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I. INTRODUCTION

HIS article gives a compilation and basis function
analysis of existing ab initio molecular eigen-

functions. Our review pertains to that body of the
literature in which a direct solution of the Schrodinger
equation is attempted, and especially that part which
we believe offers the greatest opportunity for extension
to the complicated molecules of chemical interest. The
specific content of the article is frankly devoid of a
connection with chemically significant problems. It is
important for a future review to develop this connec-
tion, and it should be done in a more empirical frame-
work than we have used.

By ub initio we imply: First, consideration of all the
electrons simultaneously. Second, use of the exact non-
relativistic Hamiltonian (with fixed nuclei),

Z, 1 Z+i,~=-!2 ~,'-2 —+E—+2
i a 1 ia i&& ~ij a ~ tap

the indices i, j and a, b refer, respectively, to the elec-
trons and to the nuclei with nuclear charges Z, and Z~.
Third, an e6ort should have been made to evaluate all
integrals rigorously. Thus, calculations are omitted in
which the Mulliken integral approximations or electro-
static models have been used exclusively. These ap-
proximate schemes are valuable for many purposes,
but present experience indicates that they are not
sufhciently accurate to give consistent results in ub

initio work, Some three- and four-center calculations
are included, however, where such procedures were
the only available means of obtaining certain inte-
grals. %bile not imposed as a restriction on our list-
ings, it is nevertheless true that all of the calcu-
lations have been carried out with nuclei fixed. In
other words, no problems involving more than three
particles in which vibronic interactions are important
or where the mass of the negative particles is signi6cant
with respect to the nuclear masses (e.g., mesonic mole-
cules) have been treated abinitio.

In addition to the preceding restrictions, we have
limited the survey to molecular wave functions that
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U. S. Atomic Energy Commission.

t National Science Foundation Postdoctoral Fellow and staB
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involve more than two electrons and employ one-
electron basis orbitals. Although two-electron problems
comprise a large part of our detailed knowledge of
electronic systems, a full treatment of this subject
would be a review in itself, and the points we wish to
bring out here become important primarily for mole-
cules with more than two electrons. Actually the limi-
tation to systems of more than two electrons essentially
implies the use of one-electron basis orbitals, since only
one or two quite specialized and apparently not readily
generalizable calculations explicitly include r;, in the
wave function for more than two electrons,

In the mid-thirties a number of rigorous applications
of quantum theory to simple molecular systems were
made by several investigators, principally James,
Coolidge, Knipp, and Coulson. However, it is not
incorrect to state that the major eGort in ab initio work
dates from the Shelter Island Conference in 1951. At
that conference there was a great deal of discussion on
the evaluation of two-electron molecular integrals and
considerable optimism for the early realization of ex-
tensive results, at least for the diatomic case. In the
conference summary the question was asked, "Are
Slater atomic orbitals really the best orbitals to use as a
basis for molecular calculations?" The dearth of calcu-
lations made it impossible to discuss the question at
that time; but now, at the Boulder Conference, sufhcient
data have been accumulated to give an answer. Nearly
a decade has elapsed because only very recently have
we had a rapid means for obtaining large numbers of
integrals over the wide range of parameters required for
practical basis function experimentation.

As in 1951,it is still true that the most rapid advances
in the next year or two are to be expected in the dia-
tomic case. This follows directly from the present
existence of highly efhcient digital computer programs
for two-center integrals. These have been devised by
Boys at Cambridge University, Nesbet at Boston
University, Roothaan and co-workers at the University
of Chicago, Switendick and Corbato at the Massa-
chusetts Institute of Technology, and Harris at the
University of California, Berkeley. ' More than half of
these have been written for commercial machines of
which there are many copies. Besides the two-center

' This work is reported at greater length elsewhere in this issue
of Reviews of Modent Physics, and further discussion is inappro-
priate here.
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integral programs, several of the groups have prepared
programs such as the transformation of integrals to the
SCF basis set and the Roothaan scheme, which are
applicable to any molecular problem.

In undertaking the review just outlined, we would
also like to call attention to the recent article by
Kotani, Mizuno, Kayama, and Yoshizumi in the Aeegal
Relievo of Physical Cherrustry L9, 245 (1958)]. Their
paper includes a discussion of semiempirical theories as
well as ab initio work and thus has a greater breadth
than we have attempted. It is certainly the reference
which is most pertinent and closely related to our
survey.

II. METHODS OF CONSTRUCTING MOLECULAR
WAVE FUNCTIONS

(a) Non-AO Methods

The construction of non-AO wave functions has
proceeded along two lines. Both methods essentially
attempt to exploit more fully spatial geometry in
special classes of molecules than would be possible in a
strict AO treatment.

The erst of these is the use of an elliptical coordinate
system, and the most extensive eGort along this line
has been made by Harris and Taylor on small diatomic
molecules. In addition to the use of natural coordinates,
Harris seeks to minimize the number of required con-
figurations by relaxing the constraints that the orbitals
be orthogonal and filled in pairs. This technique,
coupled with computer programs for varying the non-
linear parameters automatically, is very likely the most
scient scheme for diatomic molecules with from three
to six or eight electrons. For larger diatomic molecules
the greater importance of the atomic singularities and
the rapidly increasing complexity introduced by the
relaxation of the orbital constraints appear to limit the
usefulness of the method.

The other non-AO proposal has been for the use of
a single coordinate origin for all basis functions.
Because of high symmetry and light surrounding atoms,
molecules like the central hydrides are especially suited
to this scheme. A good example is the encouraging work
of Saturno and Parr~ on CH4. Another illustration is
Allen's calculation of HF. Because this molecule is also
a hydride and has a large positive dipole moment, the
fluorine center was chosen as the coordinate origin. The
principal idea behind one-center treatments is that the
simplicity of having only one-center integrals to evalu-

ate more than compensates for a larger basis set and

higher I, values. The use of a single coordinate origin

seems justi6ed for cases such as those cited in the fore-

going or for various arrangements of two or three hy-

drogen atoms, but it is difFicult to imagine a widespread

generalization of this technique.

