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TAsLE B.SCF input information. TABI,E C. One-center overlap integrals.

Electron
conQgurationa

Internuclear distance
I',b

Overlap Slater Best atom Best limited
Molecule integral LCAO-MO LCAO-MO LCAO-MO

Molecule State s +P P a.u.

Li2
Be2
C2
N2
F
LiH
BH
NH*
HF

CO
BF

LiF

ly +

PE +j
lg +
lg +

l7

lg +

lg+
lg+
ly+
lg+

3 0 0
4 0 0
4 1 1
5 1 1
5 2 2

2 0 0
3 0 0
2 1 1
3 1 1

5 1 1
5 1 1

4 1

2.6725
2.0
1.2422
1.094
1.418

1.59535
1.2325

L1.045eg
0.9171

1.1281g
1.262

1.51

5.051
(3.780)
2.3475
2.068
2.680

3.015
2.329
1.976
1.733

2.132
2.385

2.85

~ s, +P, and —P refer to MO's of l value 0, +1, and —1, respectively.
b 1 a.u. =0.5291 A.

LlH
BH
NH
FH

L12
Be2
C2
N2
F2

CO

LiF

S12

S12

S12

S12=S45
S12=S45
S12=S45
S12=S45
S12=S45

S12

S4s

S12
S45

S12

S45

Q. 1662 6484 0.1620 4403 0.1930 7013
0.2099 1853 0.2216 0079 0.2101 5522
0.2279 2130 0.2248 6784 0.2284 5502
0.2377 1090 0.2346 3500 0.2332 2147

0.1662 6484 0.1620 4403 0.1601 1469
0.1937 9309 0.1888 9342 0.1894 0733
0.2204 7827 0.2185 0310 0.2239 2555
0.2279 2130 0.2248 6784 0.2235 0663
0.2377 1090 0.2346 3500 0.2366 1054

0.2204 7827 0.2185 0310
0.2334 4716 0.2307 4713

0.2099 1853 0.2216 0079
0.2377 1090 0.2346 3500

0.1662 6484 0.1620 4403
0.2377 1090 0.2346 3500
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I. INTRODUCTION

N VB (valence-bond) theory calculations using
~ . covalent structures only, the binding energy is
regarded as the sum of two terms, namely, a Coulomb
term and an exchange term. " For the hydrogen
molecule the computed energy at the r value at which
it is a maximum (about 1.0 A) is about 12% of the
experimental binding energy at that r value. (At the
equilibrium internuclear distance in H2, however, the
contribution of the Coulomb energy to the binding
energy is only about 1%.) It has very often been
assumed that the ratio of Coulomb to total binding
energy is about 12% in any chemical bond.

* First presented at the Symposium on Molecular Structure
and Spectroscopy at the Ohio State University, June, 1958; later
at the June, 1959 Conference on Molecular Quantum Mechanics
at Boulder, Colorado.

t This work was assisted by a grant from the National Science
Foundation and by a contract with the Ofhce of Naval Research.
The integral computations were carried out at the Wright Air
Development Center, Dayton, Ohio, supported by a contract
with the V. S. Air Force.

f. Supported by a fellowship from the Fundacion Juan March,
Madrid, Spain.' Cf. J. H. Van Vleck and A. Sherman, Revs. Modern Phys. 7,
167 (1935);L. Pauling and K. B.Wilson, Introduction to Quantum
Mechanics (McGraw-Hill Book Company, Inc. , New York,
1935);H. Eyring, J. Walter, and G. E. Kimball, Quantum Chem-

istry (John Wiley @ Sons, Inc. , New York); C. A. Coulson,
Valence (Clarendon Press, Oxford, England, 1957).

2 R. S. Mulliken, J. Phys. Chem. 56, 295 (1952).

There are relatively few accurate calculations on this
subject. Rosen and Ikehara' computed the Coulomb
and exchange binding energies for the interaction
between a pair of identical neutral atoms, each having
one es electron, for m=1, 2, 3, 4, 5. The results showed
that both energies decrease with increasing e, but that
the proportion of Coulomb energy in the total binding
energy increases with increasing e. On extrapolating
beyond as= 5 they found greater values for the Coulomb
than for the exchange binding energy. It has been
shown also that for p electron bonds the Coulomb

binding energy can have larger values than for s
electron bonds. 4 The same is true for bonds formed by
2s —2p hybrid orbitals; the calculations of Woods'
on CH4 showed a Coulomb binding energy greater
than 50% of the total binding energy. ' A few unpub-
lished calculations made some time ago in this Labora-
tory by C.'tAt. Scherr also indicated large Coulomb

energies. Fischer~ too has made some calculations of

Coulomb energies, but in a modified way directed
toward the evaluation of hybridizations.

These few calculations raise the serious question

' N. Rosen and S. Ikehara, Phys. Rev. 43, 5 (1953).
4 J. H. Bartlett, Phys. Rev. 37, 507 (1931).' H. J. Woods, Trans. Faraday Soc. 2S, 877 (1932).
6 For more references on the subject cf. reference 2, Sec. XIII.
7 I. Fischer-Hjalmars, Arkiv Fysik 5, 349 (1952);7, 165 (1953).
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whether, in general, the VB theory terms involving the
exchange integrals are really predominant as they are
in H2, or whether, instead, the Coulomb terms may not
often or even usually be of predominant importance.
In any event, we thought it would be interesting to
compute the Coulomb energy for several simple cases.

