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1. INTRODUCTION

T present, there is only one main method which

~

~ ~

~

provides practical procedures for the accurate
calculation of many-electron wave functions and
energies. It is often referred to as the method of con-
figurational interaction or, as we call it in this paper,
the polydetor method. In using this term, we imply a
general expansion of the wave function as a linear com-
bination of Slater determinants constructed from
orthonormal single electron functions, the coeKcients
in the expansion being determined by the Ritz variation
method. Very few wave functions of this general type
have been calculated, but the stage has now been
reached where all the essential procedures of calculation

. have been programed for high-speed electronic com-
puting machines in a fully automatic way, and many
more results are to be expected.

The development of the theory given here depends on
two explicit assumptions: first, the validity of Schro-
dinger's many-particle equation and the antisymmetry
condition and, second, the sufficiency of the Born-
Oppenheimer approximation in which nuclear and
electronic motions are separated. The solutions are
determined completely by these assumptions which
are generally accepted as the basic laws for atomic and
molecular structure.

It is convenient to regard the calculation of a wave
function as consisting of eight distinct stages. The
solutions of several of these stages have involved con-
siderable mathematical difficulty, but each stage

presents a definite problem for which the accuracy of
the solution can be specified and the significance of
which can be understood quite independently of the
detailed method of solution. It appears certain that this
multiplicity of stages and these difhculties have
obscured the essentially systematic nature of the whole
problem and have given the impression that there may
be ambiguities where, in fact, there are none. The aim
of this account is to discuss the mathematical nature of
these various stages, pointing out the difficulties, and
indicating techniques of solution known at present.
Such an account should be useful in enabling those not
working directly in this field to understand the com-
plexities of the problem. However, more important, the
scheme as given should simplify considerably future
accounts of the details of solution of the diGerent
problems by enabling their relation to the whole
problem to be shown.

Since this account was commenced, fully automatic
solutions have been obtained for the stages not pre-
viously solved. This has made it possible to discuss with
certainty the determinate nature' of the whole calcu-
lation and of each stage in it. It is important to realize
that the only element of choice involved in the calcu-
lation is at the stage in which the single electron func-
tions are selected. Thereafter, the calculation is as
determinate in principle as if the results for all possible
selections were tabulated. The automatic solutions
emphasize this beyond all doubt.

Before examining further details, let us consider pos-
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TABLE I. Unit operations in polydetor calculations (complexities
relative to a 2@&2e eigenvector problem).

Operation Computation Program

A. Basic expansion functions
(q=xe-«)

B. Single-electron integrals G, V, E
C. Electrostatic lnteI'action lnteglals 3f
D. Choice of orthonormal functions

and codetors
K. AssemblyofG, V, E, and% matrices
F. Orthonormal transformation

. G. Projective reduction
H. Eigenvector problem
I. Primary properties
J. Derivative properties (m arrange-

ments)
K. Primary induced properties
L. Interaction between q systems

10
3 to 15

10
10
8
5

mZ (A to I)
10

g'Z (A to H)

~ ~ ~

10
50

10
20

2
50

5

sible developments which couM enable completely
theoretical predictions to rival experimental measure-
ments in several areas of chemical theory and, in certain
cases, surpass them. Such a scheme can be represented
as follows:

Limited polydetor variation calculation

+linear corrections for single electron functions

+linear corrections for "hypercorrelation. "
To explain this scheme, it seems likely that the main
framework of a fundamental quantitative calculation
will consist of a polydetor variational calculation, the
number and nature of the detors used being limited
according to some theoretical criterion. In this calcu-
lation, it is hoped that the deviations of the initial
single-electron functions from the "best" functions are

sufficiently small so that corrections can be calculated
according to some linear correction theory of a type
completely diferent from the basic calculation. The
limited variational calculation almost certainly would
include a considerable amount of electronic correlation.
The term "hypercorrelation" refers to correlation
excluded at this stage, and it seems likely that a linear
theory, having some similarities to perturbation theory,
may be developed to calculate this hypercorrelation
directly. Such a scheme may avoid the necessity of
using the very large numbers of functions required in a
full polydetor calculation to obtain sufhcient accuracy
but, in any case, the polydetor calculation remains as
the basic calculation, and it is this that we now consider.

In Table I, brief headings are given for the division
of a fundamental polydetor calculation into eight
separate stages called 2, 8, . . ., H. This is followed by
four further stages, /, J, E, and I., which are considered

to cover the predictions of all properties of arrange-
ments of a 6nite number of atoms. The primary proper-
ties (I), which can be derived from the density kernel,
are exempli6ed by the electronic density and the dipole
moment. By "derivative" properties J, we mean those
properties which can be calculated by examining the

variation of a property of the system with different con-
6gurations of atomic nuclei. The simplest example is
the calculation of force constants, but the most inter-
esting is the calculation of potential energy barriers
which control the rates of chemical reactions. It is
shown later that induced properties E, such as polariz-
ability and refractive index, can be 6tted into the
scheme. In I., we have written for completeness the
interaction between two or more systems which, for the
purposes of the present scheme, would be regarded as
a single composite system.

The most important point of the table is that we
consider all properties of molecules, atoms, and radicals
to faH within a uni6ed scheme and that the greatest
part of any of the calculations is the basic polydetor
calculation given by stages A to H.