Finally, Bingel (1)' recently has given the expansion
of the molecular wave function in terms of the eigen-
functions of the united atom. For small separations the
expansion depends on the internuclear distances, the
united-atom charge density and its radial gradient at
the origin. Although no calculations have yet been
reported, this approach may prove to be a valuable
adjunct to LCAO calculations at small internuclear
distances. (In their review Kotani et al. use the term
"united-atom orbitals" to refer to the type of basis
functions mentioned both in this paragraph and the
one preceding. )

(b) AO Methods

The valence bond and the I CAO molecular orbital
schemes are the two general methods which form a
natural framework for the use of AO's. In the valence
bond method, as supplemented by configuration inter-
action (CI), the molecular wave function is expanded
as a number of determinantal functions, each of which
corresponds to a molecular system built up from
definite states of the free atoms. The linear coeKcients
of this set of determinantal functions are obtained by
energy minimization. %hen relatively few configura-
tions can give a good result, this is an eKcient method
and is the procedure most used in early work.

On the other hand, the molecular orbital method is
an approach to a molecular Hartree-Fock solution. In
practice, the Roothaan procedure is the most useful
technique for constructing the molecular orbital solu-
tion. The molecular orbitals are expanded as a finite
set of specified basis functions with energy-determined
linear coe%cients, and when expressed in matrix form,
this scheme is ideally suited for use with digital com-
puters. Experience has shown that the molecular
orbital state determined in this manner gives moder-
ately good results for molecules at their equilibrium
separations. This fact, together with the computational
advantages of the Roothaan scheme, has led to the
recent ascendancy of this procedure over all others for
constructing molecular wave functions. (The notation,
SCF I.CAO-MO, has now become standardized for this
type of calculation. ) As is well known, configurations
arising from one- and two-orbital substitutions in this
single molecular-orbital determinant must be added to
make the treatment equivalent to the valence bond
method described in the preceding paragraph.

Assuming that one is able to carry out the necessary
integrations, the central problem becomes the choice of
AO's. By far the largest number of existing calculations
have employed single exponential AO's. (Mulliken has
introduced at the conference the designation and
abbreviation, Slater Type Orbital —STO.) Except for
symmetry considerations, basis orbital choice is then
reduced to a specification of the three nonlinear param-

2 Saturno and Parr have employed nonintegral principal
quantum numbers in their single exponential basis functions.

'References are listed in the Bibliography at the end of the
article.
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eters, n, a, and i, in r"e "7~~"'(e, y). Rules for obtaining
these have been given by Slater (2), Pauling (3), Zener

(4), Roothaan (5), Duncanson and Coulson (6), and
Morse, Young, and Haurwitz (7). The lists given by
Duncanson and Coulson, and Morse et al. are slightly
more complicated than the others; e.g. , the 2s function
is constructed from two exponentials with the param-
eters of the second term differing somewhat from those
for the 1s function. The results of our survey appear to
indicate, however, that all of these various rules for
choosing nonlinear parameters lead to almost the same
total molecular energies.

In addition to STO's, Gaussian and Hartree-Fock
AO's have been used for a few molecules, and a detailed
comparison is given in later sections.

(c) Configuration Interaction

Many of the calculations we have tabulated include
a limited configuration interaction. The results uni-
formly show a small energy lowering of the order of 1 ev,
and this slow convergence has led to much discourage-
ment concerning the utility of the configuration inter-
action method. Typical of current work is the limited
CI treatment of HF. Six excited MO configurations are
formed by allowing promotion of all but the 10.electrons
into the more energetic 4o MO. (The two-electron inte-
gral problem is so severe that, in general, only those
configurations have been considered whose Hamiltonian
matrix elements may be formed from the same integrals
over the original basis functions needed for the single
lowest configuration. ) This can give only very limited
freedom in describing electron correlation, and in the
HF example, at least some type of 6 and y MO's should
be available for CI. .

Fortunately, almost all of the problems in con-
figuration interaction can be investigated by resorting
to free-atom calculations. Some of the most thorough
work has been performed by Boys on Be, F, Ne, and
Na+ (8, 9). Considerable insight has also been gained
from such a simple system as helium, and this serves
as a good example. Taylor and Parr (10), Green et al.
(11), Lowdin and Shull (12, 13), Holftien (14), and
Nesbet and Watson (15), have all made studies on He

. with methods applicable to molecules with more than
two electrons. The last calculation considered ten single
exponential basis functions (with / values from 0 to 3)
formed into 20 configurations. The choice of nonlinear
parameters was the principal problem, and the sig-
-nificant result was that all functions should have the
same radial maxima. This is in sharp contrast to the
successive spreading out of the maxima with higher l
values, or with increase in the number of radial nodes,
which is characteristic of solutions for the central-field
problem.

A new scheme for picking configuration-interaction
orbital parameters has been suggested by Boys. He
introduces "exclusive orbitals" and "oscillator orbitals, "

defined by externally imposed auxiliary conditions, that
may lead to a more rapid convergence of the configura-
tion interaction. Boys has also described some "corre-
lation functions" through which he hopes to make a
separate calculation for part of the correlation energy.
These functions may contain explicit dependence on r;;,
but they are also functions for which the necessary
integrals may be computed readily. '

III. TABULATION OF AB INITIO CALCULATIONS

Table I (16—74) lists the calculations that we have
found in the literature, technical reports, and through
private communication, There are approximately eighty
calculations, three-fourths of which are for diatomic
molecules. The structure of the table reQects the
emphasis on basis orbitals and our belief that this is the
central problem around which future development will
take place. Our table lacks completeness for three-
electron systems. There are so many of these that only
a representative sampling of more recent work has been
included.

