8) =p(Li+)

(5.21)

-hich is found to be approximately equal to p(Li+) for
the Li+ ion.

According to the analysis of correlation energy
between electrons, " every pair of electrons has a
constant amount of correlation energy, irrespective of
whether the pair appears in free atoms or in ions.
The value depends on the symmetry of the electrons.
For instance, the correlation energy between two 1s
orbitals is about 1.5 ev, regardless of whether the pair
is included in H, He, Li+, Li, Be~, Be+, or Be. The
correlation energy between 1s and 2s orbitals is always
negligible, but two 2s orbitals have a correlation energy
of about1ev. Two 2p orbitals have a negligibly small
correlation energy if the pair is in triplet state, but the
amount will be about 1.5 ev if it is in D state and so on.

The wave function C(ij) of the pair of electrons i
and j is written as

and

cp'(Li) =$1—2p(2s; Li)]'*, 2p(2s; Li)«p(Li+) ~

where
@'(ij)=@o(ij)co(ij)+@"(ij)c (ij)

~ (U)'(ii) —=Z~x(~i) «(~i)

(5.22)

cp(ij) =(1—p(ij)]', p(ij)«1. (5.23)

(5.18)
and C p(ij) is the Hartree-Pock function of the system,

The wave function C Li is easilyrewritten so that the
first term is built up from the Hartree-Fock function
Cp(Li):

e(Li) =QCx(Li) cx(Li), (5.19)

where

Cp(Li) =Qp(PIapCp(Li+)+aC(Li+) IC(2s; Li),

and Cp(Li+) is the Hartree-Fock function of the Li+
ion. In the Li atom, the E' shell part of the Hartree-

"H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).

In view of the analysis of the correlation energy, we
assume that the ratio cp(ij)/c, (ij) is invariant, ir-
respective of whether 4(ij) is in atoms or in ions,
although C(ij) itself may be changed due to distortion
of the charge distribution.

The wave function of a three-electron system is there-
fore expressed as

» T. Arai and T. Onishi, J. Chem. Phys. 26, 70 (1957).
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4 (123) =N+e&P[4p(123)+4, (12)4 (3)c, (12; 3)

+4,(23)4 (1)c, (23; 1)+4,(31)4 (2)c,(31;2)

+4,(123)c,(123)],
where C,(12), 4,(23), and C, (31) are defined by Eq.
(5.22) and take the correlation between two electrons
into account, whereas 4, (123) takes care of correlation
of higher order. As assumed, the ratio between the
Hartree-Pock function Cp(123) and C, (12)4(3) in 4
(123) is given by the coeflicients .in Eq. (5.22), such
that

c, (12;3) =c,(12)/cp(12).

Likewise

c,(23; 1)=c, (23)/cp(23),

c,(31;2) =c,(31)/cp(31).

The absolute values of these ratios are small as com-
pared with 1. By neglecting the higher terms including
c,(123) therefore, 4 (123) is normalized as follows:

4'(123) = Ze&P[4'p(123)cp(123)

+4, (12)4 (3)cP (12, 3)+4,(23)4 (1)cP (23; 1)

+C.(31)4 (2)cP(31; 2) ], (5.24)
where

cp(123) = cp(12) cp(23) cp(13),

c (12; 3) =c (12)cp(23)cp(13),

c (23; 1) =cp(12)c (23)cp(13),

c,(31;2) =co(12)cp(23) c,(13). (5.25)

By using Eq. (5.23), cp(123) = (1—po) t is rewritten as

1—ex= [1—e(12)][1—e(23)][1—e(31)],

or simply

by neglecting the higher terms again.
In general, cp(1, 2, ~ N) and pier are obtained by

c (12 ~ N) = +co (ij ), (5.27)
igj

~ =Z (~i). (5.28)

A. Method of Deformed Atoms in Molecules'

As a 6rst-order approximation, we suggested that
the series expansion of the wave function (4.4) be
cut oft after the 6rst term and that the higher terms be
neglected for the calculation of each part of the energy
matrix (4.6) except Er+Err. Then

In the case of a Li atom, the predominant correlation
between 1s electrons 1 and 2 is represented by e(Li+) =
p(12))&p(23) or e(31) so that Eq. (5.26) is written as
Eq. (5.21), where 8«1 is equivalent to the assumption
concerning the invariance of correlation energy men-
tioned previously. The error expected in the calculation
of the Li2 molecule by using the present approximation
is shown in Table II.

0. FURTHER SIMPLIFICATION AND VARIOUS
METHODS OF ATOMS IN MOLECULES

VVe have proposed to construct wave functions in
molecules (3.8) from modified atomic wave functions
(3.7) so that changes in the charge distribution of
atoms in molecules are taken into account. Then
the energy matrix is correctly calculated by using Eqs.
(4.5) or (4.6). Although exact eigenfunctions of atoms
are not available and, even if they are available, would
be extremely dificult to use for calculating the energy
matrix, we can expand them into series of terms and
then each part of the energy matrix (4.6) is evaluated
up to a certain decimal point correctly. This is neces-
sary in order to assure the accuracy of the approxi-
mation in the calculation of the energy matrix.

ep= e(12)+e(23)+e(31) (5.26) (R I
X X

I T) pp„——, (Ero+Er 2X) (Rp I Tp)

k&&ro+&r 2&) &&o )
7'o)—

l l &~o I g~o)+ &T'o
I g~o) l

o &o [ fi 7'o)+ &7'o fi&o) )
-,'(R, ~,r, &+&r, ~,R, &

—,'I(R, g, r, )+(r, g,R, )
AHgp+

p& &&o foTo)+ &7'o (foJto) }
o & &Ro U3To)+ &&o ] 'UoRo) j
AHA@

s (6R+6T)
~(ae-~) ~.

1.27
0.02
1.22
8.15
6.72

17.38

1.22
14.86
16 ' 08

0.0038
0.13

1;49
0.23
6.39
7.11
3.35

18.57

6.39
14.00
20.39

0.0057
0.22

2.14
0.84

12.78
8.15
0.00

23.91

12.78
14.86
27.64

0.0076
0.39

I R=O or T Omeans the lowest covalent structure Li+Li. R= 1 or T=1means
the lowest ionic structure Li++Li .

TABLE II. The error a(gQ —X) d'or expected in the calculation of
Li~ (ev).

+p I (Ro I
»p &+ (To I »p) I

+-,'{(Rp I QTp&+(Tp I URp&I, (6.1)

where Ez and E are calculated exactly, as given in
Eq. (4.5). The upper limit of the possible error is
estimated„, :by Eq. (5.14). Wave functions Rp and Tp

appearing here are equivalent to those in the orbital
approach so that there are no difficulties to evaluate
the matrix (6.1).Values of atomic energies Er and Err
are obtained from spectroscopic data more accurately
than we can expect from the numerical calculation.

Equation (6.1) is the basic formula of the method of
deformed atoms in molecules. We have discussed the
physical meaning of the approximation used here and
shown the accuracy of the calculation.
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B. Use of the Hylleraas-Type Functions

If we start from the Hylleraas-Kinoshita functions to
construct atomic functions Lease (I)], the convergency
of the expansion (4.4) becomes much faster and it is
possible to calculate the energy matrix more accurately.
This has been done by Pauncz4 in the calculation of the
ground state of H2. Two structures, covalent C~ and
ionic C2, are considered for building up the molecular
wave function

x~lglo~(Q) (p) = go&(Q)lglo~(Q) (p) + yg)o&(Q) (p)

+&o"C'o"(Q) (p), (6 3)

8"C ""'(.) =ZZZH. ~-(6)6 Z(-lA.""'C."
a t

+1p&(Q) +2&@QA(Q))

&Q"C'Q"' '(p) =Q Qgoo&oa(6') (P {p"'Q'(X~

—Eo&(Q)) ~2&(Q) }
and

where

C 1Q1+C'2o2 (6.2)
jap&(Q) — @p~(Q) ~~@p~(Q)d~

C1=2 i{C1"(1' H) C (2' H)+C' (1;H) C"(2; H) }

C2=2-~{C"(12; H-)+Ca(12 H-) }.
He assumed that p=1; then g=%=0. The interatomic
interaction has been calculated by using 3 terms of the
Hylleraas function for the H ion. The result (D,=
3.23 ev) has been compared with the result obtained by
applying method (A) (D,=3.08 ev). The agreement is
remarkably good.

This calculation has two significant meanings. As the
accuracy of the present method (B) is supposed to be
satisfactory for calculating energy values (4.6), the
agreement obtained herein gives strong support for the
accuracy of the approximation proposed in (A).

On the other hand, the results are not so satisfactory
as compared with the observed value 4.74 ev. It is
difficult to obtain a result much closer to the observed
value by adding the higher terms C», C4 ~ ~ ~ in Kq.
(6.2), because the energy separations between C1, C2

and the higher terms are large and convergency is slow.
By choosing a suitable p, we immediately obtain the

more reasonable result of 4.58 ev by using the same
wave function (6.2). It is therefore very essential to
consider the change in charge distribution of atoms in
molecules or crystals.

