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l. EXPANSION THEOREMS

(a) Superposition of Configurations
' 'N order to solve the Schrodinger equation %+=M
~ ~ for a system of E electrons, it is often convenient to
use expansion theorems for the total wave function
%=1p(xt,xs, xN) where x;=(r;,{;) is the combined
space-spin coordinate for electron i. For. this purpose,
one may introduce a certain orthonormal and complete
set of discrete one-electron functions or spin-orbitals

gk(x) as a basis and assume the existence of an expan-
sion theorem

|t (x)=2k elk(x)

for every normalizable function P(x) of a single elec-
tronic coordinate. For a function of several electronic
coordinates, one can then repeat the use of (1) for one
coordinate at a time, which leads to an expansion of
the form

%(xl)x2)xsq ' ' ) =Qktm teak/ (xk.). lp1( t)xlps~( )xs. (2)

Every normalizable function of E particle coordinates
can hence be expanded in Hartree-products built up
from a complete basic set. This expansion can be further
simpli6ed for an electronic system, which obeys the
Pauli exclusion principle mathematically equivalent to
the antisymmetry requirement P1p= (—1)W, where P
is a permutation of the coordinates and p its parity.
Introducing the antisymmetry projection operator

~-=(&)-'Z (-1)"P, (3)

position of con6gurations. "A selection E of E indices
k &l &m & ~ is called an "ordered con6guration" and,
introducing the notations

1pK —(+ t)
—k detg k)ft)f~, . ) CK —(SI)+kekt ..., (6)

one can write expansion (5) in the condensed form

+(X1)X2p' ' 'XN) QK CK+K(X1)X2)' ' 'XN). (7)

In the S-electron configuration space, the Slater deter-
minants %'z form an antisymmetric basis fulfilling the
orthonormality relation J'+K*4'L(dx) =bKL With .re-
spect to this basis, the Hamiltonian K,~ is represented

by the matrix XKL——J'O'K~X»@L(dx), where the
elements are easily simplified. '

In order to evaluate the coe5.cients C~ corresponding
to the solutions of the Schrodinger equation X%'=~,
one conventionally applies the variation principle

(ttX)&,= Owhich leads to the equation system

ZL(XKL +ttKL)CL

where the eigenvalues E are determined by the secular
equation

det{ XKL ESKL) =0. —

In principle, one can obtain any accuracy desired for
an eigenfunction + by means of an expansion of type
(7). This fact was well known in the early days of wave
mechanics but seems to have been almost forgotten
during quite some time until the revival a decade ago
by the work of Slater, Boys, Jucys, and others.

ConeergerIcy I'roblem

fulfilling the relations

P6As = ( 1) OAsy (OAs) OAsy (4')

we have OAs@=%, and, by applying operator (3) to
both members of Eq. (2), we thus obtain

Even if the expansion (7) formally exists as soon as
the basis gk) is complete, the convergency may be
exceedingly slow, and an important problem is hence
to 6nd the particular basis which leads to a most rapid
convergency. This problem was 6rst treated by Slater'
who constructed the basis by solving a set of integro-
diGerential equations similar to the Hartree-Pock
equations.

The convergency problem can also be approached in

a diGerent way by studying the first-order density
matrix. ' If the wave function 0 is normalized so that

+=as+
=(&!) 'pkl -. okt det{4k,S.!.,.4, ) .

(5)
=gk&t&~. .. ckt~. .. det{tt4,ft,f~, ).

The relation shows that every normalizable antisym-
metric wave function 4 may be expanded in Slater
determinants built up from a complete basic set, and
this theorem forms the basis for the method of "super-
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J'
I +I'(dh) = 1, the first-order density matrix y(xi'I »)

is defined by

y(xi'
I xi) =E t %*(xi x2xi . x~)

X+{xixpa' xg)dx2dxa' ' 'dt's (10)

By means of the basic set fi, and repeated use of (1),
one can expand y(xi'

I xi) in the form

v(»'I») =2~i A*(xi')0 (x)v ~, (11)

where the coefficients q&& form Rn Hermitean matrix ~.
By substituting (7) into (10) and carrying out the
integrations, one finds relations between the quantities
y~I, and the coeKcients Cg. For the diagonal elements,
one obtains the simple formula

(12)

which are called the "natural expansion. " This series
has a certain optimum convergency property.

