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I. DENSITY MATRIX

1. Historical Background. Thermodynamic
Applications

I 'HIS review is concerned mainly with applications
of density matrix theory to the quantum mechan-

ical N-electron problem, in which the system of interest—atom, molecule, or crystal —is assumed to be in a
de6nite eigenstate. The density matrix was, on the
other hand, 6rst developed and used in statistical
thermodynamics, in which the system of interest is less
completely speci6ed and is described by a representative
ensemble. The same basic theory (von Neumann';
Dirac') applies to both situations, but much progress
has been made recently in the study of N-particle
systems as a result of the introduction of reduced
density matrices (Husimi') which determine the internal
particle distribution functions.

Before proceeding to the N-particle problem, we
therefore review very brieQy the general nature of the
theory and its application in thermodynamics.

' J. von Neumann, Nachr. Akad. wiss. Gottingen, Math.
physik. Kl. IIa. Math. physik. chem. Abt. 1927, 245.

~ P. A. M. Dirac, Proc. Cambridge, Phil. Soc. 25, 62 (1929);
26, 376 (1930);27, 240 (1931).

3 K. Husimi, Proc. Phys. Math. Soc. Japan 22, 264 (1940).
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l.l. Fornzulation. Pure States

We are concerned with nonrelativistic quantum
mechanics based upon the Schrodinger equation

X@((q,i) = —(fs/i) (8/cjoy)%'((q, t), (1)

which describes the time development of a system with
wave function 4~(q, t). Here q denotes the set q~, q2, q~
of position coordinates and 3'. is the usual Hamiltonian
operator, formed from the classical Hamiltonian by the
association4

p ' (h/i) (cj/~q )

p; being the momentum coordinate conjugate to q;.
%~(q,t) is a function of the coordinates q; and the time
t such that

(qy,
' 'qg)/) If((qg, ' 'qg)i)dqy' ' dq~'

is the probability that the coordinates will simul-
taneously have values in the ranges I(q&, q&+dq&),

(qs& q2+dq2)1 ' ' '
(qny qm+dqn)

Equation (1) has solutions of the form %&(q,t)
=%(q)T(t), where T(t)=exp( —iEt/h), provided %(q)
satis6es the time-independent wave equation

(2)

where E is the separation parameter. Well-behaved
solutions of (2) exist only for certain values of Z: these
eigenvalues are the energies for which the system can
exist in stationary states with 4'&*(q,i)%&(q,i) =%*(q)%(q)
(time independent).

It is convenient to express 4'~(q, t) and 4'(q) in terms
of a complete orthonormal set

c'~(q) c'2(q) c'~(q) " c'-(q) "
+ (q, ~) =2 c.(t)c'.(q), +(q) =2 c.c"(q) (3)

Orthonormality is expressed by

(4"I&)= 4"(q)&(q)dq=&.

The Dirac-type notation for this scalar product is often
abbreviated even further to the symbolic product C„~C~.

' Generally, it may be assumed that the q's are supplemented
by spin variables. 3'. must also be supplemented by nonclassical
spin terms, but for many purposes these are negligible and the
operator may be assumed spin free.
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With 3'. is associated a matrix H with elements

Kx= (C.~X~4».)= ~4.*(q)XC», (q)dq,

and Eqs. (1) and (2) then take matrix forms

8C= —(h/i) (dC/Ct) (time-dependent stage), (6)

HC =EC (stationary state), (7)

where C is the column matrix of components, Cl,
~ C„, . Equation (3) may also be abbreviated to

V=CC,

where + is the row matrix (414s 4„)and 4, 4„
are the vectors or elements of Hilbert space represented.
by %{q) and 4'„{q).It is assumed, for convenience, that
the basis is discrete.

We also use integral operators. A (q; q') is called the
kernal of an integral operator if it produces from 4 (q)
a new function, denoted by 84 (q), according to

@4'(q)= ~A (q; q')4'(q')dq'.

This serves to de6ne Rn operator 8 which operates on
4 to give 84; A(q; q') is the representative of this
operator. With any pair of functions 4.(q), 4», (q), we

may associate an integral operator 8 with kernal
4„(q)41*(q').This has the property that

~4'(q) =4"(q) "4»'(q')4'(q')&q'=4'. (q)(4»'4') (1o)

identical with qrq* (starred symbol on the righ/), with
representative 4'(q)+ (q'). The notation is otherwise
familiar: 0', is the operator associated with a dynamical
quantity A; A is its matrix represents, tive with elements
A.x= (4'„~8~4'l,) in the discrete basis e = (414s, 4„,

); and A(q; q') is the "matrix element" of 8, in a
continuous representation, i.e., the integral operator
kernal associated with OL (When lower case script is
not available, German letters are substituted. )

1.Z. Desi)y Matrix. I'Nre States

The density operator for a system known to be in
state %x (i.e., for a pure state) may be defined sym-
bolically by

p +x+x p 4'= (+x+x )4' +x(+x 4') (13)

where 4 is an arbitrary state vector. Since the scalar
product is just a number, p~~ always produces a mul-

tiple of 4x. it is the projection operator associated with
state E and (assuming @x is normalized) has the
characteristic property p~~p~~=p~~. In the Schro-
dinger representation, p&~ is represented by an integral
operator:

t {EE
I q; q') =+x(q)+x*(q')

(14)
pxxC. (q) = ~p(EE~q; q')C(q')dq'=calx(q) +x*4.

p(EE
~ q; q') is usually called the density matrix, '

q and
q' taking the place of subscripts, and in density matrix.
theory the wave function +x(q) is eliminated in favor
of p(EEI q; q'). Thus, the expectation value in state E
of any quantity A, with operator 6,, becomes

and may thus be expressed symbolically by 8=4,4'p, ~

(starred symbol on the right): for then the analog of (+xI 81+x)=~' +x (q)@+x(q)dq
(10) is simply

84 = (4'„4),*)4=4„(4„*4).
An operator of this kind is called a dyad —a term
borrowed from elementary vector algebra —and any
operator 1B the spRce spRnned by c'y) c'2 ' ' '4'g ' ' ' CRn

be written as a sum of dyads, a dyadic,

in which the numerical coefI1cients are simply the
matrix elements of the operator, defined by (5). To
verify this we need only note

(4„)ef4„)=4„*(gC„A„,C»,')C„=A„,(by (4)).

The reader accustomed to Dirac notation' will notice
that 4'—= ~) and +*—=(~. The scalar product (~) is
ldentlcal wltll P k (starred syl11bol oil 'tile left) wlllle

the operator ( )((, with representative (q ~ )(~ q') is

' P. A. M. Dirac, The I'renceptes of QNasttttnt Mechunscs (Oxford
University Press, Near York, 1947), third edition.

=~ Pa,t(EEfq;q')g. ..dq, (15)

where 8 works on the unprimed variables and the
prime is removed after the operation. This procedure is
analogous to taking the trace of a matrix and may be
abbreviated to

(e ~O, ~~x)=tr et (EE~q;q'). (16)

An og-diagonal element of 0,, between states E and I.,
may similarly be written

(e,
~

tl, ~ex) = tr et (EI.I,q; q'), (l7)

a(«l q; q') =+x{q)+z'{q')

is a traesifioe density matrix for the two states.
WhenCx(q) is expanded according to (3), it follows

that
t" ~t {EEIq; q') =Zt,4'.{q)4'.*{q'),

' The term "density kern@/" vrould be preferable.



(19) In a matrix representation,
gzx —C»C»$

and in this case the expectation value, Eq. (15),becomes

(e„lel@„)=g Ai.p„gzx——tr Ay, (20)

yzz —C»Czt
(21)

a trace in the usual matrix sense, Similarly, the matrix
element of 8 between states E and I. is (note the
order of E, 1.)

The original formulation of quantum mechanics is in
this way extended to admit incompletely specified states
and ensemble averaging.

The time development of the density matrix (23),
where the p~~ may, in general, refer to arbitrary non-
stationary states, is easily determined by using the
matrix form (25): for

The density matrix y~~, referred to the C basis, is and thus
obviously idempotent:

CzxCxz C»C»tC»C»t C»C»t &zz where (26)

since CztC»= I when%'x is normalized. For stateswhich
are orthogonal (i.e., mutually exclusive), yxzy~z = 0,
since CztC~=0 expresses the orthogonality. For a
system in a definite stationary state E, Eq. (7) can
evidently be written

~zz Ezyzz y»zyzx yzz (tr yxz 1) (22)

We show later that this is also sugnent to define a
stationary state.

1.3. Emseesbles. Thernsodymamics

Suppose now that we have incomplete knowledge of
a dynamical system, the probabilities of 6nding it in
states %~, 0's, %z, ~ ~ (which need not even be
stationary states, though they must be orthogonal in
order to be mutually exclusive) being p~, pii, pz,
This situation (a "mixed" state) is described by an
associated "ensemble" of identical systems of which a
fraction pz are definitely in state E. The expectation
value of A in this "mixed state" is then an ensemble
average

This is neatly expressed by de6ning the density operator
for a mixed state by

P=Z P»P

in which C is the matrix whose Xth column is Cz and y
is a diagonal matrix of ensemble weights pz. From (6)
we then have

HC= —(h/i)(dC/dt) and CtH=+(A/i)(dCt/Ch),

while the px are simply constants defining the initial
condition of the ensemble; and hence the density
matrix at any subsequent time is determined by

dy/dt= —(i/h) (Hy —yH). (27)

Thus, elsembt'e stationary states, in which the initial
degree of uncertainty in all quantities persists without
change, can occur provided y and H commute. The
condition that the ensemble be pure $i.e., described by
p»=1, pz, =0 (LWE)], as well as stationary, is

y'= y (tr y= 1).

It is easily shown (Appendix) that this is the necessary
and sufhcient condition that y can be written in the
form C»C»t, where Cz is a colure matrix; and this
means that y has a single nonvanishing element (unity)
in the Eth place. The necessary and sufhcient conditions
that a system be in energy eigenstate %g are thus

Hp —yH= 0, y'= p (tr y= 1). (28)

The solution y= yzz then satisfies (22) in which, since
S=tr Hy,

or
In thermodynamic applications it is useful to con-

sider ensembles in which the states 0'~ are energy
eigenstates, so that HC»= E»C». The ensemble is then
stationary for any choice of the px, E indicating the
constants of the motion in state E. One such choice is

pz= exp(e pE»), —(29)

which de6nes the canonical" ensemble, and this turns
out to be appropriate for the description of a system in
thermal equilibrium. The argument is weB known and
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and, by simple rearrangement, that

E= U —TS= kT log(P—exp Ex/kT)—

kT 1ogZ,—say. (31)

Since the trace of a matrix is invariant under a unitary
transformation, the sum may be expressed alternatively
as

Z=P exp Ex/kT=t—r exp( —H/kT), (32)

where H is the matrix associated with X in any basis eIs,

and the function is interpreted as the series. This also
may be written

(33)

the basis again being arbitrary. The operator form of
the partition function has been used extensively in
statistical mechanics (for an example, see Wilson" ).

For a thorough discussion of the basis of ensemble

theory, with an extensive bibliography, see a recent
review by ter Haar. 9

2. N-Particle Systems

In dealing with systems of noninteracting particles,
it is possible to replace the virtual ensemble by a real
ensemble which is stationary when the X particles
occupy E of the one-particle eigenstates. When no
two states are the same (Fermi-Dirac case), the con-
dition for a pure state, y'= y (tr y= 1), is replaced by

p'= y (tr p=K), (34)

for this means that y has S unit elements (new nor-

R. C. Tolman, The Er~ncip/es of Stat~stical Mechawics (Oxford
University Press, New York, 1938).' D. ter Haar, E/emelss of Stasisteee/ Meekueeees iRinehart and
Company, Inc. , New York, 1954).

9 D. ter Haar, Revs. Modern Phys. 27, 289 (1955).
A. H. Wilson, The Theory of Metals (Cambridge University

Preps, New York, 1953), second edition, p. 160.

is not reproduced in detail (see, for example, Tolman, '
ter Haar' '). By considering a quasi-static change in the
system parameters (volume, etc.) which occur in K, it
is possible to devise a quantum mechanical analog of
the empirical laws of thermodynamics, in which the
ensemble expectation value of K is identified with the
mean internal energy U in thermal equilibrium. The
parameter P is found to be an integrating factor of the
quantity dQ=dU —dW, where W is the work done on
the system during the change, and may thus be iden-
ti6ed with 1/k T, where T is the absolute thermodynamic
temperature and k is a constant (the Boltzmann con-
stant). It is also found that the quantity, S say, whose
differential is dQ/T may be expressed as

{30)

malization), since it is the condition that y can be
written in the form CCt where C consists of Eorthonormal
columns —each representing a diferent eigenstate.
E=tr Hp (where H is the 1-particie Hamiltonian) is
then the total energy of the X particles, and the en-
semble is completely characterized by

Hy —yH=O, g'=y (tr y=X). (35)

For strongly interacting particles, this description is
not legitimate: we must deal with the system us u whole.
To obtain information about its constituent parts
(particles), it is necessary to introduce redlced density
matrices. Husimi' has treated systems of bosons and
fermions at an arbitrary temperature, ensemble weights
being given by (29} from this point of view; but only
in the case of weak interaction, where each C~ is
assumed to be a single symmetrized or antisymmetrized
product function. %e are interested mainly in the pure
energy eigenstates of an Ã-electron system where the
interactions are strong and a single antisymmetrized
product is not a satisfactory description of the state.

Z.l. Redlced Dense MaIrices

%e consider the case of an Ã-electron system in a
stationary state 4'=+z, where the label E is now
suppressed. Similar considerations can be applied to
mixed states, corresponding to a macroscopic system in
thermal equilibrium at an arbitrary temperature {see,
e.g., M. Born and H. S. Green, "but are not required in
the present context. The density operator is now dered
by (13) and (14):abbreviating the E sets of variables
describing the S particles to 1, 2, 1V, we write

p(q;q')=p(1, S;1', 1P)
=e(1 " X)e*(1'" 1P) (36)

The diagonal element, for which j.'= 1, 2'= 2, ~ ~ g'=Ã,
then determines the probability that the variables of
the 6rst particle lie in volume element dr~, those of the
second simultaneously in d72, etc. Now, for indistin-
guishable particles,

(Pp {1, ~ S; 1', ~ 1P)=p(1, . ~ 1ll'; 1', ~ ~ 1P),

where (P permutes the sets 1, 2, ~ ~ F (primed and
unprimed) and, for instance, p(2, 1, S;2, 1, S)
means that the variables of the 6rst particle take the
values previously associated with the second, etc. Con-
sequently, the symbols 1 ~ ~ Ã refer merely to g
diferent volume elements while their places, which in
principle indicate the particles referred to, are arbitrary
owing to the symmetry. The probability that the X
particles will occupy simultaneously X selected volume
elements dr~, dr2 ~ ~ dr~ at points 1, 2 - .S, ie any
Ofdet' ls then

[p(1,2, "¹1,2, "Ã)+p(2,1," g;2,1, "g}
+ j&rrdrs &rss=X!p(12 . $.12 Ã)

"M. Born and H. S. Green, Proc. Roy. Soc. (London) A191,
168 (1947).
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It is convenient to introduce an N Par-ticte density
matrix, whose diagonal element is this quantity, simply
by renormalizing the system density matrix. %e define

psr(1, 2, N; 1',2') ~ ~ ~ 1P)
=N!@(1)2, N)%'*(1')2') ~ ~ ~ N'). (37)

Similarly, it is possible to de6ne' ""a redlced density
matrix whose diagonal element determines the prob-
ability of 6nding any n of the E particles, in any order,
at e selected points 1, 2, e of con6guration space.
The e-particle density matrix is

p„(1,2, ~ n; 1',2', e')

=N(N —1) (N—I+1) ~%(1,~ ~ ~ N)

X4'*(1', n', m+1) ~ N)dr„qt . dry. (38)

On removing the primes, the integral is seen to give the
probability of the first e sets of variables having speci6c
values; but the n sets can be selected in N(N —1). ~

X (N —m+1) different ways, corresponding to the
occupation of the same points by diGerent particles,
and each gives the same result by symmetry. Only the
aggregate is physically signi6cant. The 1- and 2-particle
density matrices

ps(1,2; 1',2') =N(N 1)—%(1,2,3, N)

X%'*(1',2',3, ~ N)drs ~ dr g (40)

are of particular importance; thus pt(1;1)drt is the
probability of finding a particle with variables in the
range dr j at point 1 in configuration space. It should be
noted that pt(1; 1) integrates to N (not 1), and that it
is therefore the "number density. " The relationship
between successive density matrices is seen to be

(N —n)p„(1,2, ~ ~ ts; 1',2', ~ ~ g')

p„+t(1, 2, tt, ts+ 1;
aJ

X1', 2', e', ts+1)dr„+t. (41)

The calculation of matrix elements of operators
which involve all particles symmetrically is immediate
once the density matrices have been determined. Thus,
the expectation value of any n-electron operator
S(1,2, I) is independent of the names of the vari-
ables, and any symmetrical sum

(42)

pr(1; 1')=N %(1,2, N) in which there are N(N —1) (N—v+1) selections of
the n diGerent" variables i, j, , has an expectation

X%'*(1',2, ~ ~ N)drsdrs dr&, (39) value

(43)

The usual Hamiltonian operator defined by any two E-electron functions, in exactly the
same way. When 4 is given by (8), the energy follows
from (20) as

where (44)
E=tr Hp= P Hg„p„g (y=CCt), (46)

I) (i) =—(A'/2m) p'(i)+ U(i), g (i,j ) =e'/r;;,

contains two such sums and, accordingly, in state 4,
E= (+I 3'I+) =tr f)(1)pt(1; 1')

+s tr g(1)2)ps(1)2; 1',2'). (45)

Here g and V are simply multipliers and the script
notation is accordingly discarded.