C. Method of Deformed Atoms in Molecules
(Conventional Scheme) '

Although the method (A) is considerably simpler
than (B), it is still dificult to carry out the calculation,
because the method is essentially the Heitler-London
method and we have nonzero higher permutations,
which are not manageable for larger molecules or
crystals. Besides, we have unfamiliar terms () and &

included in the energy matrix (6.1) .
In order to eliminate (d and P and simplify the

method, we recall that Eq. (3.14) is valid for any atomic
function, because the operator (1+K takes care of every
kind of energy loss due to deficiency of the atomic
functions used. The approximate atomic function
4Q"(Q)(p), made up from orbitals, also satisfies Eq.
(3 14) . Then it is found that

If we construct a molecular wave function on the basis
of approximate atomic functions instead of exact ones,
we find

C'Tp CPQAO

= +I22rM~ g QUoo(Pgs)(Pg))C'Q" Q (p) C'o Q (p),

and
pro —Eo&(Q)+ Eo))(&—Q)

g ~(Q) = (Q ~
[
x~

[ Q
~ )

This formula is obtained in the same way as Eqs. (4.5)
and (4.6) have been derived and is mathematically
rigorous because of Eq. (6.3). The energy matrix
(R

~

X
~ T), obtained on the basis of T and R, made

up from correlated atomic functions, is evaluated by
using Eq. (6.1) in the first approximation. By com-
paring Eqs. (6.1) and (6.4), it is found that

(Z i
x—X

i T),.„...= (Z, [ x—Z
i
T,)

+-:{(& &r')+(& &') }&&Q
—

I To) (65)—
if we have the following relation:

(&o
~

GTQ&= (2(.'o
~

PQTQ),

(TQ [ SZQ) —(TQ ) PQEQ& (6.6)

The equation (6.5) had been obtained before (in the
method of deformed atoms in molecules)' and also by
Hurley, ' the latter rather intuitively (the method of the
intra-atomic correlation correction). If the relations
(6.6) are correct, Eq. (6.5) is equivalent to—and more

in place of the one given by Eqs. (3.4) and (4.4).
The function CTp is the first term that appears in the
series expansion (4.4) of the exact molecular function
CT. Hereafter we abbreviate CTp as Tp. The energy
matrix obtained on the basis of Tp and Ep is given by

(&o
~
X—l(

) To)=2(&r'+E)2' —2l1) (2('o
~

To)

+2{(~o I BTQ&+(To I B~o&}

+2{(&o [ &QTQ&+ (To [ &QA&}

+2{(~oI'UTQ&+(To
I «Q&}, (64)

where
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C'Mo (C'MoyC'Ã0' ' ' ) and @'HL (C'T01 C BO' ' ' ) ~

The energy matrix (6.5) is written as

[HHL(P) ]a'pprox=HHL (P)

+-', {S(p)(K—K')+(K—K') S(p) }, (6.8)

where (K—K') is the diagonal matrix, the elements of
which are given by (ET ET') bTH. IIH—L'(p) is the energy
matrix (Ro I

X
I To) obtained by the Heitler-London

functions, whereas [HHz, (p) ],»„„is the energy matrix
(R

I
X

I
T), ,»„„given by the exact functions in the

first order of approximation. If we transform our func-
tion CrHL=(CT, Crii ~ ~ ) to the new function rlrMo ——

(C'M, C'z ~ ~ ) by using the same transformation matrix
as in Eq. (6.7), then we find

O'Mo(p) =C'HL(p) U (6.9)

Here we have to make sure that the functions CrT(p),
Crz(p) ~ ~ ~ used are made up in such a way that the
first terms in the expansion (4.4) are given by C»o(p),
Crioo(p) ~ ~ ~, which are composed of common atomic
orbitals for both atoms and ions. Then the energy
matrix is given by

[HMO(P) ]approx= (@'MO
I
X

I @'MO)av approx

U [HHL(P) ]approxU

=U HHi. '(p) U+-', U'{S'(p) ( — ')

+( — ') '(p)}
where UtHHL'(p)U=HMQ (p) is the energy matrix
(CrMoo

I
X

I
CrMoo) in the molecular orbital approach,

convenient than —Eq. (6.1), because the erst term
(Ro I

X—X
I To) is equivalent to the energy matrix

as it appears in the ordinary orbital approach, and the
second term is the correlation energy of atoms in
molecules, multiplied by the overlap integral. Both
can be evaluated in the same manner as in the orbital
approach. Besides, the additional terms g and S due to
energy loss of atoms in molecules, included in Eq.
(6.1), disappear in Eq. (6.5), which makes the method
more familiar.

The wave functions Czp and C'gp used here are the
Heitler-London functions made up from nonortho-
gonal orbitals. Then it is not easy to evaluate the
matrix (Ro I

X
I To) because of the nonvanishing

terms in the higher-order permutations. It is possible
to transform the Heitler-London functions Czp into
the molecular orbital functions C~p by

C'MO(p) Q@'TO(p) UTM
T

as long as common orbitals for atoms and ions are used.
For simplicity, we use the matrix notation. Then the
preceding equation is written as

c Mo (p) =@'HLo(p) U (6 &)

by using the row matrices

and UtSU=1 because of orthogonality of the mo-
lecular orbital functions. We abbreviate 'that as

Ut(K —K )U= (E—K ) Mo.

Then it is found that

[HMO (P) ]approx

=HMoo(p)+l{(E—K')Mo+(K —K') o'} (6.10)

As in the energy matrix HMo' in the molecular orbital
approach, higher-order permutations vanish, and this is
much easier to calculate than Eq. (6.5).

Equations (6.5) and (6.10) are equivalent to Eq.
(6.1) if the condition given by Eq. (6.6) is satisfmd,
and are then a good approximation for calculating the
energy matrix. This is unfortunately not correct in the
rigorous sense. For instance, if we assume p=1, then it
is immediately found that

pA@A(Q) 0

because the wave function Cr"&@(p=1) is an eigen-
function of KA. But

'

pAy A(Q) g{)
From Eq. (4.6), therefore, it is easily found that HHi,
is a diagonal matrix at infinite internuclear distance
E.= ~ when p=1, but HHL' is not generally diagonal.
As the second term io {S(E—Eo)+(K—K') S}
diagonal at R= op, Eq. (6.5) or Eq. (6.8) cannot be
correct at R=~. Although Cp (+ gives the energy
value EpA(@, it is not an eigenfunction of 3'.A. There-
fore use of Eq. (6.8) or Eq. (6.10) introduces another
error of

»»= o { I &Ro I &oTo)—&R I ») I

+ I &To I +oRo& —&T I +R&
I } (6 11)

in addition to the error due to use of the first-order
approximation, introduced in Eq. (6.1). This error»
is the origin of the apparent contradiction at infinite
internuclear distance mentioned previously. There
is another way to define the interatomic interaction
(R I

'UT). Then we obtain an equation similar to Eq.
(6.8), but there the definition of (K—K') is different
from the one which has been given in Eq. (6.4). In
this method both HHL and HH~' are diagonal at
infinite internuclear distance and there is no such

difhculty. MofBtt has introduced the de6nition' which
has been used by several people. Hurley has extended
the method to propose the method of the intra-atomic
correlation correction. s In the latter method, however,
there is an ambiguity in the definition of (R I

"UT)
which can lead to serious mistakes. We discuss the
matter in detail in the following two paragraphs.

We now investigate how we can reduce the error 5F
as much as possible. When p=1, (R I ST)=0, then

»»=l{
I &Ro I &oTo& I+ I &To I &oRo&

I } (6.»')
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increase of the ratio cq'/cq) 1 is more effective and

g(EA( )—Eo~"(Q))cp~/P(E" ( ) E—o"(Q)) cp
P P

—&Q")'/(1 —oq')'.

The first term of 6F is then essentially written as

)F0,— ++ ~A E A(Q) @AIL(Q)d~

by using Eq. (6.3). The Hartree-Fock function Co"(Q)

can be expanded in terms of the exact eigenfunctions
4"(") as follows: In the case of pg1, 8F is written as

@oA(Q) = QM(P)CP, ekUII (P

where X"C~( )=E ( )C"(").Then it is found that

gPa — gag(EA(P) EoA(Q)) @A(P)(pdg

For a diagonal term O'=Co~(Q), 5F becomes zero, be-
cause

X [ (P f p„A(Q) (~A E A(Q)) ~ A(Q)
}jO)r

i)p a EoA(Q) gpoa+ g poa

where

8F a %p A@ A(Q)dT

and

go~(Q) *3~go~(Q) d~ —Eo~(Q)

SF;= e*e,~eo~(Q)d~,

()pa(@—cyA(Q)) —(EA(Q) EoA(Q) ) oqo

+Q(EA(P) EoA(Q)) opo —O
P

~F;= e*S,~C,~«)d.,

XL(P(3.A E,A(Q)) ~os(Q)j
The expression is obtained by subtracting the term
bF3 from 5F and dividing it into bFj and 5F2 as in
Eq. (4.8). Comparing with Eq. (4.8), it is found that

&P)ir = -,' I [ (Eo [ &i2'o
&
—Ero(Eo [»2'o &+ (Eo [»2'o)

—(Eo [
~(2'o &+Er (Eo I

»2'o
& I

+ [ (2o [ &iso& —Ezo(2o [»Eo&

+P'o [»Eo&—(2"o
[ &iso)+E)o(2'o [»Eo) [ }

=-', I [ (Er Ero) (&o [»To&+—(Eo [»2'o& [

+ [ (Ez—Ezo) (2'o [»Eo&+(T'o [»Eo& [.