In order to give most rapidly a sense of proportion
about these problems, two columns of numbers have
been included in the table. These are somewhat
speculative and contain a considerable amount of sub-
jective judgement; they are not to be regarded as
numerically precise and they. have been included to
convey a useful idea of orders of magnitude. The first
column measures the amount of computation necessary
on an automatic computing machine. In order to make
this independent of the particular machine, the figures
are given in terms of the time taken to diagonalize a
2e&(2n matrix, where n is the number of single-electron
functions being used. These 6gures are based on actual
machine programs with which we are familiar. Since
these programs were constructed at very diferent stages
of development, both of the general method and of
automatic computers, the 6gures given have been
modi6ed to express our opinion in terms of current
computer characteristics and the most recent develop-
ments in the mechanization of the complete calculation.

The 6gures in the second column, necessarily mope
subjective, are intended to provide some measure of the
mathematical complexity of the particular stage and of
the eGort required to construct an automatic program
for the stage, the 6gures again being relative to the
diagonalization of a 2ey 2e matrix.

The entry mZ (2 to I) opposite J is meant to indicate
that derivative properties are just those for which m
repetitions of the preceding stages 3 to I would be
required, and hence the computation time is eGectively
multiplied by m. Further& the entry q4Z(A to H) is
meant to show that, at present, for a composite system

q times as large as a system treated before, the amount
of computation increases as q'. This appears as a severe
limitation, but it need not be regarded as being in any
sense permanent. In a following paper, ' techniques
where the increase is only linear in q will be discussed.

The sequence of mathematical stages in a polydetor
calculation is examined systematically in Sec. 3. Of
these stages, we single out for special discussion (Sec. 4)

' S. F, Boys, Revs. Modern Phys. 32, 296 (1960), this issue.
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the projective reduction calculations by means of which
the variational many-dimensional integrals are reduced
to linear combinations of one- and two-electron in-
tegrals. This stage has been treated in particular
problems in a manner dependent on physical considera-
tions, but, in a general calculation, the mathematical
difficulties become severe. For this reason, it has been
considered worthwhile devoting a whole section (Sec. 2)
to showing how projective reduction analysis occurs
naturally in the variational solution of a simpler partial
differential equation in many variables and how, in this
simpler case, the projective reductions could be effected.
It is shown that the calculation of the projective reduc-
tion coeScients could be carried out by a finite number
of elementary operations. In practice, in quantum
mechanical calculations, we use certain powerful ana-
lytical methods to obtain these coefhcients; for example,
in the case of atoms the most sophisticated use of vector
coupling theory is made. It is most important to realize,
however, that whatever detailed method is employed,
essentially the same answer would be obtained. This
exemplifies the fact that after stage A, the choice of
the initial expansion functions, all stages of the calcu-
lation are fully determinate, no further physical assump-
tions being required and no ambiguities being present.
This determinate nature has been emphasized recently
by performing the whole of a polydetor calculation by
automatic programs constructed for the EDSAC II in
Cambridge, the starting point being simply a piece of
tape with a coded form of the initial expansion functions
punched on it.

We now proceed with a discussion of each of the
stages listed in Table I, particular attention being
devoted to projective reduction processes,

In order to appreciate the significance of the scheme
as a whole, it is probably helpful to think. in terms of
particular problems which have been examined by the
method and which show already that the possible appli-
cations are much wider than the investigation of stable
molecules only. An exploration of the properties of the
unknown CH2 radical by Foster and Boys' can be taken
as one example. For a reaction rate, one is limited to
the simple case of the H3 reaction examined by Shavitt
and Boys, ' although more complicated systems are
being investigated at present.

standing of these calculations involves a familiarity
with the construction, manipulation, and subsequent
use of such functions. However, there is no necessity to
attempt to visualize these functions physically since
the many-dimensional character can be expressed solely
in terms of coeKcients and codes which specify, in a
convenient form, the three-dimensional functions from
which the many-dimensional functions are constructed.

In calculating the wave function by the variational
polydetor method, only integrals of these many-dimen-
sional functions are involved which factor into integrals
of lower dimension. The wave function can be regarded
solely as a mathematical intermediary from which
numerical values of observable properties of the system
can be calculated. In such calculations, integrals of the
many-dimensional wave function are involved and
these can be factorized in essentially the same way as
those occurring in the calculation of the wave function
itself.

Extremely complicated analysis does occur in
quantum calculations (particularly for atoms and
nuclei), but, from the logical point of view, this is not
absolutely essential to the calculation. The value of
this analysis is principally to reduce the amount of
labor and the amount of data to be recorded at inter-
mediate stages in the calculation. The same answer
would be obtained by using simpler methods but in a
much longer time, If this point can be realized, it may
be very helpful in assessing the significance of diGerent
stages of reported calculations.

An understanding of this many-dimensional character
is so important that this section is devoted to a mathe-
matical treatment of a simpler problem which, however,
exhibits many of the dificult features of a complete
quantum calculation. Many-dimensional functions are
not particular to quantum mechanics, and the method
of solution of the given problem here is not without
value in other physical situations. We have attempted
to set out what might be called the product function
variational method of solving a many-dimensional
partial differential equation of eigenvalue type.