G. VALENCE-BOND THEORY BACKGROUND

In the Heitler-London theory of H2, the normalized
wave functions for the 'Z,+ and 'Z„+ states derived
from two normal atoms are given by

L2(1~~)j 'Qr+Ar); A—=2 ' lo(1)5(2) I,

ik»»—=2~)d(b)b(b) I' »b fd»»b»»d» —8',= (b)

where S is the overlap integral

(in atomic units, (zrr and e'/(zrr), one finds that C con-
tains potential energy terms only:

C= J,s—2I,s+1/r,

where J,q is an electrostatic repulsion integral

J~g= 8 I 5 2 1 f'y2 g I b 2 d8gf82

and I q a nuclear attraction integral

Ig= 8 i 1 t'g 8 j. Ay.

Thus C is the same as if we had computed it as
Z—E(oo) using

Thus they are linear combinations of two Slater deter-
minants ((z and b refer to 1s atomic functions with n
spin, a and b with p spin, on atoms df and. J3) . The cor-
responding total molecular energies E are given by

(b—8') E f»(b)b(b)=bd»(b)b(2)d» d»,

8 i 5 2 Hc 2 5 1 dsytk2

—= (Hll +His) .
Fquation (2) can be rewritten' as

E=Hll+zf/(1+ S'),

/=812 S +11&

~)f/(1&S') being the exchange energy. (His is the
usual exchange integral and g is the effective exchange
integral or bond integral. ')

Then the interaction energy U is

U—=E—Z(ao ) =C+bf/(1+ S'), (5)

C=Hn —E(~)
is the Coulomb energy. In Eqs. (2)-(5), E, U, Hll, C,
B~2, g, and S are all functions of the internuclear dis-
tance r. The binding energy is the value of —U at the
equilibrium value r, of t.

From Eqs. (2)—(5), after putting

H =H()+H'
with

H'= —1/rsl —1/r.s+ 1/rrz+ 1/r P)
() Cf. reference 2, Eqs. (13)-(19);also J. van Dranen and J. A.

A. Ketelaar, J.Chem. Phys. 18, 1125 I'1950), and W. T. Simpson,
J. Chem. Phys. 25, 1124 (1956).

with bid, s equal to the simple orbital-product function
(z(1)b(2). In short, C is here simply the change of
electrostatic energy which would result classically if the
charge clouds (zs(1) and f)'(2) of the two atoms could
interpenetrate without any deformation.

One wonders whether molecular interaction energies
in general, when approximated by VS theory, may not
usefully be expressed by the equation

U=C+X(g;, S's)+(I',+~'aJ )+Z, (11)
that is, as a sum of C plus a function X of the overlap
and effective exchange integrals, plus the prozmofzoN

oeergy E()+n'hE (see the following) required to reach
the appropriate (in general, hybrid) atomic valence
states corresponding to the actual molecular structure,
plus 8, the resonance energy arising when ionic struc-
tures, the existence of more than one independent VB
structure, and/or other refinements, are taken into
account. The function X would if possible be approxi-
mated as a sum of individual exchange energy terms.
The effects of valence-shell hybridization, here taken
into account in C, X, and n'AP, as is convenient and
customary in VB theory following Slater and Pauling,
might somewhat more logically have been included
in R. Note that Pe+cd'hP is always positive; stable
binding is produced when C+I (assisted to some
extent by R, which is always negative) is suff'lciently
strongly negative. U is a function of r, —U(r, ) being
the binding energy.

In most VB theory discussions, the terms in S have
simply been neglected. It has been recognized that this
is bad, and some attempts have been made to correct it,
but, so far as we know, no really very serious eBorts
have been made. In most discussions, authors have
thought in terms of dropping the S terms corresponding
to Ss zzz Eg. (Z) .Howevel', lt is obvlollsly vel'y nlllcll less
harmfuls to neglect them only in Eqs. (3) or (5) in-
stead of in Eq. (2), and our viewpoint is based on Eq.
(5) and its generalization in Eq. (11).In many of the
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earlier discussions, empirically obtained effective ex-
change integrals have been used. It can be seen that
these really correspond to quantities more or less like
&t/(1+S') of Eq. (3).