I,ct us consider the matrix y and all possible sub-
matrices y(") of order r along the diagonal which may
be obtained by truncating the basis to 6nite order r.
According to a well-known separation theorem, 4 the r
highest eigenvalues of y are in order of magnitude
larger than the corresponding eigenvalues of y("). The
sum of the r highest eigenvalues of y is hence always
larger than the sum of the r eigenvalues of y("), i.e.,
larger than the sum of its r diagonal elements, which
gives the general inequality

where in the sum k=(1) (r), one can take any r
indices. By using (12), we obtain finally

(~) (I )

where the summation goes over all con6gurations E
containing the speci6c index k. The diagonal element
yq~ may be interpreted as the "occupation number" of
the spin-orbital

t'ai,

and we note that it depends only on
0 and P~. Since the normalization gives PxI~xI'=1,
one has further the inequality 0&p» &1 which may
be considered a consequence of the antisymmetry re-
quirement and hence also of the Pauli principle.

Because of (12), there is a connection between the
convergency property of expansion (7) and the diagonal
elements of the matrix y, and we now consider the
optimum case. .Let U be the unitary matrix which
brings p to diagonal form:

UtyU= n, (13)

where I is a diagonal matrix with the eigenvalues
ni&n, &n, & . Introducing a new basic set (Xi,}by
the matrix formula g= gU or Xi,=g P U i, we
obtain y= UnUt, g= gUt, and

v(xi'I xi) =Xi xa(xi')xa(»)na.

The basic set Xg, has hence the occupation numbers ny,
and, since they are the eigenvalues of y, they have
extremum properties. The 6rst function Xq has thc
highest occupation number possible, the second function
X2 has the same property within the class orthogonal
to Xi, etc. The functions Xl, are called the "natural
spin-orbitals" associated with the system and state
under consideration.

Substituting the relation /=@Us or Pi=+ X U, i,t
into the Slater determinants of expansion (7) and using
a theorem for evaluating the determinant of a matrix
being a product of two rectangular matrices, we obtain
an expansion of 4 into con6gurations of the natural
spin orbitals:

4 = (N!)—& Px Ax det fXp,xi,x„, },

for r= 1, 2, 3, , which relation expresses the optimum
convergencey property of the natural expansion.

Case of Two Electron Sy-stems

In the special case of %=2, the properties of the
natural expansion have been investigated in greater
dc tall. Thc spin function may bc tRkcn out, Rs R

separate factor and, instead of (7), one obtains for the
singlet state

'+(xi, x2) =2 '(~it4 —Pi~2) 2 &iiA(ri)A(r2), (17)
l

where Cp, =Cog. The problem of diagonalizing the
first-order density matrix y(xi'I xi) is essentially a
problem of diagonalizing the matrix C, and the natural
expansion takes the simple form

%'(xi,x2) =2 *(nA—Pia2) P cixp(ri)Xi(r2), (18)
k j.

where ci,=An~&. Hence the double sum in (17) has
been reduced to a single sum in (18).A similar theorem
holds also for the triplet state.

For il!'= 2, the natural expansion (18) has in addition
to (16) another important optimum convergency
property. Let '%„(xi,x2) be any singlet wave function
which may be built up from a basic orbital set of unite
order r and consider the total quadratic deviation
between the "exact solution" and such a trial function

I%'. „—e„I'dx dh.