The problem which we examine here is one in which
we suppose the value q& of a property is given by the
integral

2. ILLUSTRATION OF THE ESSENTIAL TECHNIQUE
OF SOLUTION OF MANY-DIMENSIONAL WAVE

EQUATIONS AND OCCURRENCE OF PRO-
JECTIVE REDUCTION ANALYSIS

Converging quantum calculations for the properties
of many-electron systems depend on the use of many-
dimensional functions. For example, thirty space dimen-
sions are required for the water molecule. An under-

2 J. M. Foster and S. F. Boys, Revs. Modern Phys. 32, 305
(1960), this issue.

3 S. P. Boys, G. B.Cook, C. M. Reeves, and I. Shavitt, Nature
178, 1207 (1956).

where Q~ is a specified operator, and 0' is the solution
of the linear partial diGerential equation

(2)

under certain given linear boundary conditions. In (2),
W is an unknown real number (an eigenvalue) and D
is an operator dependent, say, on coordinates x&, x2,
~ . x~. The solution 4 is therefore, in general, an
X-dimensional function %=%(xi,x2, x~). Further, in
(1),Q~ is an operator supposed dependent on S dimen-
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sions and the notation Jdr is used to denote integration
over the appropriate range of each of the variables
x~, x2, x~. To make the present situation more
analogous to a quantum mechanical problem, we should
consider values q&, q&, qz, ~ ~ to be given by operators
Qz, Qg, Qc, . from the same function 4' by means of
equations like (1), one for each property.

Unless Eq. (2) is separable with respect to the coor-
dinates xg, x2, ~ ~ x~ there is little likeHhood of obtain-
ing an exphcit solution, and there is only one generally
satisfactory approach. Consider an approximation to 0'
given by

(3)

where the C„are suitable 5-dimensional functions
satisfying the boundary conditions of the problem and
the I"„are coeScients to be determined. The C„can be
constructed from a set g;(x)} of one-dimensional
functions which are orthonormal and complete so that

de;~Q;=8~2,

and, . for any continuous function f(x), a linear com-
bination Q;=2 c;p;(x) can be found which approximates
more and more closely to f(x) in a mean-square sense
as es is increased. The C, are taken to be serial products
of the g; as follows:

@2=42i(x2)42i(x2)Isa(xs)

+.=~.(*)~"(")~.(*)",
where &2„denotes the g which is the kth factor of 4,.
Each set )2„(k=1,2, ~ N) is a particular permutation
of E of the original Qg and the 4'q (t'= 1,2 ' ' ') correspond
to all such possible permutations. If the number of
functions p; used is increased and all possible permu-
tations are included in forming the C„ the set of
functions {4„}so generated is complete in Sdimensions
in the limit, and the approximation (3) tends to 4' in

the mean-square sense. Considering, however, a finite
number of terms in (3), the coeKcients F'„may be
determined by the method of least squares in which the
integral

I= ' drt (D+W)Q F,C,7*L(D+W)Q I',4,7 (6)

is minimized with respect to the F,. (This integral is

always positive, and an exact solution would make it
zero. ) This minimization yields the set of equations

g I',
J

dr(I@„)*(Le,)+W dm„*De,

+WJ dr(DC„)*C,+W'J drC', *4',
)
=0. (7)

To emphasize the computational character of (7), we

may write it as

Q F,L(D2)„+W(D„,+D„*)+W26„7=0, (7')

where I', and 8" are unknowns, and the other symbols
are to be defined as equal to the quantities they replace
in (7).These latter are integrals which can be evaluated
numerically without any knowledge of the answer of
the problem. If these values are inserted, then (7') can
be solved by computational procedures, which would
be laborious without an electronic computer but w'llicli

could be performed by the systematic solution of sets
of simultaneous equations. This is not discussed further,
since when the Schrodinger Hamiltonian B replaces D
there is an additional simplification which causes it only
to be necessary to solve a standard eigenvector problem.

To obtain numerical values of the elements appearing
in (7'), it would be necessary to evaluate the many-
dimensional integrals in ('I). Before discussing this,
we may note that the evaluation of q~ requires the
evaluation of similar integrais, for, if we substitute (3)
into (1), dropping the suKx A, we obtain

q=P Y,~F, d&,*QC,=Q F„*I",Q„, say. (8)

The evaluation of such a double sum is trivial when once
numerical values of the many-dimensional integrals
have been found. To take a particular instance and to
keep the problem close to the quantum problem, let us
assume that an operator Q has the form

Q=Q U(x„,xp),

where U(x xp) is an operator which depends only on
the coordinates x and xj. Then a typical many-
dimensional integral Q„, in (8) is a sum of terms of the
form

& dc@,*U(x2,x2)C',

J J
dxl~x2$1t (x1)4'2r (x2) U (xi+2)

X~ *( )~ .(*) d* ~ :(*)~ .(x )"
f=C dx2dxgg, *(x2)y2„*(x2)

X U(xg, x2)yg, (x2)y2, (x2). (10)

The coefBcient C is either 1 or 0 since all the integrals

following the double integral in (10) are either 1 or 0

by (4). All the other terms of Q„, are similar so that the
Anal result is of the form



Q„= Q C;,g) dxgA2y;*(xg)y;*(x2)
4, j,k, l 4 J

&U(*,*)4~(~i)4~(~ ) (11)

Q F„C„=QFgBg„C,+ Q F,C„
r—m+1

Thus a composite function 41 can be introduced and,
assuming similar combinations can be made for other
terms, the approximation can be written

+=+ F',C„ (12)

where M' may be very much less than M, i.e., a shorter
expansion can be considered. If now we use (12) as
our approximation function, the equations for the Y,

Hence the many-dimensional integrals all collapse to
linear combinations of two-dimensional integrals with
coefficients C;;~~ equal to 1 or 0. It is the evaluation of
these coeKcients of which there are such a large number
which is called the projective reduction calculation. Now
two-dimensional integrals can always be evaluated
either analytically or numerically, and hence we see
that all stages in the evaluation of q in Kq. (8) can be
performed.

