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INTRODUCTION will lead to a local energy e calculated from HP/g as a
varying function of position. It is then clear that the
constancy of e can, in principle, be used as a criterion
of the excellence of a wave function

ELECTRONIC energies of molecules are calculated
~ nonempirically almost exclusively by the Ritz

variation method. As long as the approximate wave
function is expressed as linear combinations and
products of atomic orbitals the resulting fragmentary
integrals involve no more than two electrons and four
centers. Several groups are successfully evaluating
such integrals with the aid of high-speed digital com-
puters. However, even with the integrals available
it is still an enourmous problem to carry out the neces-
sary con6guration interaction, or what is equivalent,
the mixing of valence bond covalent and ionic struc-
tures, in order to attain the desired accuracy.

An alternative conceptual scheme for constructing a
suitable wave function involves the concept of corre-
lated molecular orbitals in which the interelectronic
distances are included in the wave function by way of
a correlation factor. In the helium atom this was irst
done by Hylleraas' and recently extended by Weiss
and Roothaan' with excellent success. For the hydrogen
molecule this idea has been shown to have conceptual
value and also to provide a surprisingly good energy. '—'
The extension of this method to many-electron mole-
cules or atoms leads to integrals of great difhculty.

It can be concluded that any method that can provide
sufBciently accurate solutions of the Schroedinger equa-
tion without such time-consuming or diflicult integra-
tions should be most acceptable.

H4/4 =e

The use of this criterion has the great advantage
over the variation method in that integration is not
required. The Hamiltonian being a differential operator,
it is always possible to evaluate HP no matter how
complicated the wave function. A least squares method
of approximation was outlined and tested some years
ago on the hydrogen molecule-ion. ~ In the absence of
modern computing facilities it was considered im-
practical to extend the method at that time. A. von
Mohrenstein' modiied the scheme and applied it to
the helium atom and the hydrogen molecule, again
using only desk computers.

More recently Bartlett' used Hp/p as a test of a
numerically calculated wave function for helium. This
application differs from that of Frost and of von
Mohrenstein in that Bartlett does not make use of the
criterion of constant energy to improve the original
function. Furthermore, his function is not an analytical
expression.

In this paper the original least squares method is
improved and tested more adequately using a medium-
speed digital computer. A subsequent paper will de-
scribe attempts to get constancy of local energy by
analytical procedures. In both cases the hydrogen mole-
cule-ion is used as a test case.CRITERION OF CONSTANT ENERGY

LEAST SQUARES METHODDividing the general Schroedinger equation HiP=
EiP by iP yields

W/4=E

HiP and iP are both functions of the coordinates of the
electrons. Therefore, for each point in configuration
space a "local" energy E may be evaluated. Bartlett'
has pointed out that for the exact solution E is a
constant whereas an approximate wave function p

' E. Hylleraas, Z. Physik 65, 209 (1930).
~ A. W. Weiss and C. C. J. Roothaan, Bull. Am. Phys. Soc.

Ser. II; 4, 173 (1959);see also C. C. J.Roothaan and A. W. Weiss,
Revs. Modern Phys. 32, 194 (1960), this issue.' A. A. Frost, J. Braunstein, and W. Schwemer, J. Am. Chem.
Soc. 70, 3292 (1948).

4A. A. Frost and J. Braunstein, J. Chem. Phys. 19, 1133
(1951).' W. Kolos and C. C. J. Roothaan, Bull. Amer. Phys. Soc. Ser.
II, 4, 174 (1959).

6 J. H, Bartlett, Phys. Rev. 51, 661 (1937).

A. A. Frost, J. Chem. Phys. 10, 240 (1942).
A. von Mohrenstein, Z. Physik 184, 488 (1953).' J. H, Bartlett, Phys. Rev. 98, 1067 (1955).
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The general method introduced in 1942 is first sum-
marized with improved notation.

Let P be a variation function with one or more param-
eters to be determined. H is the Hamiltonian operator
for the given system. Pick a suitable set of representa-
tive points in coniguration space r~ where p=
1, 2, ~ S. For each point, identified by p, calculate
e~=H&(r~)/p(r~). Now evaluate the mean energy e

and the mean square energy (c'),„using an appropriate
weighting factor g„:

&= Zgn&n/Zgn (3)

&")-=Zg"'/Zg'
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The variance V or mean square deviation of e from equations, which is expected considering the fourth-
the mean is degree terms in the numerator and denominator of (12).

