
LOCAL-ENERGY METHOD 317

this accuracy since 3)&10 ' a.u. of energy is only 8&(10 '
ev or about 0.2 kcal per mole.

RELATION TO NUMERICAL INTEGRATION

The choice of points and weighting factors is reminis-
cent of a numerical integration. Although the present
method does not depend upon the summations being
approximations to integrals, the later possible use of
such functions to calculate expectation values of other
quantum mechanical quantities would have to depend
upon integration. Therefore it is of interest to see how
closely a given matrix component defined by a limited
summation approaches to the corresponding integral.

As an example of an integral

1

S»= (~'/g) exp( —»t ) (u' —")dud~,
1 0

Table III shows the corresponding sums and integrals
for both Sii and H~i and the ratio ~i. The sums agree
with the corresponding integrals to within 1.0%.
The energy values are much better and agree to within
0.2'/f~.
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I. INTRODUCTION

' 'N almost every application of quantum mechanical
~ ~ methods to the description of many-electron
systems, it has been assumed that a nonrelativistic
treatment should give results accurate enough. This
assumption is very seldom checked, and in the few
cases where an approximate relativistic calculation has
been carried out, the results indicate that for many
systems the preceding assumption is not justified. In
the present paper the interest is focused on the shifts
in the total energies caused by relativistic eGects, and
because almost nothing is known so far about these
shifts in molecular systems, results are given only for
atomic systems. The limited material presented here
does not imply that the theory of relativity has been
completely forgotten in quantum chemistry. In fact, a
great deal of work has been performed in studying the
eGect of spin-orbit interaction in atomic and molecular
spectra and relativistic eGects have also been con-
sidered in the theories of the Auger spectra' and of the
cohesive energies of alkali metals, ' to mention a few

examples. But because the concept of the total energy
of a system plays such a dominating role in the formu-

*Work supported in part by the King Gustaf VI Adolf's
70-Years Fund for Swedish Culture, Knut and Alice Wallenberg's
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in part by the Aeronautical Research Laboratory, Wright Air De-
velopment Center of the Air Research and Development Com-
mand, U. S. Air Force through its European OfBce under a contract
with Uppsala University.' W. N. Asaad, Proc. Roy. Soc. (London) A249, 555 (1959).

2 J. Callaway, R. D; Woods, and V. Sirounian, Phys. Rev. 107,
934 (1957).

lation of quantum mechanics, in particular in con-
structing the wave equation determining the wave
function, the inhuence of the theory of relativity on the
total energy is of special importance. This is even more
obvious from the fact that the only possible way at
present to calculate an energy diGerence, e.g., dissoci-
ation energies and spectra, is to calculate the total
energies for the two states involved and then take the
diGer ence.

As an introductory and illustrative example of cases
where relativistic eGects are of importance, we may
consider a hydrogenlike system with nuclear charge Z.
In the ground state of this system the electron has,
according to the Schrodinger theory, a root-mean-
square velocity of the order of 2.2XZ)&10' crn/sec,
which means that even for fairly small Z the velocity
of the electron is comparable to the velocity of light. By
using classical arguments for Z=92, one should expect
a relativistic correction of about 50%%u~ of the nonrela-
tivistic energy. In the relativistic quantum mechanics
as developed by Dirac, the correction predicted in this
case is around 15% The structure of the Dirac theory
is in many respects diGerent from the nonrelativistic
Schrodinger theory. The main differences are that the
wave function for one electron has four' components
which are determined from first-order equations and
that the spin of the electron from the beginning is
built into the theory and not added as an extra postulate
as in the Schrodinger theory. This inclusion of spin leads
to relativistic terms which have no counterpart in
classical relativistic mechanics. Apart from some small
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discrepancies of a quantum electrodynamical origin,
the Dirac theory is able to explain many experimental
facts concerning one-electron systems. One is therefore
inclined to believe that the Dirac theory is a good
starting point for a relativistic quantum mechanical
treatment of many-electron systems. It has been found,
however, that whereas the Schrodinger theory can be
extended to more than one electron as, e.g. , the ex-
tensive work on the helium atom indicates, ' ' consider-
able difFiculties are involved in the generalization of -the