It is possible to reduce transition density matrices,

'~ R. McWeeny, Tech. Rept. No. 7, Solid State and Molecular
Theory Group, Massachusetts Institute of Technology (May 1,
j.955).

r~ R. McWeeny, Proc. Roy. Soc. (London) A232, 114 (1954)
(see also ibid. A223, 63 (1954))."P.-O. Lowdin, Phys. Rev. 97, 1474 (1955). (It should be noted
that Lowdin's reduced density matrices differ by a factor of n t

from those defined in the other papers. }

and if, by comparison with (17) and (18), a formal
transition density matrix is de6ned for any pair of
functions C„andC» by

pN(sXI 1, .N; 1', N')
=N!4 (1, N)C y*(1', ~ ~ ~ N'), (47)

with reduced transition matrices

p„(s)tI1 ' n; 1', rs')

=N(N —1) (N —v+1) C.(1, N)

Xg*(1', n', rs+1, N)dr„qt drN, (48)
'~ Omission of terms for which z=j, etc. are indicated through-

out by a prime on the summation sign. We use C(I,2, ~ n) for
an operator which works on the variables, 1, 2, ~ ~ ~; thus V'(r') is
used in preference to V;2.



then H), „
itself is

».= (4'~l &IC') = tr f)(1)p (~~11' 1')

+-,' tr g(1,2)p2(xhl1, 2; 1')2').

The g-electron density matrix in state 4 is then,
(58) [«. (19)],

(49)

f

lorn
section may be rewritten with p„replaced by I' and
dr; by do;. Thus, (45) becomes

E= tr $(1)Pg(1; 1')+-,' tr g(1,2)P, (1,2; 1',2')

[—(V/2m) V'(1)Pg(1; 1')].. .dog

p„(1, n;1', n')=Q p.yp„(~XI1, n;1'„n').(50)

The reduced density matrices are de6ned without
reference to any speci6c operator but are conveniently
calculated by evaluating the matrix clement of a
symmetrical operator such as p', , ;=p g(i,j) Th. us

p, (z& I 1,2; 1',2') is simply the coeKcient of g(1,2) in the
integrand of

4 I Z'g(i j) IC')

+ I V(1)Pg(1)dog+-', g(1,2)P2(1,2)doido2
J

(54)

where T is the expectation value of the kinetic energy;
V, is the total potential energy of the individual elec-
trons in the given potential field and is identical with
that of a static "charge cloud" of density P~(1); and
V„hasa corresponding classical interpretation as the
average interaction energy of paxticles distributed with
pair function P2(1,2). This immediate pictorial inter-
pretation, which admits considerable development, is
characteristic of a density matrix approach.

=) g(1,2)p, (.) I 1,2;1,2)dr,dr„(51)

with primes restored to the variables in those factors
which come from C'&~(1, ~ E)

Z.Z. Spinless Dense Matrices. Correlation

For many purposes the simultaneous values of par-
ticle spins are of secondary importance, and it is con-
venient to introduce spinless density matrices. These
are de6ned" "s1mply by

P (1, n;1', .n')

(52)

where Jd~; indicates integration over the ith spin
variable and the arguments in I'„are now spatial
variables only.

The diagonal elements P„(1, n; 1, ~ n), which are
conveniently abbreviated to P„(1, n), are simply
distribution functions:

P (1 ..n)do~ .do

=probability of 6nding any e particles, in any

order, in volume elements de~ ~ de at points

1, n (53).
Thus P&(1) is the charge (or "number" ) density func-

tion and integrates to S, while Pm(1, 2) is the pair
function.

Provided all operators are spinless, the spin inte-

grations are immediate and the results of the preceding

Z.3. Correlate oe

To a 6rst approximation it would be expected that the
motion of one electron would be independent of the
iestantarieols positions of the others, though the form
of Pq(1) would certainly reflect the average eGect of
N —1 other electrons. In this case, where the particles
might bc dcscribcd Rs quasi-independents wc should
have

P2(1,2) =Pg(1)P, (2),

the multiplicative law for the simultaneous occurrence
of two independent events. No properly antisymmetric
wave function can, however, give such a result. Gener-
ally,

P2(1,2) =Pg(1)P2(2)+C(1,2),

where C(1,2) describes the departure from quasi-
independence due to correlatiorI, between the motions
of the two particles. It is convenient to write

P, (1,2) =P,(1)P,(2)[1+f(1,2)], (55)

where f(1,2) is a correlation factor. The conditional
probability of 6nding a particle at point 2, when one is
known to be at point 1, is then, by elementary prob-
ability theory,

P~(1»)/Pi(1) =P~(2) I:1+f(1»)].
The presence of a particle at point 1 therefore changes
the probability of finding a particle at a second point,
2, by a fractional amount f(1,2) and an absolute
amount P~(2)f(1,2). Mutual repulsion between the
particles results in a correlation factor which is negative
fox' 2 ~ i~ Rnd which therefore makes R hole 1n thc
1-particle probability function, surrounding any point
at which a particle is already supposed to be and of
depth Pq(2) f(1,2). To examine the main properties of
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the correlation hole, it is necessary to resolve the
spinless density matrices into parts associated with the
various possible spin con6gurations.

The most general 1-particle density matrix may be
written

pg(1; 1')

=Pg(1; 1')n(1)n*(1')+Pg(1; 1')n(1)P*(1')

+Pg(1; 1')P(1)n+(1')+Pg(1; 1')P(1)P+(1'), (5/)

since any quantity which operates on the spins can be
written in this form by suitable choice of the dyad
coefficients —which depend on spatial coordinates alone.
From (53) it then follows that

Pg(1; 1)

where, for instance

P2(1,2)

determines the probability of finding a particle in
volume element at point 1, in spin state n, and another
simultaneously at point 2, in spin state P. Again it is
useful to introduce correlation factors, putting, for
example,

P2(1,2) =Pg(1)Pg(2) [1+f(1,2)j. (61)

The correlation factors then have two important
general properties. In the erst place, the antisymmetry
of p~(1,2; 1',2') in each separate pair of variables
implies, from (59), that P2(1,2; 1',2') and P, (1,2; 1',2')
each have a similar antisymmetry —owing to the sym-
metry of the spin products to which they are attached.
This means that for 2 ~ 1, the pair functions for par-
ticles of like spin both tend to zero and [cf. (61)]

must be interpreted as the probability of a particle
being at point 1 in spin state n, and

a a p 0
2 —+ 1: f(1,2) ~ —1, f(1,2) —+ —1. (62)

Pg(1; 1)

as the probability of its being there in spin state P. It
is easily seen that in any state where the 2' component
of total spin is de6nite, the other two components

a p p a
Pg(1; 1') and Pg(1; 1')

must vanish: for if the wave function is expanded in
terms of spin products, each containing the same number
of n and the same number of P factors, the (S—1) spin
integrations which lead to p~(1; 1') introduce zeros
(orthogonality) unless the products from%' and%'*match
in all spin factors. With the usual abbreviation for the
diagonal elements,

There is, therefore, a 100% negative correlation which
prevents particles of like spin being found at the same
point in space. This is the most general statement of
the Pauli principle and is completely independent of
the form of the wave function.

The second basic property arises from (41), which
now yields

(S—1)Pg(1)= P2(1,2)dn, + ~P2(1)2)dn„

(63)
p t pa P pp

(N —1)P~(1)= P, (1,2)de2+ P2(1,2)dv, .

On writing the first equation in terms of correlation
factors,

Pg(1) =Pg(1)+P, (1). (5g) (X—1)P&(1)= tP&(1)P&(2)[1+f(1,2)jdv2

In the same way, the 2-particle density matrix may
be written

p2(1,2; 1',2') =P2(1,2; 1',2')n(1)n(2)n*(1')n*(2')

+P (1,2; 1',2')n(1)P(2)n*(1')P*(2')

+ P2(1,2; 1',2')P (1)n(2)P*(1')n*(2')

+P2(1,2; 1',2')p(1)p(2)p*(1')p*(2')
+etc., (59)

where the terms not shown, although present, give zero
contributions to P2(1,2; 1'2') and to the matrix elements
of all spinless operators. Thus, integrating over spins,
the pair function is

P2(1,2) =P2(1,2)+P2(1,2)+Pm(1, 2)+P2(1)2), (60)

+ Pg(1)Pg(2)[1+f(1,2)jdw,

=P, (1) P, (2)F2

+P, (1) P&(2)f(1,2)de2

p a p+ Pi(2)f(1,2)dv2

Since J'P~(2)dv2 ——X, this gives

a a a p a p
Pg(2) f(1,2)F2+ P&(2)f(1,2)F2= —1. (64)
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The two integrands describe the correlation holes for
particles of n and P spin, respectively, in the vicinity of
one of n spin at point 1: that they must together in-
tegrate to —1 is intuitively obvious —because when
one particle has been located, the probability of finding
a second particle somewhere must be reduced by unity.
In fact, for de6nite s component of spin,

P~(2)f(1,2)dv2 ———1,
P aP

Pg(2) f(1,2)dv2 ——0. (64a)

It appears later that for noninteracting particles the
unlike-spin correlation factor vanishes, but the like-

spin correlation hole still exists, arising merely from
the antisymmetry of the wave function, and is called
the "Fermi hole": when a particle is known to be
at point 1 in spin state n, the probability of finding a
second particle somewhere in the same spin state is con-
sequently diminished by unity. One of the outstanding
problems of quantum mechanics is the precise deter-
mination of the form of the correlation holes when

strong interactions are admitted.

of the 1-electron density matrix; and more particularly
of their diagonal elements, the n and P--spin density
functions,

P, (1) and P, (1).

For any system in a state with S,=O (described by a
wave function symmetrical between n's and p's), the
two components are identical and, naturally,

Z.4. Signif'cance of Spin Densities

Finally, we consider the physical signi6cance and
utility of the individual components,

a a P P,P'(1; 1') and P&(1; 1'),

ability of 6nding an electron at point 1 with plus spin
outweighs that of 6nding it there with minus spin:
when weighted with the esagnitude of the spin (-', ) and
integrated over all space, the result is (S,)„or,for a
definite spin state, S,. Now, when spin terms are in-
eluded in the Hamiltonian, the nuclear hyperfine
splitting due to the Fermi contact interaction with a
given nucleus is easily shown to be proportional to the
value of Q'(1) at the nucleus. The spin density defined

by (66) is therefore experimentally measurable at any
point where a nuclear probe can be inserted. McConnell
et al. , in particular, have shown how the peripheral
protons in an aromatic free radical can be used to
detect the spin density associated with the m electrons.
Our present definition of spin density is, however, more
primitive than that adopted by McConnell, being
defined without reference to the nature of the wave
function. An application is sketched in Sec. III.

3. Configuration Interaction

Even without considering wave functions of speci6c
form, it is possible to make some general progress simply
on the assumption that + is built up from some set of
S-electron functions Cp, C~, C„.. In general, a
single term of specific form (e.g. , an antisymmetrized
product of one-electron functions or "orbitals") can be
so chosen as to. give a fair approximation to the state
of interest, %. This approximation, which we call 4p,
is then transcended by admitting the mixing of other
functions, C„(x)0).We borrow the terminology of
orbital theories —which are studied in Sec. II and
generalized in Sec. III—and refer to Cp as the one-
configuration approximation; the refinement of ad-
mitting C„(a)0)is then described as con6guration
interaction. The signi6cance of the terms need not be
speci6ed further at this point: the question which
concerns us here is how the approximate density
matrices associated with 4 p are aGected when con-
6guration interaction is admitted.

|'L-,P, (1; 1)——,'Pg(1; 1)jdvg ——0. On writing

3.1. PerturbatiorI, Method

~=+ c.c„,
However, in states with S,WO (e.g. , in free radicals),

Pi(1)~P, (1),

and we obtain instead

a . P

(S.)..=-',
~

LP,(1)-P,(1)yv, =-;~ Q, (1)~v„(65)

(66)

where

Q, (1)=P,(1)—Pi(1)

The quantity Q&(1) may be called the (resultant) spin
density, since it gives the amount by which the prob-

where 1(=0 is reserved for the one-configuration ap-
proximation, the energy expression becomes Lcf. (19),
(20)3

p(=("„tH(',/('„t(",), (68)

where p=CC&/CtC. By using this form we avoid the
necessity for normalizing %. The general element of H
is given by (49) and upper bounds to the exact eigen-
values (see MacDonald" ) are usually determined

(along with corresponding optimum sets of coefficients

C) by solution of
HC =—EC.

6 J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).
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It is, however, useful to start from the one-configura-
tion approximation, for which Co= 1, C„=O(x)0), and
to obtain the density matrix associated with the cor-
responding accurate solution of (69) in the form of a
series. The standard Rayleigh-Schrodinger perturbation
theory is unwieldy for this purpose and frequently
diverges; we therefore use a method developed by
Lowdin" which is free from these defects.

We write (69) in the partitioned form

~H~~
I

H"s) (A ~ I' A &

Ht)s)l IV B )I

where A labels the initial approximation and 8 the
functions whose effect is to be admitted as a perturba-
tion. For a nondegenerate one-configuration approxima-
tion (which we assume —though generalization is not
difficult), H""=Hoo, the unperturbed energy. Equation
(70) is then equivalent to

A A+ HAB (EI HBB)—1HBA —f(E) (71)

which gives the Brillouin-Wigner series (Wigner';
Brillouin"; see also Lowdin") on expansion of the inverse
matrix. If we take Co ——1 (normalization arbitrary), the
coefficients C„(x)0)are contained in the column
matrix B,

B=(E]—Hso) —)Ht)&= B(E). (72)

Since E occurs on the right in (71) and (72), it is
natural to solve by iteration: one iterative sequence
would be E( & Ey(') E& ) ~ ~ ., with

E(s) HAA+HABB(o) (73)

(s+r ) —B(E(k)) (E(s) I H BB) )H BA —
(74)

But this represents a first-order process (see, for
example, Hartree") with poor convergence properties.
Moreover, E(s)&C(")tHC(o)/C(")tC("), and the approxi-
mate energy and density matrix in any given order of
iteration are not, therefore, compatible; E&~& is not an
energy expectation value for state 4=P,. C,(s)C„.
These difBculties disappear on going over to a second-
order process (Lowdin"); for when this is done, the
sequence E(p), E('), E(') ~ ~ ~ is replaced by p(p), p(»
E"', ~, where E(~) is found to be just the expectation
energy associated with the coefficients determined by
(74). We therefore discard (73) and adopt the second-
order process (dropping the bars), which leads imme-

diately to
8(') =tr Hy&~)

1 B&"&t ) (75)
!LI+.B(s)tB(o)7 )

I B(o)B(o)t)
» p.-o. Lowdin, J. Chem. Phys. 19, 1396 (1951).' E. P. Wigner, Math. u. naturw. Anz. ungar. Akad. Wiss. SB,

477 (1934).
'9 L. Brillouin, J. phys. radium 3, 373 (1951).
'0 D. R. Hartree, Proc. Cambridge Phil. Soc. 45, 230 (1949).' P.-O. Lowdin, Adoawces irs Chemico/ Physics (Interscience

Publishers, Inc., New York, 1959l, VoL II, p. 270.

where B'"' is defined by (74). The new sequence E&'&,

E&'&, E&'&, nearly always converges rapidly (even
when the first-order process diverges —Lowdin") and
its limit is an upper bound to an exact eigenvalue.
Usually, taking E(P) =IIpp, the approximation y= y(') is
adequate and E=E&" remains an upper bound for the
low est eigenvalue.

The Rayleigh-Schrodinger series can be obtained by
iteration on expanding the inverse matrix in (74) in
powers of its oG-diagonal part, the expansion converging
under certain well-defined conditions (e.g. , Ferrar").
When the usual series diverges, it is generally because
these conditions are not met. Equation (75) is, however,
still valid and the inverse matrix in (74), which always
exists, may be determined by other methods. When the
usual series does converge, it is of considerable value
and leads to corresponding series expansions of the
density matrices. On putting H„&, PH„), (P ———+ 1) for
~g), it is a simple matter to show that the first iterate
corresponds to the inclusion of the exact erst- and second-
order terms of the usual theory plus parts of all the
higher-order terms. The results up to P are

+p«II«0
p»(=t""«)= 1 +

«&o (Hoo —H„„)'
Bp„

po.(=p"o.)= 5
— (Hoo —K.)

+P +. . .
&(~ &(Hoo —R,),)(Hoo —K.)

+«p+px
P.i(=p" i)= 8

(Hoo —K.) (Hso —HM.)

(76)

Hp«B«p
=Hoo 1—PP

s&o (Hoo —H„„)s

Thus

+e Z K. ,+28 Z
(Hoo —H..) &o (Hoo —K )
+p«+«0E=H„+Pg +0($') $ 1. ('77).&o (Hoo —H,.)

Evidently, the P terms in the off-diagonal elements of y
have no efFect on the energy in this order, for they occur

ss W. L. Ferrar, Finite Matrices (Oxford University Press, New
York, 1952).

The energy in this order may be found directly from
(75):

E=tr Hg=Hoopoo+p H p +Z )Ho p o
«&0 «&0

+Z kKopos+ Z g6spsx
«,X&0
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only with off-diagonal elements of 8:but in discussing
electron distribution functions and expectation values
of operators other than the Hamiltonian, these terms
cannot consistently be omitted.