4 E. A. Hylleraas and B. Undheim, Z. Physik. 65, 759 (1930);
J.K. L. MacDonald, Phys. Rev. 45, 830 (1933).

~ P. 0. Lovrdin and H. Shull, Phys. Rev. 101, 1730 (1956).
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It may be shown that this quantity has a minimum for

pr(xlyxs) 2 (&102 Pl&2)

Xp ckXk(rr)Xk(rs)/(p ck'}&, (20)
k 1 k~1

which is actually the function obtained by truncating
the natural expansion (18) after r terms and renor-
malizing the result. For two-electron systems, there are
particularly two types of approximate wave functions
which have been discussed, ' namely, the closed-shell or
I' form and the split-shell or (u, e) form having r=1
and r=2, respectively. From the general theorem follows
now that (X,)' is the u' function which has the smallest
quadratic deviation (19) from the exact eigenfunction.
The first natural orbital X& is hence closely related to
the corresponding Hartree-Fock function and has
actually only a slightly higher energy. ' The space
function

(rsr Xl '+2 X2 )/('+1+02)

is further the optimum function for r=2 and is easily
transformed to (u, s) form' by putting I= I&tX&+Is&Xs,
e= ng&Xg —e2&X2.

The natural orbitals have so far been investigated
in detail for the ground state of helium, ' for the long-
range interaction between two hydrogen atoms, " and
for the hydrogen molecule, " and further work is in
progress.

(b) Introduction of Correlation Factor

The first practical application of the method of super-
position of configurations was carried out by Hylleraas"
in connection with the helium problem, and he found
that if the basic orbital set contained the spherical
harmonics F'& in the conventional way, the expansion
(7) converged comparatively slowly. "Hylleraas" sug-
gested therefore that one should instead try to inclued
the interelectronic distance r» explicitly in the wave

'See, e.g., the contributions by R. S. Mulliken, M. Kotani,
G. R. Taylor, and R. G. Parr in Proceedings of the Shelter Island
Conference on Quantum Mechanical Methods in Valence Theory,
Physics Branch of the Once of Naval Research (unpublished)
(1951).

V According to reference 9, the (x1)' energy for the ground
state of helium is —2.861530 a.u.a, to be compared with the SCF
energy —2.861673 a.u.H,.

C. A. Coulson and I. Fischer, Phil. Mag. 40, 386 (1949).' H. Shull and P. O. Lowdin, J. Chem. Phys. 30, 617 (1959).
rs J.O. Hirschieider and P. O. Lowdin, Mol. Phys. 2, 229 (1959).
"H. Shuii, Tech. Notes No. 17 (September 15, 1958) and No.

26 (June 5, 1959) from the Uppsala Quantum Chemistry Gioup
(to be published).

'~ E. A. Hylleraas, Z. Physik 48, 469 (1928).
"Recent investigations (see reference 9) indicate that the

energy limit for wave functions including f orbitals (3=3) would
be —2.90332 au. H, compared to the exact value —2.90372 au. H, .
Including angular terms up to 1=5, D. H. Tycho, L. H. Thomas,
and K. M. King, Phys. Rev. 109, 369 (1958),obtained —2.90343
a.u.H„but they did not get any appreciable improvement by
including additional terms up to /=14. A closer investigation of
this convergency problem would certainly be of value.

~4 E. A. Hylleraas, Z. Physik 54, 347 (1929}.

function, and, for a two-electron system, r» could
actually be chosen as one of the basic coordinates. For
the helium problem this led to a fruitful development
which so far has culminated in the highly accurate
calculations by Kinoshita" and by Pekeris, "the latter
using perimetric coordinates. For the hydrogen mole-
cule, the corresponding development started with
James and Coolidge" and has now reached the accurate
level reported by Kolos" at this conference.

Unfortunately this r» coordinate approach cannot
easily be generalized to a many-electron system. An-
other way of introducing r» in the wave function was
also suggested by Hylleraas" who considered space
functions of the form

g(rrs) N(rt) e(rs), (22)

where g(r») is a "correlation factor. " By using the
simple functions g=exp{nr») and g=1+rrr», Hyl-
leraas showed that one could obtain surprisingly good
results. Both for the helium atom" and the hydrogen
molecule, " this idea has been extensively developed in
the literature. In the more recent works, also quite a few
nonlinear parameters have been varied, and excellent
results have been obtained by the largest electronic
computers available.