Then

()Pa —(EA(Q) EoA(Q)) dqaoq

+Q(EA(P) E A(Q))d 4o (6 12)

Here dp/cp, therefore 8F' is in general not zero. But as
long as we are considering a few atomic states which are
close to each other, for instance 'P, 'D, and '5 states
of a C atom with (1s)'(2s)'(2p)' con6guration, then
the correlation energy between core electrons is con-
stant and we expect that dp cp, and dQ'))dp. How-
ever,

where cq'))cp', P&Q. Here the first and second terms»AC, ,A(q) +gee, U,„((p)&A(q)
cancel each other. In general, we can expand%' as

y —Qg)A(P)d
P

dQ= a*Co"(Q)d

and then the first and second terms in Eq. (6.12)
have opposite signs and the same order of magnitude,
but bF WO. If we choose Co (Q) so that Eo"«) approaches
to E~(Q) and cp's other than cQ tend to zero, then 8F
becomes small. The best, function Co~(Q) in the orbital
approach is therefore the Hartree-Pock function. In
fact, if we take a function Co'"(Q) diferent from the
Hartree-Pock Co (Q), then

[
(EA(Q) EoA(Q))(;

[ ( [
(EA(Q) Eo'A(Q))oq'

[

because E"(Q)(Eo"(Q)(Eo'"(Q), whereas cq'/co=1. In
the second term, the difference E ( )—Eo «) is fairly
large so that E ( —Eo Q =E —Eo' Q, but the

Then we expect the same order of errors again, because
the erst term is negligibly small and (Eo [»To) is
equivalent to 8P(p= 1).It is very important, therefore,
to construct the atomic wave function such that its
first term is made up from Hartree-Fock functions. The
correction term p can be added after the exact eigen-
function of atoms is obtained.

D. Method of Atoms in Molecules"

Moffitt has originally proposed to build up the
molecular wave functions from exact eigenfunctions of
atoms, and suggested to calculate the interatomic
interaction by using approximate functions made up
from orbitals. There he assumed that the value of the
interatomic interaction is not aGected by the inac-
curacy of approximate functions used, although such
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functions are poor for calculating the intra-atomic part.
All equations as given by MoStt are also obtained

from the previous results by setting p=1. From Eq.
(4.5) we find that

(R i
X i

2'),= ', (Z,+-Z, ) (R i r)
+-', {(R( VT)+(r ( ~R)I

or, by using the matrix notation

pIHL] =-', (SE+ES)+-', (V+Vt) . (6.13)

This is an exact result obtained immediately if we
build up the molecular wave function from exact
eigenfunctions of atoms and let the molecular Hamil-
tonian operate on it. This matrix is conveniently calcu-
lated

L Hz]pporpx=o( + )+o(V +V ) (6, 1 )

which is equivalent to Eq. (6.1); S' and Vo should be
evaluated by using the approximate functions CTo

made up from Hartree-Fock functions of atoms. Then
the expected error in this approximation is smaller than
the error in Eq. (6.1), because b=$=0.

The energy matrix HHz, '——(Rp
~
R

~
Tp) calculated

by approximate functions C»p, is written as Eq. (6.4),
because the Hartree-Fock functions Co~' satisfy
Kq. (6.3). Unlike in Kqs. (6.13) and (6.14), however,
terms including Fo do not vanish even if we set p= 1. If
we assume that

equal to the asymptotic form of HHL at in6nite nuclear
separation. Then

where
V=HHz. —SHIT, (~ ),

H»(po) = limHHL

(6.19)

in which E. is the internuclear distance. Approximation
to V is therefore given by

V'=HHz, —SPH»o(pp). (6.20)

Moffitt has defined V' as Eq. (6.20) and assumed that
V' is a good approximation to V in Eq. (6.13). By
replacing —,'(V+Vt) in Eq. (6.13) by V and its trans-
posed complex conjugate, we find that

LHHL] approx=H» +o {S (K HHL (~ ))
+ (E—HHL'( pp) ) S'I. (6.21)

Here the equality holds at infinite nuclear distance
R-+~, because

lim So=1.

Eigenvalues E of atoms and HHz, (~) defined by
Eq. (6.19) are equal to each other only if the molecular
wave functions are written as Eq. (3.4) . When the wave
functions H«are transformed by

~ ~=+ Hr.U

(Rp (
5'prp)= (Tp [ FQRp)=0,

which is equivalent to Eq. (6.6), then we obtain

(6.15)
the energy matrix HHz, given by Kq. (6.13) should be
transformed to

[H,]=Ut{ H„z,]U
HHL' ——-', (S'K'+ K'S') +-', (V'+ V't), (6.16)

where Ko is defined in Kq. (6.4) and is the sum of the
Hartree-Fock energies of atoms.

By comparing Eqs. (6.14) and (6.16), we find that

LH»].o.-*=HHL'+ o {S'(K—K')+ (E—K') S'I,

(6.17)

which is equivalent to Eq. (6.5). This equality does
not hold in the rigorous sense, because oB-diagonal
elements in HHL' do not vanish at indnite nuclear
separation.

From Eq. (4.1') it is found, in the case of p= 1, that

where

and

=H '—S 'H '(HL rc )

H.o=U~H .oU,

H.'(HL, ~) =UtH»o(~) U.

(6.23)

= —,'Ut(SR+ ES)U+-', Ut(V+Vt) U

=o(S K+K S.)+o(V.+V.') (622)

where E =UtKU, S,=UtSU, and V,= UtVU. In the
same approximation as in Eq. (6.20), V,o should be

V,o(HL) =UtVoU —UtH oU UtSoHHLo( ) U

V=HHL —SE. (6 1g) Then we have

If we assume that approximation to V is obtained by
calculating H», E, and 8 by orbital approach, then
we have

Vo H o goEo

which is equivalent to Kq. (6.16) and E' is again the
sum of the Hartree-Fock energies of atoms. As long as
we are considering the simple Heitler-London scheme in
which molecular wave functions are built up from anti-
symmetrized products of atomic eigenfunctions, E is

where

V '=H '—S 'H '( pp)

H.o(~) = limH. ',

(6.25)

[H,(HL)].,o,.„——H '+-', {S.'(E—H'(HL, pp ) )

+ (K—H, '(HL, ~ ) ) S,oI, (6.24)

which is similar to Eq. (6.21) . If we apply the definition
(6.20) to calculate V and V t in Eq. (6.22) approxi-
mately,
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C,=+.6C&(1)C,H (23),

Cp
——Qe(PC" (1)CP'(23), (6.27)

then we 6nd

[H,]„„.=H, '+-', {S'(E—H,'( ))
+ (E—H'(") ) S'I (6 26)

Although this formula is exactly the same as Eq. (6.24)
in form, H, from Eq. (6.26) is not equal to
[H, (HL)],»„„given by Eq. (6.24), because H, '(pp)
as defined in Eq. (6.25) is not always equal to
H, '(HL, pp) as defined in Eq. (6.23).

For example, we consider the wave function of HeH,
made up from the following two terms:

Ei——E(H) +Ei(He), Ep ——E(H)+Ep(He),

Ei ——E(H) +Ei'(He), Ep E(——H) +Ep'(He),

aE= C„«*3'.C o"ed~~0

and E(H) is the energy of the H atom and Ei(He)
and Ep(He) are energies of the He atom in the 1s)' 'S
and 1s) 2s) 'S states, respectively. Because of BEAO,
it is clearly seen that Eq. (6.17) is not valid at infinite
separation, but Eq. (6.21) does not have such a ap-
parent contradiction.

If, instead of Cq and C2, we use the functions C~'

and C2,

C '= QePC (1)H{(1+So)—lC ire(23)

+LS/(1+ S')']C'p '(23) I
where CH is the wave function of the H atom and
@iHe and CpHe are the wave functions of the He atom 4P'=gePC (1){[—S/(1+&) ]@i '(23)
with configurations 1s)' 'S and 1s) 2s) 'S. Then we
find that

0

Eg' 0 '

0 E'

which are obtained by linear transformation U from
C~ and C2,

and

Eg' AE S
where lim S=O,

+~CO

where

HHr. '(~) = then we should expect exactly the same result as before.
This is true if we apply the definition in Eq. (6.23).
Then we have

H, '(HL, ~) =U"HirL'(~)U=

Eio+EpoS'+2Sd E
1+S'

(E' E') S+(1—S') AE—

1+S'

E,o E,o) S+ (1 SP) AE

1+S2

Epo+ EioS'—2SAE

1+S'

H P(~) = limH, '= Eg, AE

hE, Eg,

which is different from H, '(HL, pp); then [H,],»„„
given by Eq. (6.26) is different from [H, (HL)],»„
and does not satisfy Eq. (6.28) . Therefore the definition
in Eq. (6.25) cannot provide unique solutions of the
Schrodinger equation, but the results depend on the
choice of the transformation matrix U; which is not
correct. Equation (6.19) can be reasonable only if the

and 6nd that

o=
( [H, (r-rr.)].„...—xS.p (

=U
~
[HHL] .popo. —XSHL'

~

U. (6.28)

This proves the invariance of the solution.
According to the definition in Eq. (6.25) however,

molecular wave function is built up from simple pro-
ducts of atomic functions as in Eq. (6.27).