IL ORBITAL APPROXIMATIONS

1. Slater Method

Wave functions are most commonly constructed from
orbital products. In this section we use orbital approxi-
mations to illustrate in more detail the ideas developed
in Sec. I and to prepare the way for a natural generali-
zation of the product approximation (Sec. III).

l.l. Arltisymnzetrised I'roducts

We start from a set of functions

4'~ (i) ks (i) 4'&(i) (1)

(in principle infinite), which is complete in the sense

that an arbitrary function of space and spin coordinates
of one particle, symbolized by i, can be expressed with

any desll'ed accuracy 1n the form

f(i)=P ciiPii(i)

These one-electron functions are spin orbituls. Then the
totality of all S-electron products of the form

4~(1)4o(2)4~(3)" Ax(&)

in which Pp, fo, .Px are drawn from the set (1) in
all possible ways, is complete for functions of the
variables of all E electrons. Repetitions and rearrange-
ments are, at this stage, allowed; but, as Slater first
pointed out, a great simplification arises from the
essential antisymmetry of the wave function. It follows

readily that, in the expansion of an antisymmetric
function, the coeKcients of all products which di6er
only by a permutation of the same selection of orbitals
can diGer in sign only —those which arise by odd per-
mutations di8ering from those which arise by even.
Consequently, the terms of the expansion can be col-

lected into groups, each containing X1 products and
expressible in the form +6 (—1)i'(Pfi (1)fo(2) Px(Ã),
where the sum is over all permutations of the variables
j., ~ . E and there is only one distinct antisymmetrized
product for any given selection of spin orbitals Pi,
Po, Px. It follows that any wave function can be
expanded in the form

4'(1 ' ' 'X) = P Cpo ~i o x(1 E) (3)
(&Q. ~ .&)

C'~o" x(1» &)=3f Z( —1)'6'6(1)ko(2) 4'xP)
6' (4)

(M being chosen to normalize the function), and each
selection of spin orbitals occurs only once—with, say,
the orbitals in dictionary order. The function (4)—
which may be written as a determinant —is speci6ed
by stating the spin-orbital configuration, and (3) may
be abbreviated to

@(1, . $)=PCP„(1,. A),

where ~ denotes the configuration ~= (P,Q, X).
Systems in singlet ground states (e.g., most mole-

cules) are most commonly represented by a single spin-
orbital configuration, i.e., by one term in (5), Co say.
The refinement of admitting other functions C„(~&0)
is described as configuration interaction and may be
discussed along the lines of Sec. I.3. More generally
(e.g. , atoms with incomplete shells), the determinants
in (5) appear in groups, dictated by space and spin sym-
metry requirements (see, e.g., Condon and Shortley").

l.Z. Matrix E/erfleets and Density Matrices

The matrix elements of the Hamiltonian I(44)"
between antisymmetrized products were first given by
Slater."The results have recently been extended to the
case of nonorthogonal orbitals by Lowdin26 but, in
practice, the general results are somewhat unwieldy and
we here consider only the orthogonal case. There are
only three nonvanishing types of element (Cil KIC,):

(a) ~=li=(A, B, )

(c I
3'-IC )=2 (4~Illl4~)+l 2' CQ~A lalAA) (%~& I gled~) j—.

+2 2 LQs4~ I glPA~) Qsf~ I gl4~4s) j—(6b)

(~) ii=(A B R ~ 5 ) X=(A B E ~ ~ 5' ~ )

(c'&I Illc') =—'L(4'ii 0's

Igloo'iiPs)

—Q'ii Ps I glg+z)3+ L(4's 4'z

Igloo's4'ii)

——(0's 0's
I g Igzgs)3.

~3 E. U. Condon and G. H. Shortley, The Theory of Atomic SPectra (Cambridge University Press, New York, 1935), Chap 8.
~ Equation (44), Sec. I.
25 J. C. Slater, Phys. Rev. M, 1109 (1931).
'6 P.-O. Lovrdin, Phys. Rev. 97, 1474 (1955).



Here we have used the most symmetrical form of the expressions [which may be reduced since, for example,

(Ps Pslglpngs) = (/san I gl /sf') J and the Dirac-type abbreviation for the 1- and 2-electron matrix elements:

(4~II)l4s)= & *(1N(»4s(1)~ (4 4 Igloo~ )= 4 '(1)A'(2)g(12)4 (1)4 (2)d d .
al

From these results it is a simple matter to write down [e.g. , using I(51)], the corresponding density matrices
and transltlon density matrices. Thusq

(a) ~=K=(A,&, )

p («I1,2; 1',2')=Z'0 (1)4 (2)& '(1'9 *(2')-Z'& (1)& (2V *(1')& '{2')
R, 8 8,8

and by use of I(41), this gives

p (-I1;1')=(&—1) '{2'4 (1)4' *(1')& —Z'4 (1)~t *(1')& &=2& (1)4' *(1')
(8a)

which checks with the alternative derivation by inspection of the one-electron matrix elements. In the same way
we 6nd

(b) ~= (A,B, Z, . ~ ), X= (A,B, ~ E', ~ )

p (&I1»'1'2') = Z & (1)& (2V *(1'9 '{2')—& & (19 (2)k *(1')4 *{2')
8(QR) S(QE)

+ Z fs(1)4~(2)4s*(1'8~*(2')—Z 4~(1)4s(2)A*(1')4n*(2'). (8b)
8(QB}

(c),=(a,a "z" s," ), ~=(~,a, "z'," s', ")
p2{~&l1,2; 1',2') =Ps(1)48(2)~t ~ *{1')48*(2')—A(»f~(2)P~ *(1')A *(2')

+~.(1N.(2)~'*(1')~'*(2')-~.(1N.(2)~'*(1')~"(2') (8 )

In view of later developments it is useful to introduce
an alternative form of these results. Instead of adding
primes to denote substitution of new orbitals, we may
use a second subscript, so that P~~, /~2, ~ are the
various orbitals admitted as the 3 factor and, generally

~ are the orbitals admitted. in the Rth place.
All orbitals are drawn from the one complete set. In

this case we note that P~, (1)fg,*(1') is the density
matrix for the 8th 1-electron system described by the
orbital P~„while Pg, (1)fg, *(1') is a transition density
matrix for this system corresponding to an electron
jumping from Pg, to Pz, . If we denote these quantities
by pP {«I1; 1') and pP {«'I1; 1'), respectively, Eq. (8)
may be rewritten as

(a) p2(«I1,2;1',2')=Q'Pr"(«I1;1')pr (ssl2;2') —Q pr"(«I2;1')pr (ssli;2'),

pr(«I1; 1')=Q pP(«I1; 1'),

(t~) p~(~~l 1,2; 1',2') = »~'(«'ll 1')»'(ssl2; 2') —2 p~'(«'I2; 1')p~'(»ll; 2')

pr (~X I 1;1')=pm(rr'
I 1; 1'),

+ &»'(ssI1' 1')pr'(«'I2;2') —Z pr'(ssl2 1')pi'(«'l1; 2'), (9b)
8(HB} 8(WB)

(c) p2(~&I1,2; 1',2')=pP(rr'l1; 1')pre(ss'I2; 2') pP(«'I2& 1')pP(s—s'l1; 2')

+pP(ss'I 1; 1')pP(«'I 2; 2') —prs(ss'I 2; 1')pP(«'I 1; 2'). (9c)

The reduced density matrices of the E-electron

system can thus be expressed in terms of the density
matrices of a set of one-electron systems. These results

are not new and couM have been obtained in other

ways"", but the present form suggests a generalization,
taken up in Sec. III, in which the one-electron systems

~7 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 27, 240 C', 193j.)."J.E. Lennard-Jones, Proc. Cambridge Phil. Soc. 27, 469
(1931);see also Lowdin, reference 26.
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are replaced by electron groups, each comprising any
number of electrons. It should also be noted that the
restriction RW5 in (6) I

and also in (9)jmay be removed,
since the 8=5 terms cancel: this leads to a considerable
simpli6cation which is peculiar to the one-determinant
approximation. tItte are, in fact, often concerned with the
one-determinant approximation, in which 0 =C,=CO,
the first term in (5). The energy associated with this
particular spin-orbital configuration, i~={a,b,c ~ ), is

then given by (6a): it may be improved by admitting
interaction with excited con6gurations Pother terms in

(5)] in which new spm orbitals its, occur.

1.3. Collomb meed Exchange Operators

The matrix element expressions (6a) and (6b) may
be put in an alternative form by introducing two new
operators to represent the eGect upon an electron in any
orbital of the electrons in clothe~ orbital. Thus

Qs"4s. I g 14s4s.)= 4s"*(1)A.(2)g(1,2)4s.(1)A.(2)«id»= „fs"*(1) g(1,2N s.(2)A.*(2)d» k~.(1)dri

ol
(4s"4s. I g I ks.&s.)= tr as(1)pi'(«'I 1; 1')= 8s; I

as 14s,),

P(1)=Js(1)= g(1 1')p s(ss11' 1')dr ~

gs(1) is a Coulomb operator, since it is simply a multi-

plier, giving the electrostatic 6eld at point 1 due to a
charge distribution whose density at point 1' is
pis(ss11', 1')—the electron density associated with
orbital its, We u. se such operators only to describe the
efFect of an electron in one of the unexcited orbitals of
Co, a one-determinant approximation, and the "state"
subscript s may therefore be suppressed. The exchange
integral (its;its, I g I its.its,) cannot be expressed quite
so simply and requires the introduction of an integral

operator (see, e.g., Seitz29). Thus

(4z;gs, I g I Ised z.)

(tPs"0's. l g I tPs.tPs,)= tr X (1)pi"(rr
I

1' 1 )
= (&s" I

X'I A ) {12)

where Xs{1) is the integral operator with kernel
Es(1. 1

Xs(1) —+Es(1 1')=g(1,1')p s(ss11 1'). (13)

Xs(1) is the "exchange operator, "giving the "exchange
field" at point 1 due to an electron in orbital its, We.
6nd later that it describes a spin-dependent correlation
eGect. %e can now introduce sums of these operators
to describe the total eGect upon an electron in an E.
orbital of all the electrons in the other orbitals:

S{gE)

[Es(1;1")pP(rr'l 1";1')dri"ji idri

1- 8(»(1)= Z 8 (1)~ X«i(1)= 2 X (1) (14)
Es(1) 2)pP(rr'l 2; 1)dr,dr, S{QR)

Lwhere Es(1; 2) = g(1, 2g' s( 1) its.*( 2) j Finally, if we introduce an egectim Hamiltoliue for the
electron ln the E orbital

4& {1)=1)(1)+8«&{1)—X«i(1)

we can rewrite the formulas (6a), (6b), (6c) as

(15)

(o) + =Z 9'@ lill4'& )+ 2' E(4'z4's Igloo'z, 4's ) (4'z4's*lglf'sA'—z )j

=2 (0'& 14&"lip& ) 4 2' C(&zg's, I g I if'zfs) g'z4's.
I g I 4s tpz—,)g,

Since

(8 &i.= 8'z" li)14'z,)+ 2 L(ipse 4s. l gl4'z, its.) (ipse. ips*l glips*4'z—,)j
S{QB)

—Qs" 1%i'lgs.),

(c) &),=L(kz;4s, I g I4z,ks.) (0z;4s; I

gled
sos.

—)j.

(Pz; I
y' X I4z,)=(4s, 4s.—l gl4s.4s.) Qs"&s. l gl&s &s)—=o,

the restrictjon $'+g jn (14) msy be removed and the subscript R dropped. In a one-determinant approxima-

tion, each electron feels the sgygs Coulomb-exchange 6eld, described by the effective (Hartree-Fock) Hamiltonian

+ F.Seits, Mode'I Theory of Solids (Mcoraw-Hi11 Book Company, Inc., New York, 1940},p. 245.
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I).tt'(1) =%i(1)= f)(1)+8(1)—X(1) (»1 R) where

where
a(1)=2 u'(1), X(1)=Z X'(1).

(17) ~ ~, e e,Pi(1; 1') =Pi(1; 1') =pPi(1; 1')= Q PP(1; 1'). (22)
k (occ)

The first term in the second form of (16a) is a sum of
orbital energies —each being the energy expectation
value of an electron in a given orbital in an effective
field which recognizes the presence of all other electrons—corrected by subtraction of interaction terms which
would otherwise be counted twice. We find that the
same effective Hamiltonian has another significance,
when other terms are admitted in (5)—an important
class of excited configurations giving oG-diagonal
matrix elements of the one-electron type (16b).

2. Interpretation of the Wave Function

In this section we illustrate, using straightforward
examples, the topics considered in Sec. I.2. As a first
step, it is necessary to take spin into account explicitly
and then to derive the spinless density matrices.

Pg(1,2) 1')2') =Pi(1; 1')Pi(2; 2') —Pi(2; 1')Pi(1; 2'),
(24)

a p a p a e p p
P2(1,2; 1',2') =Pi(1; 1')Pi(2; 2'). (25)

The pair function for particles of different spin is
therefore of product form,

Pi(1,2) =Pi(1)Pi(2), (26)

Since (9a) may be written without the prime on the P
(the R= S terms canceling), we have

pg (1,2; 1',2') =pi(1; 1')pi(2; 2') —pi(2; 1')pi(1; 2'), (23)

and on inserting (21) and integrating over the spins,
we obtain [cf. I(52)]

Pg(1,2) =Pi(1)Pi(2)—Pi(2; 1)Pi(1;2), (27)A(i), B(i), C(i), . (18)

and combining these with the spin factors n(i), p(i). and the correlation factor deaned in I(61) is
Thus, we may use

Pg(i), Pg(i), ps(i), Ps(i), (28)f(1,2) =—Pi(2; 1)Pi(1;2)/Pi(1)Pi(2).
P

where (19) This clearly fu1611s the necessary conditions I(62) and
I(64)—the latter holding because the integral operator
with kernel

~.()=R().(), 4(') =R(')~(').
In this case, each (space) orbital R(i) may appear twice
in an antisymmetrized product —once with each spin
factor. In the examples, the one-configuration approxi-
mation is used to describe the ground state of an even
number of electrons —and there is no need to use a
second subscript to distinguish a variety of orbitals
admitted in each place. This is the approximation used
in the simple Hartree-Fock theory which is considered
in Secs. II.(3.1—3.3); the case where some orbitals are
singly and others doubly occupied is dealt with later in
Sec. II.(3.4). Assuming then that each orbital appears
twice, and using the notation of (9) (omitting the
unnecessary labels u, b, r, and dropping the ~, since
there is only one configuration), we have

pia(1; 1')=PP(1; 1')n(1)n*(1')
for an electron in gs,

20
pi" (1; 1') =Pis(1; 1')P(1)P*(1'),

for an electron in fs.
Consequently, the second equation in (9a) becomes

pi(1; 1

Pi(1; 2)
is idempotent,

Pi(1; 2)Pg(2; 1)ding
——Pi(1; 1)=Pi(1).

This particular correlation factor, which operates
between particles of like spin, even when they are non-
interacting, defines the Fermi hole LI(64) et seq.].

When spin states of the particles are of no interest,
it is unnecessary to analyze. the pair function into its
parts. By addition of (24), (25), etc., it follows that

Pg(1,2; 1',2') =Pi(1; 1')Pi(2; 2')
—-',Pi(2; 1')Pi(1; 2'), (29)

where
(30)Pi(1; 1')=2 Q R(1)R*(1').

8 (occ)

Z.Z. Correlation: Like Spins
')=Z p "(1;1')

It is instructive to derive, from the present stand-
point, the correlation factor for particles of like spin

=Pi(1; 1')n(1)u*(1')+Pi(1; 1')P(1)P*(1'), (21) in a uniform electron gas of low density. This was first

Z.l. Elimination of the Spin and fails to describe any correlation. But the pair
function for particles of like spin does contain a corre-The complete set of spin orbitals j1j may be con-
lation term: thusstructed by taking a complete set of functions of space

coordinates
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4 = (3E/87rV)&, (33)

and the occupied orbitals are determined by the con-
dltlon

k '+k„'+k,2&~ kr'.

The 1-particle spinless density matrix for particles of
lite spin follows from (22) on replacing I'P(1; 1') by
pq(1)pq*(1') and the summation over R by an inte-
gration ovcl' k-space:

A straightforward integration in polar coordinates then
glVCS

3[sln2irkrb —2llkr5 cos2skp6]
&i(1; 1')=2o (34)

(2mki 5)'

where 8=
~
ri r ~aind p—=iV/V is the particle density.

It is easily verified that, when r~' —+ r~,

~i(1;1')~ 2o,

as it should, since the density Pi(1) of particles of
given spin must be half the total density.

30 E. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); see
also reference 29, p. 24k.

g' M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 3{F4
()957).

discussed by %igner and Seitz.30 Analysis of the high-
density case recently has received much attention in
connection with nuclear models (see, e.g., Gell-Mann
and Brueckner"), but the corresponding form of the
correlation hole has not yet been discussed.

We consider a cube of side G and volume V(=G'),
with periodic boundary conditions on the 1-electron
wave functions; these are then most conveniently
denoted by pq where ir specifies a triplet of quantum
numbers. Thus

y), (j)=G—
& exp2irik r;, (31)

where r; is the position vector with components

(x,,y;,s;) and k= (k„k„,k,) indicates the electron mo-
mentum. The boundary conditions require k,=K,/G,
k„=~„/G,k, =z./G, where ~„~„,~, are integers, and
the corresponding orbital energies are

eq ——(k'/2m)
(
lt )'= (k'/2m) (k,'+k„'+k,'). (32)

To every orbital there corresponds a point in k-space,
one point per volume G ' or G'(= V) per unit volume,
and the points representing orbitals with energy less
than e lie within a sphere of radius kp, where kp'
=2nte/h'. If S electrons are described by a single
determinant of doubly occupied orbitals, these being
6lled in ascending energy order, we must therefore have
2(s4)irk''V=X. The radius of the Fermi sphere of occu-
pied orbitals is thus

The correlation factor for particles of like spin then
follows from (28):

3t SH12irkrfi2 2&krri2 cos2'trkrri2]
f(1,2)= —

2t
(2s kiri, )' (35)

The Fermi hole which it describes has been fully dis-
cussed hy Slater."The correlation factor has a simple
analytical form only in the case of a free electron gas,
where the electron density is uniform.

The shape of the Fermi hole for electrons in an atom
has recently been discussed by Maslem, " who points
out that it is no longer spherical and that the maximum
depth no longer occurs at the electron which it surrounds.
This is to be expected: the Hke-spin correlation factor
certainly has its numerically greatest value (—1) for
2 —+ 1, but the hole itself is described by the function

~(2V(1,2)

and, if 1 lies in a region of low electron density, the
depth of the hole is small for 2 —+ 1; since, however,
the hole function must iefegratt, to —1, it must be of
considerable depth elsewhere, namely, where the elec-
tron density is large. If point 1 is removed to in6nity,
the like-spin correlation factor in this expression must
become independent of rI2, the hole function becom-
ing proportional to P(2): the integration condition
I(64) then gives f(1,2) —+ 1/X. Thus, if one electron is
a long way outside the atom, the probability of finding
a second at any point is reduced by (1/E)th of its
original value, the actual form of the density being
undisturbed: this ls physicaOy necessary.