(a) Other Computed Molecular Quantities

The total molecular energy and the dipole moment,
both especially characteristic of the molecular wave
function, have been tabulated in separate columns.
Quadrupole moments, ionization potentials, polariza-
bilities, quadrupole coupling constants, etc. , are all
listed in a single column because so few results are
available. The Annual Re~i' of PhysicaL Chemistry
article by Kotani et al. and a paper by Karplus'
survey values computed for these quantities. For
example, rather good agreement with experiment is
obtained for the (r') part of the magnetic susceptibility
of H&O by using a molecular-orbital wave function with
STO's, while the same type of wave function yields
poor results for quadrupole coupling constants in 02
and NO.

(b) Binding Energies

Present calculations are limited to atoms from the
first row of the periodic table, and to a crude first
approximation, they yield simply a fixed percentage
( 99 to 99.5) of the total observed energy. Binding
energies, however, for nearly all molecules are much
less than 0.5% of the total energies, and it is possible
to compute almost any value through a choice of basis
functions that yield a relatively poor free-atom energy.
The few calculations that obtain a total molecular
energy lower than the experimental separated-atom
energies are restricted to the class of small molecules
with small total energies. For these reasons, binding-
energy results have been relegated to the "other quan-
tities computed" column.

(c) Approximate Calculations

As stated in the Introduction, we have omitted from
the tabulation all calculations deviating appreciably
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TABLE I. Compilation and summary of ab initio calculations.

Mole-
cule

Refer-
ence

Basis
Method functions+

No. of
config-

ura-
tions
in CI

total
energy
(single
deter-
min-
ant)

% total
energy
(single
deter-
minant
+CI) b

Dipole
moment

(debyes) b p

Other computed
molecular
quantitiesb Remarks

HI 16 SCF LCAO-MO STO (S) 93.03 D~ =1.17 (4.47) ev
B&,q =1.81 (0.43) ev
r& =2.0 a.u.

Linear nuclear configuration. Hi
approximated from SCF pro-
cedure for H3 .

H3 17 LCAO-MO STO (V) 21-35 ~ ~ ~ 98.14 (21)

Hs 18 LCAO-MO STO (V) 2o ~ ~ ~ 97.39 (2o)

Hg 19 SCF LCAO-MO STO (V) 9S.95 (3)

He —He 21 VB Elliptic (V)

H2+Hs 22 SCF LCAO-MO STO (S)

He -He 20 SCF LCAO-MO STO (S)

D, =3.48 (4.47) ev
(21)

r, =1.779 a.u. (21)
g«4 =0.65 (0.43) ev

(21)
r& =1.93 a.u. (20)
D, =3.14 (4.47) ev

(2o)

r& =1.84 a.u. (3)
De =2.49 (4.47) ev (3)
I (He) =24.39

(24.58) ev
+van d. waals =5.82

0&10-4 (9.2S
X10-4) ev

Nine nuclear configurations.

Five 1s hydrogenlike orbitals
with centers equally spaced on
line of nuclei.

Variable shifting parameter
used.

He2+ potential curve obtained
with D, =2.07 (2.5) ev,
r& =2.27 (2.06) a.u.

Complete variation of orbital
parameters. Experimental and
calculated values dier by 24 ev.
Rectangular nuclear configura-
tion found unstable.

Hg

H4

23

LCAO-MO

STO (S)

STO (S)

2 ~ ~ ~

6 ~ ~ ~

De=1.78 ev (2)
r, =2.25 a.u. (2)

D, =0.44 ev (1)
D, =2.26 ev (6)

Linear symmetrical configura-
tion. Many-center integral ap-
proximations are compared.

Linear nuclear configuration;
complex stable w.r.t. 4H and
unstable w.r.t. 2H2.

H4

SCF LCAO-MO STO (S)
25 SCF LCAO-MO STO (S)

D, =1.49 ev (1)
D, =2.11 ev
rg =2.1 a.li.

Four linear nuclear configura-
tions; complex stable w.r.t. 4H
and unstable w.r.t. 2H2.

LiH 26 Variational STO (S) + 11
Elliptic

~ ~ ~ 98.90 (11) D, =1.82 (2.52) ev
(11)

STO's for Li 1s electrons.
Valence electrons treated by
James-Coolidge type expansion
with rig terms omitted.

LiH 27 VB STO (S) 20 98.37 98.85 (20) -6.04 (6) Pi -Bp =3.18 (3.66)
ev (6)I =7.52 ev

Four sets of orbital exponential
parameters.

LiH 28 VB STO (DC) 6 ~ ~ ~ 98.86 (6) -6.31 (6) D, =1.66 (2.52) ev
(6)

LiH

LiH

29

30

Variational STO (S) + 10 ~ ~ ~ 98.90 (10)
Elliptic

STO (S) 10 ~ ~ ~ 98.93 (6)

—5.57 (10)

-5.61 (6)

Orbital parameter variation; ri2
terms omitted.

Four sets of orbital exponential
parameters. 2P p on hydrogen
introduces hydrogen atom polar-
ization.

LiH

LiH

LiH

LiHd

31 SCF LCAO-MO STO (V) ~ ~ ~ 98,75

32 VB Hartree-Fock 6 98.61 99.03 (6)

21 VB Elliptic (V) 4 99.19 99.61 (4)

33 SCF LCAO-MO Hartree-Fock 6 98.83 99.03 (6)

-5.92

—6,os (6)

—6.os (6)

De =1.41 (2.52) ev

De =1.62 (2.52) ev
(6)

r. =3.24 (3.01) a.u.
(6)

co =1212 (1406) cm '
(6)

T, =2.66 (3.286) ev
(6)

Equivalent to pre-
ceding calculation

D& =1.30 (2.52) ev
(1)

D, =2.21 (2.52) ev
(4)

Complete variation of orbital
exponential parameters.

Nine internuclear distances;
excited Z+ state evaluated.

Equivalent to preceding calcu-
lation.

Complete variation of orbital
parameters.