The key point of the method is now reached. Gener-
ally the operator D is of the same general type as Q
and, in such a case, a reduction similar to that leading
up to Kq. (11) can be niade for all the integrals appear-
ing in (7). Thus the coeKcients in (7') only depend on
integrals of a few dimensions, and after these have
been evaluated by one means or another, the F, are
obtained by solving Kqs. (7 ). Assuming this solution
to have been obtained, the F, are then used in an
equation such as (8) for the determination of the
properties of the system. It should be noted that, in
the analysis outlined in the foregoing, it was not
necessary to attempt to visualize physically a many-
dimensional function.

%hen the many-dimensional complexities of the
problem have been thus reduced, it can nearly always
be shown that, because of symmetry or for some other
reason, there are relations between the F, coefficients.
Suppose, as oftenoccursinpractice, that F', (r=1, .m)
are all multiples of F1 so that

F„=B)„F) (r=1, ~ ' m).

It then follows that the approximation (3) with M
terms may be written

are just as in (7) but in terms of functions C „.Consider
one of the integrals which would now be required:

' d~C'„*DC,=Q B„g*B,„drC')*DC „.
f, ts

The eR'ect of introducing the 4's is, on the one hand,
to reduce the size of the set of Eqs. (7) and, on the
other, to increase the complexity of the integrals. In
practice, this is very worthwhile since the new integrals
can nearly always be evaluated by deductions from the
special theory which established the relations between
the F's. The whole analysis may be very complicated
but, once established, the total evaluation of the
integrals involves very much less work. In quantum
mechanics, the formation of new expansion functions C

is carried out because of the antisymmetry principle.
The formation of such linear combinations, however,
need not stop at one stage since, for example, in a
molecule, new expansion functions which may be
designated C„~ could be formed from the C's to satisfy
symmetry requirements.

Let us consider now the special features of the many-
dimensional wave equation not exhibited by the ex-
ample we have been considering. This equation can be
written

(H—W)%'= 0,

where the Schrodinger Hamiltonian operator H is
defined in Sec, 3. First, H is a self-adjoint operator, and
a variational theorem can be applied to show that an
expression of the form (3) leads to the eigenvalue
problem

( )P F,[(C,
~
e(C,)—W(C, (C,)g=o

(where the usual quantum mechanical bracket notation
has been employed), rather than the set of Eqs. (7).
Second, associated with each electron, there is a set of
four variables (x, y, s, e), where s denotes the discrete
spin coordinate taking the values &~ only. The C's are
now constructed as serial products of single-electron
functions p;(x,y, s,e) rather than the one-dimensional
functions g;(x). Third, owing to the antisymmetry
postulate, it can be shown that the 4, occur in par-
ticular linear combinations of the type indicated in the
previous paragraph. Such linear combinations are
called Slater determinants and, when the single-electron
@'s from which they are constructed are orthonormal, it
is convenient to call them "detors. " There are fre-
quently high degrees of symmetry in the system, and
linear combinations of these detors, called "codetors, "
are formed and used as expansion functions.

The great theoretical complexity of many-electron
wave function calculations is bound up with the deter-
mination of the C;; ~ coeKcients for the integrals
(C'„I+lC,) where C, and C, are cocletors. In principle,
these could all be ealeulated by expansion in terms of
more primitive functions but, for atoms, very powerful
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theory is available. In the future, it appears as if the
projective reduction formulas will be worked out auto-
matically on high-speed machines by a procedure which
is likely to be intermediate in complexity between the
most refined analysis used by hand and the direct but
very lengthy method of using the simplest expansion
functions.

It is interesting to note that the C;;I,~ coefficients do
not depend on the numerical values of parameters
contained in the functions p, . For example, these coef-
ficients would not depend on the value of g in an orbital
speci. fied as e g", This property may enable a con-
siderable economy to be effected in practice. For
example, the same coefficients could be used in calcu-
lations for different internuclear distances in a radical
such as BH and also for isoelectronic systems such as
CH+ or BeH .

The preceding account is an attempt to show the
essential characteristics of many-dimensional problems
and how the solution of these involves basically a large
number of comparatively simple algebraic steps. The
way in which mathematical analysis can reduce the
number of steps by a large factor at the expense of
complexity in formulation and manipulation has been
indicated. The addi, ional complexities of wave-mechan-
ical problems have been pointed out. In the next two
sections, the stages A to I. involved in complete
quantum calculations are examined in detail.