"J.C. Slater, Phys. Rev. 81, 385 (1951).
» V. W. Maslem, Proc. Phys. Soe. (I,ondon) A69, 734 (j.956).

Z.3. Correlation: Unlike Spies

The main problem of F-particle quantum mechanics
is that of introducing a correlation factor to describe
the mutual repulsion of charged particles, irrespective
of their spin states. This is not of crucial importance for
particles of like spin because they stay apart anyway
as a result of antisymmetry; but it is vital for particles
of unlike spin, which in one-coniguration approximation
are described as being free to come arbitrarily close
together. The simplest example of how this type of cor-
relation is described in an orbital approach is provided

by a comparison of two hydrogen molecule wave
functions —the molecular orbital function,

~ .(1,2) =~(1)&(2)(2)-*L (1)~(2)-~(1) (2)]
(1 spin-orbital con6guration), (36)

and the Heitler-I ondon function

+HL(1,2) =iVLa(1)b(2)+a(2)b(1)]
&& (2) 'L~(1)t3(2)—P(1)~(2)]

(2 spin. -orbital configurations). (37)
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Here a and b represent the 1s atomic orbitals on the
two centers and the bonding molecular orbital is
A =m(a+b) where m= (2+2S) & and S is the overlap
integral between a and b. The normalizing factor in
(37) is M= (2+2S') l. A simple calculation gives:

MO approximation

P2 (1,2) =Ps(~1,2) =0,

Ps(1,2) =P2(1,2) =m4[a'(1)+b'(1)+2a(1) b(1)5
(3g)

X[a'(2)+b'(2)+2a(2)b(2)5,

Pi(1)=Pi(1)=m'[a'(1)+b'(1)+2a(1)b(1)5

HL approximati oN

P, (1,2) =P,(1,2) =0,

P (1,2) =P (1,2) =2M'[a'(1)b'(2)+ a'(2)b'(1)
(39)

+2a(1)b(1)a{2)b(2)5,

Pi(1)=Pi(1)= 23P[ a'(1)+ b'(1)+2S~b a(1) b(1)5

Both approximations exhibit Fermi correlation in an
extreme form, though this is not usually recognized: for

P2(1,2) =P2(1.,2) =0

means, by comparison with I(61), that

f(1,2) =f(1,2) = —1

everywhere, and this means that the Fermi hole is
identical in form with the electron density and subtracts
exactly one electron. Again, this is intuitively necessary—given one electron in spin state e, there should be zero
probability of the second being in the same spin state
if the s component of total spin is to be zero, On the
other hand, there is also a correlation between particles
of evoke spin in the HL approximation;

P(1,2) op{1)p(2).
To see most clearly what is described, it is convenient
to suppose the atoms are rather far apart. In this case
M~-,' and

P(1) 2[ '(1)+b'(1)5

P(1,2) ~Pi(1)pi(2) —-'La'(1) '(2)+b'(1)b'(2)
—a'(1)b'(2) —b'(1)a'(2) 5.

If points 1 and 2 Lie in the vicinity of one nucleus
(where a is large, b small), it is clear that

Pi(1) b —,'a'(1)

Pi(1,2) ~ -'a'(1)a'(2) —-'[a'(1)a'(2)5= o.

For large internuclear distances, the two electrons are
therefore forbidden from coming onto the same nucleus.
At smaller internuclear distances, the probability of
their being near the same nucleus is simply reduced
below the value

ZA. PoPNlatiorb Aealysis

Ke have seen that in an orbital approach the density
matrices are approximated in the form

P (1 1')=Q R(1)P gsS*(1')
B,S

(40)

Ps(1,2; 1,2') = P R(1)S(2)Psas, rvT (1 )U*(2 ),
B,S,T, U (41)

where the coefhcients of the diferent orbital products
may be collected into square matrices Pi and P&. Thus,
in the molecular orbital approximation (single antisym-
metrized product), the elements of Pi and of P2 (rows
and columns labeled by index pairs) follow from (29)
and (30):

~~aS= 2~ZS,

Ps@a,rv=2[2bzr&sv &zv4r5—
(42)

(43)

Pi(1)Pi(1).

If the hole function de6ned in I{56) et seq. is plotted
for an electron at point 1, near one nucleus, the hole

(—ve values) is confined to that nucleus, while there is
a peak on the other nucleus indicating that the second
electron is most likely to be found there. Like the Fermi
correlation, however, this eBect depends upon a special
form of the wave function and is not in any way con-
ditioned by the actual repulsion between the electrons.
At the same time it is in harmony with the fact that
the electrons like to keep apart and therefore simulates
the kind of correlation which would arise from electron
repulsion —though very crudely. The hole can be
properly 6tted to describe the actual repulsion only by
adding more and more conhgurations, determining
their mixing by variational methods in which the energy
of repulsion plays its part. It is, however, clear that an
orbital approach, with a severely limited number of
conflguratlonsq can give only a elude descl"lptlon of the
correlation hole owing to the clumsy nature of the
orbitals with which it is approximated. The correctly
localized character of the hole can be introduced by
admitting functions which contain the variable r~2, but
this generally leads to insuperable computational diK-
culties. This is the present dilemma in molecular theory:
its nature suggests that the only way of dealing with
complicated systems is to shift the emphasis from
a priori calculations onto the general elucidation of
molecular properties in terms of the density matrices
of the molecule and its constituent parts, leaving the
detailed mathematical form of these functions unspeci-
6ed wherever possible. We 6nd in Sec. III that it is
possible to make considerable progress in this direction.
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Here R, S, T, U run over the set of N(=~~Ã) doubly
occupied orbitals of the one-configuration approxi-
mation: P~ is thus twice the e&(e unit matrix, while P~
is e'&(e'. It is now necessary to discuss the physical
significance of the matrices P~ and P~. Matrices y~

and y2 can be defined and discussed in a formally
identical way, but for present purposes it is necessary
to take spin into account explicitly and then to proceed
to the spinless quantities.

If Pi and P2 are unrestricted in dimensions and form,
the quantities Pi(1; 1') and P2(1,2; 1',2') define general
operators P~ and P2" in the representation spaces for
one and two particles, respectively. For example,

Pig(1) = Pi(1; 1')P(1')dpi, (44)

and the elements of Pi are simply the matrix elements
of the operator P~, in the usual sense, relative to the
basis A(1), B(1), ~ R(1), in terms of which any
1-electron function P(1) can be expanded. Thus [cf.
I(12) et seq.]

(A I
Pi

I B)= A (1)Pi(1; 1')B*(1')deidei

= Q tiABPlsstiBB P1AB
R, S

In the same way, the elements of P2 are just the matrix
elements of an operator P2, relative to the basis of
2-electron products A(1)A(2), A(1)B(2), . B(1)A(2),
B(1)B(2), R(1)S(2), in terms of which any
2-electron function C (1,2) can be expanded. Thus, if
matrices are associated with j.- and 2-electron operators
in the usual way, results such as I(43) may be tran-
scribed:

l"

D)(1)Pi(1; 1')ji idvi —— Q S~(1)I)(1)R(1)Pissdsi
4 J B,S

=p hsBPiss ——tr hP, . (45)
R, S

This transcription is valid even when the basis functions
are nonorthogonal. The energy expression I(54) may
thus be written

E=tr hP, +-', tr gP„ (46)

where Pi and P2 are defined in the preceding and

Itss= (Rli) IS), gss, TU (RSI g I
T&).

With an approximate wave function, restrictions are
placed upon the forms of Pi and P2 [cf. (42) and (43)]
and (46) then gives the corresponding approximate
energy.

P(1)=Z R(1)P»BR*(1)i (4&)

and the charge density is simply a sum of orbital con-
tributions, both orbitals and populations being uniquely
determined by the diagonalization (the columns of U
being the eigenvectors of Pi). The new orbitals are the
spinless counterparts of the natural spin orbitals intro-
duced by Lowdin": by considering

a P
Pi(1) and Pi(1)

separately, the natural orbitals may be defined for
electrons in each spin state. In molecular orbital theory,
for example,

n P rx P
Pi ——Pi+Pi, where P, =Pi ——I„

(the e-dimensional unit matrix), and the MO's are
thus approximate natural orbitals of unit population
for each spin. In this very special case (n-fold degeneracy
of the populations), the orbitals are arbitrary to within
a unitary transformation: more generally, the popula-
tions are nonintegral and distinct, and the arbitrariness
disappears. Interesting examples of this kind of analysis
have been given by Shull and Lowdin. ""

In spite of these simplifications, the natural orbitals
are not always convenient for descriptive purposes: they
generally extend over the whole molecule and are
therefore superimposed in the same region of space, and
their forms are characteristic of the molecule considered.
Usually, the occupied orbitals are all expressed in terms
of a basis of atomic orbitals, which are localized in
different regions of space and are characteristic of the
atoms in the molecule. In such cases, transformation to
the atomic orbital basis gives a charge density ex-
pression which contains terms referring to localized

The elements of the density matrices have another
significance in so far as they define a resolution of the
distribution functions into terms associated with or-
bitals. The charge density is of particular importance.
Thus Pi(1)=QB,s R(1)PissS*(1), and on integrating
over all space, it is clear that P~RR electrons are con-
tributed from the orbital density R(1)R*(1).The diag-
onal elements of Pi are thus the populatiorts of the
corresponding orbitals. This picture is confused, how-
ever, by the presence of oG-diagonal terms —for overlap
densities such as R(1)S~(1), although contributing no
net charge when E. and 8 are orthogonal, profoundly
modify the distribution defined by the diagonal terms.
Moreover, the populations are in no sense unique. Both
objections may be met by introducing a new basis.
For on putting (AB )=(AB )U (U a unitary
matrix), Pi must be replaced by Pi ——U PiU, and U

may be chosen so that Pj is diagonal. In this case, then,

+ Script is not required for the density operators since there are
no corresponding dynamical variables: This leaves (P free to repre-
sent a permutation operator.

"Reference 26, p. 1474 (see in particular p. 1483).
3~ P.-O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956).
'7 H. Shull and P.-O. Lowdin, J. Chem. Phys. 25, 1035 (1956}.
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E(1)=g s(1)T,II

or, with the abbreviation (ABC ~ )=A, (abc ~ )= a,

A=aT. (49)

It is convenient to refer loosely to the orbitals of A and
a as MO's (molecular orbitals) and AO's (atomic
orbitals). " The density matrices (40), (41) may then
be written in terms of the AO basis:

Pl(1; 1')=P f (1)Pl„s(1'), (50)

E2(1 2 1' 2') = Q r{1)s(2)P2„,f F(1')N*(2') (51)

regions which are easily visualized: this is the basis of
population analysis (Mulliken"; see also McWeeny12 ").

Let us denote the primitive set of 1-electron basis
functions by u, b, c, ~ ., these being certain atomic
orbitals (including more generally Slater functions,
Gaussians, etc.) centered on the various nuclei. The
orbitals employed so far [Eq. (18)) are linear com-
binations of these functions:

follows readily that
~»t'8 2~0'sy

I 2re, e& 2[2~rfReee +ruffle

(55)

(56)

R= TTt. (57)

It is characteristic of the Hartree-Fock approximation
thRt Rll thc density IQRtllccs arc dctcrlTllncd by R slnglc
matrix R. In higher approximation the density matrices
would be determined from I{50),contributions arising
from the mixing of a number of determinants according
to Eq. (8) with weights determined by the mixing coef-
Gcients calculated by variational methods or by the per-
turbation method of Sec. I. The number of Mo's em-

ployed then exceeds e, and in the transformation to the
AO basis, (52) and (53), T contains more than n columns—being mph in the limiting case of full configuration
interaction.

Information about the electron distribution is most
readily obtained from the matrices P» and P2 by intro-
ducing normalized orbital and overlap densities. As-
suming real basis functions, these are

where, in terms of MO quantities,

Pl= TIPTt (fffxfw matrix), (52)

P2 ——T&2&P2T&2't (f222)&f222 matrix), {53)

p.(1)=«'(1) p-(1)=r(1)~(1)/S-

and. in this case the electron density is

~I(1)=V.u.(1)+Z V-~-(1)

(58)

(59)

where [cf. (52)1

and in this case
Pp ~=TPp ~Tt

P =Pl" "+Pl"'+Pls +Pls'.
The elements of P», for instance, then determine the
density of electrons of n spin in corresponding regions
of space: they have an intrinsic physical importance
which is revealed in magnetic resonance experiments
[see Sec. III.(4.3)j.

This procedure has in CBect been followed in Sec. II.
(2.3).To illustrate a more general case, we consider the
usual one-determinant approximation, with I doubly
occupied MO's and fN AO's. In this case T is a rec-
tangular m&N matrix whose 8th column contains the
AO coefficients in the Rth MO. From (42) and {43) it

38 R. S. Mulliken, J. Phys. Chem. 23, 1833, )346 (1955).
39 R. Mc%eeny, J. Chem. Phys. 19, 1614 (1951);20, 920 (1951).~ Henceforth, a bar @rill be used to distinguish matrices referred

to MO's from those referred to Ao's."(&x~)"a~=~.A ~

and T&2&= TXT, the outer productel of T with itself.
If there are I MO's and fN AO's, T is fff&(ff and T&2&

is eF&n'. The matrices P» and P~ may be resolved
into components corresponding to I(57) and I(59).
Thus, for example,

Pl(1; 1') =Q E(1)PI 12sS*(1')=Q r(1)PI~ ~„,s*(1')
B,S

gt =I »rry q„=2S„,P»„, (60)

These latter quantities are the orbital and overlap
popfflatioms22 and give the amounts of charge distributed
according to density functions p„and p„„respectively.
The analysis is formal since the density functions
overlap considerably, but if the basis orbitals are
reasonably well localized, the q's can give a useful
picture of the general disposition of charge in the
molecule. Broadly speaking, chemical binding is to be
attributed to the charge density which has left the
valence orbitals of the free atoms and accumulated in
the overlap regions. For this reason the oG-diagonal
elements of P» are, in an appropriate context, bond
orders, and Pl is sometimes called the charge and bond
order matrix. It is sometimes convenient to introduce
normalized poplllatloIls 1'eplaclllg Pl by PI/E 111

order to show where any one electron is likely to be
found. Thus, in the example of Sec. II.(23), the nor-
malized populations of the orbital and overlap regions
are estimated as follows:

Normalized
population

Mo
HL

Electron in a
or in b

1/(1+S)
1/(1+S')

Electron
in eb

S/(1+S)
S'/(1+S').

Thus, with S=-,' the HL function would predict a 20%
probability of an electron being found in the bond
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region, while the MO function would give 33%. Con-
victing estimates are brought into agreement as con-
figuration interaction is admitted (see, e.g., McWeeny"),
and population values provide a sensitive wave function
criterion.

Pair PoPelatiorbs may be defined analogously" and
are of value in discussing electron correlation. Thus, if

Pb(1,2)

includes a term which may be written q.b, ~p,b(1)p,z(2),
then the pair population q,~,~ is the contribution to the
integrated two-electron probability arising from electron
1 in p, b (with n spin) and electron 2 in p,q (with p spin).
Division by E(E 1)—yields a norma1ized pair popu-
lation which gives the probability of two electrons (in
this case with opposite spins) simultaneously occupying
the two regions. Thus, in the example of Sec. II.(2.3),
we obtain

Normalized pair population MO

Both electrons
inaorinb
1/2 (1+S)'

0

One in a,
one in b

1/2 (1+S)'
1/(1+S)'

One in a or b,
one in ab

2S/(1+S)'
0

Both in
ab

S'/(1+S)'
S'/(1+S)'

Thus, with S=2 say, there is, according to HL theory,
zero probability of both electrons in the same orbital or
of one in an orbital and the other in an overlap region,
80% probability of the electrons in diferent orbitals,
and 20% probability of both in the overlap region.
These 6gures give a simple and precise description of
the strong correlation described by a HL approximation

I cf. Sec. II.(2.3)j.
Z.5. Status of Hybridization

There are many instances in which the description
of a molecular system is facilitated by introducing in

place of the primitive AO's a new set in which functions
belonging to the same center have been allowed to
mix: the mixtures are hybrid AO's. Usually, hybrids are
chosen on intuitive grounds, bonds between atoms being
conveniently described in terms of hybrids which point
towards each other so as to give large overlap in the
bond regions. But from a knowledge of the 1-electron
density matrix, it is possible to uniquely define certain
ea/eral hybrids. "

Suppose the primitive AO's are ai, a2, (on atom a),
bi, 7', ~ (on atom b), etc. Then the charge density in
this basis is

P &sb UetP abUb— (63)

giving the bond orders between the various hybrids on
a and b.