A further classification of the STO's is given in parenthesis: (S), orbital exponents adopted with or without modification from Slater's rules (2); (V),
orbital exponents in the molecule determined by energy minimization; (DC), orbital exponents tabulated by Duncanson and Coulson (6); (MYH), orbital
exponents tabulated by Morse, Young, and Haurwitz (7); (R), orbital exponents tabulated by Roothaan (5).

b Following the computed number, the experimental value and the number of configurations in the CI are given in parentheses. ~here possible, computed
values are given for the experimental internuclear distance.

o The sign of the dipole moment is relative to the heavier atom taken to be at the origin of coordinates.
d Evaluated at 3.2 a.u.
e Evaluated at 5.63 a.u.
f Evaluated at 5 a.u.

Evaluated at 6.01 a.u.
b Corrected by R. K. Nesbet (cf. reference 58).
& f terms included.
i Evaluated at r = .
& Apex atom positive.
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TABI.E I.—Coetinued.

Mole- Refer-
cule ence Method

Basis
functions

No. of
config-

ura-
tions
in CI

total
energy
(single
deter-
min-
ant)

% total
energy
(single
deter-
minant
+CI)b

Dipole
moment

(debyes) b, 0

Other computed
molecular

quantitiesb Remarks

BeH+ 27 VB STO (S)

BeH

12+ e 35 VB STO (S)
Variational STO (S) +

Elliptic

Lie 36, 37 VB STO (S)

'Variational STO (S) +
Elliptic

Li2 f 38 LCAO-MO STO (S)

34 SCF LCAO-. MO STO (S)

10 98.98 (10)

~ ~ ~ 99 41

2 99.00g 99.00(2)

~ ~ ~ 98.82

18 " 99.11 (18)

E~ -Zo =5.22
{5.40) ev (6)

D.=2.75 (2.22) ev
re =2.51 (2.54) a.u.I =8.43 (8.1) ev

De =0.304 (1.30) ev
De =0.49 (1.30) ev

(1)
De =1.24 (1.30) ev

(8)
De =0.27 (1.05) ev

(2)
re =6,01 (5.049) a.u.
q' =0.0040 a.u.
D, =0.51 (1.05) ev

(18)
q' = -0.0030 a.u.

(18)
De = -0.3 (1.05) ev

Two sets of orbital exponential
parameters.

Four internuclear distances. Be
1s not mixed in forming MO's.

STO's for Li 1s. Valence elec-
trons treated by James-Coolidge
type expansion with ri2 terms
omitted.

Integrals evaluated in polar or
elliptical coordinates. Three in-
ternuclear distances. Orbital
variations for 2s.
STO's for Li 1s electrons.
Valence electrons treated by
James-Coolidge type expansion
with res terms omitted.

Li 1s not mixed in forming MO's;
orbital exponential parameters
varied.

Lip

Li2

Lim

BH

BH

BH

BH

CH+

CH

CH

40 LCAO-MO STO (S) 8 98.88 99.11 (8)

SCF LCAO-MO STO (S)

31 SCF LCAO-MO STO (V)

41 SCF LCAO-MO STO (S)
17 LCAO-MO STO (S)

~ ~ ~ 98.95

~ ~ ~ 98.98

~ ~ ~ 99.17 ~ ~ ~

23 ~ ~ ~ 99.34 (23)

42 VB STO (S) 13 99.11 99.36 (13)

31 SCF LCAO-MO STO (V)

43 SCF LCAO-MO STO (S)
43 SCF LCAO-MO STO (S)

~ ~ ~ 99 21

~ ~ ~ 99.20
~ ~ ~ 99.16

VB STO (S) and

Hartree-Fock

SCF LCAO-MO STO (S) and 12 ~ ~ ~

Hartree-Fock

39 SCF LCAO-MO STO (MYH) ~ ~ ~ 99.02

0.99

1.58

0.93

1.97 (1)

De =0.33 (1.05) evI =4.91 ev
Bj -Bo=2.30 (1.895)

ev
Q(Lip) = -0.17 a.u.
De =0.77 (1.05) ev

(8)
Q(Lh) =19.46 a.u.

(8)
q' =0.0016 a.u. (8)&
D, =0 124(1.05) ev
Q(Li~) =22.31 a.u.
D =0.15 (1.05) ev

De =1.80 (3.14) ev

De =1.50 (3.14) ev
(23)

r. =2.33 (2.33) a.u.
(23)

De =1.46 (3.14) ev
(1)

De =2.22 (3.14) ev
(13)

De =2.07 (3.14) ev

De =0.9 (3.77) ev

De =1.2 (3.64) evI =11.1 (11.1) ev

D. =2.51 (3.64) ev
(8)

~ =3400 (2900)
cm ~ (8)

r, =2.00 (2.12) a.u.
(8)

De =2.27 (3.64) ev
De =2.95 (3.64) ev

(12)
are =3100 (2900) cm ~

(12)
re ——2.06 (2.12) a.u.

(12)I =12.7 (11.1) ev

Three sets of orbital exponential
parameters and three inter-
nuclear distances. Excited states
obtained from ground state
secular equation.

Complete variation of orbital
exponential parameters.

Scale factor variation. Three
internuclear distances.

Hybridization introduced in
single determinant calculation.
Excited states evaluated.

Complete variation of orbital
exponential parameters.

Excitation energies computed.

Excitation energies computed.

Five internuclear distances,

Orthogonality between C is and
H 1s assumed. C is not mixed in
forming MO's. One-center in-
tegrals from Hartree-Fock
AO's. Two-center integrals from
Slater AO's. Excited states ob-
tained from ground state secular
equation.

Be2

NH

NH

NH

NH

31 SCF LCAO-MO STO (V)

43 SCF LCAO-MO STO (S)

45 SCF LCAO-MO STO (S) and
Hartree-Fock

46 SCF LCAO-MO STO (S)

31 SCF LCAO-MO STO (V)

~ ~ ~ 99 14

~ ~ ~ 99.16

'0.90

1.24

0.91

2.01

D. =0.5 (4.01)evI =11.8 ev

De ~1.40 (4.01) ev

De =0.50 (4.01) ev

Complete variation of orbital
exponential parameters. Total
energy computed.

Excitation energies computed.

Cf. remarks for CH (reference
44). N 1s not mixed in forming
MO's. Excited states obtained
from ground state secular equa-
tion.