Here we would like to draw attention to the fact
that the method with correlation factor can easily be
combined with the method using superposition of con-
figurations in such a way that very good results can be
obtained without too extensive numerical calculations.
If the correlation factor g= g(rrs) is nodeless and such
that the function 4/g is still normalizable, one can
apply the expansion theorems (17) and (18) to this
function. For the symmetric space function associated
with a singlet state for a two-electron system, this gives

+(rl r2) =g(F12) Q +klan k(rl)tJ'l(rs)
k, l 1

(23)

=g(mrs) 2 ckXk'(rr)Xk'(rs),
1

where, for fixed g, the coeScients CI,& may be determined

"T.Kinoshita, Phys. Rev. 105, 1490 (1957); Phys. Rev. 115,
366 (1959)."C. L. Perkeris, Phys. Rev. 112, 1649 (1958); Phys. Rev. 115,
1216 (1959).

'7H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825
(1933).

'8 W. Kolos and C. C. J. Roothaan, Revs. Modern Phys. 32,
205 (1960), this issue.

"D. R. Hartree and A. L. Ingman, Mem. Proc. Manchester
Lit. R Phil. Soc. 77, 69 (1933);T. D. H. Baber and H. R. Hassle,
Proc. Cambridge Phil. Soc. 33, 253 (1937); P. Pluvinage, Ann.
Phys. 5, 145 (1950); C. C. J. Roothaan, Colloq. intern. centre
natl. recherche sci. (Paris) 82, 49 (1958); L. C. Green, S. Mat-
sushima, C. Stephens, E. K. Kolchin, M. M. Kohler, Y. Wang,
B. B. Baldwin, and R. J. Wisner, Phys. Rev. 112, 1187 (1958};
C. C. J. Roothaan and A. W. Weiss, Revs. Modern Phys. 32, 194
(1960), this issue.

"A. A. Frost, J. Braunstein, and W. Schwemer, J. Am. Chem.
Soc. 70, 3292 (1948);W. Kolos and C. C.J.Roothaan, reference 18.
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(c) Symmetry Properties and Projections

In studying the solution of the Schrodinger equation
K%'=M, we now consider the case when there exists
an auxiliary operator A symmetric in all coordinates
which commutes with the Hamiltonian 3'. so that
A.X= KA.. For the sake of simplicity, the eigenvalue
problem

(25)

is assumed to have only a finite number of discrete
solutions for l= j., 2, 3 e where later we can let
e —+ ao provided our expressions remain convergent.
Let 0 be an arbitrary trial function which is expandable
in the form

0~=+ G(0~(
.l~l

(26)

and let us now try to construct an operator 81, which,
applied to O~, selects only the term corresponding to
E=k.

2' P. O. Lowdin and L. Redei, Phys. Rev. 114, 752 (1959).

by the variation principle. By using the simple factor
g= 1+nr~2, this method has so far been applied to the
helium atom "

This approach can now be generalized to a many-
electron system. Let us introduce a "correlation factor"
g= g(r», r», r», ) which is a symmetric function of all
the E(X—1)/2 interelectronic distances r;; or, still
more general, an even and symmetric function of the
corresponding vectors r;;= r;—r;. Let us further assume
that g is nodeless and such that the quotient
%(x&,x&, ~ x&)/g is still normalizable. By applying the
expansion theorem (7) to the function 4/g, we obtain
the representation

%(xl)X2) ' ' ' xl) = g(r12p'13)r23 ' ' ')
)&Px Cx%'x(x~, x2, x~ x~), (24)

where, for fixed g, the coefficients Cz may be determined

by the variation principle. The antisymmetric wave
function 0' is here described in a configuration space
spanned by the basic vectors gkz, and the main prac-
tical difhculty is connected with the evaluation of such
parts of the matrix elements X~I, where the integrand
contains three or more interelectronic distances r;;.
Convenient test problems are here provided by the
lithium and beryllium atoms.

In this connection, I would also like to draw attention
to the important work on the lighter atoms carried out
by Jucys and his group in Vilna, Lithuania, by means
of the method of superposition of configurations or
modifications of this scheme by introducing self-con-
sistency requirements or convenient correlation factors.
Since 1947, the group has published more than 30
papers on this subject in various journals in U.S.S.R.,
but unfortunately only a few of them have been
translated into English.