In general, for an ¹lectron diatomic molecule,

(1 ~ ~ ~ m) I (m+1' ' 'N)
~b

y/ &P
&i"

~&&P&,
&~+i" &&dpi'&2 ~ e&i&$7, (l 2)

where &p
&' ~&&p&,&m+' ~& is a simple product of two

atomic functions, and
m N

H'= —Z&,g(1/»b;) —Z, g (1/»„)+gg(1/»;;)
ad=m+1

+Z.Z&/» (13)

is the corresponding interaction Hamiltonian. Each
atomic function may be approximated as a Slater
determinant or a linear combination of these, each built
using a set of AO's (atomic orbitals) so chosen as to
minimize the energy. However, it is suKciently exact
for our purposes in computing C to treat each atomic
wave function as a simple product of mutually ortho-
gonal occupied AO's x of the familiar Slater (or ortho-
gonalized-Slater) type, e.g., &p, =x«(1)x,2(2) ~ ~ x, (»»i) .
Electron spins are taken into account in assigning
electrons to AO's but thereafter can be omitted.
Equation (12) yields

C= QQLx„(1)x„(1)I 1/»;; I x&,;(2)xt,;(2)7

+Z.Z~/» —Z~Z(x. ' I 1/»~ I x. )

—Z.g(x„ I 1/». I x„. (14)

We proceed shortly to the matter of computing C
for several diatomic molecules selected as illustrative
examples. But 6rst some further explanation of the
promotion energy terms in Eq. (11), and of the use of
hybrid AO's, is needed.

Confining our discussion to diatomic molecules, we
note erst that in the case that an atom forms more than
one bond, ordinary VB theory requires that the atom
be placed in a state called a valence state in which the
spins of the valence electrons are uncorrelated. Valence
states are not atomic stationary states, but their wave
functions can be written as linear combinations of
those of stationary states; for example, that of the
trivalent (V3) valence state of the N atom with de-
tailed electron con6guration 1s'2s'2po 2ps-2pvr is a
linear combination of suitable 4$, 'D, and 'I' stationary
state wave functions of the 1s' 2s' 2p' ground co»&figN»a

tioe. The energy of a valence state is therefore in
general greater than that of the ground state ('S for
the N atom) by a promotion energy, here designated
as Eo.

One also can consider valence states of excited elec-

ks'= (1—~')'x2.—~x2,.; (15b)

hy is a negative hybrid if a is positive, and vice versa.
In the appropriate N atom hybrid U3 valence state for
stable compounds, mentioned previously, o. is positive,
but we later also contemplate an unsuitable but for-
mally possible Va valence state where it is negative.

The several atoms B, C, N, 0, and F all have among
their valence states one with electron con6guration of
the type 1s'hy' 'hy. -, where - - ~ stands for a set of
s electrons (0, 1, 2, 3, 4, s. electrons for B, C, N, 0, F,
respectively). It is these V„valence states (&i= 1, 2, 3, 2,
1 for B, C, N, 0, and F) which are utilized in the
ground states of those compounds of these atoms
(BH, CH, NH, FH, N2) for which Coulomb energy
calculations are reported herein. It can be shown"
that the hybrid V wave function of any electron con-
figuration k'ky' 'ky ~ ~ (k stands for 1s) is identical
with a simple linear combination of the ground state V„
function of con6guration k' 2s' 2po ~ ~ ~ (brieQy, k's'o ~ ~ ~

and the excited V„ function k'so' ~ ~ namely,

&P (k' ky" ky ~ ) = (1 n')'*&Pi (k—'s'o ~ ~)~
+n&P2(k'so' ~ ) . (16)

As mentioned in the preceding paragraph, n can be
either positive (the actual case in ground states) or
negative.

The functions &P, &Pi, and &P2 could be written out in
detail as linear combinations of Slater determinants,
but for our purposes in computing C, this is not neces-
sary. Although the use of valence-state &p's is essential

~ R. S. Mulliken, J. Chem. Phys. 19, 900 t'1951)."Cf. reference 2, Appendix II.

tron condgurations. For the N atom, the V3 valence
state of detailed con6guration 1s'2s 2p&r'2p&r 2p&r is of
special interest; its wave function can be constructed
as a linear combination of those of the 4I' and other
stationary states of the 1s'2s 2p4 con6guration. It is
well known that it is often necessary in the VB method
to use hybrid AO's to form valence bonds of sufhcient
strength to approach reality. The appropriate trivalent
valence state conhguration for the N atom may be
described using hybrid AO's as 1s' hy" ky 2p&r 2pt.

Here hy and hy' are two mutgully orthogonal hybrids
of 2s and 2p AO's. In general, any 2s—2p hybrid is of
the form

kx= ~x2.+ (1—~')'x2.. (15a)

with a positive for a positive hybrid and e negative
for equally well, n positive but (1—a')' replaced by—(1—n') &7 for a negative hybrid. ' Positive hybrids on
an atom give large, negative hybrids small, overlap
with 0 AO's of the partner atom in a diatomic mole-
cule provided, as is to be understood here, x~„, is so
defined that its positive lobe for either atom is directed
toward the other atom. If ky is written as in Eq. (15a),
the hybrid hy' orthogonal to it must be written as
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in correctly computing excigaege energies, the Coulomb

energy C depends only on the electron configuration
and can be computed using simple product wave
functions with one electron assigned to each valence
AO of the configuration and two to each nonvalence
(closed shell) AO. However, the value of C does depend
on the specific valence AO's used; for example, C is
different for the configuration 2po'2px (or even for
2pa. 2pm') than for the trivalent configuration 2po
2px 2' in which we are most interested.