Separate SCF calculation for d
~Z+ state. Other excited states
obatined from ground state sec-
ular equation.

Complete variation of orbital
exponential parameters. Total
energy computed.
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TmLz I.—CoeHwled.

Mole- Refer-
cule ence Method

Basis
functions

No. of
config-

ura-
tions
in CI

total
energy
(single
deter-
min-
ant)

% total
energy
(single
deter-
minant
+C&)b

Dipole
moment

(debyes) b e

Other computed
molecular

quantities b Remarks

OH 47 VB Hartree-Fock 10 99.24 99.40 (10) 2.29 (3)

SCF LCAO-MO Hartree-Fock 6 99.39 99.41 (6) 2.66 (1)

OH 43 SCF LCAO-MO STO (S) ~ ~ ~ 99 06 0.92

NH2 45 SCF LCAO-MO STO (S) and
Hartree-Fock

1.9

CHg 58 SCF LCAO-MO Approx
SCF AO's

Bg 49 SCF LCAO-MO STO (S) ~ ~ ~ 99 10

HF 50 VB STO (S)

STO (DC)

6 ~ ~ ~ 98.95 (2) 1.13 (1.74) (2)

6 ~ ~ ~ 99.00 (6) 0.93 (1.74) (6)

HF

HF

43 SCF LCAO-MO STO (S)

Si SCF LCAO-MO STO (S)

~ ~ ~ 98.9S O.87 (1.74)

7 98.96 98.99 (7) 0.69. (1.74) (7)

HF

HF 31, S3 SCF LCAO-MO STO (V) ~ ~ ~ 99 Oi 1.49 (1.74)

HF 54 One-center STO (V) ~ ~ ~ 99 42 2.28 (1.74)

52 SCF LCAO-MO Hartree-Fock 7 99.44 99.46 (7) 1.84 (1.74) (7)

De =1.04 (4.58) ev
(10)

De =1.25 (4.58) ev
(6)

De ——0.8 (4.58) eV
I =10.8 (13.16) ev

De =4.2 ev
I =14.16 (11.05) ev
Equil. bond angle

1050

De ——11.78 (12.7) ev
I =12.04 (9.95) ev

De =0.17 (3.67) ev

De =1.03 (6.08) ev
(2)

D, =1.96 (6.08) ev
(6)

De =1.1 (6.08) evI =12.6 (15.77) ev

De =2.12 (6.08) ev
(7)I =12.7 (15.77) ev

I =15.5 (17.0) ev

D. =2.11 (6.08) ev
(7)

re =2.0 (1.7328) a.u.
(7)I =17.31 (15.77) ev

I =19.4 (17.0) ev

De =2.42 (6.08)I =12.8 (15.77) evI=16.2 (17.0) ev

De =1.59 (6.08) ev

Three internuclear distances.

Excitation energies computed

Cf. remarks for NH (reference
45). Variation w.r.t. bond angle.
Two-electron three-center in-
tegrals approximated.

Orthogonality between C is and
H 1s assumed. C is not mixedin
forming MO's. C 3s determined
variationally. 3s exchange and
two-electron three- and four-
center integrals approximated.
Excitation energies computed.

Three internuclear distances. Ex-
cited states obtained from
ground state {~Z& ) secular
equation

Five internuclear distances.

Complete variation of orbital
exponential parameters.

s, p, and d orbitals on F center.f orbitals included in later calcu-
culation.

H~O SS SCF LCAO-MO STO (S) 3 99.138 99.135 (3) 1.52 (1.84) (1)

H20 17 LCAO-MO STO (S) 3o " 99.os (3o)

NHg 45 SCF LCAO-MO STO (S) and
Hartree-Fock

1.97 (1.46)

NHe

NHs 57 SCF LCAO-MO STO (S) ~ ~ ~ 99.17 1.49 (1.46)

NH4+ Ss

CH4

CH4

Variational
spherical model

Variational
spherical model

SCF MO
spherical model

STO (V)

STO (V)

Hartree

~ ~ ~ 97.06

~ ~ ~ 97 43b o ~ ~

56 SCF LCAO-MO Hartree-Fock 13 99.43 99.46 (13) 1.82 (1.46)

De =7.7 (10.06) ev
(1)I =11.79 (12.6) evI =13.20 (14.5) evI =18.55 (16,2) ev

Equil. bond angle
=120 (105') (1)

D. =5.81 (io.o6) ev
(3o)

re =1.95 (1.81) a.u.
(3o)

Equil. bond angle=96' (1OS') (3O)

De =8.6 (12.47) evI =13.14 (10.25) ev
Equil. bond angle

=108 (106.8 )

De =10.3 (12.47) ev

= (13)I =14.0 (11.0) evI =19.3 {17.0) ev

D. =9.OO (12.47) evI =9.94 (11.0) evI =16.20 (17.0) ev

re =1.84 a.u.

re =1.98 (2.041) a.u.

Variation with respect to bond
angle. Most three-center inte-
tegrals approximated.

Seven nuclear configurations.
Force constants computed.

Cf. remarks for NH and NHg
(reference 45). Two-electron
three- and four-center integrals
approximated. Barrier energy
=0.4 (0.25) ev.
Two nuclear configurations.
Barrier energy =3.97 (0.25) ev.

Total energy computed.

De = -5.44 (~20) ev Exchange neglected.
x= —33.2 X10 6

( —12.2 X10 6)
emu

ex~7.6X10 24

(2.5)&10 &4) cm&

CH4 60 SCF MO Hartree-Fock ~ ~ ~ 97.18 98.86i
spherical model f terms included for perturbation

calculation.
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TABLE I.—Continued.

Mole- Refer-
cule ence

CH4 61

Method

One-center

31 SCF LCAO-MO

Basis
functions&

STO (V);
integer-n,

STO (V); non-
integer-m
STO (V)

No. of
config-

ura-
tions
in CI

total
energy
(single
deter-
min-
ant)

/ total
energy
(single
deter-

minant
+Cr)b

5 97.30 98.08 (5)

5 97.49 98.23 (5)

Dipole
moment

(debyes) b &

Other computed
molecular

quantitiesb

re =1.93 (2.041) a.u.
(5)

re =2.02 (2.041) a.u.
(5)

Remarks

Three internuclear distances.
Force constants evaluated.