Discussion of Eqs. (6.11) and (6.11') indicates that
Eq. (6.16) should be written more exactly as

o —i (SoEo+EoSo) + i (go+@of)+$F

At infinite internuclear separation, this is

H»o(~) = Ko+sF(~),
where

8F( po) zr ——lim bFiir

= lim (Rp
~
&pTp)= lim (Tp

~
PpRp)

lim S'= 1; lim V0=0.
@~CO @~CO
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Then it is found that

H„Lo r~ (SoH„Lo( rc ) +H„Lo(~) So)+ o (Vo+.Vot)

+sF——;(S'~F( )+SF( ) S ).

Then

and

2' 0
E=

7

0 Eo]

Instead of Eq. (6.8), therefore, we obtain

[HaL] approx=HnL

+-,'IS'(K—HHL'(oo))+(K —HHL'(oo)) S'I where

K'=HnL'(oo) =
2E' 0

0 E2'

+—,'(S'8F(oo)+SF(oo) S') —bF. (6.29)

This equation is equivalent to Eq. (6.14) and

lim -,'(S'8F(oo)+SF(oo) S ) —SF=0. and

Eg= Cr"*(1)X"(1)C"(1)dr,

The nonzero value of 8F stems from the fact that the
Hartree-Pock function C 0 does not satisfy the Schro-
dinger equation XC'o= EoC'o but satisfies Eq. (6.3),
in which g"C'o" &o& =0 and P"Cro" &&& WO. Therefore
xo(S'bF(oo)+SF(oo) S ) and SF are expected to cancel
each other partly in Eq. (6.29), even at EW oo. Then
we can expect that Eq. (6.19) is better than Eq. (6.16).
As long as we are considering molecular wave functions
made up from atomic functions with diGerent sym-
metry, however, Eq. (6.19) is equivalent to Eq. (6.16)„
and

lim HHL'
@~00

is diagonal, because there is no interaction between
atomic functions with different symmetry. Still there
exists the uncertainty in H,o(oo), however, and Eq.
(6.26) is not correct.

As an example, we consider the H2 molecule. Wave
functions C ~ and C2 of the covalent and ionic structures
are given by

C»=( + i') I:@ (1)C'( )+Cr"( )C ( )] ( o)

C»= (2+2So') '*LE"(12)+4 (12)]r

where

Si= C7"* 1 C ~ 1 dv,

S o= e"*(12)C'(12) d7.

E2= C7+ 12 *X+ 12 C" 12 dr.

We can transform the set to

C'1 =L~2(1+Sl)] t (1+Sl) @'1+(1+So)C'2]1

C o'= $42 (1—So')] 'L' —(1+SP) '*Cr~+ (1+So') '*Cro),

by the transformation matrix U:

U=

(1+SP) '* (1+SP) '*

V2 (1+Sg')
'

V2 (1—So')

(1+So)& 1+S~
V2 (1+Sg') '

42 (1—So')

where S~' and S2' are normalization constants. If we
approximate C"(12) by

4"(12)=C"(1)C"(2)

by using the same orbitals used in 4», then

S=S '= S2'= Sg"= S2 7

(6.31)

and C7~0' and C 20' become the molecular orbital func-
tions:

Cr~'-CM'=t ~( +S)] '(C ( )+C"( ))
X (Cr" (2)+Cr'(2) ),

@o'-C»'= 5~(1—S)] '(Cr" (1)—Cr'(1))

&& (C'" (2) —@~(2) .
However, we find that

HMp'(HL, oo) = UtHnLo(oo) U=

1+S' 1+S'
,(2%+Eo), (-2K+Eo)

2 1—S'

1+S' 1+S'
(—2'+ E2), ,(2Eg+ E.)

—,'(2Er+Eo), —',(—2Er+ Eo)
HMp (oo) = hm HMp =

o (—2Eg+ Eo), —', (2Eg+ Eo)
and HMp (HL, oo) WHMp (oo).
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and

1—S 1—S
%2(1+S') & V2 (1+S') &

Ct= Lv2(1+S')&) 'I (1+S)Ct' —(1—S)Cs'I, (6.32)

Cs= 3~2(1+S')'7-'I (1+S)Ct'+ (1—S)C's'I.

Instead we define the functions

or

C t"——PK2(1+ S') &j-'(C t' —C s'),

C,"=$42(1+Ss)ij-'(C, '+C, ')

@."=C MoU' '

(6.33)

O'-'= L2 (1+S') ]-&
'1 1'

Then

H o(HL oo) U-'tU —'tH„Lo(~)U rU'

(2Er+EsS'), —S(2Et+Es)—(1 S2)—s,
—S(2Et+Es), (2EtS'+Es)

which is definitely different from

HHLo(~) =
2E1, 0

0, E2

In molecules the overlap integrals 8 are not small and
especially nonzero oB-diagonal elements in H, '(HL, oo )
are important.

This difference between HrrLe(~) and H,e(HL, oo)
is clearly indicated by the results of the calculation on
the Li2 molecule by Rahman" and Fieschi."The latter
regarded Ci" and 42" as the Heitler-London function,
the former used Eq. (6.17). The calculation of the Os

molecule by Mof%tt' is also based on C»" and C»" and
neglects the difference between U and O'. Therefore it
is expected that there exists the same error as in
Fieschi's calculation,

In order to transform the IIeitler-London scheme to
the molecular orbital scheme in Mof5tt's method, we
assume that the Hartree-Pock orbitals for free atoms
are also a good approximation to the Hartree-Pock

"A. Rahman, Physica 20, 623 (1954).
~ R. Fieschi, Nuovo cimento 6, 197 (1957).

If we begin with the molecular orbital functions and
want to apply Eq. (6.21), at 6rst we evaluate HMQ'

and transform it to HHi, by

H,o U-rtHMoeU-t

where

1+S 1+S
V2(1+S') & v2(1+ S') &

orbitals for fr'ee ions so that common atomic orbitals
are available to construct the approximate functions
for atoms and ions, as postulated in Eq. (6.31). Several
authors' have pointed out, however, that the use of
common atomic orbitals for atoms and ions produces
serious errors. Therefore it is impossible to rewrite
Kq. (6.26) in a form similar to Eq. (6.10) in order to
apply the equation in the molecular orbital scheme. In
the calculations on the Li2 molecule by Fieschi and on
the 02 molecule by MofIitt, such error was accidentally
compensated by the error due to use of the incorrect
transformation matrix U' instead of U. Values obtained

by them, although satisfactory, cannot have any
physical significance.

R QU, )
)60 t 2 3

-20

-24, -

-28-

32

FIG 2 Calculated ener
gies obtained by various

&l&z»
ionic functions of Hs are
illustrated as function of
the nuclear separation.
Curve 1, EP (s=1); curve
2, EP(z=0.6875); curve
3, E2 and E2 (s0.6875);
and curve 4, E2(s=1).
Curve 5 gives energy Ei
obtained by covalent wave
function, whereas dotted
curve indicates energy ex-
pected from the ideal ionic
function. (Reproduced from
the 6rst of references 5
with the permission of the
Physical Society of I,on-
don. )

E. Method of Intra-Atomic Correlation
Correction by Hurley'

The method is equivalent to the second formula

(6.8) or (6.10), and all discussions given in (C) are also

applicable to this case. Therefore the results obtained

by this method are not empirical but purely theo-

retical, and are comparable to the results of the tradi-
tional orbital approach, although Hurley did not give a
theoretical proof for obtaining his formula (6.10), but
obtained it rather intuitively.

His discussions are as follows. MofIitt's formula

(6.17) or (6.21) gives a reasonable result for the
calculation of the Hs molecule if a Slater orbital P(s) =
(s'/m. )&e *' (where z=0.6875) is used for evaluating
the ionic terms in HHL' and HHL'(oo). The value s=
0.6875 is obtained by optimizing the energy of the II
ion and P with this value of s is a good approximation
of the Hartree-Fock orbital for the H ion. Then
P"(1, s)P"(2, s) is a good approximate function of the
exact eigenfunction Cs~(12) of the H ion. 0 we

assume s=1, where the orbital p&,=ti is the same as the
wave function of a H atom, the energy of the H2

molecule drops too much. To illustrate this difhculty
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HHi, '(s) = ep*(s)xep(s) dr,

K(s) = K"(s)+K'(s),

KP(s) = KAP(s)+K))P(s),

E"(s)=fc~ (s)R f(z)d'"

KAO(s) C Ao (s)~A@ A(s)d&

(ii) The correlation energy is independent of the
value of s; then

K(s) —K'(s) = K—K' (6.34)

where E=EA+E~ is the sum of eigenvalues of free
atoms and E' is given by the Hartree-Fock functions or
evaluated approximately by a Slater orbital with
optimum so. For the H ion, s=0.6875. Then the
equation is written as

we show the energy of various ionic wave functions:

C pp(s =0.6875)

=[2+»'(s) j-:[~A(»)~"(2,s)+~'(1, s)~'(2 s) j
Cpp(Z=1) = (2+2SP) *[/A(1)PA(2)+pe(1)(tP(2)],