Dirac theory to many-electron systems and today a
basic theory for such systems does not exist. In the
past, two different approaches based on the Dirac
theory have been made to an approximate relativistic
treatment of many-electron systems. Breit' extended
the Dirac theory to two electrons but he was forced to
introduce some approximations in the electron-electron
interaction term and the resulting theory is not fully
Lorentz invariant. The other approach has the character
of a practical calculating scheme. It extends the Hartree
and Hartree-Fock approximations to include relativistic
eGects by using the Dirac Hamiltonian instead of the
nonrelativistic Schrodinger one-electron operator. Some
results obtained from these two approximations are
given in the following two sections.

II. RELATIVISTIC SCF THEORY

The Hartree and, in particular, the Hartree-Fock
approximations6 have had a considerable success in
giving fair quantitative results for atomic systems.
These approximations assume that the total wave
function can be written either as a product or as an
antisymmetrized product of one-electron functions,
respectively. When trial functions of this form are used
in the variati. on principle, the equations determining the
one-electron functions are a set of coupled nonlinear
equations because of the electron-electron interaction.
An essential feature of these two approximations is the
independent-particle character, which makes it possible
to generalize the one-electron part of the Hamiltonian
to include relativistic eGects by using the Dirac theory.
This generalization supplemented with the assumption
that the electrons interact only nonrelativistically has
been used by Swirles' in deriving relativistic SCF
equations. Because 4-component one-electron functions
have to be used, the formalism is slightly changed as
compared with the conventional SCF theory. Equations
(1) give an example of the type of equations the two

' T. Kinoshita, Phys. Rev. 105, 1490 (1957); Phys. Rev. 115,
336 (1959).

C. L. Pekeris, Phys. Rev. 112, 1649 (1958); Phys. Rev. 115,
1216 (1959).

'H. A. Bethe and K. K. Salpeter, EXarIdbuch der I"hysik
(Springer-Verlag, Berlin, 1957), Vol. 35. (This paper contains a
detailed discussion of the Dirac theory and the Breit approxima-
tion with references to the original papers. )' D. R. Hartree, Repts. Progr. Phys. 11, 113 (1948); The Cal-
culitiorI, of Atomic Structures (John Wiley 8z Sons, Inc. , New York,
1957).

~ B.Swirles, Proc. Roy. Soc. (London) A152, 625 {1935).(Some
corrections to this paper are given in reference 6, p. 143.)

TABLE I. Orbital energies from nonrelativistic and relativistic
Hartree calculations and corresponding experimental quantity.
In Rydberg units. The results are taken from reference 9 (Cu+)
and 11 (Hg).

Level
Cu+ Z=29

NR Rel Exptl.
Hg Z=80

NR Rel Exptl.

is
2s
2Pk

2pf
3s
3Pk

3Pf
3dg

3~5/2

658
78.45

664.8
79.52
70.66
1.5Z

69.14
7 8.98

6.01
0.19
5.82
1.02
O.OZ

1.00

69.86

8.9

6.08

1.12

661.4
80.8
70.2
1.5

68.7
9.1

5553 6145.7
925 1081.8

1041.7
892 143.8'

897.9
216.9 255.7

236.1
200.6 31.4

204.7
173.2

170.5 6.8
166.4

6115.9
1093.3
1046.9
141.9
905.0
262.5
241.7
31.9

209.8
176.0

6.7
169.3

radial parts P and Q in the 4-component wave function
satisfy in the Hartree approximation:

(d~/d )+(~/)~+I:-(U()- )+2= X=o
(dQ/«)- (~/.)Q- LU(.)—.j~=O

u= —P+1) f.r&=l+
=+l for j=/ —2.