Complete variation of orbital
exponential parameters. Total
energy computed.

LiF 31 SCF LCAO-MO STO (R)
¹ 62, 63 SCF LCAO-MO STO (S)

~ ~ ~ 9896 '
~ ~ ~

6 99.05 99.12 (6)

3.43

Ng 31 SCF LCAO-MO STO (V) ~ ~ ~ 99.13

BF
CO

31 SCF LCAO-MO STO (S)
64 SCF LCAO-MO STO (S)

~ ~ ~ 99 07
~ ~ ~ 99.27

—2.16
—1.00 ( —0.12)

CO 31 SCF LCAO-MO STO (S) ~ ~ ~ 99 09 -o.73 ( —o.12)

NO 66 SCF LCAO-MO STO (S) 9 99.05 99.14 (9) -0.50 (+0.16)

02 LCAO-MO Gaussian 9 ~ ~ ~

Og 68 X CAO-MO STO (S) 15 99.07 99.19 (15)

SCF LCAO-MO STO (S) ~ ~ ~ 99.12

Be4 69 SCF LCAO-MO STO (S) ~ ~ ~ 99.223 ~ ~ '

HCN 65 SCF LCAO-MO STO (DC) ~ ~ ~ ~ ~ ~

De =0.58 (5.99) ev

De =1.20 (9.90) ev
(1)

De =3.29 (9.90) ev
(6)I =14.82 (15.60) evI =15.77 (17.08) evI =19.88 (18.72) evQ(¹)= -1.87
(+1.11) a.u.

D. =2.61 (9.90) evI =15.11 (15.60) evI =14.84 (17.08) ev
I =19.42 (18.72) ev

De =5.24 (4.39) ev

De =11.2 (11.11) evI =13.37 (14.01) evI =15.97 (16.58) ev
I =20.01 (19.70) ev

De =5.38 (11.11) evI =13.08 (14.01) evI =15.87 (16.58) evI =19.93 (19.70) ev

I=17.3 (13.7) evI =26.4 (26.3) ev
Q(N'4) =0.0071

&(10 24 cmi

De=1.7 (6.6) ev (9)I =9.14 (9.25) ev (1)
De =5.07 (5.18) ev

(9)
re =2.26 (2.28) a.u.

(9)
~.=1503 (1580) cm ~'

(9)
De =3.63 (5.18) ev
Q(02) = -1.53

()Q] &O.82) a.u.
D =0.80 (5.18) ev
Q(02) = —1.76 (iQi

&0.82) a.u.
I =8.30 (9.33)' evj

Complete variation of orbital
exponential parameters. Ioniza-
tion potentials are not vertically
corrected.

C 1s and 0 1s not mixed in
forming MO's

Ionization potentials are not
vertically corrected.

C is and N 1s not mixed in
forming MO's.

Excitation energies computed.

Six internuclear distances. 'Zg+
state calculated with twelve
configurations.

Excited states obtained from
ground-state secular equation.
Excitation energies computed.

Four square planar nuclear con-
figurations. Three- and four-
center integral approximations
are compared.

70 VB STO (S+DC) ~ ~ ~ 99.16 D, =7.62 (1.68) ev Exchange interactions between
P 1s on one atom and electrons
of other atom are neglected.
One-center integrals from Dun-
canson-Coulson AO's. Two-
center integrals from Slater
AO's. SZ~+ state calculated.

71 SCF LCAO-MO STO (S) 6 99.10 99.14 (6) De = —0.23 (1.68) ev
(1)

De ——1.96 (1.68) ev
(6)

Q(Fs) =0.169 a.u.I =12.33 (15.7) evI =14.34 evI =15.96 ev

Excitation energies computed.

SiH4

COB

OI

31 SCF LCAO-MO STO (V) ~ ~ ~ 99 10

SCF MO
spherical model

73 SCF LCAO-MO STO (S)

Hartree72

~ ~ ~ 99 36

74 SCF LCAO-MO Har tree-Fock ~ ~ ~ 98.45 —0.25
( —0.55) &

De = -0.20 (1.68) evI =12.91 (15.7) evI =14.86 evI =16.54 ev

De = -9.52 ev
re =3.10 (2.80) a.u.
D =21.46 (16.5) evI =11.5 (13.75) evI =17.9 (18.0) evI =18.8 (17.29) ev

De =5.05 (6.20) ev

Complete variation of orbital
exponential parameters. Ioniza-
tion potentials are not ver-
tically corrected.
Exchange included. Total en-
ergy computed.

1s orbitals not mixed in forming
MO's. Many two- and three-
center integrals approximated.

0 1s not mixed in forming MO's.
Excited states obtained from
ground-state secular equation.
Excitation energies computed.
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30.0—

28.0—
SINGLE DETERMINANT, SLATER AO's

SINGLE DETERMINANT+CI, SLATER AO s
SINGLE DE TE R MIN ANT+ CI,
COULSON -DUNCANSON AO's

SINGLE DETERMINANT SLATER AO's WITH
ORBITAL EXPONENT VARIATION

22.0

ONE-CENTER APPROXIMATION TO
MOLECULAR HARTREE-FOCK SOLUTION
SINGLE DETERMINANT, HARTREE-FOCK AO's

SINGLE DETERMINANT+ CX, HARTREE-FOCK AO's

I 2.0—
F HARTREE-FOCK SOLUTION

IO.O—

8.0—

6.0

2.0

EXPERIMENTAL VAl UE

Fro. 1. Error in total energies (ev), rq= 1."/328 a.u.

from the ab Azitio prescription. But precisely what and
how great departures may be made without causing a
signihcant modification of results has by no means been
sufficiently explored. Karo and Allen (51) and Bal-
linger (53) have investigated the accuracy requirements
for the one- and two-electron integrals in HF. Ishiguro,
Kayama, Kotani, and Mizuno (40) examined the
validity of neglecting the overlap between the 1s orbital
on one center and the 2s, 2p on the other for Li~. They
also made calculations with the 1s collapsed into the
nuclear core. In general, Ishiguro et al. found that these
approximations seriously aGected the prediction of
molecular quantities.