Further, for a correct evaluation of the relative
importance of Coulomb and exchange terms, we must
keep in mind that the binding energy computed by the
VB method is relative not to the ground state energy
of the two atoms, but to hypothetical hybrid valence
states of the atoms as exemplified in Eqs. (16). The net
binding energy —U, relative to ground state atoms, is
obtained after adding P0+n'AP in Eq. (11).AP is the
additional configurational promotion energy which
would be required to go from the ground-configuration
to the appropriate excited-configuration valence state;
for example, hP corresponding to Kq. (16) is the
difference in energy between fi and f2 "P0+n.'hP is
then the total promotion energy from the ground state
to a hybrid valence state. Values of PD and hI' are
available in the literature, ' " and although the values
for n in actual cases are somewhat uncertain, approxi-
mate values can be computed" from available theo-
retically determined LCAO MO wave functions.

In addition to Eq. (16), which covers cases with
three 0- electrons in the valence shell, we need a similar
equation for atoms like lithium which have only one
such 0- electron. For these it is readily seen that

f(k'hy) = (1 n') &pi(k's—) +A/2(k'o), (17).

with hy as in Kq. (15a) and with a either positive
(actual ground state) or negative.

In the actual computations of C, each hybrid AO is
expanded as in Eq. (15a). In order to obtain full
orientation as to the possible e8ects of hybridization in
actual molecules, a variety of hypothetical cases with
various values of n have been calculated. Then to
obtain a realistic appraisal of the eGects of hybridiza-
tion in actual molecules, calculations have been made
for values of a believed to be approximately correct
for these molecules. In addition, extensive calculations
have been made for the case of two H atoms with one
or both excited to a 2-quantum AO for hybrid and non-
hybrid forms of the latter.

III. DETAILS OF THE CALCULATIONS

The AO's used here are normalized Slater AO's,
namely,

"R. S. Mulliken, J. Chem. Phys. 2, 782 (1934); W. Moffitt,
Proc. Roy. Soc. (London) A96, 524 (1948};H. O. Pritchard and
H. A. Skinner, J. Chem. Phys. 22, 1936 (1954).

'2 R. S. Mulliken, J. Chem. Phys. 28, 1833 (1955).
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TABLE II. Coulomb energies for Hb: configurations (is ) (2hyb) and (is,) (2prrb). '

ConGguration

1.6 3.2
Internuclear distance

6.4 8.0 9.6

(is ) (2hy) -(2) '

(15)~/4

(3)'/2

0.05000
(o.o64)

0.05739
(0.056)

0.05724
(o.o49)

0.05543
(o.o42)

0.05255
{0.037)

0.04516

—0.00133
(—0.0006)

—0.00286
(—o.'oo6)

—0.00837
( —0.013)

—0.01487
(—o.oio)
—0.02003

(—0.025)

—0.00084
{—0.0008)

—0.00387
(—o.oo4)

—0.00746
(—0.007)

—O. 01126
(—0.011)
—o.01387

( —0.014)

—0.00028
(—o.oooo4)

—o.00178
(—o.ooi)
—0.00328

(—o.oo3)

—O. 00482
(—o.oo4)

—0.00583
( —0.005)

—0.00008
{—0.0001)

—0.00062
(—o.ooo5)

—0.00113
(-o.ooi)
—0.00165

(—o.ooi)
—0.00198

(—o.oo2)

—0.00002
(-o.oooo4)

—0.00018
(—o.'oooi)

—0.00033
(—o.ooo3)

—0.00049
(—0.0004)

—0.00059
(—0.0005)

—0.01850 —0.01085 —0.00432 —0.00144 —0.00043

(is ) (2p~) 0.06190 0.00071 —0.00031 —0.00009 —0.00001 —0.0

~ See footnotes to Table I.

1s= (i ts/~)-: exp( —f-,r)

2s"= (f'ss/3x) ' r exp (—t'sr)

2po' cose

2pn. = (t s'/rr)'*r exp( —&sr) ~ 2~ sing exp(ip) (18)

2prl J 2—'* sin8 exp( —ip).

where Si2 is the mononuclear overlap integral between

the 1s and the 2s" AO's, its values being 0.48384983,
0.22047827, 0.22792130 for H, C, and N, respectively.
Since, however, the computation of C is much simplified

using 2s" instead of 2s'", yet the values of C are but
little affected, and since the Slater AO's used even if
orthogonalized are (except for H atoms) but rough

approximations to best AO's, most of the following

calculations have been made using 2s" AO's.

The required integrals .are exclusively two-center

nuclear attraction and Coulomb-type interelectronic
repulsion integrals. " These integrals have here been

computed exactly at several internuclear distances for

H2, N2, CH, but only for the equilibrium distance for
all the other molecules (Li&, Fs, LiH, BH, NH, FH).
For H2 the integrals were easily evaluated on a desk

"C.C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).