To give an example, consider an atom r in a linear
molecule. The valence orbitals invoked might be ri ——4 b„
r&=P» (along the axis), and the charge density given

by a configuration interaction calculation might turn
out to be

p0.9 0.2y

&0.2 1.1i

P, (1)= ~ ~ ~ +0.9rib(1)+0.4ri(1)rb(1)+1.1rb2(1)+

orbitals on any atom r are then mixtures of the original
set: the mixing coeKcients are the eigenvectors of P~"
and the populations of the new orbitals are the eigen-
values. The orbitals

(ai a2 ' ' 'f 1 ~2 ' ' ') = (alab' ' 'f lf 2' ' ')U (62)

where U contains the diagonal blocks U', and Ub are
the natural hybrids. Nonvanishing bond orders then
occur only between hybrids on digerelt atoms, and
these are determined by the off-diagonal blocks

Pi(1)=Z Z r.(1)» 'vsi*(1),

where P~ has the form

In this case
61 ]0.9 0.2~

(0.2 1.1i

Pe Pe&

PypybaPyb
~ ~

~ ~ ~

~ ~ ~

with eigenvectors

~0.526' p 0.851'

50.851& I —0.526)

Formally, since Pi" is not generally diagonal, there are
bond orders between dHFerent orbitals on the same atom
and the intra-atomic density is not a simple sum of
orbital contributions. But each block of the density
matrix may be brought to diagonal form by a unitary
transformation, exactly as in (47). The new basis

~R. McWeeny, Proc. Roy. Soc. (London) A227, 288 (1955).

and eigenvalues 1.224, 0.776. The natural hybrids are
then

(0.526 0.851)
(ri'r2') = (rir2) )

(0.851 —0.526)

and. the charge density becomes

Pi(1)= +1.224 ri'b(1)+0.776 r2'2+
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The hybrids are obviously of sp type, pointing in
opposite directions along the molecular axis, but are
not equivalent in the particular example owing to the
asymmetry of the charge distribution. In cases of sym-
metry, the P&' have degenerate eigenvalues and the
hybrids lose their uniqueness: this may be restored,
however, by imposing a symmetry requirement.

Hybrid AO's are introduced essentially for conceptual
reasons. If each hybrid has a large bond order with only
one other hybrid so that a number of different pairs
may be distinguished, the system contains localized
borIds, and a good approximate wave function can be
set up most simply by using the hybrids. The departure
from zero of the remaining bond orders indicates the
degree of delocalization resulting from incipient bonding
between hybrids which overlap less strongly.

3. Hartree-Fock Approximation

Hartree-Fock theory starts from a single antisym-
metrized spin-orbital product, an approximation which
has so far dominated molecular theory. Usually, the best
orbitals (MO's) to use in such wave functions are deter-
mined variationally by the self-consistent 6eld method.
It is, however, unnecessary to determine the orbitals
themselves since in this approximation the wave
function is completely determined by the 1-electron
density matrix and this may be calculated directly by
a suitable iterative method. Here we give a brief
account of some present trends, in which analytical
approximations are obtained by expansion over a set
of stt basis orbitals (AO's) and the numerical integration
techniques of Hartree" are replaced by matrix methods.

3.1. Matrix Formulation

When the density matrices are expressed in terms
of the occupied MO's A, j3, according to (40) and
(41), (46) becomes (with bars added —see footnote 40)

simplified:

—; tr gPs= Z L2(tulglrs)~, .—(tulglsr)~, „7~„„
r, 8, t, u

where the dummy indices r, s are interchanged in the
second term. Thus,

where
E=2 tr hR+tr GR, (66)

«.=2 ~-L2(tulg lrs) —(«I g I sr) 7 (67)
8, Q

or
TtT= 1„. (68)

This is equivalent (Appendix) to the statement that
R is idempotent:

RR= TTtTTt= TTt= R. (69)

The variational problem of determining the best
orbitals is thus equivalent to

E=2 tr hR+tr GR=stationary value,

subject to
R'= R (tr R=n).

(70)

Interest is generally 6rst centered on the ground state,
and in this case the stationary value is a minimum.
Since P=2R, R is the 1-electron density matrix for
particles of given spin, P =Ps s= R, and since only
R appears in the present formulation the orbitals them-
selves clearly have no unique physical significance.

is the (rrt Xstt) electron interaction matrix of Roothaan. ~
It is convenient to assume that the basis a is ortho-

normal (though the extension to the nonorthogonal case
is not diKcuit44), and in this case the assumption that
the occupied orbitals A are orthonormal takes the simple
form

g T',st*&.s=P T'tr, T.s=(T'T)trtt=&tts

E= tr hPt+-', tr gPs. (64)
3.Z. Bartree-Fock Hamiltoeiae

When the MO's are expressed in terms of the AO's a,
b, , according to (50) and (51), the corresponding
form is

E=tr hP, +-', tr gP„ (65)

where Pr= TPrTt and Ps——T&'lPsT&@t are the density
matrices referred to, the AO basis and h, g are the
corresponding matrices of the 1- and 2-electron opera-
tors, h„,= (r lf) l s), g„,,„=(rs l gl tu). This is quite
general; but in the usual Hartree-Fock case there are
e=-,'X doubly occupied MO's expressed in terms of,
say, m AO's, and P&, P2 have already been expressed
in terms of a single matrix R= TTt. On inserting the
expressions (55) and (56) into (65), the electron inter-
action term (which contains rttsXrrts matrices) may be

~ D. R. Hartree, Colctttoteots of Atootto Strlotlres Uohn Wiley
tk Sons, Inc. , New York, 1957).

The stationary condition (70) may be expressed
otherwise by considering a erst-order variation BR and
noting that

8E=2 tr h5R+tr GSR+tr 8GR+(higher-order terms).

Now G= 6(R),44 and. by (67) it follows easily that

tr bG P=tr G(8R) R=tr G(R) 8R, (71)

which allows us to eliminate the 6rst-order variation in
G. The stationary energy condition RE=0 then becomes
2 tr h8R+2 tr GER=0, and (70) may be replaced by

8= 2 tr h~R= stationary value,

a C. C. J. Roothaan, Revs. Modern Phys. 2$, 69 (1951).
4' R. McWeeny, Phys. Rev. 114, 1528 (1959).
4' It is convenient to use a functional notation for the depend-

ence of the matrix 6 upon the matrix R.
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subject to

in which

R'=R (tr R=n),

h~= h+G

(72)

(73) h~T= Te, (78)

Hamiltonian& with matrix h~, for an electron in orbital
R.It is a straightforward matter to show (cf. Roothaan4')
that the solution occurs when

v= (I—R)xR, (74)

where 4 is an arbitrary nonsingular m)&m matrix. To
second order,

oR= (v+vt)+(vvt —vtv)+, (7&)

and on substituting this result in (72), we obtain the
6rst-order condition

88=tr h~8R=tr h~(v+vt)=2 tr h~v

=2 tr ARh~(l —R) =0
for arbitrary A. This implies that Rh~(l —R)=0, and
by taking the difference of this equation and its Her-
mitian conjugate, it follows that Rh~ —h~R= 0, which
is easily shown to be sufhcient as well as necessary.
Equation (72) is thus equivalent to [cf. I(35)]

Rhr' —h~R=0, R'= R (tr R=n). (76)

The system thus formally resembles a collection of
weakly coup/ed 1-electron systems, the 1-electron Hamil-
tonian being replaced by one with matrix h~, which
contains a G term to describe the "average" effect of
strong interactions.

Ke may also verify that the occupied orbitals are
determined (to within a unitary transformation) as
eigenfunctions of the same 1-electron problem with
Hamiltonian matrix h~. This leads to the traditional
sell-consistent field method, which involves the fac-
torization R= TTt and the explicit determination of T,
whose columns represent the e occupied orbitals. On
using ca to denote the R column of T and putting
ea ——cirth~ca, (72) becomes

8=2+ ez=stationary value,

subject to (77)

Cgtcs= ~as.

Here eg is the expectation value of a certain ore-electron

is regarded as a 6xed matrix during the variation and is
the matrix of the (Hartree )Foc-k Hami ltonian h.

~

depends, through G(R), on the matrix R appropriate
to the stationary point (i.e., upon the approximate elec-
tron density), and the problem must therefore be
solved iteratively. Before considering the method of
solution, we verify that the conditions (72) are formally
equivalent to those for a stationary ensemble describing
a 1-electron system equally likely to be in any of n
states [see Sec. I.(2.3)].

To this end, the auxiliary condition R'= I, which is
somewhat troublesome, may be incorporated at the
outset: in fact (Appendix), any variation compatible
with this condition may be expressed as a power series
involving the matrix

where the symmetric matrix e contains undetermined
multipliers which may be eliminated by using e&z
=czth~c8. Moreover, I and hence the energy, is
invariant against a 'change to new (orthonormal)
orbitals, T= TU (U unitary), and it is therefore con-
venient to make the particular choice which reduces s
to diagonal form. In this case, h~T= Ts (e= UsUt), and

the elements of ~ and columns of T are then the eigen-
values and eigenvectors of (dropping the tilde)

4+C= ec. (79)

A particular solution is thus uniquely defined in a
mathematical sense, although the physical situation is
described equally well by any other orthonormal
mixtures of the orbitals so defined. This freedom of
choice of occupied orbitals has been utilized by Lennard-
Jones and others, 4' nonlocalized orbitals being replaced
where possible by linear combinations which describe
more strongly localized pairs of electrons: this possi-
bility is considered from a more general standpoint in
Sec. III. The advantages of using Mo's determined by
(79) (which may be adopted as the strict definition of a
true molecular orbital) appear only in discussing excited
and ionized states; thus, to first order, —eg is an
ionization energy (Koopmans' theorem4').

Generally, there are nr distinct solutions of (79), but
in the ground state only the lowest e of these are
occupied, determining T, R, and hence h~. Tradition-
ally, Eqs. (78) are regarded as quasi-linear in the
elements of T, these being determined by repeated
solution of (79) with a corresponding iterative revision
of h~ until self-consistency is established. The ns —n

remaining solutions are often referred to as virtual
orbitals and their use in improving the wave function

by configuration interaction is well known. "
3.3. Direct Detertnirmtion of the Density 3Ealrix

It is evident that the 1-electron eigenvalue equation
(79) has a purely formal significance and is without
meaning except at the stationary point where it expresses
alternatively the conditions (70) or (72). During the
iterative process, h~ is merely an approximation to the
desired SCF Hamiltonian, and (79) is solved not because
its solutions have any intrinsic value but because they
suggest the direction in which h" should be revised.
There is no guarantee whatever that this process con-
verges and it seems preferable to solve (70) directly by
systematically changing R in such a way as to reduce
E most rapidly to a minimum. There are other quan-

"J. E. Lennsrd-Jones, Proc. Roy. Soc. (London) A198, 1
{Pt.I), 14 (Pt. II) (1946), and subsequent papers.

8 T. Koopmans, Physica 1, 104 (1933).' R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 {1952).
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tities which take a minimum value when (70) is satisfied
[e.g. , I)= tr CCt, where C= Rh~ —h~R; cf. (76)] and a
corresponding variety of steepest descent processes with
various convergence properties: we outline only the
process based on (70), since this is related most closely
to the conventional SCF method.

Starting from an arbitrary idempotent matrix R
(e.g. , the density matrix for an approximate set of is

orbitals), we consider a first-order change (75), pre-
serving idempotency, and find from (66) and (71),

karst order=58=4 tr Rh~(1 —R)X
=4 tr [(1—R)h~R]tL. (80)

We now wish to choose 4 in order to descend the energy
surface as quickly as possible. It is useful to associate a
~ector with the ns' elements of an esXre matrix and to
define a scalar product

A B=Pa„,*a„=Pat„a„=trAtB. (81)
r~8 r, e

In this case tr AtA is the squared modulus of .A, and
for fixed B the scalar product takes its greatest negative
value when A is rotated into the antiparallel position
A= —)tB. Thus, for a step bR of given size, (80) gives
the greatest reduction in E when 4= —)~(1—R)h~R
and v= —(1—R)AR= —X(1—R)h~R [R and (1—R)
both being idempotent]. The change corresponding to
steepest descent of the energy surface is thus

8R= —)t(a+st)+)ts(sst —sts)+, (82)
where

s= (1—R)h~R.
On introducing

L=s+st, M=s-st, (84)

Eq. (82) may be written [observing that (1—R)R= 0j
3R= —) L—)tsLM+. (85)

Now this correction satisfies the auxiliary condition to
second order and therefore determines not only the
slope of the E surface in the direction of increasing X

but also its curvature; and it is therefore possible to
determine a value X,~~ which corresponds to a minimum
in the direction of steepest descent (Fig. 1).From (70),
(71), and (85), the energy change to second order is

bE=2 tr (—)iL—)tsLM)h~+tr ),'LG(L), (86)
where" G(L) is de6ned by (67), the elements of R
being replaced by those of L. On putting

tr h~L=l, tr h~LM=rrs, tr LG(L) =tts', (87)

and setting 8(bE)/rl)t. =0, it follows that

)„,= —[l/(2r~s —m')]. (88)

The correction (85) leads to the best I-descent ap-
proximation to R and E. The process is then repeated
as often as required. "A sensitive test of accuracy of the

~ Small but cumulative departures from idempotency may be
eliminated at any stage by a sim le iterative method: R. Mc-
Weeny, Proc. Roy. Soc. (London A235, 496 (1957) (see also
Appendix).

&opy

(b)

Fio. |.Section through the energy surfaces: (a) The simple
Hartree-Fock procedure predicts too small a change; (h) it leads
to divergence.

solution is provided by the matrix h"R, which is
calculated in each cycle and which, according to (76),
ultimately must become symmetric. The quantity tn'

in (87) is important in estimating )t„t.it arises from
the dependence of h~ upon R, a dependence which is
ignored in the traditional method until the end of each
cycle when the initial h~ is revised using the new eigen-
vectors. In fact, the standard technique seeks a local
minimum on an. 8 surface, defined by (72) (correspond-
to peed h~). This procedure usually gives some im-
provement because both the h and E surfaces have the
same slope at the initial point (3Es„t„q„——bh), but their
curvatures may dier greatly and it is easy to see from
Fig. 1(b) how the usual process may diverge.

It. has been shown" that the orbitals themselves
(contained in the matrix T) may easily be obtained
from the self-consistent R matrix by using its projection
operator property. These may then be used in con-
figuration interaction studies.

In this way, it is possible to obtain analytical self-
consistent solutions of the Hartree-Fock equations of
arbitrarily high accuracy, since the dimensionality of
the basis m is unrestricted. In practice, the basis is

'finite and the solution is a best approximation in the
usual sense of variation theory. Nevertheless, recent
work" suggests that matrix methods are often more
powerful, besides being more widely applicable, than the
original Hartree method.

3.4. Many-Shell Systems

In most quantum mechanical systems it is possible
to distinguish diGerent weakly coupled electron groups
or shells: it is then advantageous to formulate the SCF
method so that each group may be dealt with indi-
vidually. It is also possible to admit both closed shells,
in which the orbitals are doubly occupied, and open
shells, in which they are singly occupied. In this way
it is possible to deal with, for example, a transition
metal atom with a shell of singly occupied orbitals
outside a core consisting of several closed shells. The
method already developed can be taken over with
trivial modifications.

A density matrix must now be dehned for the orbitals
~' R. E.Watson, Tech. Rept. No. 12, Solid State and Molecular

Theory Group, Massachusetts Institute of Technology (June 15,
1959).
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of each shell, and if these are denoted by Rg, R2, ~ ~,
it is easily shown that the one-determinant energy
expression can be written 8R;= —X;L;—X;sL;M;, (98)

and the analysis of Sec. II.(3.3) may be taken over
directly. The steepest descent occurs for

E=Q tr r;RP+-; Q tr r;R,G, , (89) where
L;=s;+s;t, M;= s;—s,t (99)

where s;=1 or 2 according as the orbitals of group |
are singly or doubly occupied and G; is an electron
interaction matrix appropriate to the ith shell. If we
dehne Coulomb and exchange matrices by

[J(R)j„,=+Br„(rNfgfsi),

s;= (I-P R,)hPR;. (1oo)

The optimum value of ); is determined by considering
the second-order energy change, and it follows readily
that

[K(R)j„,=g R,„(re~g~is),

G'= Z G', ).(~/Rs),

(90)

(91)

X;,nt ———[l,/(2e; —e )j,
where [cf. (8/)7

1;=tr L;h;, rN;=tr L;M;h, , rN =tr L;G;.;();L().
(102)

G;,;(R)= J(R)—K(R) v;= v;=1
= J(R)—tsK(R) otherwise.

The 6rst-order variation may then be written

(3+)firs order = t) 6&

where [cf. (72)]

h=p t; tr R;hp',

For a closed shell G;„();L;)=2J(L;)—K(L;)=G(L;)
[cf. the Roothaan G matrix of (67)j.The result is then
analogous to that of the one-shell theory, but the effect

(92) of all other shells is allowed for in the new definition of
hP by (94).

This method has been used in obtaining approximate
SCF functions for two-shell systems consisting of' a
single electron outside a closed shell. "Convergence has
been found entirely satisfactory.

(93)
4. Con6guration Interaction

where
(94)

is a Hamiltonian for shell i, and is again regarded as
j)red during the variation. But two types of auxiliary
condition are now necessary to express the orthonor-
mality of all orbitals:

R =R;, R;R;=0 (iwj). (95)

For a best one-determinant approximation E must
be stationary against any variation R;-+ R;+SR;, in
each shell i, subject to (95). This condition may be
achieved by solving for each shell in turn, in the
Coulomb-exchange 6eld of the others, and repeating
the cycle until over-all self-consistency is obtained. If,
then, we consider the ith shell, a general variation
satisfying (95) is readily foundto be [cf. (74) and (75)]

3R;= (v(+v(t)+(vrv( v( vr)r (96)

v =(I—g R)4 R

Brillouin53 6rst pointed out that the coniguration
interaction problem, discussed in general terms in Sec.
I.(3), is to some extent simplified by the use of SCF
orbitals satisfying an eigenvalue equation of the type
(79). Here we discuss the converse problem, showing
that when only single excitations are admitted, a suf-
ficient condition for vanishing of the second. -order
energy corrections is that the orbitals satisfy an SCF
eigenvalue equation. This approach proves particularly
appropriate in the more general situation of Sec. III,

4.I. Second-Order Energy Formula

If Co is a one-determinant approximation to the
ground state, the effect of configuration interaction may
be incorporated up to second order by the method of
Sec.I.(3.1).We split the summation in I(77) into parts
referring to single and double excitations and use the
matrix element expressions (16), taking the second
form of (16b).The energy expression I(77) then becomes

where 4; is an arbitrary square matrix and (96) is vahd
to second order. That both conditions (95) are satisimd
to this order ls easj.ly collfj.lIQed by substitution and use
of the properties R,s= R;, R,R, = 0 (iW j).