g„=x'y's'f"e 0" (16)

a, b, c, and d are positive integers or zero, and g is a
positive number. n and P denote usual normalized spin
wave functions with the values unity for v=-,' and
v= —~, respectively, and zero otherwise. For atoms,
such a set of functions centered on one origin, the
nucleus, would be used but, for molecules, functions of
this general type centered on each of the nuclei and

possibly on other points would be taken.
The methods to be described are limited to the cir-

cumstances, where the Born-Oppenheimer separation is
sufficiently accurate so that the wave function is calcu-
lated for all electrons but with the nuclei in assigned
positions. The following variational assumption is
taken to be valid for the functions used. Let g, be a
complete system of three-dimensional functions such
that a linear combination can be found to approximate
indefinitely closely to any given continuous quadrati-
cally integrable function by choosing e sufficiently large.
Let C,=4, (x&,y&, s&,rt&, ~ ~,xv,yx, sar, ear), (s=1, 2, ~ .)
denote all the independent antisymmetric X-electron

3. SEQUENCE OF MATHEMATICAL STAGES IN
VARIATIONAL CODETOR CALCULATIONS

To give particulars of the calculations which are
necessary for the stages listed in Table I, we consider
the case where the elementary expansion functions are
of the type rl,n and q„P, where

functions which can be constructed from serial products
of the g„n and g,P. Then, it is assumed that for each
electronic state, there is a solution ( I',},W of the eigen-
value problem

P, F,[(c,I eIc.)—w(c, Ic,)]=o, (17)

where H is the Hamiltonian given in Sec. 38, which
converges to the electronic energy and for which

c=Z I'*F.(c' IQI~.)
r, s

converges to the value of a property given by an
operator Q. This assumption is equivalent to the state-
ment that Q„F„C,converges to the wave function, but
it emphasizes that the latter is essentially a means of
predicting observables. Rigorous proofs have so far not
been obtained for this variational assumption, but it
has appeared to be completely satisfactory in the
instances in which it has been applied in practice.

B. Single-Electron Integrals

It is convenient to write the Schrodinger Hamiltonian

for a general molecular system as

A. Basic Expansion Functions

The first point to note about the choice of these
functions g„(r=1, 2, e) is that this is, in principle,
only a matter of computational economics. If these
functions can be specified so that as e~ ~, they form
a complete system, then the same answer would be
obtained irrespective of the particular functions chosen.
In practice, the amount of work increases so rapidly
with e that it is important to attempt to make a good
choice. The usual procedures can be classified as (a)
choice from trials on simpler systems, (b) choice from
trials on similar systems, (c) choice by trials on the
system being examined. A number of calculations have
been made according to (a) by using parameter values

given by Slater for the simplest type of exponential
wave functions for atoms, and there have been some

attempts at finding the "best" values of such param-
eters for molecules. Boys has used two or more expo-
nential functions instead of a single Slater function
(e.g. , e '" and e ' instead of e ""for Be), and this has
been extended to molecules. While the choice in any
particular problem is rather an open question, there is
fortunately no doubt about the criterion which tests the
quality of the choice. Once the p functions have been
chosen, the whole calculation through to the final

energy P' is fully determinate, and the best choice is

that for which lV is lowest. If it were not for the rapid

increase in labor as e is increased, it would probably be

better to increase e than vary the parameters in the p„'
at present, some compromise between these considera-

tions is necessary.
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(82 82 82 ) Zr 1
= —

2 Zl,+,+, I

—2 —+2 —, (19)
' (82:,2 By,2 Bs;2& i,r r;r '»'r, ;

are formed, where r has been used to denote (x, y, s)
and p denotes either the n or p spin wave function. (2', is
the antisymmetry operator defined by

C. Electrostatic Interaction Integrals

These are conveniently denoted by

(n*~~'n.~i) = (n'ni I ~I ~~ni)

dr, dr2rI;*(r, )g, (r,)gi,*(r2)21i(r2)/r, 2

(2o)

The evaluation of these integrals constitutes one of the
two most formidable problems in molecular quantum
calculations. However, they constitute a definite
mathematical problem, and there are various though
difficult ways of obtaining these integrals to any desired
accuracy. If the expansion functions p„are formulated
in terms of Gauss functions rather than exponential
functions, this stage is simplified to the evaluation of
explicit formulas for all types of electrostatic integral. '

D. Choice of Orthonormal Functions
and Codetors

In principle, the calculation of a wave function could
be carried out in terms of the g„ functions, but it is
very advantageous to take linear combinations of these
functions defined by p, =P;X,'g, , such that the g's are
orthonormal, i.e., (g, I g,)=5,. The calculation is
lengthened by stage F below, but stage 6 is shortened
by a factor of about 1/$2, the net result generally being
a large economy in calculation. There are an infinite
number of choices of the coefficients X;". One possi-
bility is the Schmidt method and this has been used in
practice. In principle, from these orthonormal functions
all possible detors of the form

OAt'&(ri)W(2'i)42(r2)P2(~2) ' ' '4'N(rN)PN(») (21)
4 S. F. Boys, Proc. Roy, Soc. (London) A200, 542 (1950).

where corresponding terms define E, U, and M. The
suffix i numbers the electrons, I the nuclei, and Zl is
the atomic number of the Ith nucleus. The single-
electron integrals which arise when the problem is
treated as in Sec. 2 are (2t, lGlg, ), (g, l Vile, ), and

(p, l

—
—2,

72
I 21.), where the first of these types of integral

are the overlap integrals, the symbol G having been
introduced into the bracket for future reference. The
VI integ rais which involve three diferent nuclei
require, in general, a method of numerical evaluation
which is a much simplified version of the method used
for the electrostatic integrals described in Sec. 3C.
All the other integrals can be expressed as explicit
formulas, but the organization of the evaluation of
these is tedious owing to the number of diferent cases.

where I'„ is one of the g t permutations of the suKxes
1, .X and o-„ is i or —i according as the permutation
is even or odd.