&aO=onOs (27)

Since one can visualize the expansion (26) by consider-
ing a Hilbert space spanned by the basic vectors 0&»

0'2, 0„,in which it is required to resolve an arbitrary
vector 0 into components along the axes, one can say
that the meaning of 81, is to take the "parallel projec-
tion" of 0' on the axis 01,. Repeated use of 8q does not
change the result, which leads to the relation 8~'=8~
characteristic for the projection operators. " Since
further, 81,8~=0 for k Wl, one has

8I 8i= 8a~w.

It is immediately clear that the product operator'

(28)

(29)

has the selective property (27) desired. Since

all terms in (26) having l/k are annihilated, whereas
the term for l= k survives the operation in an unchanged
form. In (29) each eigenvalue X& appears only once,
even if it is multiple, and, if the eigenvalue XI, itself is
degenerate, the operator 8y does not project on a specific
axis but on the entire subspace associated with this
eigenvalue.

In the following we assume that A is either self-
adjoint or normal, i.e., commutes with its Hermitean
adjoint operator At so that AAt=AtA. This condition
is fulfilled both by the operators corresponding to the
physical observables and by the unitary operators
associated with the basic symmetry operations. A
normal operator h. may be written as the sum of a
Hermitean part and an anti-Hermitean part, which
commute with each other and hence have simultaneous
eigenfunctions O~~, These functions are then also
simultaneous eigenfunctions to A and A~ associated
with the eigenvalues X& and X&~, respectively. Since
eigenfunctions Oq and 0~ associated with difFerent
eigenvalues are now automatically orthogonal, the
operators 8& describe orthogonal projections. The
selection eGect of the operator 8~t is identical with that
of 8&, i.e., the operator is essentially self-adjoint. As a
general rule self-adjoint projection operators select
orthogonal projections, and reverse.

Since h. commutes with X, the same holds for the
projection operators 8& formed by (29) and, instead of
(28), we obtain now the more useful relations

@at&«= ~@Ai, 6atai= &a4i, (30)

which form the basis for the practical applications of
the theory. Let 4» and 4» be two arbitrary trial func-
tions which are identical or not. By means of the
quantum mechanical "turnover rule" and (30), we

~' J. von Neumann, Math. Grlndlagen der Quaeteemechaeik
{Dover Publications, New York, 1943), p. 41.
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obtain for their projections

'I (8' I)'ae(8ICII) (dx) =
)"CI*8stX8@ii(dx)

=4I 4'I*3'8sc'Ii(d&), (31)

~(8sCI)*(8ICII)(dx) = )t CI*8st8icii(dx)

4l C'I 8kc'II(d&)) (32)

showing that, for kNl the projections (8&4») and
(8I4iii) are not only orthogonal but also noninturucfirsg

with respect to X.
Let us now consider an antisymmetric wave function

4'=%'(xi, xs, xsi) which is already an eigenfunction
to A. so that A%'=M' and 8+=0', where for a moment
we have dropped. index k. Letting the operator 8 work
on both members of (7), we obtain

+=8+=Ex Cx(8+x), (33)

showing that a simultaneous eigenfunction to X and
A may actually be expanded into the projections 8%~
of the Slater determinants 0'~. The functions 8%'~
usually are not linearly independent and expansion
(33) often may be considerably condensed by elim-

inating the redundancies. Since A. was assumed to be
fully symmetric in the coordinates x», x2, x3, x~
and hence ommutes with all the permutations I', the
projection operator 8 defined by (29) commutes with
the antisymmetrization operator 8~s defined by (3).
The antisymmetric character of 0 is hence undisturbed

by the projection 8.
The existence of an auxiliary normal operator A.,

which commutes with 3'. and 8~8, could be used to split
the secular equation (9), but we note that a much more
powerful approach could be obtained by splitting the
basis (0'x) by the projection operators 8s into the
orthogonal and noninteracting bases

O'=D, 4=gD,

%=8D, 0 =g8D. (36)