In atomic units' the velocity of light is n ' where o. is
the fine structure constant. e is the orbital energy and
U(r) is the potential energy of the electron. If exchange
eRects are included (Hartree-Fock approximation), the
last terms in Eq. (1) are replaced by a sum of terms
involving the Q's and E's describing the other electrons. '

Relativistic Hartree calculations have been carried
out for Cu+ by Williams, Hg and Hg'+ by Mayers"
and Hg, U, Pt, W, Fe by Cohen. "All these calculations
give orbital energies which for the inner shells agree
with observed x-ray levels to within 1%. Table I gives
some of the results for Hg and Cu+ together with the
nonrelativistic Hartree results and the corresponding
observed quantity. The calculations on Hg by Mayers
and Cohen do not agree completely. In general the
Mayers' calculation gives slightly larger orbital ener-
gies, but the diGerence does not aGect the general im-
plications of the calculations. The results given in
Table I show that, at least for high nuclear charges
where the relativistic eGects are of special importance,
the major part of the diGerence between the nonrela-
tivistic and experimental results is explained. The
influence of, e.g., exchange eGects and relativistic terms
in the electron-electron interaction is not known, but
they most probably do not change the situation
drastically.

The relativistic SCF results also can be used to
illustrate another consequence of the inclusion of
relativistic terms in the Hamiltonian. In Fig. 1 a
comparison is made between the relativistic and non-

SThe atomic unit (a.u.) is dered by A=e=m=1. 1 a.u.
=2 Ry =219 474.6 cm '=27.2097 ev= 627.7 kcal/mo1e.

A. O. Williams, Phys. Rev. 58, 723 (1940).
'0 D. F. Mayers, Proc. Roy. Soc. (London) A241, 93 (1957)."S. Cohen, University of California Radiation Laboratory

Repts. 8389, 8633—35, 8734 (unpublished).
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relativistic total radial charge density for Hg'+. A

quantity 6 defined by

+ Sl ' S2
rl2-3

&(» r12)(s2'r12)

R;= ~,D Z/r 1)+(Z/r2) (1/r12)]. —
"J.O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular

Theory of Gases arid I.iguids {John Wiley Bz Sons, Inc. , ¹wYork,
1954), p. 1045.

(PR PN R)«
0

is plotted as function of r. pR and pNR are the total
relativistic and nonrelativistic radial charge densities.
6 may be interpreted as the increase of charge in a
sphere of radius r round the nucleus caused by the
relativistic treatment. The letters E, I., ~ in the
figure give the positions of the E, I. shell. . . in the
relativistic calculation, and the numbers below the
letters give the total charge in the spheres with the
radii determined by these positions. Figure 1 clearly
demonstrates that there is a considerable contraction
of the electronic charge cloud. Because the relativistic
treatment shifts the positions of the shells with respect
to the nonrelativistic ones, maxima and minima occur
in h(r)

III. PERTURBATION TREATMENT BASED
ON THE BREIT THEORY

In the relativistic SCF approximation discussed in
Sec. II, the basic assumption is that the interaction
between the electrons can be approximately described
by the electrostatic Coulomb potential. A more com-
plete relativistic treatment of the interaction is exceed-
ingly difhcult to give and up till now, only approxima-
tions have been discussed. Most well known of these is
the Breit treatment' which handles the relativistic part
of the electron-electron interaction by perturbation
theory. In practical applications one uses approximate
solutions of the Schrodinger equation and makes a
first-order perturbation calculation taking into account
terms of order a2 (Pauli approximation). The operators
we have to consider in this case have been given by
Hirschfelder et al." for a molecular system. Here we
confine our interest to a two-electron atom without
external fields, in which case the relativistic part of the
Breit Hamiltonian in the Pauli approximation is

H„1=c42(H1+H2+H2+H, +H2),

Hl 2 (pl +p2 )i

H2= (1/r12)(pl' p2+[r12' (r12' pl) p2]/r12 }
H2=s(LR1Xpl+(2/r12)r12Xp2] s,

+pR2Xp2+(2/r12')r12Xpl] s2), " (2)
H4 ——1/4(pl Rl+p2. R2),

H2 —(ger/3) (sl s2)b&2~ (r12)——
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FIG. 1. The difference 6 between the relativistic and nonrela-
tivistic total radial charge density for Hg'+ based on the Mayers'
calculation. '0 6 in electronic charges.

TABLE II. Comparison of the relativistic corrections for H-like
systems obtained using 0,' approximation and Dirac theory. In
atomic units. DE=E„l(n') —E 1 (Dirac).