In all cases the computations have been carried out for
Slater's values of ft and f's. The s axis centered on each
atom lies along the internuclear axis, with the positive
s directions toward each other. The AO's indicated in

(18) constitute an orthonormal set, with the exception
of the 2s" AO which is not orthogonal to the 1s AO.
The orthogonalized 2s is given by

2s'"= (1-Sts') —IL(2s") —Sts(1s) ],

machine to six to eight significant figures. " For the
other molecules the integrals were evaluated with the
use of a Univac Scientific Model 1103 computer using a
fully automatic program. "

As already indicated, the evaluation of the promotion
energy for various states of hybridization has been done

by means of the expression P= Ps+n'hP. For Ns and
CH, C was evaluated at various internuclear distances
for degrees of promotion n' [cf. Eq. (16)j equal to 0,
0.50, 1.0. For each of the molecules Li2, N2, F2, LiH, BH,
CH, NH, and FH, C was evaluated at the equilibrium
distance for n' values 0, 0.25, 0.50, 0.75, 1.0, and for
a value corresponding to the actual state of hybridiza-
tion as determined" from LCAO —MO —SCF calcula-
tions. The promotion energy was obtained using exist-
ing tables' " for I'0 and AI'.

For each degree of promotion n', the calculations have
been carried out for the two possible hybrid atomic
configurations which correspond to a positive or a
negative value of n in Eq. (15a) and in Eqs. (16) or
(17). In all cases, positive n corresponds to use of a
positive hybrid for the o. valence etectrorb but to a negative
hybrid for the two additional (lone-pair) o valence-
shell electrons in case these are present.

If we had used self-consistent field instead of Slater
AO's in our calculations, the results probably would
have been somewhat more realistic, especially at larger
internuclear distances. However, the major features
of our results would certainly not have been changed.

IV. RESULTS AND THEIR INTERPRETATION

The Coulomb energy for H& has been computed over a
broad range of internuclear distances for various con-

'4The Coulomb-type interelectronic repulsion integrals were
evaluated using a four-point Lagrangian interpolation in the
"Tables of two-center Coulomb integrals between 1s, 2s and 2p
orbitals, "by C. C. J.Roothaan, Spec. Tech. Rept. , Department of
Physics, University of Chicago, 1955 (available on request).

"C.C. J. Roothaan, J. Chem. Phys. 28, 982 (1958).
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6gurations in which the two electrons (one for each
atom) are assigned to a variety of combinations of the
atomic orbitals 1s, 2s, 2po, 2pir, and various hybrid
orbitals. The results are listed in Tables I—IV. In all the
Tables the values in parentheses have been evaluated
using the 2s"AO. The value of o. is indicated when
hybrid orbitals are involved. The results are also
displayed for the most interesting cases in Figs. 1 and 2.
The computed Coulomb energies are in some cases
astonishingly large; the largest —C (3.7 ev at r =2.2 A)
is found for the configuration (2di, ) (2dib), where
(2di) indicates a positive digonal hybrid AO (a=
+1/2&). For most of the cases, C corresponds to an at-
traction. But for the configurations (2pn;) (2piri, ) and
(2di, ') (2dii, '), where (2di') indicates a negative diag-
onal hybrid AO (n= —1/2&), and for a few others,
C corresponds to a repulsion.

Although these results are not directly applicable to
actual states of the H2 molecule nor to many-electron
molecules, we believe that they are highly significant
as to what may be expected in actual cases. They
clearly suggest (in agreement with the early computa-
tions mentioned in the Introduction) that Coulomb
energies make major contributions to binding energies
when 2po or, especially, positive 2s—2po hybrid AO's
are involved, even though for H2 at r, in its ground
state —C is only one percent of the Heitler-London
binding energy.

)In fairness to ground state H2, it should be noted. that
if 1s, 2pa. hybrid instead of pure 1s AO's had been used,
—C would no doubt be larger for the ground state.
However, we ought then for other atoms to extend
the hybridization used to include higher than valence-
shell quantum numbers. In the present formulation,
any eGects on U which would have resulted from such
extension are taken up in. E of Eq. (11).j

Even though the results on H2 may at first sight
seem surprising, an examination of the charge distribu-
tions involved shows that they are qualitatively en-
tirely reasonable. Each C consists of two attraction and
two repulsion terms, which tend to cancel, their re-
spective values being roughly —1/r, —1/r, +1/r
(nuclear attractions and interelectronic repulsion), and
+1/r (nuclear repulsion, always exactly 1/r) It is.
seen that the 6rst three terms should be relatively
close to the rough values &1/r in the s, si, case. For the
2px, 2px& or 2py, 2py& case (using real AO's), it is seen
that the attractions of nucleus b for electron u and
vice versa are each less than 1/r, while the interelec-
tronic repulsion is greater than 1/r, making the over-all
effect a repulsion. For the 2pa, 2po.b and especially for
the 2di, 2dig case, the two attraction terms are each
considerably greater than 1/r, and it looks plausible
that this effect can outweigh (as the calculations show
it must) the increase which also occurs in the inter-
electronic repulsion. Conversely, the two attraction
terms are smaller than 1/r in the 2di, ' 2dii,

' case, and
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TABLE IV. Coulomb energies for H2. configurations (2hy, ) (2p2rb).