Iv. DIATOMIC LCAO CALCULATIONS

Almost all of our ab initio experience derives from
diatomic LCAO calculations, and thus we are best able
to compare various types of basis orbitals for this class
of wave functions. We have chosen hydrogen fluoride as
an illustration because there are many existing wave
functions for this. molecule and because it is suKciently
complicated to possess the principal features of larger
systems.

In Fig. 1 total energies at the equilibrium inter-
nuclear separation, 1.7328 a.u. , are shown relative to
the experimental molecular energy. (Data from 31,
50-54, 75.) All but one of the calculations have used the

Roothaan procedure as a starting point. The exception
is Kastler's valence bond treatment using Duncanson

and Coulson basis orbitals. However, it can be shown
that, for all practical purposes, the results are equivalent
to a Roothaan calculation with limited CI. The striking
feature of this 6gure is the clustering of results into two
groups separated by about a rydberg. The upper group
of calculations empioy STO's; the lower group, Hartree-
Fock AO's. It is apparently of relatively little conse-
quence which rules are used for choosing the nonlinear
parameters in the STO's. In fact, for the best of the
upper calculations, there was a variation in the molecule
of all the exponential parameters in the STO's. In these
calculations, CI was carried out with the same con-
6gurations (or with the equivalent set of con6gurations
using Duncanson and Coulson AO's) for both the
Hartree-Fock AO's and for the various sets of STO's.
The inclusion or deletion of this in no way afkcts the
conclusions, since at the equilibrium separation these'
con6gurations contribute less than 1 ev for both types
of orbitals. The wave functions employing Hartree-
Fock orbitals also were carried through for larger inter-
nuclear distances; and in this region the CI makes a
far. larger contribution and is necessary to obtain. a
potential curve that exhibits even the qualitatively
correct limiting behavior.

The one-rydberg decrease in the HF molecular

energy is larger than would be expected to occur in
many other molecules, and the explanation is simple:
single exponential basis orbitals are notoriously poor
for negative ions, and for Auorine they give a large
electron amenity of the wrong sign, while Hartree-Fock
solutions for F and F give the correct sign and close
to the proper magnitude (75). The polar character of
HF strongly brings out this shortcoming in the STO's.

There are three other molecules with LCAO wave
functions made from both Hartree-Fock AO's and
STO's: LiH, NH3, and OH. Each of these yields a lower

total energy for the Hartree-Fock AO's. Total energy
diGerences range from 0.4 ev for LiH to 7 ev for OH.

The extensive work on HF allows us to make a
reasonable estimate of the true molecular Hartree-Fock
total energy. This has been done by making a plausible
extrapolation of Allen's one-center calculation and by
comparing with the F Hartree-Fock solution. (The F
result is shown in Fig. 1 relative to its own experimental

energy. ) The conclusion is that the molecular Hartree-
Fock total energy lies 2 to 3 ev below the single-determi-
nant Hartree-Fock AO value. This is signiicant because
this energy difference wou'1d appear directly in the bind-

ing energy and give a value close to that observed ex-

perimentally. It now seems possible and highly desirable
to go beyond the LCAQ approximation and seek true
molecular Hartree-Fock solutions through the use of the

Roothaan procedure. (Direct two-dimensional numeri-

cal integration of the Hartree-Foek diGerential equa-

tions for two centers is still out of reach for a ten-elec-

tron system such as HF.) Herc again choice of tlM non-

linear parameters in the Gnite basis set is the major
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problem. The work on HF (and also LiH, NH3, and
OH) points the way to a practical procedure: since most
existing digital computer programs for two-electron in-
tegrals are written for STO basis functions, a good ini-
tial guess can be obtained from those nonlinear param-
eters corresponding to STO fits of the Hartree-Fock
AO's. Very recently Nesbet (76) has essentially done
this and more for HF. Besides those parameters that
represent Hartree-Fock AO's, he has added s and p
orbitals on the hydrogen center and two d, and two d
basis functions on the fIuorine center. The total molecu-
lar energy obtained from this calculation is —99.9847
a.u. and should be within 1 to 2 ev of the molecular Har-
tree-Fock value. There is another and very compelling
reason for emphasis on a molecular Hartree-Fock
solutiori: It is the best wave function we can obtain
and still retain clear and straightforward interpreta-
bility in terms of simple one-electron orbitals.

So far our attention has been directed toward the
total energy, but we would expect the dipole moment
to show similar improvement when Hartree-Fock AO's
are employed. Unfortunately, present results are incon-
clusive. Significantly better results are found for HF,
but for NH3, STO's seem to give an anomalously good
answer. For LiH and OH, experimental values are
lacking. Figure 2 is a plot of the dipole moment data
for HF. In Allen's one-center approach to a molecular
Hartree-Fock solution, all of the functions are located
on the fIuorine center, and since a finite series of terms
is used to represent that part of the wave function
centered at the hydrogen atom, there is a tendency to
overweight the ionic character of the molecule. On the
other hand, lack of sufFicient Qexibility in the molecular
orbital LCAO wave function gives rise to an incorrect
slope at small internuclear separations. In spite of
these shortcomings, the wave functions based on Har-
tree-Fock AO's yield values superior to those using
STO's. The really exciting result will be the p versus r
curve for a molecular Hartree-Fock solution (aug-
mented by the usual limited con6guration interaction).
Pieceing together the various parts of the curves in
Fig. 2 indicates that a high degree of quantitative ac-
curacy might be achieved. In general, calculations
directed toward exploring the eGect of basis function
choice are especially important for the dipole moment
because of its sensitivity to any change in the basis-
function parameters. Ballinger (53) has computed the
charge distribution in HF for Slater parameter STO's
and for those parameters which minimize the molecular
energy. His graphs of the two charge distributions dis-
play the sensitive nature of the dipole moment. He
concludes that simple ideas attempting to relate gross
charges with p are dangerous.