Common features of all these approximations are that
the number of spin orbitals involved equals the number
of electrons, that, except for an irrelevant normalization
factor, the total wave function is invariant under
linear transformations of these basic functions, and that
one can without loss of generality choose the basis

it Ir orthonormal. The fundamental quantity
in all four approximations is apparently the Fock-Dirae
densIty matrix~

menta'4 in general. They have also been used for con-
structing Bloch functions in the case of translational
symmetry. "It is clear that a much more general class
of projection operators or fundamental idempotents
exist in the group algebra, " and that they could be
used in exactly the same way, provided that they com-
mute with thc HRmlltonlRQ RQd hcQcc fu1611 thc rela-
tions (30). The antisymmetry projection operator (3)
is a typical example. Many otherwise useful projection
operators of this category are unfortunately ruled out
since they do not commute with the Hamiltonian and
8ga, and particularly the treatment of degeneracies
requires special consideration. '

One can improve the speed of convergency of ex-
pansion (33) by introducing a correlation factor
g=g(r», ris, r», ) which is totally symmetric. This
lcRds to the form

+(xi,xs, x~) =g(ris, ris, res, ~ )gx Cx(8@ic), (35)

wliicll ls a comblnatlon of (24) aild (33).

2. EXTENSION OF THE HARTREE-POCK SCHEME

If the expansion (7) is truncated to a single Slater
determinant D and the E spin orbitals involved are
optimized to give the best total energy possible, one
obtains the conventional Hartree-Pock scheme. Various
extensions of this scheme are possible by starting out
from the expansions (24), (33), and (35), and truncating
them to a single dominant term. Hence we obtain, in
order)

This leads automatically to a splitting of the secular
equation (9), since we obtain a smaller secular equation
for each one of the eigenvalues X~, X2, ~ X„, but for
diferent values of Xg„one could now actually choose
different basic spin orbitals g;) or different adjustable
parameters describing this set. This new degree of
freedom in the projection technique is particularly of
importance in calculations using truncated sets.

Projection operators of the simple product type (29)
have so far been successfully used for creating wave
functions of pure total spin" Rnd pure angular mo-

~3 P, O. Lowdin, Phys. Rev. 97, 1509 (1955); Colloq. intern.
centre natl. recherche sci. (Paris) 82, 23 (1958).

which is also invariant under transformations of the
basis.

Let us start by considering the case 4'=8D, where
the total wave function is approximated by a projection
of a single Slater determinant. This wave function is

24 See a series of research reports from the Uppsala Quantum
Chemistry Group 1956—1959 (unpublished)."P. 0. Lowdin, Advances in Phys. 5, 56 (1956).

26 See, e.g., E. P. signer, Gruppeltheork used ihre Aemendueg
cuf Che Queeteemechueik der Atornspektren (Vieweg und Sohn,
Braunschweig, 1931);D. E.Littlewood, Theory of Group Characters
uld Mutrsg Roprosorstutsogs of Groups (Ciarendon Press, Oxford,
1950).

'7 Cf. P. 0. Lowdin, reference 3, p. 290.
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not only antisymmetric under permutations but is also
an eigenfunction to the auxiliary operator A. commuting
with K or fulfills certain additional symmetry require-
ments connected with 8. The function 6D could be
expressed as a sum of determinants —a "codetor"
according to Boys's terminology —but the condensed
projection form has several advantages, e.g., in showing
the invariance under linear transformations of the
basis gs} and in connection with the use of the "turn-
over rule" in (31) and (32). For the normalization
integral, we obtain, according to (32),

c= I@Is(dx)= i D*OD(dx), (38)

and it turns out that for very important categories of
projections (e.g. , those connected with angular mo-

menta), this quantity is a constant characteristic for the
projection 6 under certain conditions on the spin
orbitals {it&}. By using (31), we obtain for the total
energy

(X)= D*(c-'X.na)D(dx), (39)

which is exactly the same expression as in the conven-
tional Hartree-Fock theory except that X„has been
replaced by the composite Hamiltonian

Mop c X'Op 6o (40)