1.6 3.2
Internuclear distance

4.8 6.4 8.0 9.6

—(2) '

(13)'/4

(3)'/2

(2) '

0.32720
(o.356)

0.33019
{0.325)

0.32094
(o.'3oi)

0.30879
(o.277)

0.29806
(O. 264)

0.29507

0.08541
(O.094)

0.07178
(o.o61)

0.04905
(0.032)

0.02380
(0.003)

0.00518
(—o.ois)

0.01881

0.03062
(o.o33)

0.01308
(0.010)

—0.00630
(—o.oii)
—0.02654

(—0.032)

—0.04023
(—0.046)

0.01310
(o.o14)

0.00066
(o.ooo3)

—0.01140
(—0.012)

—O. 02365
(-o'.o25)

—0.03159
(—0.032)

0.00642
(o.oo6)

—0.00088
{—o.ooo8)

—0.00749
(—o.oo7)

—0.01409
(-o.oi4)
—0.01827

(—o.oi8)

0.00351
(o.o04)

—0.00058
(—o.ooos)

—0.00407
(—o.004)

—0.00752
(—o.oo7)

—0.00965
(—o.'oio)

—0.02269 —0.01915 —0.01097 —0.00557

~ See footnotes to Table I.

this eRect doubtless outweighs the reduced inter-
electronic repulsion, so that the over-all eRect is
repulsion.

Computations over a broad range of internuclear
distances, similar to those for H2 but now exemplifying
more typical many-electron molecules in their ground

states, have been made for CH and N2 including all.
electrons. The results are shown graphically in Figs.
3—5. (The detailed numerical values of C are of no great
interest and so are not tabulated here. ) The results
obtained are in many respects striking. They are con-
sistent with those obtained for H2 and qualitatively
understandable in a similar way.

Figures 3 and 4 show C as a function of r for CH and
N2, for carbon atom electron configurations varying

-1—
CP

QJ 0

-2—

-5

FIG. 1. Coulomb energies of two hydrogen atoms as functions
of r, with the two electrons assigned to AO's as follows. Curve 1:
1s„ isb, curve 2: 1s, 2sb, curve 3: is, 2dib, curve 4: 1s, 2dib',
curve 5: 1s, 2pob, curve 6: is, 2p~b. The 2s'" AO was used in the
calculations. Curves UHz, and U, „~t~. represent the interaction
energy of two hydrogen atoms with the two electrons assigned to
is atomic orbitals, the first one corresponding to the Heitler-
London interaction energy and the latter to the experimental
energy.

FIG. 2. Coulomb energies of two hydrogen atoms as functions
of r, with the two electrons assigned to AO's as follows. Curve 1:
2s„2sb, curve 2: 2s, 2Po.b,

' curve 3: 2s, 2dib, curve 4: 2di, 2dib,.
curve 5: 2po, 2dib,' curve 6: 2pa. , 2pab,' curve 7: 2di, 2dib',
curve 8: 2p2r„2p2rb. The 2s'" AO was used in the calculations.
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from 1s'2s'2po 2pz (a ground state configuration) to
1s'2s 2pa'2pz, and for nitrogen atom configurations
from 1s'2s'2po 2pir 2pz. to 1s'2s2po'2pz. 2pir. It is
seen that —C is especially large for the configurations
involving (2di)'(2di') as might have been expected
from the results for H2. Notably, —C is still increasing
at the equilibrium values r, of the actual molecules
CH and ¹2,and very strongly so for the configurations
involving (2di) '(2di') . C must, however, reach a
minimum at some value of r(r., although in several
cases our computations were not made at small enough
r values to reach this. Further comment on Figs. 3
and 4 is made in the following.

In terms of a practical application of the foregoing
results to the understanding of the binding energy 8 of
CH and N2, it is necessary to keep in mind the follow-
ing two points: (1) Except in the case of the ground
state configurations, it is necessary to add a rather
large promotion energy Po+n'hP to C in estimating
the net contribution of C to the interaction energy U of
Eq. (11). (2) Although hybrid configurations of which
the extreme example involves (2di)'(2di') are very
favorable for large —C, they are very unfavorable with
respect to the exchange energy, whereas hybrids of
which (2di) (2di')' is the extreme example are most
favorable for the latter, although relatively unfavorable

0

-0—

-20—

-40—

-50—

-60—

r{A)

FiG. 4. Coulomb energy of N& as a function of the internuclear
distance for the following atomic electron configurations.

Curve 1: (1s)'(2s)'(2po. ) (2px) (2p$);
Curve 2: (1s)2(2di')'(2A') (2pm) (2pvr);
Curve 3: (1s)2(2Ci') (2di)2{2pm) (2pa);
Curve 4: (1s)2(2s) (2po)~(2pm) (2pm).

The 2s'" AO was used in the calculations.

OP

4
LLj

r{A)
F&G. 3. Coulomb energy of CH as a function of the internuclear

distance for the following atomic electron configurations.

Curve 1: (1sc)~(2sc)'(2poc) (2p&c) & (1sH);
Curve 2: (1sc)'(2dic')'(2dic) (2p~c), (1sH) .
Curve 3: (1sc)'(2dic') (2djc)'(2P~c), (1sH);
Curve 4: (1sc)2(2sc) (2poc}'(2p~c), (Isa).