C,= (2+2S)-~[C"(12)+C'(12)j,
in Fig. 2, where Ep(s =0.6875) and Ep(s = 1) are
obtained by using Eq. (6.21), in which Cpp(s=0. 6875)
and Cpp(s=1) are used for calculating HrrLP and
H«P(~), respectively. Since Cpp(s=0. 6875) is a good
approximate function of 42, the two functions give
nearly the same variation of energy with nuclear
separation. Therefore the energy Ep'(s=0.6875) ob-
tained by 420 is a good approximation to the energy E~
given by Cp. The energy Ep(s=0.6875) is reasonable,
but it is evident that Ep(s=1) is a very poor approxi-
mation to E~, giving an error of 8 ev. It is also clear
that C2 is not a suitable function for calculating the
ground state of the H2 molecule, because its energy E2
is considerably higher than the energy EOP(s= 1) given

by the simple orbital function C)pp(s= 1).
Hurley assumed then that there exists a function

Cp(s=1), which includes correlation between electrons
but still its charge distribution is different from one
given by the eigenstate 42, although similar to that of
C)pp(z=1). In the present method, modified atomic
functions C (s) are used as basics. Then he made the
two following statements:

(i) By extending Kq. (6.17), the energy matrix for
the modified function C (s) is evaluated by

[HnL(s) 3 ---=H«'(s)+p[s'(s) {K(s)—K'(s) I

+ {K(s) —K'(s) I S'(s) l,

[HHL(s) ].„...=HnL'(s)

+' I s(K KP)+ (K KP) sI (6 35)

Equation (6.34) is obtained from Eqs. (3.14) and

(6.3), that is,

EA(Q)(s) =E (Q)(p) — C) (Q) (p)~ @ (Q)(p)(fr

=EA«)+(Q
I gAQ&+(Q I

PAQ&

E(A(Q) (s) = EOA(Q) (p) = type(Q) (p)~AlglpA(Q) (p)gr

= E.""'+(e.
I s"e.&+ (Q. I

~."e.)
In the first order of approximation, the first equation is

written as

[E""'( )j.„--=E""+(e.I
s'e.&+(e. I

~'e. &,

(6.36)

and by assuming (Qp I

S. Qp) = (Qp I
Fp Qp), it is found

that

EA(Q) (s) EpA(Q) (s) —EA(Q) EOA(Q)

In order to eliminate the preceding assumption, we

may use

[H»(s) j pp--=HnL'(s)+ p {S'(s)(K—HnL'("))

+ (K—HnL'(" ) ) S'(s) I.

%e have already discussed the diRerence between
HnL'(~ ) and E'. The assumption (6.36) is based
on the estimation of error by cutting oR higher terms
of () and 5 integrals, given in Sec. 5.

F. United-Atom Approach Introduced by
Bingel and Preuss"

So far we have assumed that the interatomic interac-
tion is a small perturbation as compared with the total
electronic energy of atoms, and then the molecular
wave function, which is exact at inhnite internuclear
separation, is built up from antisymmetrized products of
atomic functions. The eGect of interatomic interaction
at 6nite distances is taken into account by the cor-
rection term p and conhguration interaction. The latter
takes care of the correlation energy between valence
electrons and the correction term includes distortion of
the charge cloud due to the existence of neighboring
atoIIlS.

It is possible to start from zero internuclear distance,
where a molecule may become a united atom. For
instance, the two electrons in a H2 molecule can be
treated as if they are in a He atom, considering the
effect of finite internuclear distance as a small pertur-
bation. This approach is more artihcial than the sepa-

"W. Bingel, Z. Physik 12a, 59 (1957); H. Preuss, Z, Natur-
forsch. 12a, 599 (1957).
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rated atom treatment, because ground states and lower
excited states of molecules still have the properties of
atoms from which the molecules are built up preserved
to a considerable extent, whereas molecules show little
similarity to united atoms. Perturbation in the sepa-
rated atom treatment is accordingly smaller than
perturbation in the united-atom approach.

Although the starting point is poor, reasonable
results for H2 and CH4 molecules have been obtained
by this method, " with orbital functions including
configuration interaction. The great advantage of this
approach is that the numerical calculation is very much
simpler than in the separated atom treatment, al-
though the chemical picture is lost in the wave func-
tion. We must realize that we use eigenfunctions of
atoms instead of approximate atomic functions; then
we can include correlation energy in atoms and remove
the difficulty pointed out by Moffitt. This has been
carried out by Bingel, whose wave function is made
up from eigenfunctions of free atoms; the method
corresponds to the original MoKtt method.

In actual calculations in orbital functions, however,
it has been shown that the convergency of the configura-
tion interaction is slow, unless we choose suitable
basics which are very much different from atomic
orbitals in free atoms. That means it is very important
to consider the deformation of atoms. Therefore, we
use the modified atomic function introduced in Eq.
(3.7) as basic of the molecular wave function here. We
consider a diatomic molecule AB with»g+Xii elec-
trons as before. Then our basics are given by

C'or (p) = QQQOiUiA(5') 6' '+o(p), (6.37)
a

which is expanded as

C'or~(p) = Qc'orrF (p) ox (6.38)

as in Eq. (2.13) or Eq. (4.4). The first term Cor+(p) is

built up from the primitive function k~ of the Hartree-
Fock function in a free atom, multiplied by a correction
term p, as is shown in Eq. (3.7). Cor~(p) satisfms Eq.
(3.14), that is,

(p) =E ~ ~c~( )+pS'@~ (p)+&'c'~ (p)

(6.39)
where

Ng+N g
X~= g {—(ao/2~) V,o+V~(r;f) }

Ng+N g
+-,ZZ("/;, );

U~(r.) = (Z~+Za) o'/«

~ T. C. Chen, J. Chem. Phys. 29, 356 (1958); H. W. Joy and
R. G. Parr, ibid; 28 448 (1958); S. Hagstrom and H. Shull, ibid.
30, 1314 (1958); S. Koide et al. , J. Phys. Soc. Japan 12, 1016
(1957); L. M. Mills, J. Mol. Phys. 1, 99 (1958).

and r~; is the distance between the position of electroni
and the center of the united atom U; furthermore,
Z~+Zii is a sum of nuclear charges Z~ and Zri, in
atoms A and B. E~~ is an eigenvalue of the united
atom U in the free state and is given by

+oP *(p= 1)X~% ir~(p=1) dr.

The molecular Hamiltonian 3C is written as

X= Q {—(5'/2m)'7/+V" (r;)+ V~(r;) }

X~+N g
+-:ZZ("/r';),

where V"(r,) =Zgeo//rg;, U (r;) =Zine'/r~;, and r~, is
the distance between the positions of electron i and
nucleus A. The molecular energy matrix II~JUI is then
given by

a = (»
I
x

I M) = (» I
x,

I
M)+ (» I

~
I M)

(6.40)

where the interatomic interaction operator '0 is
defined by

N~+N g
'0~=X—XU= g {U"(r,)+U~(r, ) —V (r;) }.

i=1

By using Eq. (6.39), EE&or is written a,s

EENor Eoro(1V I M)+——(»
I S~M )

+ (»
i
&~M)+ (» i

vU
i M) (6 41)

In order to evaluate IIN~, we expand each term by
using Eq. (6.38). Basics Corx are given analytically;
the matrix (»z I ZMx) obtained by expansion can be
evaluated. As proposed before, we must evaluate E~
accurately, but we may calculate other terms ap--

proximately by cutting o8 the higher terms. Then we
have to examine each element in order to retain the
Hermitian properties of the appromately obtained
energy matrix EE~or. Both terms in Eq. (6.40) are
Hermitian, but (» I SM) and (» I

PM ) and Eor (1V
I M)

are not. Instead of Eq. (6.41), we should use the fol-
lowing equation:

C&~~j= &» I
x

I
M&-= o«-~'+&~') &»

I
M&

+-, {&»is M&+&Mis»}
+-'{&» I

~'M)+ &M I
~'») }+(»

I

~'
I
M & (6.42)

Sy applying the first order of approximation men--

tioned in (A), we obtain

(» I
x—~

I
M )...„...=-', (Z ~+a &—n) (»o I

Mo &

+l{(»o I s'Mo)+(M I
s'A'o)}

+o {(»o i SUMo&+ (Mo i F~ATo & }+(»o i

'UU
i Mo).

(6.43)
This is equivalent to Eq. (6.1).
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The first term C»o(p) in the expansion (6.38) satis-
fies the equation

@'MO (P) ~MO +Mo (P)+g CMO (P)+'0 @'Mo (P) r

where Sov is similar to Fo" in Eq. (6.3). Then the energy
matrix on the basics CMOU(p) and 4'"ov(p) is given by

(iVo IX—' IMo), .„...= —,'(EMO'+Exo' —2") &A'0[Mo)

+-,'{P. I
S'M. )+(M. I

S'~.)}

+0{P'0
I

Bo Mo)+(Mo
I
Sov&0) }

+(1VO I

'UU
I
Mll),

where EM0 =(Molx IMo). Then we obtain the
convenient equation

(~vlx[M)...„...=&'v, Ix[M, )

+-'{(~MU 'M—o')+(E"' E"—0') }P'0
I
Mo)

ol

[Hv] approx=HU

+-', {Sv'(Ev—Ev')+(Ev —Ev') Sv'}, (6.44)

which corresponds to Eq. (6.5). This equation is
equivalent to Eq. (6.43) if

(A'0
I

SUMO&= (A'0
I
&0"Mo),

(Mo I'UÃo&=(Mo lsov&o&.