It has been shown" that even in the case of complicated
Hamiltonians containing many-particle interactions,
the one-particle scheme based on a single determinant
D leads to Hartree-Fock equations of the conventional
folm

Haf(1)gs(xi) =Q A(xi)Xu, (41)

where, according to Eq. (40) in reference 28, the
effective Hamiltonian 3'.,«depends only on the total
Hamiltonian 3'.,p and the density matrix p defined in
(37). Since H,« is invariant under unitary transforma-
tions of {Ps}, the right-hand member can further be
diagonalized to the form esses. This implies that the
variation problem 5(3C), =0 connected with (39) leads
to extended Hartree-Fock equations of the type (41),
where H,gf' now depends on the operator c '8 in
addition to 3C,p and p. Hence the symmetry properties
of the state under consideration influences now the
effective Hamiltonian. Again the right-hand member
can be diagonalized to the form esses, provided the
normalization integral (38) remains invariant also
under this unitary transformation.

So far, we have assumed that the normalization
integral (38) is a constant c characteristic for the pro-
jection 0. If this is not the case, one must, instead of

ss P, 0, Lowdin, Phys. Rev. 97, 1490 (1955).

(39), consider the more general expression

(X)„= D*(X8)D(dx) D*CID(dx), (42)

and the variation principle 5(5C), =0 leads again to
one-dimensional eigenvalue problems" which are
generalizations of the type (41). This approach is
mathematically more complicated, but it has the ad-
vantage that there are no extra constraints on the
basic spin orbitals g s}which could prevent an optimum
lowering of the energy.

The split-shell method for treating two-electron
systems, frequently discussed in the current literature, '
may be considered as a special case of the general type
0'=8D. Two spin states are here possible —a singlet
and a triplet —and, according to (29), the singlet
projection operator takes the form 'Ci= 1—P/1 2
=-,'(1—P~sr). Starting out from a single Slater deter-
minant D=det{mo. ,eP}, one obtains

s (&1ps 01&2) (Nl&2++sel) y

which is the (N,e) form used in the split-shell theory.
By using (38), one gets for the normalization integral
c= 1+ I

1'N*e(dr) I', which is constant c= 1, if e and e

are assumed to be orthogonal. In general, however, it
is essential that I and v may be overlapping and, in
such a case, the energy variation must be based on (42).

The results obtained so far on helium'', lithium"
and beryllium" seem very promising, and further appli-
cations on the lighter atoms are now in progress. For
molecules and crystals, the exact solution of the
extended Hartree-Fock equations is a rather cumber-
some numerical problem which can be replaced by
approximate schemes of a simpler type, like the alter-
nant-molecular orbital method. "

In conclusion, we also consider the extended Hartree-
Fock schemes based on the approximations%'=gD and
4'=g(8D), where g is a correlation factor

g g(~12/13 ~28 ' ' ')

The results on the helium atom" and the hydrogen
molecule" obtained by using wave functions of the form
g(N)' and g(N, e) and simple correlation factors g seem
very promising, but, in order to extend this approach
practically to many-electron systems, one has to master
the energy integrals containing more than two inter-
electronic distances r;;. In this connection, it is inter-

"G. H. Brigman and F. A. Matsen, J. Chem. Phys. 27, 829
(1957);R. P. Hurst, J.D. Gray, G. H. Brigman, and F.A. Matsen,
Mol. Phys. 1, 189 (1958); E. A. Burke and J. F. Mulligan, J.
Chem. Phys. 28, 995 (1958).

m' G. H. Brigman, R. P, Hurst, J. D. Gray, and F. A. Matsen,
J. Chem. Phys. 29, 251 (1958).

'P. O. Lowdin, Nikko Symposium on Molecular Physics, 13
(Maruzen, Tokyo, 1954); Phys. Rev. 97, 1509 (1955); T. Itoh
and H. Yoshizumi, J. Phys. Soc. Japan 10, 201 (1955); H.
Yoshizumi and T. Itoh, J. Chem. Phys. 23, 412 (1955);Busseiroz
Kenkyu 82, 15 (1955) (in Japanese).
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TABLE I. Diferent expansion methods and extended Hartree-Fock
schemes with helium errors in kcal/mole.