6
10
16
20
25
30
35

0.012
0.053
0.218
0.426
0.833
1.439
2.284

E,,l(n2)

—0.009—0.067—0.438—1.071—2.622—5.455—9.994

0.000
0.000
0.002
0.006
0.023
0.069
0.175

For a detailed discussion of (2) we refer to reference 5.
The physical interpretation of the operators in (2) is:
II& gives the variation of mass with velocity, B2 repre-
sents the magnetic orbit-orbit interaction, B3 is the
well-known spin-orbit interaction, 84 is a term charac-
teristic for the Dirac theory" and has no obvious
physical interpretation, and H5 is the spin-spin inter-
action. The validity of the cP approximation can easily
be checked by considering a hydrogenlike system.
Boys and Price" have used a trial function of the form
1P= U4 & exp( —Ur) and minimized the energy with
respect to U including relativistic terms of order 0,2

in the Hamiltonian. In Table II the results obtained are
compared with the energies given by the complete
Dirac expression. We notice that U&Z, which means
that there is a contraction of the electronic charge
cloud, an eGect which we also noted in the relativistic
SCF treatment (Fig. 1).From Table II it is also obvious
that if we are interested in results having chemical
accuracy, where the total energy should be correct to
about 10 ' a.u. =0.6 kcal/mole, then the n2 approxi-
mation cannot be used for systems equivalent to a
hydrogenlike one with Z&15. Table II also shows that
the relativistic corrections increase rapidly with in-

' This term gives rise to Dirac 8-function terms."S. F. Boys and V. K. Price, Phil. Trans. Roy. Soc. (London)
A246, 451 (1954).



320 AN DERS F ROMAN

TABLE III. Comparison of some expectation values (in a.u.) calculated from different variational
wave functions for He (after Bethe-Salpeter').

Wave
function

+NR

&&(» ))
&p')
Z

H-like

2.8438
1.530
0.191

40.54
+0.078

Hartree

2.8670
1.798
0.188

52.46—1.227

3 term

2.9024
1.798
0.116

53.42—1.694

Hylleraas
6 term

2.9032
1.817
0.111

54.50—1.860

18 term

2.9037
1.8102
0.1072

54.072—1.807

Pekeris

2.9037
1.8104
0.1064

54.088—1.813

& See reference 4.

TABLE IV. Contributions from the diferent operators in (2)
for the He-like systems (reference 4) and AP+ (reference 15) in
a.u.

System

He
C4+
Nes+
AP+

—13.52—14 15.8—11 524.7—36 230

(H.)
11.38

1158.2
9350.1

28 320

&H )

0.33
19.3

102.5
240

(H2)

—0.14—23—7.0

—1.95—240.6—2079.1—7670

"A. Fromsn, Phys. Rev. 112, 807 (1958).

creasing Z. In the cP approximation the leading term
is Z4. For Z=30 the nonrelativistic energy is ~~)&302

=450 a.u. and hence the relativistic correction is larger
than 1% of that.

As already mentioned, the Breit theory is, in general,
used for perturbation calculations of the relativistic
corrections. It is of interest to know how the results
depend on the choice of the unperturbed functions.
Table III gives the results for He based on various
functions obtained by variation calculations of the non-
relativistic energy. Included in the table are also the
nonrelativistic energy ENR and a quantity Z de6ned by

Z = (Hr+H4+IIs).

This quantity is proportional to the relativistic cor-
rection with the Hs term in Eq. (2) omitted. (H&) is
zero for any wave function of orbital form. As one
would expect, (8(r»)) changes considerably when the
correlated motion of the electrons is taken into account
more completely, and, in order to get stabilized expec-
tation values, rather complicated variational wave
functions have to be used. The hydrogenlike functions
actually give the wrong sign for the relativistic cor-
rections.