At, zero internuclear distance, [Hv] and -', [Sv'(Ev-
Fvo)+(Ev —Evo) Sv'} become diagonal, but Hv' is
not necessarily diagonal. This is the same difficulty as
the one discussed in Eqs. (6.18)—(6.20). In order to
eliminate this problem, we may use

[Hv]approx HU

+i{SU[EU—Hv'(0)]+(Ev Hv'(0)) SU} (645)

where

Hvo(0) =1™H'0

This formula is correct if the basic is an atomic function
given by Eq. (6.37), but is not correct if we include a
linear combination of these basics. The discussion about
Eqs. (6.17) and (6.21) is also applicable here, and
Eqs. (6.44) and (6.45) are equivalent as long as the
basics C~~ considered have different symmetry at zero
internuclear distance.

The molecular wave function C thus obtained by
the united-atom approach is an exact one if the inter-
nuclear separation E becomes zero (where p= 1), but
the accuracy of the function is reduced as the distance
E. becomes finite. On the other hand, the molecular
wave function C, obtained by the separated-atom
scheme, is an exact solution when E~" (where p= 1),
but for the hnite distance C is an approximation and
the smaller the distance, the poorer the approximation.

Preuss has suggested use of linear combinations of

C and C~ as a molecular wave function. Then we have

'"='»s= (P*+1) '(PA'r+@'Mv).

Here p, is a functionr of E and it is evident that

lim p, (R) =0, lim p. (E) =~,
@~CO

giving exact solutions as follows:

lim C =CMU(p=1),
B~o

lim C.=Or(p= 1).
+~CO

(T
I

x, [~v&=E"v(T
I 1v)+(T

I
qvcv)

+(T ImviV)+(T
I
uv [1V&

In the first order of approximation, (E I
X

I T), and
(1V IX

I
M), are evaluated by Eqs. (6.1) and (6.43),

or Eqs. (6.17) alid (6.44). (1V Ix[T) aild (T I
X [1V &

are also written as

&-'
I

X
I
T) o =&r &1VO

I To)+ &"o[BT0)

+ (1V,
I
ST0)+ (1V0 I 'UT0), (6.48)

and

(T IX
I
Ã).„,.„=L" (To

I
cvo&+(To I b Eo)

+(To[5 -Vo&+(To[a [1V0),

or

T&av approx= &&0 I
X

[ To&

+0{(~r &TO)+(~K —'No ) } (~TO
[ To) (649—)

Numerical evaluation of the off-diagonal elements
(1V

I
X

I T) is dificult in general. For instance, if we
apply this method to a diatomic molecule and choose a
point between the two nuclei as origin of the united
atom, then three-center integrals appear in (1Vo I To)
and (No[XI To), and also we have to expect the
difficulty of higher permutations due to nonorthogonal
orbitals between Ãp and rp. If we choose the position of

Now the energy matrix is given by

&'Ix I»-=[(p*+1)(p.+1)] '

&& {p*p.«[x I T)-+p*&»'
I
x

I
T)'.

+p, «lx[M&:+&'[X[M)..}, (6.46)

where &EIXIT), and P IX[M). are given by
Eqs. (4.5) and (6.42), respectively. By applying Eqs.
(41')»d (641), (&IXI T). and &'IX[M). are
given by

&& I
x[T)'-=l{P[x[T)+(T[x I &)}, (647)

where

O'
I
x

I
T&=' (-v

I
T)+&&

I ST)

+ &A I »&+ &~ I
~T &,
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a nucleus as the origin of the united atom, the method
becomes equivalent to the ordinary separated atom
approach, including an extremely high contribution of
ionic structures, which is obviously not suitable for the
basics. On the other hand, if we evaluate, for instance,
the CH4 molecule by the separated-atom approach, it is
easy to include the united-atom functions originating
at the C atom. Use of the united-atom method has been
successful for this molecule.

G. Ohno's Approach23

After it had been pointed out that the conventional
method by MoKtt, represented by Eqs. (6.26) and
(6.31), is a poor approximation, alternative methods
were proposed in which correlation energy and defor-
mation of charge distribution are included; still, the
calculation is as easy as in Mo%.tt's method because of
a common z value for covalent and ionic structures.
Strongly opposing such an approach, however, entirely
diGerent arguments have been published. '4 There, the
deficiency of the orbital approach as pointed out by
MofFitt, is considered to be due to use of unsuitable
orbitals. For instance, the energy difference between
'Z + and 'Z„—states of the 02 molecule is calculated
as 20 ev at infinite internuclear distance by using a
common s for 0 atoms and for 0 and 0+ ions; this is a
very poor result when compared with the empirical
value of 11.6 ev. But if we use difterent s values,
namely, s(O) =4.55, s+(0+) =4.90, and s (0 ) =4.20,
the calculated value improves to 14.2 ev. These results
seem to favor the view that only minor changes in the
orbital functions are necessary to improve calculated
values. Instead, the difhculties inherent in MoKtt's
method are ascribed to the use of empirical values for
the atomic energy E.

Itoh and Ohno assumed that atomic functions which
give optimum energy values of free atoms and ions are
the best as basics of molecular wave functions. How-
ever, according to these authors, use of any kind of
empirical value should be avoided, because this may
introduce uncertainty and make comparison of the
results with purely theoretical values dificult. Although
the Hartree-Fock functions are the best available, they
assumed that Slater orbitals are good enough if we use
optimum values of s for each 0, 0+, and 0, as men-
tioned previously. Then they evaluated the energy
difference between the 'Z„+ and the 'Z„states of the
02 molecule at the equilibrium distance and obtained
reasonable agreement with the observed value.

In the calculation, however, they neglected the
e6ect of core electrons regarding 02 as a six-electron
system. Also, they used several approximations in
calculating integrals with diferent s values. The ac-
curacy of the approximations is uncertain, and it is
doubtful if one can ever arrive at a definite conclusion.

2' K. Ohno, J. Phys. Soc. Japan 12, 938 (1957}.
~4 K. Ohno and T. Itoh, J. Chem. Phys. 23, 1468 (1955};25,

1098 (1956}.

In order to avoid the difhculty of evaluating inte-
grals with diferent s values, Ohno" assumed that
although the use of different s values may introduce
a fair amount of di6'erence in atomic energy, this
would not be so for the interatomic interaction. There-
fore one can evaluate the energy matrix HO=H'(sW
s+Ws ), built up from molecular wave functions with
diGerent s values, by calculating the energy matrix
H'(s) =H'(s=s+=s ), built up from ordinary func-
tions with common s, if one calculates the energy of
atoms correctly by using different s values. He then
proposed to use the formula

L 'j = '()+-'IS'(s)( '— '(s))

+ (K'—K'(s) ) S'(s) I, (6 5o)

where H'(z), S'(s), and K'(s) are evaluated by using
orbital functions with common s, but E is calculated
using diferent z values. As he did not show any proof
for the postulated Eq. (6.50), and it is not obvious
that the energy matrix derived from it is a good ap-
proximation to H, the results obtained can not be
considered purely theoretical ones.

With our basics as a starting point, we investigate
the validity of Eq. (6.50). The wave functions C»0
and C g0 used here with p= 1 are made up from Hartree-
Fock atomic functions, which satisfy Eq. (6.3). Then
the energy matrix H is written exactly as

Her' ——&~0
~

3'.
~

To) =k(~r'+ &2) &~o I To)

+ f (Eo
~
&OTO)+ (To [ FpRO&I

+2f (~0 I
'U2'0&+ &2'o

I
'U~o&I (651&

While the approximate functions C»p(p) and Czo(p),
which are built up from orbitals with a common s, are
used for H'(s), S'(s), and K'(s), and also satisfy Eq.
(6.3), it is found that

~~&r (e) = &A(P) I
&

I ~0(~) &

=-:(~"+~")«.(.) I
~.(.) &

+ l ( &~ (p) I 8To(p) )+ &2'o(p)
I B~o(p) ) I

+ l I &~o(~) I ~oTo(~) &+ &To(~) I ~o~o(~) & I

+I I (~o(~) I
'U2'0(~) )+ (2'0(p) 1«o(~) )I.

(K'(s))~ =&ro(p) =&o"'"(~)+&o'" "(p)

&0""'(~)= (Qo(u) I

&'
I Qo(~) )

=&.""'+(Q (~) I
8"Q.(s) )+(Q.(s) I

~."Q.(~) &

It is then easily found that

L~ —~(s) jr=&~o—&ro(s)

= »m I
—(2'o(p)

I
92'0(p) )—(To(~) 15o2'o(~) ) I
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The right-hand side of Eq. (6.50) is therefore written as

H»'(p)+g (Era —Ego(p) )+ (Ezia —Ego(p) ) }S»'(p)

=k(E"+E")S-'(.)+5{V-(.)+V"(.) }

+s(EGgr+AGr~)+~(b Fgr+d Pr g), (6.52)

where

V»(I)= (Ro(i) I &To(I) )
= (Ro(~) I 8TD(u) )

—(Ro(~) I To(n) ){»m (To(u) I BTo(i) )},
Q~QO

»~r= (R0(I) I &OTO(P) )
—(Ro(n) I To(u)){ l' (To(n) I&oTo(i))}.