It is nearly always possible to use linear combinations
of detors to obtain a smaller eigenvector problem at
the expense of mathematical complexity. This pro-
cedure depends on a group-theoretical analysis which
is too extensive to be included here. The most feasible
method is probably a compromise between the com-
plexities of the most advanced theory and the heavy
labor of the more direct approach.

In practice, it is found that, if the first detor or
codetor is a reasonable approximation to the wave
function, only a small proportion of the other possible
C's have an appreciable eGect on 0 and S".This means
that it is worthwhile making some special choice of the
p, so that 4» by itself is a reasonable approximation.
This has been done in an intuitive way (see Boys' ), but
recently a first systematic way of making a good choice
has been found and is described by Foster and Boys'
in a subsequent paPer. A dual system of orbitals,
described as exclusive and oscillator, are defined in a
way which suggests that only a small number of the
C's appreciably aGect the lowest energy level when this
is a common type of singlet. Further investigations
along these lines might be fruitful both in this and
other circumstances. In the absence of other evidence,
the contribution of each C to the lowering of the energy
S' should be estimated numerically. If the matrix H„,
is roughly diagonal, then the contribution of C, is
approximately

I.(c'il &Ic.)7/(c'. I&l~") (22)

To conclude the discussion of this stage, it should be
noted that, provided a full systematic calculation is
made, these choices do not aGect the final answer.

E. Assembly of the 6, K, V, and M Matrices

This stage is not of fundamental mathematical sig-
nificance but is often tedious and liable to error. It is
concerned with sorting the 6, V, E, and M integrals
into the order required for the transformations at stage
P. It is desirable to construct a fully automatic or semi-
automatic scheme for generating these matrices. This
has proved de.cult on account of the considerable
number of different procedures required for the various
types of integral. Further, many elements of the matrix
may be equal on account of symmetry and only one of
these needs to be evaluated.

5 S. F. Boys, Proc. Roy. Soc. (London) A217, 136 (1953).
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F. Orthonormal Transformation I. Prediction of Primary Proyerties

A number of properties such as electronic density,
electric dipole moment, etc. , are given by integrals of
the form

The following integrals which are required, since the
subsequent calculation is to be performed in terms of
the orthonormal p's, are obtained by the transforma-
tions shown. This is an extremely tedious desk calcu-
lation but is reasonably straightforward to program for
an automatic computer:

(y,y, :y,y„)= P (X,"X„')*X,'Xi"(v,g;:vivi),

where Q is a specified single-electron operator. By using

(23) the wave function @=+„F'„4„,we have

=g x;"*x (v, IE—P zivilv;). (24)

G. Projective Reduction Analysis

The object of the analysis is to find coeKcients,
designated 8'j and t."'j~' in the following, such that the
many-dimensional integrals (4„IHI4,), where 4, and
4, are codetors, are reduced to one- and two-electron
integrals, numerical values of which are available from
stages 0, C, and F. Thus

where the integrals of the form (4„IP; Q(r;) I4,) are
reduced by an analysis precisely similar to that for the
single-electron operator occurring in the Hamiltonian.
The D'j coeKcients can be calculated as shown and
used to predict a number of particular properties by
combination with various integrals of the type

r, 8

The calculation of these coefficients can be performed
several ways and at diferent levels of abstract theory.
The most advanced theory normally gives the briefest
calculation but is probably not worthwhile except for
specialists in the 6eld. Once the 8 and C coeKcients are
tabulated and checked, the details of the derivation are
not important. A general method which suSces for any
vector-coupled functions of atoms has been given by
Boys, and an automatic method for molecules will be
reported by Boys and Reeves. The latter method is
restricted in form, and further development of auto-
matic schemes is being examined.

H. Eigenvector Problem

This is the last numerical step in the energy and
wave function calculation. The former is the most im-

portant observable property, and the latter is the key
intermediary to th'e prediction of. other observable
properties. The values of the integrals obtained from

stage Ii are substituted into the projective reduction
formulas from stage 6 to give the eigenvector problem

p v, l (4, IHI4, )—w(4, I4,)j=o,

which is solved numerically for the values of I', and 5'.
The simple interative method of solution given by
Boys' has been found very satisfactory.

6 S. F. Boys, Proc. Roy. Soc. (London) A206, 489 (1951);207,
i8i, 197 (i95i).

7 S. F. Boys, Proc. Roy. Soc. (London) A201, i25 (i950).

which are generally easily evaluated.
The D'& are frequently called the density matrix, and

particular properties of this have been demonstrated.
However, the fundamental calculation is direct without
any further consideration of these properties. Other
properties such as radiation strengths, between two
states 0'~ and +2 are given by

The evaluation differs from the preceding only by the
first set of V„being taken from +~ and the second set
from C2.

J. Prediction of Derivative Properties

Several physical properties of molecules are given

by the rate of change of a primary property with a
change in the configuration of the positions of the
nuclei. Thus, the rates of change of energy for small

changes of positions are the force constants of a molecule
and these determine the frequencies of the infrared
vibrational spectra. Again, the rates of change of dipole
moment give the intensities of these bands.