G;;=gw~p;(r„) Hy;(r, ),

there results

e= Qcic7', j7'/Q & 2' 7' (10)

(e )av Zcic&G~ilgc;c;S;i

The matrix components B@, Eq. (8), are defined in
symmetrical form for convenience. This is permissable
because their only use is by way of double sums as in
(10) and succeeding equations. Putting (10) and (11)
in (5), the variance expression becomes

V= ', ' . 12
(Q,tc,ciG,i) (Q., tc,.ciS,t). (Q .

g ic,ciH gi)

(Qg;chic;S;;)'

V= (e')-- (e)'

The method consists, then, of minimizing V for all
possible variations in the parameters of the wave
function Q.

APPLICATION TO LINEAR VARIATION FUNCTIONS

Let
n

=pc,y;
j—1

where the Q; are not necessarily orthonormal. It is con-
venient in simplifying the algebra to take the weighting
factor as

g ="4'(r)' (6)

where m~ is typically the volume element associated
with a given point.

Upon substitution in (2)—(4) and introducing matrix
components defined as

~.-;=Z"A'(r. )4 (r.), (7)

&' =-'Z~ L4'(r )&4' (r )+4»(r )@4 (r )j (8)

METHODS FOR SOLVING THE VARIATION
EQUATIONS

Two methods have been used for the approximate
solution of Eq. (14) that express the condition that V
be stationary.

Thegrst method is a relaxation method as follows:

1. Assume a starting set of coeKcients c;.
2. Calculate the corresponding e and V using (10),

(11), and (5).
3. Solve the eth equation L(14)j in a form that will

give Ac„, the change in c„.
4. Repeat 2.
5. Solve the (I—1)-th equation L(14)7 for d c„ i.
6. Continue through all I equations L(14)] in this

way.
7. Repeat the cycle of relaxations of Eq. (14) as

many times as are required to make AV as small as
desired.

The second method is an iteration method which was
devised later and which in the calculations so far per-
formed is faster by a factor of about ten in machine
calculations. This method consists of:

1. Substitution of approximate values of e and V in
Eqs. (14).

2. Omit the erst equation and set c& equal to unity.
3. Solve the remaining n —1 simultaneous inhomo-

geneous equations for the n —1 coeKcients c;.
4. Substitute these c; into (10), (11), and (5) to

obtain new values of c and V.
5. Repeat 1, 2, and 3 with the new e and V and

continue the iteration until V converges to a minimum.
6. Alternatively one could begin at step 4 by guessing

an approximate set of c;.

TEST OF THE METHOD ON THE HYDROGEN
MOLECULE-ION

The ground state wave function of the hydrogen
molecule-ion was expressed by the nine-term function

The conditions that V be stationary, i.e., that

BV/Bcq ——0 for all k, (13) where

y=gcy;, (15)

requires solution of a set of n simultaneous equations
which can be put in the form

gc;PG;q 2';q+(e2 —V—) S@j=0,

4=1, 2, e. (14)

These variation equations are analogous to the usual
set for a typical eigenvalue problem, but in this case
there are two parameters e and V and the one comes in
quadratically. Equations (14) are a set of nonlinear

y;= exp( —sp, )p,"v", (16)

p and v being elliptical coordinates, and i=1, 2, ~ ~ ~ 9
corresponding to the m, n values 0, 0; 0, 2; 0, 4; 1,0;
1, 2; 1,4; 2, 0; 2, 2; 2, 4. The erst two terms constitute
the function used so successfully by James'0 in his varia-
tion method calculation.

In these test calculations two values of 2, have been
used;1. 35, the best value found by James; and 1.48501,
the value required to give the correct limiting energy

» H. M. James, J. Chem. Phys. 3, 7 (j.935).
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there results

H =—&Ps—[4p/g (ps —vs) ] (18)

H4./4'= —L2/~'(~' —v')]L&-(p)+Q-(v)], (19)

where

I' (p) = L1—(p') '][—(zsp 2n—sz) v+m(m 1)—]
+2t (R—z) p+m] (20)

and
(21)

The choice of points for evaluation of the local energy
and the subsequent minimization of its variance appears
to be a matter for experiment. Mohrenstein' devised a
method of choosing points of equal weight by spacing
them farther apart as the square of the wave function
diminishes. This method is probably more economical
of points but has the disadvantage that a separate
summation over points must be carried out for every
new set of coeScients c; that is tried. On the contrary
in the present method, as outlined in the last section,
the summations over the points are included in the mat-
trix component formulas (7)—(9) and are carried out
once and for all regardless of the variation of the c;.