Now we compare Kq. (6.52) with Kq. (6.51). AG»
and EIizir in Eq. (6.52) are small. Although EG» and
AIigp are not zero, unless Tp is an eigenfunction of the
operators 8 and 5, we assume that EGzir =EFziz =0.
This is equivalent to Mulliken s approximation. In Eq.
(6.51), (Ro

~
$0TO) is negligible. This approximation is

an essential point of MoKtt's formula (6.17). If we
assume that the molecular wave functions Cgp and
Cro(p) are normalized to one, then from Eqs. (6.51)
and (6.52), we find that

&H =H»' —H»'(p) —xz{ (&ro—&o(p) )

+ (Rzio—&ao(p) ) }S»'(p)

,'(Ez'+E g') {S»'-—S»'(p) }+,'(d, V»+AVE-g),

where &Vzir= (Ro
~

'UT0) —(Ro(p) ~
'UTo(p) ) and hH

is the error expected in Kq. (6.50). For diagonal ele-
ments the error bH depends only on hVgp and 5V~~
becau'se Srr = Srr(p) =1, but for off-diagonal elements
both terms in 5F become appreciable. Looking at
tables of molecular integrals, we find that values of
overlap 5 and interatomic interaction V change fairly
rapidly with changes in s value. It is, therefore, im-
possible to see why bIi could be negligibly small.

As pointed out in the calculation of energy levels of
a C atom, it is certain that the correlation energy
between electrons is appreciable and, without con-
sidering it, it is impossible to calculate the energy
levels correctly. As in this method the correlation
energy is omitted, we cannot expect any quantitative
results, and even the order of energy levels is not given
correctly. Without any example or mathematical
justidcation, Itoh and Ohno assume that atomic wave
functions in free states are the best for basics of mo-
lecular wave functions. This -assumption is entirely
contradictory to the results for the H2 molecule. If we
consider the interatomic interaction as perturbation
and expand the energy value expression into a series
of terms, and take notice of the fact that the inter-

atomic interaction depends on the choice of atomic
functions, we can see that atomic functions in the free
state can not be the best ones as basics for a molecular
problem. Besides, Eq. (6.50) introduces the error 5H,
which is not considered small; it is, therefore, doubtful
if any physical signiacance can be attached to the
method.

C = P@ryr, (7.1)

where the basics Cy are in turn built up from other
basics C~'.

4T= QC'X CTR.
X

(7 2)

If we take n independent basics C~P, then we obtain at
most n independent basics C», and we can always
expect exactly the same result 4, regardless of the
transformation in Eq. (7.2), as long as

~
c ~WO. We

cannot, therefore, uniquely determine both sets of
czz and pT at the same time, but we can only obtain
a set of p& for a given set of c&z. If we use only m
(zm(N) independent function's Cz in Eq. (7.1), how-
ever, the result depends on the choice of cz~ in Eq.
(7.2). If we could take a infinite number of basics
C~ which constitute a complete set of functions, then
in principle we can obtain an exact solution C by deter-
mining the expansion coefficients yr. As long as

~
c ~WO,

the transformation Eq. (7.2) can be chosen arbitrarily.
Therefore, we cannot determine optimum values of
c&~.as mell as yz. On the other hand, if we use only a
limited number m of the basics Cr in Eq. (7.1), then we
can choose optimum values of c~g, with the exception
of m of these coefficients.

In Sec. 3 we proposed to build up a complete set of
functions Cg', the 6rst term of which should be the
Hartree-Fock function (case II). We have assumed
that the atomic eigenfunction has been obtained so
that all coefficients c~~ are given. In principle then we
can solve the molecular problem exactly by determining
pr in Eq. (7.1). Also, we can obtain exactly the same
result Cz by setting cm=bpz. This method corre-
sponds to the ideal case of the traditional orbital ap-
proach. As we have already complete freedom in C
in either case, introduction of other parameters such as
the deformation correction p, given by Eq. (3.5), does
not have any signihcance; instead, the difficulty of
overcompleteness may come up. Special techniques,
such as use of atomic eigenfunctions, do not give any

7'. ORBITAL APPROACH

Finally, we consider the usual orbital approach on the
basis of our wave function and investigate the physical
meaning and mathematical reliability we can expect
from results of the orbital approach calculation, and
compare them to those of our approach.

In the latter, a molecular wave function C is ob-
tained as a linear combination of basics Cp.
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particular convenience for a molecular problem, and
the transformation in Eq. (7.2) has no physical or
mathematical meaning, except doubling the labor of the
CRlculatlon.

In practice, however, we are not able to solve a
secular equation with in6nite dimensions. Besides, it
is not quite certain that we can set up a complete set of
functions C&' from discrete functions only. Solutions of
the Schrodinger equation consist of discrete and con-
tinuous functions. H we expand a solution of the
Schrodinger equation of one system by using solutions
of the same equation for another system, therefore, we

have to include continuous functions too. It has been
proved that the Hylleraas-type functions cannot con-

stitute a complete set of functions for the He atom.
Kinoshita" has introduced an alternative series of
functions which can be complete and still discrete.
For other cases, however, discrete and complete series
of functions have not yet been found except for a
closed space. This means that even if we admit use of a
secular equation with in6nite dimensions, it is still
impossible to describe our problem in the form of a
secular equation because of the continuous functions.

Even if we consider discrete functions only, there is a
limit to the number of functions we can take, because
the error of numerical calculations accumulates. For
instance, by using e functions, we obtain an energy
value of E„within an error of bE„. If we include one
more function, then the energy E„+~ drops. But the
energy depression E„+~—E„becomes smaller as the
number of functions increases. Finally the energy
depression becomes smaller than the error bE„. At this
point the addition of the (e+I)-th function becomes
meaningless from the mathematical point of view, As

there is no analytical way of solving a secular equation
of more than three dimensions, there exists a limit to
the number e of basics.

By the variational method, therefore, we are able to
use only a limited number of basics 4», and the
results obtained depend on the choice of these
basics. If we use the orbital approach by setting
cy~ ——By~, it is very di%cult to take correlation energy
into account, and the results will be poor as compared
with the case where atomic eigenfunctions are used as
basics. For instance, we may assume that 10 terms are
needed to get a reasonable approximation of the He
atom by the orbital approach. If we calculate a HeH
molecule by the orbital approach, we have to take l0
times as many functions as we need when atomic
eigenfunctions of He are used as basics. %hen we
are interested in He~, we would need 10&10 as many
functions. This number may exceed the limiting
number, and therefore we have to cut it down by
omitting some functions which are mainly connected
with the correlation between core electrons. Then we

cannot expect results su%ciently accurate to compare
with observed values because of missing this correla-
tion energy, which is usually not small. If we calculate

TABI.E III. Molecular constants of Og molecule by Kotani et al.

Qa (&u't') (C"(o) ) xa;.
cm3/
mole-a,u.

Single Mo
SCF MO
5 terms
15 terms
Obs

—1.378
1.027
3.409
3.629
5.08

0.152
0.132

~ 431—1.533
I e I&o.»

-0.8504—0.8453—0.8435-0.8589—1.32

0 —31.28
0 —31.27
0 —31.85
0.1948 —31.89
0.187

~ Q=(4 ( (3 eosS—1)r~ I4).

the lower electronic states of an Og molecule by orbital
approach, . we may expect results that are 30—40 ev
higher than the observed total energies, The theo-
retical values of dissociation and excitation energies
are defined as differences between calculated values of
total energies of two 0 atoms and a 02 molecule or
between two Og molecules in difFerent states. The
error we should expect mathematically is conse-
quently at least 40 ev. This error is much greater than
the observed values of the dissociation energy (D.=
5.08 ev) or the lower excitation energies, which are of
the order of magnitude of 1 to 10 ev. As there is no
mathematical proof, that correlation energies in atoms
are invariant, this way of calculating the dissociation
and excitation energies is definitely unjustifiable from
a theoretical point of view. In practice, the results are
poor. Although D, for the 02 molecule is calculated as
3.6 ev, the energy difFerence between 'Z„+ and 'Z„
is predicted as 5 ev, which is rather too large as com-
pared with the observed value of 2 ev,"

It is certain that the calculated total energy is
always above the real energy, which should be obtained
from the spin-free Hamiltonian we used. The calcu-
lated energy of the ground state of the 02 molecule by
using one term has an error of about 40 ev. By using
15 terms, we gain an energy of 5 ev, but still an error of
35 ev remains. When this main part of the error is
neglected, the question arises as to what physical
meaning exists in this attempt of adding $4 terms plus
$5' times the amount of labors If we evaluate physical
quantities of the 02 molecule by using the present
function, we obtain poor results as shown in TaMe III.
The values calculated here never approach to the
observed values monotonically, but some poor function
can sometimes give better values than a better function.