The present scheme provides a straightforward
method of predicting such properties by repeating the
evaluation of the property for a number of distortions
of the nuclear configuration. In an extensive calculation,
the variation of the property would be 6tted by a
polynomial in the displacement's, and exact derivatives
(symbolically Bij/BE) or 6nite alterations (symbolically

hq/hE) could be evaluated as desired.
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It should be noted that, in using the word molecule
in this section, any configuration of atomic nuclei is
implied. Thus, in the prediction of chemical reaction
rates, quantities of the form AII/hR are particularly
important.

K. Prediction of Primary Induced Properties

For the sake of completeness, the formula which
predicts such induced properties as polarizability, mag-
netic susceptibility, etc. , is given. In general, the rate of
increase of some property q for unit increase in A. , where
AF is some field applied to the system, is given by

I „*V„(C„~g~C,)(H—WS)„-~
Fg8, (, Rg'0

X(ggg„—Fg Y„*)(e„iJ iC„), (31)

where ST denotes the real part of T. S denotes the
matrix S„,= (C, ~C,) and (H WS) ' den—otes the re-
ciprocal matrix of (H WS). The —reciprocal need not
be calculated explicitly since quantities

Xg=Eg(H WS), g
'Zg—

are given by the solution of

P, (H—WS)„X,=Z,.

The preceding formula follows from perturbation
theory, but no calculations for general atoms or mole-
cules have yet been made. It seems certain that pre-
dictions will be made when fully automatic methods are
in operation, but until then, the chief problem concerns
the number of C's which must be included to obtain
reasonable accuracy.

L. Interactions between Systems

This item has been included to make the list cover
practically all physical phenomena which do not
involve nuclear changes or macroscopic numbers of
atoms. It merely indicates the obvious fact that the
interaction of two or more systems can be predicted by
calculations for the composite system. The direct labor
of computation would increase as q' for a composite
system q times as large as a system treated before, but
there are some hopes of developing theories' to avoid
this rapid increase.

COMMENT

It was most convenient to set out the calculation for
electronic wave functions of molecules, although only
small changes are necessary to convert this into the
scheme for atomic or nuclear wave functions.

First, however, we consider what changes in molecular
calculations occur if exp( —gr') is used in place of
exp( —gr) in the expansion functions. The difficult
stage C is simplified to the evaluation of explicit for-
mulas and the labor is reduced by a factor of about 100.
However, unless a much larger number of q functions is
used, the accuracy is much diminished since the Gauss

function is always a bad 6t to an orbital while the
exponential can be a good fit.

For atoms, stage D no longer presents a difficult
obstacle and formulas for interaction integrals have
been given by Boys.7 Stage G becomes very abstract
in practice but a completely general method appro-
priate to desk calculations has been given. ' Stage J can
be omitted, since there is no configuration of nuclei
to be considered. Atomic calculations as a whole are
much simpler.

In the nuclear case, the first difference to note is
that at present, no Hamiltonian with two-particle
interactions is known accurately. A number of possible
forms of this type are known and these are complicated

by the presence of spin interactions. For such a ten-
tative H, a somewhat different problem has to be
formulated at stage A to allow for the elimination of
the center-of-mass motion. Expansion functions in
which exp( —gr') replaces exp( —gr) are probably much
more suitable and, for these, stage D would be laborious
but not diflicult. Because of spin interactions, stage G
wouM become very complicated. A number of special
cases have been analyzed in the literature, but no
general method has been formulated yet.

4. PROBLEMS OF PROJECTIVE
REDUCTION ANALYSIS

The essential problem is the calculation of the coef-
ficients C„'&"in the equation

~-=(C"I&~* l~)= & L-""(&'&'0 eg) (»)

where C, and C, are codetors, together with the choice
of the C's themselves so that the matrix M„contains
as many zeros as possible and the calculation of the
remaining C'&~' is as simple as possible. The coeKcients
designated 8'& in the typical projective reduction
formula given in G in the previous section can be
derived from the C"~'. An ancillary problem of im-
portance is the tabulation of the results, which, since
the C's are independent of the @'s, can be used for
repeated numerical calculations. Quite a considerable
part of the latter problem is concerned with a descrip-
tion of the 4, themselves in terms of an unambiguous
code; the need for this is pressing now that automatic
methods are being considered. If this tabulation were
possible, one piece of data could be used not only for
diferent calculations but probably many times within
the same calculation, since there are often elements M„,
which may be derived from each other by an inter-
change of p's and others which could be described as
degenerate cases of a particular key case.

Quite a large number of C coefffcients have been
reported in the literature for atoms and nuclei, but
there has not been any general examination of the
principles of the derivation and tabulation of these,
particularly with reference to computing machines. The
general procedure for atoms' is of a form requiring
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reference to previous tables and does not appear to be
directly adaptable to machines. If these problems of
mathematical analysis and of description and tabulation
can be solved, presumably many man-years of work
would be saved.

As an illustration of a. possible method for automatic
computing machines (but far too primitive for desk
calculations), consider the case where the codetors are
expanded explicitly as detors. Let

(33)

(c,laic, ) =p v."*v& (n. livl»). (34)

The rules for the evaluation of an integral (K) I
M

I »)
are well known and simple. If the orbitals have been
ordered to achieve maximum coincidence,

of a wave function in polydetor form, but then it can
be regarded simply as an interesting step in the whole
general calculation.