The 2s'" AO was used in the calculations.

for C. [The closed shell (2di)' gives maximum exchange
repulsion, and 2di gives very little exchange attraction,
while (2di')'(2di) gives minimum exchange repulsion
and maximum attraction. ) Since it is convincingly
known, for example, from SCF—LCAO —MO calcula-
tions, " that the actual states of hybridization in these
molecules lie between 2s'2P0 and (2di')'(2di), it is
clear that the exchange terms must in CH, ¹,and
other actual cases have a predominant inQuence.

Figure 5 shows for CH and N2 the experimental
ground state potential curves (approximated by Morse
functions), together with C+Po+n'hP computed for
the actual degree of hybridization n' at r, based on SCF-
LCAO —MO computations. The asymptotes of the
curves C+Po+n~hP are Po+n'DP; this does not mean
that there is any actual promotion at r= co, but
merely that for the degree of hybridization indicated,
the sum of C, the exchange energy X, and R of Eq. (11)
have to overcome a handicap of Po+n'hP. It is
of much interest that at r„C alone has somewhat more
than overcome this handicap in the case of CH, and
about ~~ overcome it in the case of N2. This leaves the
exchange energy X plus R to do the rest. R is a measure

"C. W. Scherr, J. Chem. Phys. 28, 569 (1955); M. Krauss,
ibid. 28, 1021 (1958); B. J. Ransil (unpublished).
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of the inadequacy of simple covalent VB-type wave
functions to reproduce the actual binding energy; it is
simply the difference between the VB computed energy
and the experimental energy. It includes some allevia-
tion of Po corresponding to the fact that actually the
energy is minimized without full promotion from the
atomic ground state (e.g. , 'S for the N atom) to the
valence state of the same configuration,

'" but must be
attributed primarily to what may be described as
induced con6guration interaction, consisting of the
introduction of ionic and various excited-con6guration
atomic states into the wave function. (Hybridization
has already brought in one type of excited-configuration
state, whose effects are included in C and X.) In the
case of H2, R constitutes one third of the total binding
energy.

Computations similar to those for N~ and CH as
embodied in Figs. 3—5, but for r, only, have been carried
out also for Li2, F2, LiH, BH, NH, and FH. The com-
puted values of C for various degrees of promotion
(also for CH and Ns) are given in Table V. Of main
interest are the relative contributions of C, X, and E to
the binding energy 8 (referred in each case to the ap-
propriate hybrid valence state), as summarized in

Table VI. From the last column of Table VI it is clear
that for typical nonpolar or not very polar diatomic
molecules, C makes a major contribution, although
probably X is still usually the decisive factor as gen-
erally believed. However, for Li&, C is actually very
nearly as large as 8+I', indicating that X here is of
quite minor importance.

"The promotion energy I'0 for each C or N atom is required
for the exchange (though not for the Coulomb) forces to be
maximally effective. This fact is partially alleviated, however, by
a part of the contribution E corresponding to the fact that actually
the energy after all is minimized without complete promotion to
the valence state; for example, in ¹,the actual valence state
undoubtedly corresponds more to 4S and less to 'D and 'I' than
does the Vi valence state of configuration k's'ns. ir. LCompare
H. H. Voge's discussion of the actual state of the carbon atom in
methane: J. Chem. Phys. 4, 581 (1936); 16, 984 (1948); and see
reference '2g.

I ta)

FIG. S. Experimental interaction energy U and Coulomb energy
C computed for the hybrid valence state believed to exist at ~,
for CH and N& $12% promotion from (is)'(2s)'(2Pa) (2Pir)
toward (1r)s(2r) (2pe)s(2pgr) for C atom in CH, 26% from
(1s)2(2s)'(2po) (2p~) (2pH) toward (1s)2(2s) (2p0)'(2p~) (2pvr)
for N atoms in Ns, with positive hybrid 0 valence AO in each case j.
The curves U are Morse curves. In computing C the 2s'" AO was
used.

It seems fairly certain that similar conclusions will
hold for molecules formed from higher-row atoms
and for polyatomic molecules. For strongly polar or
ionic molecules, our calculations do not do full justice
to C. It seems fairly clear that for such molecules the
computed C should be increased by the extra ionic
attractions involved. In Eq. (11) these added contribu-
tions are represented only as a part of E. In Table VI,
the relatively small computed values of C as compared
with 8+I' in the cases of LiH and HF really should
have been considerably increased by adding such polar
contributions to —C and subtracting them from
—(X+8).