For the present, consider that LM, , v space, out to an
arbitrary maximum p, , is cut into equal areas according
to successive equal intervals of p and v. Points are then
chosen at the center of each area and are weighted
according to Kq. (6) with

wv= (R'/8) (Ps—v') Ayhv, (22)

which is equivalent to the volume element in elliptical
coordinates. The angle y does not appear inasmuch as
the ground state is 0 and therefore cylindrically sym-
metric, but the increasing weight of points further re-

at large distances. The internuclear distance has been
held at the known equilibrium value of 8=2.00 atomic
units.

HP;/P; is easily obtained as only the part involving
the Laplacian operator need be calculated. Since, in
atomic units,

(17)

and in elliptical coordinates,

moved from the axis due to integration over a circle of
increasing radius is automatically taken care of by the
(p'—v') term.

A set of 32 points was erst chosen with initial value,
interval, and final value of each coordinate as follows:

la = 1.125 (0.25) 2.875

v =0.125 (0.25)0.875.

These points correspond to the area p, =1.0 to 3.0 and
u =0.0 to 1.0. Because of the symmetry of the wave func-
tion with respect to the midplane it is necessary to take
only positive v. That p, covers the range only up to 3.0
is reasonable inasmuch as the principal factor in the
weighting function exp( —2') drops to a fraction
exp( —4z), or about 4.5)&10 ' of its maximum value.
At the midplane, exp( —2') (ps —v') drops to a frac-
tion of 4)&10 '.

An additional set of eight points defined as

p =3.25 (0.5)4.75

v =0.25 (0.5)0.75

was added to the original 32 to make a 40-point calcu-
lation. These points have double intervals in p and v

over what was used in the original 32. The Aphv of
the weighting factor (22) automatically weights these
points quadruply, nevertheless, the contribution of
these points to the more important matrix components
is only a few percent.

The calculations were carried out on an IBM 650
computer at the Northwestern Computing Center. After
computing the matrix components, the mean energy e

and the coeflicients c; were determined by solving Eq.
(14) by relaxation. First the 2&(2 system was solved
using a starting vector c&

——c2=1. The system is succes-
sively expanded by one more term with several cycles of
relaxation before adding another until finally the nine-
term system is obtained. For an n-term system a cycle
of e successive relaxations are carried out determining
successive new values of c„, c„~, ~ ~ c~. The cycle is
repeated until the variance changes no more than 1&(
10 ' atomic units in a cycle. In the nine-term stage the
relaxation cycle was continued to a maximum change
in V of 2&(10 7. Table I shows the result for the 40-point
calculation.

TABLE I. Hydrogen molecule-ion calculation: 40 points. Mean energy e, variance V, standard deviation (V), and coeiiicients c;; atomic
units used throughout; 8=2.00; s=1.35; cy=1.00.

Terms
(y)$

VX10' X10' c2 C4 CG C7 Cs Cg

1.07839
1.10201
1.10387
1.10379
1.10368
1.10377
1.10317
1.10309
1.10304

55050.0
662.5
365.5
341.9
336.8
335.2
39.6
32.7
30.1

234.6
25'

~ 7
19.1
18.5
18.4
18.3
6.3
5.7
5.5

0.4369
0.4022
0.4060
0.4020
0.4013
0.4202
0.4223
0.4220

0.0469
0.0501
0.0474
0.0458
0.0559
0.0516
0.0473

0.00878
0.00785
0.00731
0.0819
0.0868
0.0896

0.00552
0.00517
0.00851
0.0121
0.0142

0.00250—0.00319
0.000272
0.00531

~ ~ ~

—0.0329—0.0249—0.0258
—0.00309—0.00390

~ ~ ~

~ ~ ~

—0.00125
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TABLE II. Hydrogen molecule-ion calculation using iteration method. Exponential parameter z, mean energy 8, variance V, coeKcients
c;; atomic units used throughout; E=~.00.