6. OTHER METHODS

In conclusion, it is important to state what other
approaches to the general problem of 6nding the wave
functions of many-electron systems have been made.
None of thcsc is Rt pl cscnt, RppllcRblc to a gcncr'Rl

molecule but, for one- and two-electron systems, they
have given results of high accuracy for less labor than a
polydetor calculation would involve. Thc outstanding
examples are the wave functions for the helium atom
determined by Hylleraas" and for the hydrogen mole-
cule by James and Coolidge. "The methods employed
in these calculations dier from those discussed here in
that the functions used were not separable into orbitals,
the interparticle distances being involved explicitly.
Similar calculations have been attempted for nuclei
using a Hamiltonian with two-body forces, but no
general method is at present available.

where Q,;= l if $q'= $q (kPi or J ) and zero otherwise.
Hence, all the diflicult labor is in the determination of
the V;".Whether this can be done suKciently simply for
functions of given symmetry merits further investiga-

tion, but a great deal depends on the discovery of
adequate coded descriptions of the functions.

S. RELATION OF THE HARTREE, FOCK, KOOPMANS,
AND ROOTHAAN METHODS TO THE

POLYDETOR METHOD

The method associated with the names of these
workers' ' is generally known as the self-consistent field

method. In the framework of the present scheme it is
possible to describe this as the approximation of using

a single C and then adjusting some or all of the implicit
parameters in this function to obtain a stationary value
of the energy. This method cannot converge to the true
solution of Schrodinger s equation. In the case of atoms,
this introduction of a small finite error leads to a
problem which can be solved CS.ciently by one-dimen-

sional numerical integration. In the molecular case,
however, most of the computation is concerned with the
evaluation of molecular integrals (stages 8 and C) so

that the self-consistent field calculation is comparable

in computational cGort with a polydetor calculation

using the same g„system. The real difference is that the

answer is simpler to understand. and that it is possible

to perform the calculation without having to use the

general theory of projective reduction (stage G).
The determination of the best single 4 can also be

very useful as an intermediate in the elearest expression

8 T. Koopmans, Physica I, 104 (1953).
' C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).

'7. DISCUSSION

The calculation of general many-electron wave
functions for atoms and molecules by variational deter-
minantal expansions has here been classified as con-

sisting of eight distinct stages. From the wave function,
it has been shown that it is possible to calculate any
observable property by means of one or more of four
further stages to an accuracy consistent with the
assumption of the Born-Oppenheimer separation and
with the omission of relativistic CGects. It is generally
known that, in principle, all molecular properties are
calculable by such processes, but it is not always realized
that these may be classified and reduced to so few dif-

ferent types of calculation.
It is considered that the classi6cation provides a very

useful mental picture. of these complicated calculations

and that this is particularly apposite now that it is

possible to perform all the stages completely automati-

cally by electronic computers. These di6erent stages can

all be speci6ed as completely determinate calculations

and, in fact, it is now possible to give tentative estimates

of the Cavort involved in the programing and perform-

ance of these. The list in Table I appears to be the first

explicit statement of this subdivision, but a limited

number of calculations which are in accordance with

this general scheme have already been reported. The

earliest clear examples are probably the calculations for

the Be, B, Rnd C atoms by Boys,' " although the

calculation for the oxygen atom by Hartree and Swirles"

' E. Hylleraas, Z. Physi. k 54, 347 (1929); 65, 759 (1930)."H. M. James and A. S. Coolidge, J. Chem. Phys. I, 825 (1933).
' S. F. Boys, Proc. Roy. Soc. (London) A217, 235 (1953),
'3 D. R. Hartree, %.Hartree, and 3.Svrirles, Phil. Trans. A238,

229 {1939l.
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combines a two-determinant treatment with a numerical
integration process. For molecules, the calculations by
Kastler'4 for HF and by Meckler" for 02 are early
examples.

Several of the stages involve considerable mathe-
matical complexity, but it is the projective reduction
processes which always appear to have caused the most
intellectual difBculty. It is important to realize that,
from the logical point of view, nearly all the com-
plexities of this stage are not essential aspects of the
quantum calculation. If the calculation were performed
in a direct manner without the use of powerful theorems
and relations (that is, by a variational expansion of
simple determinants or, in the logical limit, of products),
the same answer would be obtained but with much more
computation. In particular, this is true for all the
vector-coupling calculations for atoms and nuclei and,
in fact, it may be shorter for those not performing

'4 D. Kastler, J. chim. phys. 50, 556 (1953).
's A. Meckler, J. Chem. Phys. 21, 1750 (1953).

series of calculations not to use the most advanced
theory but to keep to simpler explicit expressions. At
present, it is interesting to observe that there may be a
return to simpler but somewhat more laborious methods
in the future when automatic programs are constructed
for all these problems. If the present analysis has shown
how the projective reduction calculation can be sepa-
rated from the actual quantum theory, with which it
is so frequently mingled in the exposition of particular
nonconvergent approximations, it will have served a
useful purpose.

It is intended to report various mathematical and
numerical methods for the eKcient performance of the
stages of Table I in the near future. It is also to be
hoped that other contributions to the solutions of the
more di%cult of these stages may be developed. It is
considered that the explanation of the significance of
new developments may perhaps be made most brieQy
and informatively by a statement of the relation to the
preceding classification.