Therefore, -the calculation by the orbital approach is
justi6ed only if we assume that the correlation energy
in atoms remains invariant. Then it is reasonable to
evaluate the dissociation energy by taking the difFer-
ence between energies calculated for two 0 atoms and
an 02 molecule. %e can assume that the wave function
with one term is unsatisfactory, because D, obtained
in this way is almost zero, whereas the function with 15
terms is better because it gives the better dissoriation
energy of 3.6 ev. It is not certain, however, whether the

~5 M. Kotani et al, , J. Phys. Soc. Japan 12, 707 (1957).
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calculated value of the dissociation energy is always
smaller than the observed value or riot. If we increase
the number of functions which take correlation between
valence electrons but not correlation between core
electrons into account, the calculated value of the
dissociation energy may converge to some value, but
it can be either smaller or greater than the observed
value, depending on the molecule concerned.

Empirically we can test the validity of invariance of
correlation energies in atoms by comparing calculated
energy values of atoms with observed ones. The results"
show that correlation energies vary, depending on
the symmetry of the electrons involved. H we
neglect correlation energies in atoms by assuming
that every state in atoms has a constant amount of
correlation energy regardless of the state being neutral
or ionic, then the differences in correlation energies
come up as error in the calculation. Very often such
errors are serious enough to prevent us from obtaining
reasonable results. This is the main point in MoKtt's
arguments, and the main reason why theoretical results
are poor in practice, as seen in the calculations of the
C atom and 02 molecule.

In connection with this argument, Huzinaga" calcu-
lated the energy difference between the 'Z„+ and 'Z„+
states of the H2 molecule. If the wave functions are
built up from orbitals, the difference is calculated as
6.8 ev, which is poor as compared with the observed
value of 3.8 ev. If the James-type functions are used
instead, the energy of the 'Z„+ state drops considerably,
and accordingly the energy difference is evaluated as
4.6 ev, which is reasonable. This does not mean, how-
ever, that the nonempirical approach is still the most
successful way for quantitative discussion of the
electronic structure of molecules, and that special
devices for taking correlation energy into account as
developed here are not necessary. In the H2 molecule,
there are no core electrons which can introduce serious
trouble in the calculation, but the other molecules do
have core electrons, which we should take care of.

Huzinaga also calculated the ethylene molecule non-

empirically and obtained reasonable results. But he
neglected the core electrons by regarding the molecule
as consisting of two m electrons traveling around
effective nuclei with nuclear charges Z=2 or Z=3.
As many authors have pointed out, "the e6ect of core
electrons is comparable with the interaction between
valence electrons, and results obtained by neglecting
the effect are not reliable. In fact, the results of Huzi-
naga do not represent the energy levels of the ethylene
molecule, but correspond more or less to the energy
levels of He2"+ or Be24+ in extremely high excited states,
because the results axe approximate solutions of the
Schrodinger equation of a two-electron system with

"S;Huzinaga, Progr. Theor. Phys. (Kyoto) .20. 15 (1958).
"Originally by H. M. James, J. Chem. Phys. 2, 794 (1934).

nuclear charges Z=2 or 3. As the states in which both
electrons are promoted to 2p orbitals belong to con-
tinuous levels, the results carinot have any physical
meaning unless we give additional conditions which can
specify the difference between C286 and He2~ or
Be24+. The effect of core electrons will be considered in
another paper.

In our method, the wave function used is the one
given by Eqs. (7.1) and (7.2) . Although it is impossible
to solve Eq. (7.2) by the variational method, all co-
efhcients c&z would be determined correctly by

&T*z= @z' @'Td&,

if exact solutions Cp could exist. Then the calculated
energy is certainly above the observed total energy,
and moreover its value is comparable to the observed
value so that it is quite possible to discuss the ac-
curacy of the wave function obtained purely theo-
retically. Unfortunately, there is no exact solution for
atoms, and then the energy matrix can be evaluated
only approximately. The method suggested in Kq.
(6.1) is to calculate the main part of the matrix ele-
ments accurately, but to evaluate other parts approxi. -
mately, so that we are able to calculate the total energy
matrix up to a certain decimal point. Because of the
approximation it may happen that the calculated value
goes down below the observed value; the variational
principle holds only within the limit of numerical ac-
curacy of the approximation. If the approximation
mentioned in Eq. (6.1) is not good enough, however, it
is always possible to increase the accuracy by adding
more terms in calculating S, V, 6, and Ii integrals.

In our method, physical properties other than energy
values are also calculated, because the molecular wave
function is dered mathematically. In practice, we
have to expand them by using Eq. (7.2). Here we can
evaluate the atomic problem more exactly and calcu-
late the effect of the interatomic interaction approxi-
mately so that we are able to obtain more reliable
values than the results obtained by the orbital ap-
proach. For instance, the 6eld gradient q at a nucleus
in the Li2 molecule has been evaluated with satis-
factory accuracy. 6 On the other hand, the orbital ap-
proach cannot even give the correct sign of the q value.

In conclusion, the difference between our approach
arid the orbital approach is in the different ways of
cutting off the series expansion of the wave function in
Eqs. (7.1) and (7;2). In the orbital approach, how-
ever, the basics are so poor that we have to depend on
ari empirical assumption in order to make the results
physically sensible. The results are therefore not purely
theoretical; in fact, the assumption used is quite
doubtful. In our method the basics may be satisfactory
but too complicated to use for calculating the energy
matrix exactly. We have to use some approximation in
numerical calculations. Because of the approximation
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there is a limit to the accuracy. However, use of spec-
troscopic data for evaluating atomic energies will help,
but is not at all essential from a theoretical point of
view.

In a forthcoming paper, we shall discuss how our
approach can be simplified for application to more
complicated systems. Vfe shall consider the accuracy

of further approximation by comparing with the cor-
responding simplification in the orbital approach.
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l. INTRODUCTION

HK most accurate method of determining dis-
sociation energies of diatomic molecules is from

the analysis of their band spectra. In favorable cases,
when this analysis is unambiguous, values accurate to
within 0.001 ev may be obtained Le.g., Os Herzberg
(1950)'). However, for many molecules of thermo-
chemical interest the analysis of the spectra is ambig-
uous and leads to several possible values for the dis-
sociation energy. One of the most important examples
of this is provided by the carbon monoxide molecule.
Here the spectroscopic data are consistent with just
three values for D, (CO), namely, 9.28 ev jHerzberg
(1950)$, 9.74 ev (Hagstrum (1947)j, and 11.24 ev
LGaydon (1947)j.

In this situation, relatively crude estimates of the
dissociation energy may be of value in distinguishing
between the possible spectroscopic values. Various
experimental techniques have been employed for this

purpose; for example, mass-spectrometric analysis of
the ions resulting from the electron bombardment of
carbon monoxide (Hagstrum (1951, 1955)j and the
direct thermochemical measurement of the latent heat
of sublimation of graphite PChupka and Inghram
(1953, 1955)), this quantity being related to D, (CO) by
well-established thermochemical quantities,

In this paper two theoretical calculations of the
binding energy and ground state wave function of
carbon monoxide are described. The 6rst is an ab zeiA'0

orbital calculation and the second employs the intra-
atomic correlation correction (ICC), introduced by the
author (Hurley (1956a, 1958a)j, as a necessary modi-
fication of the method of atoms in molecules LMoffitt

(1951)],The orbital calculation (Sec. 2) is carried out
in such a way as to facilitate the transition to the ICC
theory in later sections. The key quantity in this tran-
sition is the transformation matrix 7.

'
LEq. (2.21)J.

' References are giv~ in alphabeticaI order in the Bibliography.

2. ORBITAL CALCULATION

(a) Atomic Qrbitals

The basic atomic orbitals are taken as orthogonalized
Slater-type functions centered on the carbon and oxygen
nuclei.

o-type

x-type

X-type

~ =h.=(i- '/ )"-p( f")-,
ps= hc= (f s'/sr)' exp( —i src),

Ps = so =E&(fss/3') &ro exp( i sro)—nihss)—,

44= sc=Ssf (ass/3sr) &rc exp( —i src) —ashc},

ys=oo= (gs'/v)'so «p( —i'sro), (2.1)

ys—-oc= (f'ss/v. )lsc exp( —fsrc),

4v ——xo = (t'ss/sr) & xo exp( —. l'sro),

ps= xc= (Pss/v)'xc exp( —f'src},

4s= yo= (t s'/~) 'yo exp( —&sro)

4is= yc= (l s'/v)'yc exp( —isrc).

Here (xo,yo, so), (xc,yc,zc) are Cartesian coordinates
centered on the oxygen and carbon nuclei; the z axes
are directed inwards along the internuclear axis and
the x, (y) axes on the two centers are parallel:

ro= (xo'+yos+so')', rc= (xc'+yes+so')'.

The orbital exponents i have values which minimize
the energy of the ground state dissociation products
O(s'p' 'P), C(s'P 'P) [Roothaan (1955)].

0: f 7.F6, f's =2.25, ps= 2.23,
C: i s=5.67, i 4=1.61, ps=1.57. (2.2)

All the basic atomic integrals involving the orbitals
(2.1) were evaluated for the equihbrium nuclear
separation R=2.1319 atomic units (a.u.) LHerzberg
(1950)j, and are listed in Appendix II.