The first-order energy change for a variation (96) in
the ith shell alone is then

3h(,) =r; tr 3R;hp,

g —g(e)+@(t)+g(s)

~(0'=&00

Rf' eff Bg
jvo) =

& r'(&r) Z(Rr~Rr)
"R. McWeeny (unpublished) (193(i)."L.BriQouin, Actuslites sci et ind. No. '/1 (1933).

(103)

(104)

(105)
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R,S r'(gr)
s'( gs)

E(Rr —+ Rr', Ss —+ Ss')

I
g'ff"0's"

I g I
4'ff 0's ) (0'ff"ks" I g 14's 0'ff ) I'

Elsl = (106')

and the excitation energies are

E(Rr —& Rr') =H„„Hpp,—ff ——(a, b, r', ),
E(Rr ~ Rr', Ss —& Ss') =H„„Hpp,

—
l

g —(g f) ~ ~ ~ f ~ ~ e$ ~ ~ ~ )
7 7 /'

(107)

4.Z. Coffnectiorf with A pproxifffafe Hartree Fock Theo-ry

In practice, luff, is seldom an exact eigenfunction of
the one-electron operator f),ff, but the vanishing of (105)
is ensured provided

(luff„.~I),ff~lpff„)=0 (all r'Wr), (1o8)

and this condition is sufhcient to characterize a certain
optimum set of spin orbitals. Generally, the luff„(r'Wr)
are unspecified except in that, together with luff„ they
form a complete orthonormal set. The condition (108)
is then equivalent to

(li'II) frill's ) —0 p= g C„lls,, (109)

and this in turn is equivalent to

It is apparent that if each spin orbital in Co is an exact
eigenfunction of I),ff, then all matrix elements

(ll s" Il).«Ill s.) (r'«)
vanish identically, there is eo single-excitation energy
contribution (105), and H p p is stationary against
lIff, —+ luff„+oiPff, (all R) We m. ust now show that this
result also holds when the spin orbitals in Co are
approximate eigenfunctions of I),ff and must elucidate
the connection between I),ff and the operator with
matrix h~.

SCF theory, for it contains sPifs terms. Accordingly,
(112) has as its solution gsfMral spil orbitals of the form

lp(1) =p (1)cf(1)+ps(1)l(l(1), (113)
where p (1) and ps(1) are independent spatial func-
tions. Moreover, this form is tacitly assumed in the
preceding variational considerations (although this is
not usually recognized), where formal constraints are
not envisaged. In practice, however, the variational
process is usually applied to a determinantal function
in which the spin orbitals are coflstfained, e having the
form luff(i) =R, (i)fr(i) and nS having the form
luff(i) =Rff(i)p(i) s4 W. hen n, =ffs, it is further assumed
that R (i)=Rff(i), so that the spin orbitals occur in
degenerate pairs luff, l4 with a common orbital part.
In such cases the spatial factor alone is varied and the

flexibility implied in the preceding formal discussion
(and elsewhere —for example, Lowdin") is lost. The jus-
tihcation for these special forms, assumed in Secs. II.
(3.3) and (3.4), is not trivial and must now be con-
sidered.

We show that (112) has, in fact, self-consistent
solutions provided only degenerate pairs of spin
orbitals are occupied, these being of the form lpfp=R fr

and luff RsP wit—h—R =Rs=R and that the occupied
orbitals A, 8, ~ R, must then satisfy the sPiff less

equation
I)'(1)4 (1)=4(1) (114)

where I)F is the operator whose matrix form is employed
in Sec. II.(3.3). This means that on solving (112),
allowing lp to be a gefwrai spin orbital (113), the
assumed special forms must again emerge.

We use the definitions (11), (13), and (17), observing
that

for
Qff, ~l).ff~ljlff„)=stationary value

luff, ~ luff. + Q &ff'luff"
r'(gr)

8(1)li(1)=I g(1,1')pf(1'; 1')d«Ill(1),

(115)

A more familiar form of (110), which arises when the
constraint is normalization to unity rather than to
C~„——1, is

(ljlffr
~
I)eff ~

lp )j fthmrff„~luff, )=stationary value. (111)

I) ff(1)li (1)=el(1) (112)

It must be stressed that I),«, defined by (17), (11),
and (13), is nof the Hamiltonian usually employed in

If therefore, luff, is an approxirffate eigenfunction of f),ff
in the sense of variation theory, Brillouin's result con-
tinues to hold: the optimum spin orbitals, at any level

of approxifrfatiorf, are those which lead to vanishing
single-excitation configuration interaction or, equiva-
lently, are best variational solutions of the ore-electron
problem

X(1)lP(1)= )I g(1,1')Pf(1) 1')lP(1')drf. ,

and insert the special form (21), (22). The effect of each
part of I),ff(1) upon a general spin orbital (113) is then
easily determined. I)(1) and g(1) are spinless and im-

mediately give

I)(1)[p (1)fr(1)+pfs(1)p(1)$
= [I)(1)~-(1)j (1)+[I)(1)~s(1)3&(1), (116)

g(1)[P (1)n(1)+Ps(1)P(1)j
= [rl(1)P (1)/fr(1)+[rl(1)gs(1) jP(1), (117)

5'This form has been used in the case e Awp by J. A. Pople
and R. K.Nesbet PJ. Chem: Phys. 22, 571 (1954)g and by Berthier
[Compt. rend. 258, 91 (1952)]in the "unrestricted" Hartree-Fock
method. Restrictions are still present and the term unrestricted
would be more appropriate with spin orbitals of the form (115).
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where, carrying out the spin integrations, the Coulomb
operator amounts to multiplication by

j(1)=) g(i, f')Pg(1';1')der.

The exchange operator has an explicit spin dependence:

X(1)L4-(1)n(1)+A(1)P(1)j
= ' g(»1')2I'~(1 1')Ln(1)n*(1')+P(1)P*(1')j

&&Le.(1') (1')+~s(1')e(1')jd'

g(1,1')Eg(1; 1')y, (1')ding n(1)

+ -', "g(1,1')Pg(1; 1')ys(1')ding' P(1)

=H(1)4-(1)jn(1)+I:&(1)A(1)JP(1) (119)

where f(1) is the sp&dess exchange operator whose
eGect on a function of space variables is given by

f(1)g(1)=-', I g(1„1')Pg(1;1')p(1')dug. (120)

and Pople'4) ensures that the single determinant is an
eigenfunction of g, (the s component of total spin) —a
requirement ignored in using optimum orbitals —but
does t'ai msure that 1t ls an elgenfunctlon of g (the
squared total spin). The second requirement is, how-

ever, satisfied if we choose E. =I'p for certain pairs of
spin orbitals (i.e., introduce doubly occupied orbitals)
and give the remaining (singly occupied) orbitals a
common spin factor. Both requirements are therefore
met~by the functions employed in Secs. II.(3.3) and
(3.4), which probably represent the best one-determi-
nant compromise between high accuracy —according to
the energy criterion —and the proper representation of
a de6nite spin eigenstate. A much more general ap-
proach, in which different groups of electrons (e.g. ,
those in the doubly and singly occupied orbitals,
respectively) are described by different vector-coupled
functions so as to give any required spectroscopic state,
is developed in Sec. III.

APPENDIX. IDEMPOTENT MATRICES

1. Factorlzat10Q Propert+

We consider an idempotent m&(m matrix R, which
is Hermitian symmetric and of rank e, and show erst
that R may always be written

R= TTt, (A1)
On inserting (1N), (117), and (119) in (112), the

linear independence of the spin factors allows us to
separate the equation into two spinless equations

D)(1)+1(1)—f(1)jy.(1)=.y. (1),

Ll)(1)+1(1)-f(1)&s(1)= ~~(1).
(121).

The independent components Q and Qs must there-
fore satisfy the sense spinless eigenvalue equation

Y(1)4 (1)= ~4 (1) LY(1)=II(1)+I(1)—&(1)j, (122)

and if the solutions are denoted by A (1),B(1), R(1),
~ - ., then the simplest orthogonal spin-orbital solutions
of (112) are the pairs A(1)n(1), A(1)P(1), etc.

It remains only to show that I)~(1) is the operator
which appears in matrix form in Sec. II.(3.3). On
referring Pq(1; 1') to the arbitrary basis a= (a b c ),
using (50) and (55), and, evaluating the general matrix
element of l)~(1), this result follows at once.

There 18 no parallel reduct1on 1n the case of an Odd

number of electrons because in this case Lcf. I(57)
et seq.j

Pg(1; 1')WPg(1; 1')

and the p and ps equations Lcf. (121)$ then turn out
to be cogp/ed. It is possible to solve the coupled equa-
tions to obtain a set of optimum spin orbitals of the
form (113),but it is more usual to simplify the problem

by introducing constraints. Taking e orbitals of the
form R (i)n(i) and np of the form Rs(i)P(i) (Nesbet

where T is an m&(e matrix whose columns (t~) are
orthonormal in the sense t;tt~= 8;;.We use the theorem
that any Hermitian symmetric matrix can be brought
to diagonal form by some unitary transformation, i.e.,
there exists a unitary matrix U such that

R= UtRU= diagonal matrix. (A2)

The property R'=R then means 8;;2=8;; so that
each diagonal element is either 0 or 1. But the rank of
R, which (like the trace) is unchanged by a unitary
transformation, is n; and R has rank n only if its
diagonal contains e 1's and es—e 0's. In this case,
"rank R=e" is equivalent to "tr R=e," and (A2)
yields (A1), in which T is an ta&&n rectangular matrix
whose I columns are selected from those of U. These
columns have the required orthonormality from the
unitary property, and the proof is complete.

2. Variations Preserving Idemyotency

We require an expression for the most general change
which an nzgwe matrix of rank I can suer, consistent
with preservation of idempotency. Since we can write
R= TTt, it is sufhcient to consider a change T ~ T
+ST, and quite generally I' k)

bT=~T, (A3)

where cL is an arbitrary (nonsingular) m)&m matrix.
Now R is a projection operator, uniquely associated
with the e-dimensional subspace (I's) spanned by the
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(R+8R)=TTt. (A7)

Now the metric associated with the vectors of T' is
de6ned by the rNXrN matrix M= T'tT', and a con-
venient orthonormalization is

T= T'M—
&. (AS)

It remains only to evaluate (A7) in terms of cL and R
using (AS), (A6), and (A5). A straightforward analysis,
using the properties of the idempotent matrices I and
(1—R), gives

columns of T. There is a unique decomposition of any
vector c into its projections on I'& and on the comple-
mentary subspace F1 g '.

C= CS+Ci—S,
(A4)

cs ——Rc, ci s ——(1—R)c.

To de6ne a new R it is sufhcient to de6ne a new I-dimen-
subspace. But since any vector, including those repre-
sented by the columns of T, can be decomposed accord-
ing to (A4), any new ray (i.e., vector of arbitrary
length) can be formed by adding a vector which lies
mhol/y outside F~. Now, e completely arbitrary linearly
independent vectors of this kind are represented by the
columns of

5T= (1—R)~T, (AS)

(1—R) projecting out the part of (A3) which lies in I's.
Hence T+5T, with bT defined by (AS), suf6ces to
specify a new subspace in a completely general way.
The columns of

T'= T+hT

do not, however, represent an orthonormal basis; and
to de6ne the associated projection operator in the
standard forlll (A1), lt ls therefore necessary to ol'tllo-

normalize the columns of T' to obtain a new set T, in
terms of which the new projection operator, R+bR is
given by

approximately so. H Res+Re, the problem is to reduce
the matrix (Re' —Re) to zero, and this is equivalent to
reducing to zero the (scalar) quantity 0= tr (Re' —Re)'.
This may be accomplished by the steepest descent
method )Sec. II.(33)j which yields the rapidly con-
vergent (second order) sequence Re, Ri, Rs in which

R~i——R„'(3l—2R„),
and, the limit R is a strictly idempotent matrix close
to Re in the sense that the separation

tr (R—R,)'&(tr R(=N).

III. GENERALIZED PRODUCT APPROXIMATIONS

1. Electron Grouys and Generalized
Product Functions

In most many-electron systems it is possible to dis-
tinguish various groups of electrons. In the orbital
approach, discussed in Sec. II, this analysis is carried
to its formal limit, the electrons being assigned mw at
a time to difkrent spin orbitals. It is physically more
realistic to deal with larger groups of electrons. In
an atom, for example, the natural groups to consider
are the E, I., 3f, ~ - shells; in a molecule they might be
the electron pairs of various bonds; in a crystal,
core electrons, valence electrons, and conduction elec-
trons. Then again, since it is usually impossible to deal
adequately with d'tl the electrons in a system, molecular
and solid-state theory often utilizes a model in which

only one grogp, containing a relatively smail number of
electrons, is considered. It is clearly important to
examine rigorously the basis for this kind of analysis
and to deal generally with wave functions which explic-
itly recognize a separation into electron groups. Im-
portant steps in this direction have recently been made

by Parr et al." '~ Here we extend the analysis from
the stand point of density matrix theory.

f.f. Defiriitioris arid A&ris

R=SR= (R+ v) (1+vtv)-'(R+ vt),

v= (1—R)xR. 4..ss..-(1," &)=&Z (—1)"%.(1)4~(2), (1)
When A represents a small change, the expansion

The natural generalization of the antisymmetrized.
(A9) orbital product II(4), namely,

(1+v"v)-'=P (—1)"(v v)"
is the antisymmetrized product

is convergent and 8R may be easily written down to
any order. Thus

BR= (v+ v~) (first order),
(A10)bR= (v+ vt)1(vvt+ vtv) (second order).

3. Puri6cation of an Almost Memyotent Matrix

It is necessary to be able to construct a (Hermitian
symmetric) idempotent matrix from one which is only

XC'ai, (Kg+1, ~ Sg+Ss) . . (2)

We call C~, (1, X~) a group function for the X~
electrons of group A and use the subscript u to indicate
the particular state of this group. Similarly, C ~~
describes a second electron group in state b, and M is

» R. G. Parr, F. O. Ellison, and P, G. Lykes, J. Chem. Phys.
24, iiQ6 (1956)."P. G. Lykos and R. G. Parr, J. Chem. Phys. 24, ii66 (i956).» J. M. Parks and R. G. Parr, J. Chem. Phys. 28, 555 (1958).
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simply a normalizing factor for the totally antisym-
metrical sum. The function (2) is called a generaHsed

product function. Wave functions of this form have
already received some attention. " "We also use linear
combinations of such functions, a variety of states
being permitted for each electron group to give a wave
function

4'(1, ~ ~ 1V) = p C b Cg.,..nb, (1,.,.. 1V). (3)
g Q e ~ ~

This mixing —again analogous to that employed in
orbital theories —is referred to as configuration inter-
action, where now any specification of group states
(a,ti, ) defines a configuration. We are concerned with
approximate solutions of the wave equation of type (2)—the one-configuration approximation —and more gen-
erally of type (3).

It is further assumed that the group functions are
individually antisymmetric in the (space-spin) vari-
ables of the particles to which they refer; and in this
case a completely antisymmetrical function results when
the summation in (2) excludes the subgroup of per-
mutations which leave every electron in its original
group. If there are v permutations in the remaining
distinct cosets, the normalizing factor is then v '
provided the group functions are orthogonal in the sense

C'n„+(1,ij, )Ce, (1,h, t, )dri=o

(RPS, or res, or both), (4)

where the functions contain at least one common set of
variables, indicated by 1 (and written in the 6rst place,
since—owing to antisymmetry —any set may be brought
to this place with at most a sign change) and fdri
indicates integration over these variables. This con-
dition, which resembles those proposed by Hurley,
Lennard-Jones, and Pople" and by Parr et al." is a
natural generalization of that usually assumed for
orbitals and is adopted in what follows. With RgS,
the functions are orthogonal because they belong to
diferent groups, while for R=S but res, they are
orthogonal because they represent different states of the
same group.

In Sec. III we examine quite generally the mathe-
matical and physical implications of using wave func-
tions of type (3) without any restriction on the indi-
vidual group functions other than that implied by (4).
We find that the density matrix approach of Sec. I
then leads to a complete generalization of all the equa-
tions in Sec. II, the whole formal structure of the orbital
approach being preserved.

It should be noted that an exact wave function
cannot be expressed in the form (3), since the set of
functions of type (2) cannot be complete unless all

"W. MoKtt, Proc. Roy. Soc. (London) 4210, 224, 245 (1951).
"A. C, Hurley, J. E. Lennard-Jones, and J. A. Pople, Proc.

Roy. Soc. (London) A220, 446 (1953).

partitions of 1V =1V&+1Ve+ are allowed. (cf. Lykos
and Parr" ).Nevertheless, (2) and (3) appear to provide
the most promising generalization of the Hartree-Fock
approximation and are fully consistent with the need
for a simple physical picture in which loosely coupled
electron groups are distinguished.