No. of points VX 10' cl C6 Cy cs cg

40
32
40
32

1.35 1.10294 25.3 1.0 0.4170 0.02215
1.35 1.10193 7.1 1.0 0.4013 0.04931
1.485 1.10276 5.8 1.0 0.4119 0.03372
1.485 1.10233 2.1 1.0 0.4029 0.04895

0.08192 0.01486 0.0429 —0.0237 —0.00293 —0.01489
0.09896 0.04450 0.00409 —0.0301 —0.01356 —0.00121
0.25874 0.09411 0.03499 —0.0216 —0.00482 —0.00907
0.26837 0.11120 0.0130 —0.0249 —0.01087 —0.00118

In the usual system of a given number of terms the
procedure required only three or four cycles of relaxa-
tion. The seven-term system was the exception and
needed 19 cycles to reduce AVto 1&10 '. Perhaps the
reason for this is that the seventh term is the first in-
troduction into the wave function of the second degree
in p. It is noticed that V drops by a surprisingly large
amount at this stage.

The mean energy is already very good, to within
0.0006 a.u. of the exact energy —1.1026, with the two-
term-function. Addition of more terms does not improve
the mean energy but does improve the variance. That
the energy is not better may be due to poor distribution
of points either in the neighborhood of a nucleus where
the local energy is likely to have a singularity or in the
region far removed from the nuclei. That the mean
energy goes below the accepted value is quite possible
inasmuch as the variation theorem does not apply to
this method.

Table II shows the results obtained by the interaction
method for 32-point and 40-point calculations using
both z=1.35 and z=1.48501. The latter value of z is
obtained by letting y go to ininity in Eqs. (19) and
(20), thus getting e= —s2/2 and setting e equal to the
known correct value —1.10263 a.u. This value of z
also occurs in the accurate solution as summarized by
Bates et al."The results show that with the nine-term
function the energy is rather insensitive to the value of
z although the latter value is slightly better. Probably
in future calculations on other systems it will be pos-
sible to predetermine the corresponding quantity or
quantities.

Comparison with Table I for the 40-point z=1.35
calculation shows that the iteration method gives an
improved result in terms of V and ~ as compared with

the relaxation method. The coeScients c; shown in

Table II are likely to be more correct.
For both z's the 32-point calculation results in a smal-

ler V than does the 40-point calculation. This is not
unexpected inasmuch as a calculation with as few as
nine points should result in zero V since only nine coeK-
cients are to be determined. On the other hand, increas-

ing the member of points and keeping them well distri-
buted should lead asymptotically to a fixed V deter-
mined only by the particular set of approximate func-

TABLE III. Comparison of sums and integrals.

32-point sums
1&@,&3

Integrals up to
p=3

40-point sums
1&p.&5

Integrals up to
@=5

0.0407762 —0.0440059 —1.07920

0.0405746 —0.0438616 —1.08101

0.0419659 —0.0452555 —1.07839

0.0415178 —0.0448507 —1.08027

tions used in the linear combination. Possibly 40points
already is a large set from this standpoint.

It may have been noticed that no use has so far been
made of the fact that the H2+ problem is separable in
elliptical coordinates. If this is the case the coeKcients
c; should be expressible as c;=u;bI, where c; and b~

are coeKcients of powers of p, and of v, respectively. A
solution of this form was obtained by 6rst assuming the
coeKcients u;, solving for bi, by relaxation, substituting
the latter and solving for a new set of u; by relaxation,
repeating until V was minimized. This technique gave
a quicker and slightly better result than did the relaxa-
tion method applied to the nine-term function, but it
was not as good as the second iteration method. For
example, for z=1.35 and 40 points, V)&10' for the
nine-term relaxation method was 30.1, while using
separability, a value of 26.5 was obtained and with the
iteration method 25.3. Separability in the present meth-
of of calculation presumably depends on the choice of
points used in the calculation.

The accuracy of the mean energy can be judged to
some extent by the standard deviation which in the
40-point z= 1.485 calculation has diminished to less than
3&10 '. lt would be desirable to get this down to less
than 1&(10—'. Unfortunately, at this point the variance
is such a small difference between two large numbers,
(c'), and (~)', that only one significant Ggure remains
even though each term is obtained to eight digits.