Table IV summarizes the results calculated for He-
like systems by Pekeris' and for a ¹like system
calculated by Froman. "The latter calculation uses the
Hartree-Fock functions as a basis for the perturbation
treatment and, judging from the result in Table III,
this shouM probably not give reliable results but, as
discussed in reference 15, the outcome seems still to be
fairly accurate. From Table IV we see that the domi-
nating terms are (Hr) and (II4) and because these terms
have opposite signs, omission of the Dirac term (II4)
should lead to completely wrong results. The situation

is somewhat similar to the nonrelativistic theory where
there is a balance between the positive kinetic energy
and the negative potential energy. For the He-like
series the results obtained by Pekeris4 can be condensed
in the formula

4rr 'E )=—Z4 —1.7Z'+2. 2Z'+

The square of the nonrelativistic energy for this iso-
electronic series gives

(RNa)'= Z4 —1.25Z'+0. 71Z'+ .

and comparing the two last expressions we are led to
a very rough way of estimating the relativistic cor-
rections, namely, to put them proportional to the
square of the nonrelativistic energy. By using this type
of estimate one may try to predict the relativistic cor-
rection for the hydrogen molecule. For the united atom
(a 'He atom) the relativistic correction is 22.78 cm '
which gives 2.71 cm ' as the correction for two infinitely
separated hydrogen atoms compared with the correct
value 2.92 cm ' calculated from the Dirac theory. For
H2 at equilibrium internuclear distance one obtains 9.7
cm ', which means that one should expect the rela-
tivistic correction to the dissociation energy (38288
cm ') to be around 7 cm '.

Table V gives the total energy and the estimated
relativistic corrections for some atomic systems. A
comparison between the systems Al'+ and Al"+ again
emphasizes that the major part of the relativistic cor-
rections is found in the inner shells.

IV. DISCUSSION

The magnitude of the relativistic corrections, as
given in the tables in this paper, all indicate that in
general one cannot neglect them. Because of the Z4

dependence (in the o.' approximation), this is true for
atomic systems with high nuclear charge and hence also
for molecules and solids built from such atoms. For-
tunately, most of the molecules of interest in quantum
chemistry, e.g., organic molecules are composed of
atoms having small nuclear charges, and if one wants

to estimate the relativistic sects an approximate
treatment would be sufhcient. But when we compare
the results of calculations with experimental measure-

ments, which nowadays especially in spectroscopy are

@cry accurate, even for these small nuclear-charge
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TABLE V. Total energies (E) and relativistic corrections (E„&) in ev for some atomic systems.

System

—E
]

He+

54.4145
0.0029

He

78.9997
0.0028

489.95
0.23

C4+

882.02
0.35

399.2
0.06

A/ll+

4389.8
9

AP+

6552.5
11

2719.4
2.6

systems a careful analysis of relativistic eGects may be
necessary.

For high nuclear-charge systems our incomplete
knowledge of the relativistic effects for many-electron
systems strongly limits the accuracy of the results of
a prsori calculations. The development of a consistent
theory for such systems should be of great interest to
quantum chemists.

It is of some interest to compare the relativistic cor-
rections with some nonrelativistic quantities. In the
nonrelativistic quantum mechanical treatment of atoms
and molecules, the interelectronic repulsion term in the
Hamiltonian causes the major difFiculty when solving
the Schrodinger equation. The Hartree-Fock treatment
approximates this interaction by introducing average
fields and, as a consequence, the HF energy is not the
exact energy. The deviation is called the correlation
energy. Comparing the relativistic correction and the
correlation energy we find that for the He-like systems
the relativistic correction is energywise more important

than the correlation energy if the nuclear charge is
larger than =8. The corresponding nuclear charge for
the Ne-like systems is 13. By comparing the total
Coulomb repulsion energy of the electrons with the
relativistic correction, we find that the latter is more
important if the nuclear charge is larger than 40 (He-like
systems) and 65 (Ne-like systems). These figures are
rather discouraging if one considers the large eGort
spent in handling the correlation problem, but the
results given in this paper makes it possible to justify
to a certain extent the neglect of relativistic effects.
These are mostly "localized" to the inner shells of the
atoms, whereas this is most probably not true for the
correlation energy, and consequently we have a good
chance of an almost exact cancellation of the relativistic
corrections, when we calculate an energy difference,
provided that the inner shells are not changed. How-
ever, the relativistic eGects are so large in most atoms
that even a small change in the shells caused, e.g., by
polarization may be of importance.