1.Z Generatisation of the Stater method

Matrix elements of the Hamiltonian between anti-
symmetrized orbita/ products such as (1), first given by
Slater, "appear in Sec. II along with corresponding con-
tributions to the 1- and 2-electron density matrices. In
this case, each group comprises a single electron de-
scribed by a spin orbital. We now generalize these
results to functions of type (2), in which each group
comprises any number of electrons described by one of
a variety of antisymmetrical group functions, the latter
being subject to the requirement (4) but otherwise

unspecified.
This may be done by the method indicated in I(51)

et seq. We simply determine

by standard methods (e.g., Slater 2' Condon and
Shortley"), remembering that each group function is
individually antisymmetric and that the number of
permutations which lead to nonvanishing contributions
is severely limited by (4). The results take their neatest
form on introducing the density matrices for each
separate group, these being dehned in the usual way
[cf. I(38)]:

p„"(rr'
l 1, n; 1', n')

=1V (1V —1) ~ (1V n+1) —IC „(1, 1V )

&&C ii„(1', n', n+1, 1Vii)dr„+i dr~n, (5)

where the labeling of the variables is arbitrary.
To give one example, when x= (a,b, )—giving the

function (2)—it is found that

=Q
~

g(1,2)pP(rrl1, 2; 1,2)dridrm

+Q' lg(1,2)pin(rrl1; 1)pi (ssl2; 2)dridr2

g(1,2)p, "(rrl2; 1)pi (ssl1; 2)dr,dr„
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and, from I(51), this implies that

p2(gzI 1,2; 1',2') =P p2s(rrI 1,2; 1',2')

+2' p~"(«Ii; 1')p~'(ssI2; 2')
R,S

These results should. be compared with those of II(9).
The formal similarity with Slater's results is clearest in
the actual matrix element expressions, I(41) giving
[with the usual Hamiltonian of I(44)j
(a) H«=P H~(rr)+,'P'$J~e(rr, ss) Kae—(rr)ss) j)

R, SP'—pP(rrI2; 1')pP(ssI1; 2').
(7a)

(b) Hy =H"(rr')+ Q $J~ (rr')ss) K~ —(rr', ss)j,
S(QB)

B,S

(7b)
(7c)

+~~ trg(1)2)pP(rr'I1, 2; 1',2'), (8)

The two part-icle density matrix for an antisymmetrised

product of orthogonal group flnctions can be expressed
in terms of the one and t-wo par-ticle density matrices of (c) H) „=J"e(rr',ss') —K~s(rr', ss'),
the individual groups. This is a fundamental result and

where
is an obvious generalization of II(9a)—to which it
reduces when each group contains only one electron. »(rr')=tr/(1)pp(rr'Ii;1')
From it, by using I(41) and remembering (4), it follows
without difhculty that

p~(mI1; 1')=g pP(rrI1; 1').

+Z) p~"(«Ii 1')p~'(ssl2; 2')
B,S

—P'pg (rrI2ii')pg (ssI1; 2'),
B,S

pq(mI1; 1')=P pP(rrI1; 1').

(b) e( bar ) X=(ab r' )

p2(KX I 1)2; 1',2') =pP(rr'I1)2; 1',2')

+ g p, a(rr'I1; 1')p e(ssI2; 2')
S(QB)

pP(rr'I2; 1')pP(ssI1; 2')
S(QB)

+ Z»'(ssli'1')p'(«'l2'2')
$(QB)

pP(ssI2; 1')pP(rr'I 1; 2'),
S(QB)

pg(ehI1; 1') =pP(rr'I 1; 1'). (6b)

(c) )).=(ab r ~ s ) X=(ab r' s' )

p2(ah
I 1,2; 1',2')

=pP(rr'I1; 1')pP(ss'I2; 2')
—pP(rr'I 2; 1')pP(ss'I 1) 2')

+p| (ss'I1) 1')p~ (rr'I2;2')
—

p~ (ss'I 2; 1')p~"(rr'I 1;2'). (6c)

This means, in particular, that the electron densities
of the separate groups are additive.

The general results are summarized in the following.
As in Slater's analysis, nonvanishing terms arise only
for configurations ~ and X, which diGer in not more than
tao group functions. There are thus three distinct cases:

(a) x=X=(ab r s .)
p2(~a I 1,2; 1',2') =P p2s(rrI 1,2; 1',2')

J~s(rr', ss') = tr g(1,2)pcs(rr'I 1; 1')pcs(ss'I 2; 2')

~g(1,2)pg" (rr'I 1 i 1)p&e(ss'
I
2 ' 2)dr&dr» (9)

Ks (rr', ss') = tr g(1)2)pp (rr'
I 2; 1')pq (ss'

I 1; 2')

~g(1,2)pP(rr'I2; 1)p~e(ss'Ii; 2)dr, dr2. (10)

These results generalize those of II(16).The quantities
(8)—(10) are the analogs of the one-electron, two-
electron Coulomb, and two-electron exchange integrals,
respectively; but they contain density matrices instead
of orbitals, and the matrix element notation employed
in II(16) would therefore be inappropriate. The analog
of the one-electron integral H" (rr') can, however, be
regarded as a matrix element of a mazy-electron Hamil-
tonian for group R alone in the Geld of the nuclei.
Comparison of (8) with I(49) shows that

H~ (rr') = (C g, I
X~

I
C g„),

where

&'(1" & )=ZI)()+l Z' g(,i). (»)

Clearly, (11) reduces to (g~, II) I)pR.) in the spin-orbital
product approximation where EB——1. In particular,
H" (rr) is a group energy of the electrons described by
C B„withall other electrons removed.

It is clear from (9) that J~e(«', ss') is simply the
mutual repulsion of two electron distributions, whose
densities —at points 1 and 2, respectively —are
pP(rr'I 1; 1) and pP(ss'I2;2). This interpretation is
not aGected by elimination of the spin, for the spin
integrations are immediate and give, by using I(52),

Jse(rr', ss') = g(1,2)PP(rr)
I 1; 1)

)&Pg (ss'I 2; 2)do)d))» (13)
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in which the two density factors are now ordinary
three-dimensional charge densities associated with the
transition r —+r' in group R and s —+s' in group 5,
respectively. Transition densities of this kind play an
important part in the theory of radiation, their moments
determining the transition probabilities. The interpre-
tation of Ess(rr', ss') is less obvious and depends on the
spin states of the two groups: it appears later that when
these each correspond to zero total spin s component

E (rr', ss') = ,' g(1,2-)PP(rr'l2; 1)

XI'Ie(ss'l 1; 2)deids2, (14)

where the integrand is small unless groups R and 5
overlap considerably.

Generally, we start from a one-configuration approxi-
mation Co, corresponding to (((=0)=(a,b, c, .), and
subsequently admit excited configurations, C'. (K)0),
in which one or more groups are in excited states
(Cs„-+CII„).The expression {7a) thus gives the one-
configuratlon appl'oxlIIlatioll 'to the energy, w1111e (7b)
and (7c) are the off-diagonal matrix elements required
in con6guration interacting studies.

13. Coulomb and Exchange Operators for General
Etectron Groups

In Sec. II.(1.3) it was shown that Slater's results
couM be written in an alternative form by introducing
Coulomb and exchange operators. Exactly similar one-
electron operators can be defined in the more general
case by using the natural interpretation of pP (rr

l 1; 1')
as the kernel of an integral operator. If p; pe S{I') is
any symmetrical sum [cf.P; P& l)(i)] of one-electron
integral operators, 8(1) having kernel A (1; 1'), we can
write [cf. I(43)]

(C'II,
l p 8,(i) le)I,) =tr 8(1)pis(rr'l1; 1')

where the typical operator is Xe(1) with kernel
Ee(1; 1'):

X (1) E (1; 1')=g(1,1')p ( l1; 1'). (l7)

The state symbol s is dropped because we normally use
X8 only to describe a group in the state indicated in
the basic configuration C 0. On the other hand, Jss (rr', ss)
can be regarded as the matrix element of an operator
sum whose terms are merely multipliers: from (9),

B"e{rr',ss) = tr Je(1)pP(rr'l 1; 1')

=(c "IZ8'(1)lc .), (1g)

where the typical operator is (is(1)=Je(1), a simple
multiplier;

8'(1) I'(1)=„"g(1,1') '( l1' 1')d ' (19)

We refer to gs(1) and Xe{1),defined by (19) and (17),
as the Coulomb and exchange operators for an electron
in the field. of the electrons of group S. Jse{rr',ss) and
Ess{rr',ss) are therefore the matrix elements of the
interaction between the Sg electrons of group R and
the field produced by the electrons of group S. The
Coulomb and exchange operators for an electron in the
held of group 5 apparently have the following eGect
upon an arbitrary function:

8'(1)4(1)=I'(1)4(1)

g{1,1')pie(ssl1', 1')dri ))t{1), {20)

Xs(1)f(1)= Es(1; 1')P(1')dri.

A(1; 1')pP(rr'l 1";1)dri-dri (15). g(1,1')pie(ss l 1; 1')P(1')dri . (21)

K"e{rr',ss) = "g(1,1")pie(ss l 1; 1")

Xpi {rr l
1 ) 1)dri"dr),

8(~)(1)= Z 8'(1), X(s)(1)= 2 X'(1) (22)and therefore, by (15), S(QR)

EIIs(rr', ss) = t Ke(1; 1')pP(rr'l 1'; 1)dridri The dkctive one-electron Hamiltonian for an electron
of group E in the field of the nuclei and all other groups

IVY may then be de6ned as
=(4'~" IZ X'(i) l@s.), (16)

(2 )'j),II (1)=jl(1)+g(II) (1)—X(II)(1),

The exchange operator is seen from (17) to be simply
This enables us to exPress K (rr', ss) in (7) as the the one-electron density operator weighted with an
matrix element of a sum of one-electron operators inverse distance factor. It is also useful to introduce a
associated with group S. For, from (10), tofu) Coulomb operator and a ]0/ul exchange operator

to describe the Coulomb-exchange field felt by an
electron of group E at point j. in the presence of all

groups except R—these are simply
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and the effective total Hamiltonian for group R as [cf. ) Jas(rr', ss') K—"s(rr', ss') ~'

(12)] E(~)=
ff,s r'(wr) E(Rr —+ Rr', Ss —& Ss')Ng Ng s'( gs)

&. "(1," & )=Z I). "(')+l Z' (, ) (24)

(31)

The matrix elements of X,«" are written, by analogy
with (11),

H ff (rr') = (Off,
~
X,ff ~4)j', ,)=H (rr')

+ g [J~ (rr', ss) K"—(rr', ss)], (25)
S(WB)

and it then follows easily that (7a) and (7b) may be
written in the alternative forms

(a) H„„=PH, ff (rr) —', g'[J~8(rr, —ss) KR (rr—,ss)],
B,S

(26)
(b) Hq„H,fp(rr'—)— (one difference, Cif„WC'ff,). (27)

These forms correspond closely to II(16a) and II(16b).
It should, however, be noted that, in spite of the close
analogy with the development of Sec. II.(1.3), each
group is acted on by diferent effective field. This is
because, in general, K"~(rr', rr)WJa~(rr', n) and the
restriction SAR in (22) cannot therefore be relaxed in
defining fl.fP by (23).

2. Energy Expression

It is now necessary to obtain and interpret an energy
expression corresponding to the wave function (3). It
is possible to do this by starting from a one-configura-
tion approximation Co and admitting configuration
interaction by the method of Sec.I.3:the system density
matrix may be obtained by iteration, the distribution
functions calculated from I(50), and the energy
expression interpreted along the lines of I(54). But it
is more instructive to analyze the energy into terms
associated with the separate electron groups, provided
the interaction between them is not too strong. The
natural tool for making this analysis is the perturbation
expansion I(76), and this leads to an immediate genera-
lization of Sec. II.4.

Z.I. Pertgrbatioe Series

and the excitation energies in the denominators are

E(Rr —+ Rr') =H„, Hpp, —
ff=(ab r' )

(32)
E(Rr -+ Rr', Ss ~ Ss') =H,. Hoo, —

~=(a~ . r s) ) /'

It should be recalled that (since matrix elements
vanish for C's diGering in more than two group func-
tions) ofily singly and doubly excited configurations
occur in the second-order energy expression. Each term
in (28) is now considered in detail.

Z.Z. First Approximation. Correlation

E")(=Hpp) is simply the energy in the one-configura-
tion approximation and, as such, has a special import-
ance. Although the terms in (29) admit an immediate
description in terms of the charge densities of the
separate groups [cf. (13) and (14)], it is important to
remember that they originate in the reduction of
pf(00~ 1; 1') and po(00~1, 2; 1',2') according to (6a) and
that E&'& results when these one-conFiguration ap-
proximations are substituted in the general expression
[I(45)].It is then useful to obtain the corresponding
spinless quantities which appear in I(54), but to do this
some assumption about spin states is necessary. The
most widely useful assumption is that each electron
group has zero s component of total spin and for illus-
tration we consider this case. It has been noted in
I(57) et seq. that the 1-electron density matrices must
then have the form

pP (rr
~
1; 1') =PP(rr

~

1
&

1')n(1)n*(1')

+P,"(fr) 1; 1')P(1)P*(1'), (33)where
a a P PPp (rr

~
1; 1')=Pp (rr

~
1; 1') = oPf (rr j

1
&

1').

Consequently, when the spin integrations are performed
in (6a), we obtain (with f(=0)

We repeat the analysis of Sec. II.(4.1), replacing
orbitals by group functions. Equations II(103)—II(107)
are then replaced by

P, (00
~
1,2 1' 2') =P PP(rr

~
1,2; 1',2')

+P' P, (rr~1; 1')Pi (ss~2; 2')
a,S (34)

where

E—E(o)+E(f )+E(&) (28) —
o P' Pfs(rr~2; 1')Pfs(ss~ 1; 2'),

R, S

Pf(00~ 1; 1')=P Pi~(rr), 1; 1').E ' =Hop=+ H" (f'r)+ P [Ja (rr, ss) K~ (rr, ss)], —
g B&S

~H ffff(ff') ('
E(i)= —Q

»'(wr) E(Rr~ Rr')

The distribution functions, which determine the poten-

(30) tial energy terms in the energy expression I(54) follow
on removing the primes in (34).
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(a) (b)

Fxo. 2. Localized electron groups: Full correlation is admitted
for electrons at 1 and 2 in (a); partial (Fermi) correlation is
admitted in (b).

The charge density is simply a sum of the charge
densities associated with the separate groups, irre-
spective of the forms of the group functions. But the
pair function has the simplest interpretation when each
@is„—and hence P„~(rrj1, ri; 1', e'), is Locrrlized,

becoming small when any of the variables 1, e, 1',
~ ~ w' refer to a point outside some fairly definite region
(Fig. 2). For in this case,

Ps(00)1,2; 1,2)~PP(rr(1, 2; 1&2)

for points 1 and 2 within region R
35

pp(rr
~
1; 1)pts(ss~ 2; 2)

for 1 in region E', 2 in region S.

In other words, when two particles are close together
in the same group region [Fig. 2(a)], . they are de-
scribed by the pair function for that group —which is
capable of describing correlation eRects since the group
function has not been specified. In principle, it is only
for two particles in diferent group regions [Fig. 2(b)]
that the pair function must fail to admit full corre-
lation, reducing to the product of two 1-electron prob-
ability functions. The wave function is thus flexible

enough to admit correlation in regions where it is most
important and yet recognizes in a simple way the inde™
pendence of parts of the system which are remote from
one another.

On inserting (34) in I(54), we retrieve (29) with the
interaction terms reduced according to (13) and (14).
But now it is clear that taking J alone corresponds
to neglecting correlakorI, between the particles in group
R and those in group S, each group being regarded as a
static charge cloud; while admitting X~8 allows for
some degree of imtergroup correlation (arising from the
intergroup terms in (34) which are not of simple
product form). Closer investigation shows that the
associated correlation terms in Ps(00~ 1,2; 1,2) are
completely analogous to those which, in one-determi-
nant theory, represent the Fermi hole of Sec. II.(2.2),
describing the reduced probability of approach of
particles with the same shirr This exc.hange correction
is fairly small even in Hartree-Fock theory, where the
group functions (orbitals) are superimposed in the same
region of space; it is expected to be exceedingly small
when the functions are localized in the sense just
discussed.

To summarize, E(o' is a sum of the energies of the
different groups (each taken separately in the field of
all nuclei), supplemented by the electrostatic inter-

actions between their separate unperturbed charge
clouds. There remains a correlation correction which is
very small if the separate groups are substantially
localized in different regions of space. In many appli-
cations, e.g., Sec. III.(4,1), it is reasonable to refer to
E&", given by (29), as the e1ectrostatic approximation.
We now Gnd the E(') and E"' may be described in terms
of the perturbation of each group by the presence of the
others. For convenience, they may be referred to as
polarisatiori and dispersion energies —a terminology
which we must now justify.

Z.3. Polurisatiox Ertergy

E&" arises from admixture of singly excited con-
Ggurations, those in which the R group is described by
Cg„being incorporated with a weight depending on
H ff"(rr') and giving rise, by (76), to a change of
electron density within group P Sin. ce H,&P(rr') is a
matrix element of X,ff, which contains the eRective
held produced by the nuclei and all electron groups
other than R (each group in the state indicated in Co),
this modification of charge density results largely from
the presence of other electron groups and is aptly
described as a polarisatiom Agive. n one-configuration
approximation may thus be improved by admitting the
polarization of each group in the Coulomb-exchange
6eld of the others —the latter being calculated by using
the group functions assigned in the one-configuration
approximation. It is clear from (25) and (13) that the
dominant potential energy terms in H,«(rr') may be
visualized in terms of a transition charge cloud of
density Pi~(rr'

~
1; 1) in the field of the nuclei and other

electron groups. The exchange eGect is again of second-
ary importance, being associated with a correlation
correction.

2.4. Dispersiom Energy

E"' involves double excitations and clearly represents
the eRect of mixing due to electrostatic interaction
between pairs of transition densities; for that part
which refers to groups R and 5 depends upon J~s(rr', ss')
and K"s(rr', ss'), the first being the interaction energy
between charge clouds whose densities at points 1 and
2 are PP (rr'

~
1; 1) and Prs(ss'

~
2; 2), respectively, and

the second being the associated correlation correction.
When the electron groups E and S belong to distant
molecules, Kaa(rr', ss') becomes quite negligible; and
the Coulomb interaction of the two transition densities
is then the well-known dispersion energy in London's
theory of intermolecular forces. '

3. Generalization of the Self-Consistent
Field Method

Since even a single generalized product is potentially
far superior to a one-determinant orbital function, it is

60 F. London, Z. Physik 63, 245 (1930) (see also reference 63).
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of interest to formulate conditions which determine the
best group-group functions, just as the Hartree-Fock
equations determine best orbitals. Lykos and Parr"
have proposed on intuitive grounds that each group
function should be determined by solving an eigenvalue
problem, in which the Hamiltonian contains terms
depending on the wave functions of the other groups;
and that the whole set of group functions should be
systematically adjusted until self-consistency results.
%e now investigate this possibility from the standpoint
of variation theory, in close analogy with Sec. II.(4.2).