Nevertheless, the mean energy e in the z=1.485
calculations is within 3)&10 4 of the correct value. It
would be very acceptable for chemical purposes if
molecular energies in general could be calculated to

"D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans.
Roy. Soc. (London) A246, 215 (1953).

Integrals to
jg CO 0.0418605 —0.0451955 —1.07967



LOCAL-ENERGY METHOD 317

this accuracy since 3)&10 ' a.u. of energy is only 8&(10 '
ev or about 0.2 kcal per mole.

RELATION TO NUMERICAL INTEGRATION

The choice of points and weighting factors is reminis-
cent of a numerical integration. Although the present
method does not depend upon the summations being
approximations to integrals, the later possible use of
such functions to calculate expectation values of other
quantum mechanical quantities would have to depend
upon integration. Therefore it is of interest to see how
closely a given matrix component defined by a limited
summation approaches to the corresponding integral.

As an example of an integral

1

S»= (~'/g) exp( —»t ) (u' —")dud~,
1 0

Table III shows the corresponding sums and integrals
for both Sii and H~i and the ratio ~i. The sums agree
with the corresponding integrals to within 1.0%.
The energy values are much better and agree to within
0.2'/f~.
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I. INTRODUCTION

' 'N almost every application of quantum mechanical
~ ~ methods to the description of many-electron
systems, it has been assumed that a nonrelativistic
treatment should give results accurate enough. This
assumption is very seldom checked, and in the few
cases where an approximate relativistic calculation has
been carried out, the results indicate that for many
systems the preceding assumption is not justified. In
the present paper the interest is focused on the shifts
in the total energies caused by relativistic eGects, and
because almost nothing is known so far about these
shifts in molecular systems, results are given only for
atomic systems. The limited material presented here
does not imply that the theory of relativity has been
completely forgotten in quantum chemistry. In fact, a
great deal of work has been performed in studying the
eGect of spin-orbit interaction in atomic and molecular
spectra and relativistic eGects have also been con-
sidered in the theories of the Auger spectra' and of the
cohesive energies of alkali metals, ' to mention a few

examples. But because the concept of the total energy
of a system plays such a dominating role in the formu-

*Work supported in part by the King Gustaf VI Adolf's
70-Years Fund for Swedish Culture, Knut and Alice Wallenberg's
Foundation, the Swedish Natural Science Research Council, and
in part by the Aeronautical Research Laboratory, Wright Air De-
velopment Center of the Air Research and Development Com-
mand, U. S. Air Force through its European OfBce under a contract
with Uppsala University.' W. ¹ Asaad, Proc. Roy. Soc. (London) A249, 555 (1959).

2 J. Callaway, R. D; Woods, and V. Sirounian, Phys. Rev. 107,
934 (1957).

lation of quantum mechanics, in particular in con-
structing the wave equation determining the wave
function, the inhuence of the theory of relativity on the
total energy is of special importance. This is even more
obvious from the fact that the only possible way at
present to calculate an energy diGerence, e.g., dissoci-
ation energies and spectra, is to calculate the total
energies for the two states involved and then take the
diGer ence.

As an introductory and illustrative example of cases
where relativistic eGects are of importance, we may
consider a hydrogenlike system with nuclear charge Z.
In the ground state of this system the electron has,
according to the Schrodinger theory, a root-mean-
square velocity of the order of 2.2XZ)&10' crn/sec,
which means that even for fairly small Z the velocity
of the electron is comparable to the velocity of light. By
using classical arguments for Z=92, one should expect
a relativistic correction of about 50%%u~ of the nonrela-
tivistic energy. In the relativistic quantum mechanics
as developed by Dirac, the correction predicted in this
case is around 15%. The structure of the Dirac theory
is in many respects diGerent from the nonrelativistic
Schrodinger theory. The main differences are that the
wave function for one electron has four' components
which are determined from first-order equations and
that the spin of the electron from the beginning is
built into the theory and not added as an extra postulate
as in the Schrodinger theory. This inclusion of spin leads
to relativistic terms which have no counterpart in
classical relativistic mechanics. Apart from some small