Expansion

+=~z CH'z
+=Zz Cz(& z)
4 =g Zz Cz+z
+=g ZzCz(8+z)

Principal term

+~gD
+=ga
+~gga

Helium errora

26.3
16.0
2.3
1.2

a The errors refer to a case where g =1+Or&s and Q stands for a spin
projection only.

esting to note that Krisement32 has pointed out that the
form 0'=gD is closely connected both with Wigner's33

classical theory for the electrons in an alkali metal and
Sohm and Pines"4 plasma model.

3. DISCUSSION

In this paper, we have tried to show how the expan-
sion (7) of configurations could be gradually changed
by the introduction of a correlation factor

g=g(ris, rrs, res, ")
or a projection operator 8, or both. It is anticipated that
this transformation would lead to an improvement in
the rate of convergency, and, in Sec. 2, we have dis-
cussed the various Hartree-Fock schemes (36) which
are obtained by truncating the expansions to a single
dominant term. One gets an idea of the strength of the
various methods from Table I, where we have 1isted
the helium errors'" in kcal/mole for the optimized
truncated wave functions.

Let us now discuss the physical reasons for the
obvious improvement which comes from the intro-
duction of 8 and g. The conventional Hartree-Fock
scheme having O'=D is originally based on the inde-
pendent-particle model, in which one neglects the fact
that the electrons actually repel each other, so that
each electron is surrounded by a "Coulomb hole" with
respect to all other electrons. Since the electrons ap-
parently try to avoid each other, there is a certain
correlation between their movements, and the omission
of this eGect causes a so-called "correlation error. "
This picture is partly changed by the introduction of
the antisymmetry requirement through the use of (3),
since each electron is now surrounded by a "Fermi

32 O. Krisement, Phil. Mag. 2, 245 (1957).
@ E. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday Soc.

34, 678 (1938).
"See, e.g., D. Pines, Solid State Phys. 1, 368 (1957).

hole" with respect to all other electrons having the
same spin. "The correlation error in the Hartree-Fock
scheme can hence be essentially attributed to electrons
having antiparallel spins, and 1.1 ev is a rather typical
figure for a single electron pair. According to the virial
theorem, this correlation error consists of an error of
—1.1 ev in the kinetic energy, which comes out so low
since the electrons are permitted to make simpler
movements when they do not have to avoid each other,
and an error of +2.2 ev in the Coulomb potential.

The pairing of electrons with antiparallel spins in the
same orbital is a characteristic feature of the conven-
tional Hartree-Fock scheme, which is mathematically
convenient since it enables us to construct pure spin
functions easily, but which is physically more doubtful
since it introduces large correlation errors. If the pure
spin functions are instead created by spin-projection
operators, one can permit "diferent orbitals for dif-
ferent spins" and, since the electrons having anti-
parallel spins now get a possibility to avoid each other
in space, the correlation error starts going down. A still
better result can be obtained by also introducing other
projection operators, e.g., in the helium case, the orbital
angular-momentum operator creating 5 states.

If the correlation factor g=g(risrrs, rss, ) is chosen
so that it has its smallest value when any r,,=0, the
form +=gD corresponds to the introduction of a
"Coulomb hole" for both parallel and antiparallel spins.
The correlation error goes then down essentially, and,
by combining the use of g and 8, one can apparently
in the helium case approach a good "chemical" accuracy
of about 1.2 kcal/mole even with the simple function
g= 1+ariz.

The main advantage of the Hartree-Fock schemes
here described comes from the fact that they have a
strong physical and chemical visuality which leads to a
simple model of the system under consideration. On the
other hand, the solution of the corresponding Hartree-
Fock equations is usually a numerically extremely
cumbersome procedure involving nonlinear integro-
differential equations, and, in this connection, one
should observe that it is usually considerably simpler to
solve linear secular equations of the type (9). In the
latter case, there are further no limitations on the
accuracy obtainable, and the final results can always be
simplified by going over to the natural expansions.

's E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);J. C.
Slater, ibid. 81, 385 (1951).