Our discussion in this section concerning the greater
accuracy in total energies and dipole moments, obtained
with an improved basis set, certainly indicates the
desirability of correlating changes in the values of other

7.0

6.0—

5.0—

4.0—

3.0—
fmotion to
—Fock
n = 2.02)

2.0—
etermina nt
-Foch AOs

w /th
0/ o.u.)

ermtnonl + CI,
Fock AO's

I.O—

I

0.6 l,2

I

il
I.8 2A 3.0 3.6 4.2

r (ATOMIC UNITS)

FIG. 2. Dipole moments (in debyes) for HF.

molecular quantities, such as quadrupole coupling
constants, with modifications in the basis set.

V. MORE THAN TWO CENTERS

There are approximately twenty ab initio calculations
for molecules with more than two atoms, but there is a
decided dividing line between the existing diatomic and
polyatomic wave functions. Confidence in the satis-
factory evaluation of the many-center two-electron
integrals is very much less than for the diatomic case,
and it is clearly apparent that we are in major difFiculty
for three- and four-center two-electron integrals.

One line of attack being pursued is the formulation
and improvement of integration methods for three and
four centers with STO's. Three groups, each with
diGerent techniques, are actively working on the
development of efFicient digital computer programs:
Boys at Cambridge University expresses the STO's in
a series of Gaussians and then applies his analytic
many-center Gaussian formulas; Barnett at the Mas-
sachusetts Institute of Technology in using his expan-
sion about a single center; and Roothaan and co-workers
at the University of Chicago utilize an expansion in
elliptic coordinates, followed by a two-dimensional
numerical integration. '

A second approach is to re-examine and modify the
basis set. STO's form natural solutions to the central-
field problem and are thus scient for describing atomic
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singularities in molecular wave functions. Iaguerre
functions are also satisfactory in this regard, and some
use has been made of them. However, in no case do
these functions appear to have an overwhelming ad-
vantage over STO's, and there is every indication that
three- and four-center integrals will be at least as hard
to evaluate as for STO's. In general, any other analytic
basis function type must pay a heavy price in the
number of terms necessary to represent the wave
function in the region around the nuclei. One sug-
gestion (77) has been to use a mixed basis set composed
of both Gaussians and exponentials. If the individual
exponential functions, or a fixed linear combination of
exponential and Gaussian terms, on one center do not
overlap those on another, and if only Gaussians are
used to represent the bonding part of the wave function,
one can then obtain the benefit of the exponentials
around the nuclei without the corresponding many-
center integral problem. It can be shown that the
exponential part may be transformed to a Gaussian
form and the analytic many-center Gaussian integral
formulas applied (78). This is done at the expense of a
few more terms and a relatively simple numerical
integration.

Another method which seems promising at the present
time is based on the revival of Boys' 1950 proposal (78)
for the use of an all-Gaussian basis set. During the
intervening years a number of papers reported quite
discouraging results with limited sets of Gaussian

orbitals, and their use was largely abandoned. However,
as we have shown in Sec. IV, it has become apparent
that a more elaborate basis set, regardless of its analytic
form, is required for many applications. Because of this,
it appears quite possible that the larger number of
Gaussians required, as compared to exponentials, may
be offset by the very great simplification in evaluating
the two-electron many-center integrals. Finally, basis
functions in the form of plane waves may be added to
the Gaussian functions with very little additional
increase in the labor of computing the integrals. This
additional flexibility in the basis set may prove valu-

able in conjugated molecules and other cases where

some of the electrons are free to move throughout the
system (79).
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1. INTRODUCTION

T present, there is only one main method which

~

~ ~

~

provides practical procedures for the accurate
calculation of many-electron wave functions and
energies. It is often referred to as the method of con-
figurational interaction or, as we call it in this paper,
the polydetor method. In using this term, we imply a
general expansion of the wave function as a linear com-
bination of Slater determinants constructed from
orthonormal single electron functions, the coeKcients
in the expansion being determined by the Ritz variation
method. Very few wave functions of this general type
have been calculated, but the stage has now been
reached where all the essential procedures of calculation

. have been programed for high-speed electronic com-
puting machines in a fully automatic way, and many
more results are to be expected.

The development of the theory given here depends on
two explicit assumptions: first, the validity of Schro-
dinger's many-particle equation and the antisymmetry
condition and, second, the sufficiency of the Born-
Oppenheimer approximation in which nuclear and
electronic motions are separated. The solutions are
determined completely by these assumptions which
are generally accepted as the basic laws for atomic and
molecular structure.

It is convenient to regard the calculation of a wave
function as consisting of eight distinct stages. The
solutions of several of these stages have involved con-
siderable mathematical difficulty, but each stage

presents a definite problem for which the accuracy of
the solution can be specified and the significance of
which can be understood quite independently of the
detailed method of solution. It appears certain that this
multiplicity of stages and these difhculties have
obscured the essentially systematic nature of the whole
problem and have given the impression that there may
be ambiguities where, in fact, there are none. The aim
of this account is to discuss the mathematical nature of
these various stages, pointing out the difficulties, and
indicating techniques of solution known at present.
Such an account should be useful in enabling those not
working directly in this field to understand the com-
plexities of the problem. However, more important, the
scheme as given should simplify considerably future
accounts of the details of solution of the diGerent
problems by enabling their relation to the whole
problem to be shown.

Since this account was commenced, fully automatic
solutions have been obtained for the stages not pre-
viously solved. This has made it possible to discuss with
certainty the determinate nature' of the whole calcu-
lation and of each stage in it. It is important to realize
that the only element of choice involved in the calcu-
lation is at the stage in which the single electron func-
tions are selected. Thereafter, the calculation is as
determinate in principle as if the results for all possible
selections were tabulated. The automatic solutions
emphasize this beyond all doubt.

Before examining further details, let us consider pos-