Xoff 4 —XC e (37)

The condition (36) may still be utilized, however,
exactly as in Sec. II.(4.2). It is equivalent to

(C ~X, P~C „)=0 (all R),

where Cz is any function in the subspace spanned by
the functions of group R and orthogonal to Cg„.This,
in turn, implies that

(C )),
~
X.«"

~
C»,)= stationary value (all R)

against
@Br~@Rr+ Z CBr'@'Rr'

r'(Qr)

(38)

which is equivalent to

(C~.IX.«'IC'~ )/(C'~. IC'~ )
=stationary value (all R), (39)

for arbitrary variation of Cz„malthius the R-group sub-
space. This means that C))„is an gpprox&egte eigen-
function of (37) in the usual sense of variation theory,
the variation being constrained to the R-group subspace—which is orthogonal to those of all other groups
according to (4). The simplest way of introducing such
a constraint is to build the functions of diferent groups
from diGerent orthogonal sets of one-electron functions.

Since K,«contains the density operators of all
groups other than R, it is necessary to solve the set of

3.1. Couditious for Best Group Fuuctions

From (30) it is clear that the polarization energy,
which arises from admixture of singly excited con6gura-
tions, vanishes when

(C's„(X,«(C')),)=0
(all groups R, all excitations r'Wr). (36)

This condition, which implies the vanishing of the
first-order variation of the one-configuration energy,
would obviously be fulfilled if 4»„were an exact eigen-
function of X,&P, defined by (23) and (24). But in the
present case this is not possible; for, while X,«~ is a
general Zg-electron operator, Cg„is constrained to lie
in a subspace orthogonal to all other group functions
Ce, (SAR). It is, therefore, r)ol strictly true that the
best group functions satisfy eigenvalue equations [cf.
II(112)]

equations (39) by an iterative method. Each effective
Hamiltonian is calculated from an assumed approximate
wave function; each group function is then revised by
solution of (39), and the revised functions are employed
in recalculating the eGective Hamiltonians; the cycle is
then repeated until self-consistency is achieved.

3.Z. Conuectiou with the Theory of Lykos gud Purr

It is useful to give a specific example of the generalized
product approach in order to bring out the connection
with previous work in this 6eld. %e discuss the case of
an atom with an ~uner shell (A) and an outer shell (B).
Normally, the inner shell —which in orbital theories
comprise 6lled groups of doubly occupied orbitals-
is in a 'S state, but the outer shell of valence electrons
may be vector coupled to a state of higher (orbital and
spin) angular momentum. In contrast, however, with
the development of Sec. II.(3.4), it is unnecessary to
restrict the functions C~, and C~~ to particular states
or orbital approximations. Nor is there any restriction
upon the number of shells, although for convenience of
exposition we consider only two.

The one-configuration energy is, from (29),
E(&)=F1&(gg)+II&(bb)+ J&& (gg bb) +&&(gg b—b) (40)

But from (25), this may be written alternatively as

E&') =H (gg)+H «(bb) =H «"(gg)+EP(bb) (41)

In the erst form, the energy is that of the A group
described by C», alone in the 6eld of the nucleus, plus
that of the 8 group, alone in the field of the nucleus
aed its inner shell: in the second form, it is that of the
8 group described by C», alone in the 6eld of the
nucleus, plus that of the A group, alone in the field of
the nucleus and the outer shell. Self-consistency is
achieved when H,«"(gg), the only part of the energy
depending on C»., is stationary against variation of C»„
and when H,«(bb) is stationary against variation of
C'i)g. From (25), these are clearly the conditions derived,
more formally in Sec. III.(3.1). One form of the
effective Hamiltonian X,«(R=A, B) has been given
by Lykos and Parr: in the general definitions (23) and
(24), this Hamiltonian has been reduced to its simplest
possible form, the eGect of all other groups being repre-
sented entirely by means of ore-electron'. ~ density
operators.

The higher-order terms in the energy expression (28)
have not been given previously. If the group functions
are self-consistent, the polarization energy vanishes and
the only remaining contribution, to second order, is the
dispersion energy

~

J~~(gg' bb') —E"e(gg', bb')
~

'
E(2)=— (42)

s (ws) E(A g —+ Ag', Bb —& Bb')
|I'(gb)

Suitable excited functions C~,. and C~q arise incident-
ally in the determination of C», and C e& (cf. the virtual
orbitals of Hartree-Fock theory, Sec. II).
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Finally, when the inner shell is tightly bound, and
relatively insensitive to variations in the outer shell,
the whole problem may formally be-reduced, to one of
J)'l)) electrons in the effective field deGned by $,gP,
energies being reckoned above that of the inner shell,
namely, H~(oa). The only constraint on the outer
shell function is that implied by (4). This observation
(cf. McWeeny6(; Parr et al."") provides a rigorous
basis for the common practice —in atomic, molecular,
and solid-state theory —of con6ning attention to the
valence electrons. In this case, where only the outer
shell function is determined variationally, the polar-
ization of the core by the valence electrons is repre-
sented by the extra term

I
&.«"(~') I'

g(i) =—
"(~~) F(Aa +Ac')—

(43)

It seems likely that such terms may be of considerable
importance in the theory of atomic spectra.

4.1. SePerale Systems. INlermolecllar Forces

Systems may be described as separate if the elclt, i
fall into groups, each with its own complement of
electrons described by a substantially localized group
function. Van der %aals forces and the cohesive energies
of ionic and molecular crystals would be amenable to
discussion using this model. For such a system we put

V(1)= Vg(1)+Vi)(1)+, (44)

a sum of contributions from the separate groups of
nuclei, and de6ne a one-electron Hamiltonian for

group R in the 6eld of its omN NNclei alone:

I)~(1)= —(A'/2m)V'(1)+Vn(1), (45)

and an associated E&-electron Hamiltonian for system
R,

%=1

~'R. McAVeeny, Proc. Roy. Soc. (I.ondon) A223, 306 (1954)
(in particular, Sec. 4).

4. Remarks on Applications

It has now been established that whenever a system
contains a number of orthogonal electron groups, it is
possible to discuss each one separately in the 6eld of
the others, and that it is useful to distinguish in-
teraction terms analogous to those recognized in the
theory of intermolecular forces. It is, for example,
mearringful —at a certain level of approximation—to speak of polarization and dispersion interactions
between, say, two CHS groups in the same molecule;
between the 0. and m electrons of a conjugated system;
and even between the K and shells of a single atom. In
conclusion we brieQy discuss one or two immediate
applications of this analysis.

If matrix elements of this Hamiltonian are distinguished

by subscript zero, the one-configuration energy (29)
takes the explicit form

E(')=Q HP(rr)+ Q ) Vs(1)pP(rrI1;1)dri
8 a&St ~

+~"V (1)p, ( I1; 1)d,

g(1,2)p, {rrI1;1)pi8(ssI2;2)d, d,

g(1,2)pP(rrI 2; 1)pie(ssI1; 2)dridr2 . (47)

If the functions Cg„were exact wave functions for the
separate systems, the first sum would be the total
electronic energy at in6nite separation: generally, it is
the total electronic energy of separate systems whose

wave functions are suitably deformed by their mutual

approach. If the exchange correlation is neglected, the
typical interaction term in (47) reduces, on eliminating

spin, to

(energy of R-group charge distribution in Geld

of nuclei of system S)
+ (energy of S-group charge distribution in

Geld of nuclei of system R)
+ (interaction energy of charge densities of

group R and group S). (48)

The first-order interactions between all pairs of
groups are thus basically Coulombic until their electron
distributions begin to overlap —in which case the
exchange terms can no longer be neglected. .

The polarization and dispersion terms follow from

(30) and (31).In particular, the polarization of system
R by the other systems is now determined by the
matrix element

tg(1,2)pi (rr'l1; 1)pi (ssl2; 2)dridr2

I g(1,2)pP(rr'I2; 1)pie(ssI1; 2Idridr2 .

The 6rst term vanishes if C p„and C g„areexact wave

functions for the isolated system R but not otherwise.
The second term is mainly the energy of a transition
charge cloud PP(rr'I1;1) in the Geld of all other

systems in their ground states.
Electrostatic and polarization forces are clearly large

if the systems bear a net charge (ionic crystals), small

if they are neutral (molecular crystals), and very small
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if they possess high symmetry and small multipole
moments (inert gases). As Longuet-Higginsss has
pointed out, however, multipole expansions are neither
an integral part of the London theory nor, at short
distances, appropriate.

By exploiting the density matrix formulation, it is
possible conveniently to redevelop the whole theory of
intermolecular forces (for a review, see Margenau")
without making the multipole expansions which are
characteristic of the older work in this 6eld. The basic
physical picture can in this way be preserved in all
situations and with wave functions of great generality.

4.Z. Spirit Orbital -Wave FNrtctiotts

Various authors have pointed out the desirability of
recognizing correlations between electrons of different
spin by abandoning the idea of doubly occupied orbitals.
Wave functions for pairs of electrons have been dis-
cussed by Lennard-Jones, ""and by Lowdin, " Shull
and Lowdin, "and Matsen et al. ,"who develop the idea
of split orbitals. The present methods are v' ery con-
veniently applied in such work.

The wave function associated with a set of doubly
occupied orbitals may be written as the generalized
product

C p(1, Ã) =M g (—1)&tpC g.(1,2)Cps(3, 4) t (50)

inner and outer orbitals. In an alternant conjugated
molecule (see, e.g.„Lowdinss), they might be tr-electron
orbitals localized preferentially on different sets of
carbon atoms. Perhaps the simplest way of constructing
functions of the type (53) is to allow troo orthogonal
orbitals, R~ and E~, for each pair of electrons and to take

R+ (1)=)I,trRr (1)+ttaRs (1),
R (1)=XnRi(1) —ttrtRs(1),

(54)

so that R& is augmented in one region of space by addi-
tion of E2 and diminished elsewhere, subtraction of E2
having the reverse effect. In the limiting case p, g —+ 0,
(53) then reduces to a doubly occupied orbital, but for
pg/0 the orbital is split, enabling the electrons to
avoid one another. With the orbitals (54), (53) may
be rewritten as

C tr„(1,2) = [cisiRr(1)Ri(2)+cirsRr(1)Rs(2)]O~(1, 2)

(crtr 2) itstrtrt, ——cits ———2ttgPttttt). (55)

The parameters cz& and cz2 may then be varied, in .

each group in turn, until self-consistency is achieved in
the sense of Sec. III.(3.1). Any number of functions
could be admitted in each group and a convenient
generalization of (55) would be

C B.(1,2) =r, cs'R'(1)R'(2) epp(1»)

where

(51)
=P cir,C ter, (1,2), (56)

and

(52)

C», (i,j) is thus a properly antisymmetric singlet
function (S=O, S,=O) describing the pair of electrons
in orbital R. The simplest improvement on (51) is sug-
gested by Kckart's' calculation on helium and consists
of redefining C tr, (1,2) as

Cit„(1,2) =ttttr[R+(1)R (2)+R (1)R+(2)]O~pp(1,2).
(53)

This is the singlet function for an open-shell configura-
tion in which electrons of different spin occupy different
orbitals. Formally, this function resembles the Heitler-
London function II(37) and the correlation which it
admits may be discussed along similar lines. In an atom
or ion (see, e.g., Matsen et al."),Rt. and R might be

6 H. C. Longuet-Higgins, Proc. Roy. Soc. (London) A235, 537
(1956).

tt H. Margenau, Revs. Modern Phys. 11, 1 (1939).
'4 J.E.Lennard-Jones and J.A. Pople, Proc. Roy. Soc. (London)

A210, 190 (1951)."P.-O. Lowdin, Symposium on Molecular Physics, Nikko,
Japan, 1953.

"H. Shull and P.-O. Lowdin, J. Chem, Phys. 25, 1035 (1956).
"G. H. Brigman and F. A. Matsen, J. Chem. Phys. 27, 829

(1957); R. P. Hurst, ]. D. Gray, G. H. Brigman, and F. A.
Matsen, J. Mol. Phys. 1, 189 (1958)."C. Eckart, Phys. Rev. 36, 878 (1930).

where it is convenient to regard R (1)R (2)Opp(1, 2)
formally as the ith 2-electron state used in defining
C»,. The spinless density matrices are readily seen to be

= 2 P cir,cir;*R,(1)R;(2)R;*(1')R;*(2')

=P crt,crt;*FP (r,r; I 1,2; 1',2'),
s ~ 2

=2 P c„c„*b,;R;(1)R;*(1')
st 7

=Q crt;cs;*Fr"(rr;I1; 1'),

and the analysis of Sec. III.(3.1) applies immediately.
The best R-group fuction is determined by solving the
secular problem

detI(Rr, I X.,PIRr, ) M„„I=—O,

where X.«" has matrix elements given by (25), namely,

(Cn.;I X,tt" ICrt.;)=H.«(rr, )

=Ha(rr )+ P [J"s(rr ss) —ICns(rr ss)j. (59)
$(QB)
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Here, after integrating over spins and using (57), Eqs. B group is excited into its first triplet state is
(8), (9), and (10) give

C.= —(3) ~C'Al, B3,01".+(-'3) C'A2, B2, 01, ~" C'B say (64)
II.rfB(r,r;) =2~,j(Rjll)I R')+(RjRfl g I R'R~),

I"s(r;r;,ss) =4tt;; p(RjSolglR;So) I
csol',

EBs(r,rj,ss) =25;;p(RjSolglS3R') lcsal'

(60)
where

C-(1)=A(1)~(1), (S=l, S =-l),
C B2(2)3)=B'(2,3)011(2)3), (S= 1, S,= 1), (65)

41B3(2,3)=B'(2,3)0~13(2,3), (S=1)lS.=O).

The natural method of achieving self-consistency is to
start from an assumed set of coeKcients [e.g., csi——1,
cB,=O (i)1)]and to solve (58) for each group in turn
to obtain new estimates of the coeScients. The parts
of II,ffB(r;r;) which depend on the coeKcients may then
be revised and the cycle repeated, The total energy is
finally given by (26), in which

IIeff («) =p csfcsj IIeff (rerj).
it 7

(61)

Various applications of this approach are at present
in progress and will be reported fully elsewhere. Pre-
liminary calculations indicate excellent convergence.

4.3. Applications Involving Spin Dependence

In conclusion, we illustrate the calculation of spin
densities [Sec.I.(2.4)j for systems in states with S.WO.

We take for illustration the aromatic free radicals dis-
cussed by McConnell and Chestnut, " in which the A

group is a single x electron spread over a certain set of
carbon atoms and the other groups 8, C, . include
electron pairs describing C—H bonds attached to these
atoms. Proton magnetic resonance experiments indicate
that the balance of ff- and li-spin densities [Sec.I.(2.4)g
in each C—H bond is disturbed by the presence of the
odd m electron, giving a nonzero resultant spin density
at the proton. To explain this eGect theoretically, we

start from a one-configuration approximation

If one such function is admitted for each pair, the per-
turbed density becomes, by I(50),

pi(1; 1') =poopi(OOI1; 1)+ p pospi(ORI1; 1')
R(gA)

+ Q psopi(RoI 1; 1')
R (gA)

+ Z p w (RSI1 1'),
R,a (gA)

where, to first order, I(76) gives

poo= 1, poB= pso*=IIos/(IIoo —IIBB), pss=O. (67)

The density and transition density matrices which
occur are seen from (6) to be

pi(OOI1; 1') =P1A(11I1;1')+ Q pi" (11I1;1'),
(68)

pi(ORI 1; 1')= —(1/v3)piB(13I 1; 1'),

where for typical groups, A and 8,
pi" (11

I 1; 1)=I'1A(11I 1) 1')a(1)fr*(1'),

pis (13
I 1; 1')= 21Qfs (13

I 1; 1')[ff(1)n*(1')—p (1)p*(1')j,
(69)

and we introduce a transition spin density [cf. Sec.
1(24)3

C'o(1, ' N)=4Af, sf, ...(1&' ' 'N) Qfs(13 I
1 1')=2 B(1,2)B'*(1,2)dv2. (70)

in which

=M Q (—1)v(P@A1(1)@sf(2,3) ~, (62)
(P On inserting these results in (66), the spin density

I(66) is found to be

2+OR

This function gives zero spin density at the protons
because A has a node in the molecular plane and the
contributions from the other groups vanish for singlet
states. We must therefore admit excited group functions
with spin factors Os, s, ( WSO). But generalized products
containing a triplet group function must appear in

prescribed combinations to give a doublet state
(S=S,=—',) of the whole molecule (see, e.g., Condon and
Shortley, 23 p. 73). Thus, the combination in which the

(near the proton
of group B). (71)

This result is perfectly general and independent of

the precise form of the wave function or the number of
electron groups distinguished. But it is of considerable

interest to discuss the sign of the spin polarization,
which depends on that of Iron. A straightforward cal-

culation shows that Ho~ reduces to a single exchange
6 H. M. McConnell and D. B. Chestnut, J. Chem. Phys. 28,

107 (1958).

CA1(1)=A(1)ff(1), CB1(2,3)=B(2,3)0'oo(2, 3), etc. (63) 1)= L ] 13
. . %3E(Rf-eR3)
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term,

where
(72)

XQP(13 i 1; 2)dvidvm. (73)

Even using the crudest orbital approximations to the
singlet and triplet functions, 8 (symmetric) and 8'
(antisymmetric), it is then possible to infer by inspection
that the spin density at a C—H proton is negative, i.e.,

that the electron spin at this end of the bond is most
likely to be antiparallel to that of the x electron.

An exactly similar analysis can be used to show that
the odd electron polarizes the other pairs of x electrons
to give negative spin densities on the atoms where the
odd electron is unlikely to be found. These negative
m-electron spin densities are, in turn, revealed by their
eGect on the attached protons. It seems entirely possible
that the analysis of hyperfine coupling constants, fol-
lowing McConnell and Chestnut, " can in this way be
made accurately quantitative.