Although, as we have seen, the promoted states
important in actual molecules formed from first-row
atoms involve always the use of a positive hybrid for
the o- valemce elec(roe AO, it is nevertheless of interest
to extend somewhat the consideration of the behavior
of C as a function of the state of hybridization which
was begun in Figs. 3—5 and Table V. Figure 6 displays
C as a function of degree of s—+po promotion, as com-

puted at r. only, for LiH, Li2, CH, and N2, for each of
two cases: (a) positive hybrid for o valence electron,
hence positive a in Eqs. (16) and (18)—full-line parts
of curves; (b) negative hybrid for o valence electron,
hence negative n in Eqs. (16) and (18)—dashed parts
of curves. In each case, the actual state of hybridization
is marked on the curve —it falls on the full-line part.
Especially to be noted is the fact that for those cases
(LiH, Li&) where there is only a single o. electron in the
valence shell, C falls near the bottom of the whole

curve, but where there are three (CH, Ns, and others),
it falls near the top. Thus C cooperates with X in the
former but 6ghts X in the latter case; this accounts for
the unusual importance of C in compounds such as Li2.

The reason for this contrasting behavior in the two

types of cases is clear. As can be seen from the dis-
cussion of the calculations on H2 at the beginning of
Sec. IV, replacement of a po or especially of an s AO

by a positive hybrid makes C more attractive, while

replacement by a negative hybrid makes it less at-
tractive or more repulsive. When there is only one 0.

electron in the valence shell, the positive hybrid, which
is favorable for exchange as well as for Coulomb bind-

ing, is obviously the one which is occupied in the ground
state.

But when there are three 0 electrons in the valence
shell, two must go into a lone pair while the third
occupies the bonding 0. orbital. In this case, either of
two choices seems plausible: the lone-pair electrons
might occupy a negative hybrid and the valence elec-

tron a positive hybrid orbital or vice versa. In either

event, the two hybrid orbitals used have to be ortho-

gonal to each other. The total Coulomb energy is the

sum of the lone-pair and valence-electron contribu-

tions. Our calculations show that this total Coulomb

energy is strongly attractive if the two lone-pair elec-
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TAsx,z V. Coulomb energies for some diatomic molecules. a

Degree of promotion a' (%)'

Molecule 0 valence electron& 50 100
Actual
value~

Li2

N2

Fs

LiH

CH

NH

FH

Positive hybrid
Negative hybrid

Positive hybrid
Negative hybrid

Positive hybrid
Negative hybrid

Positive hybrid
Negative hybrid

Positive hybrid
Negative hybrid

Positive hybrid
Negative hybrid

Positive hybrid
Negative hybrid

Positive hybrid
Negative hybrid

—0.013—0.013

—0.549—0.549

—0.017—0.017

—0.011—0.Oii

—0.104—0.104

—0.116
—0.116
—0.114—0.114

—0.105—0.105

—0.067
0.032

—0.250—0.965

0.029—0.034

—0.033
0.00i

-0.073—0.155

—0.077—0.178

—0.071—O. 181

—0.053—0.183

—0.084
0.029

—0.279—1.091

0.029—0.033

—0.041—0.001

—0.077—0.172

—0.081—0.197

—0.075—0.201

—0.055—0.205

—O. 091
9.006

—0.437—1.128

0.007—0.037

—0.043—0.009

—0.094—0.176

—0.100—0.201

—0.096—0.205

—0.078—0.208

—0.062—0.062

—O. 899—0.899

—0.041—0.041

—0.031—0.031

—0.145—0.145

—0.162—0.162

—0.162—0.162

—O. 155—0.155

—0.047

—0.247

—0.003

—0.042

—0.074

—0.083

—0.084

—0.075

~ Energies in atomic units. All values are computed for each molecule at its equilibrium internuclear distance (cf. Table VI) . Values for N2 and CH were com-
puted using orthonormal AO's, all others using 2s". The computations were made to five figures but have been rounded o8 to three.

The designations "positive hybrid" and "negative hybrid" refer to the o' valence electro', and, respectively, correspond to positive or negative a in Eqs. (15)-
(17).

Cf. Eqs. (15)-(17).
~ See fourth column in Table VI.

TABLE VI. Contributions of the Coulomb, exchange, and resonance energies in Eq. (11) to the binding energy (in ev) .'

t, (A) 100n' Pp
—100C/—C —(x+z) (a+I)

Hp
L12
N2
F2
LiH
BH
CH
NH
FH

0.7416
2.6725
1.0940
1.4530
1.5953
1.2325
1.1198
1.0380
0.9171

4.75
1.05
9.90
2.81
2.59
3.66
3.65
4.00
6.65

0
9

26
2

59
19
12
8
5

0
0
1.70
0.02
0
0
0.49
1.70
0.02

0
1.84

12.60
20.92
1.84
6.28
9.45

12.60
20.92

0
0.33
9.95
0.88
1.09
1.19
1.62
2.71
1.07

4.75
1.38

19.85
3.69
3.68
4.85
5.27
6.71
7.72

0.06
1.28
6.73
0.09
1.15
2.02
2.27
2.27
2.04

4.69
0.10

13.12
3.60
2.53
2.83
3.00
4.44
5.68

1
93
34

2
31
42
43
34
26

All energies are in ev. The equilibrium internuclear distances r, and binding energies B, where B is —U(r,), have been taken from G. Herzberg, Molecular
SPectra and Molecglar Structure (D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1957).To obtain the Bvalues, the empirical binding energies have been
corrected by adding the zero-point energy in each case.

The a~ values given are approximate actual values of the degree of promotion based on theoretical computations by the SCF-LCAO-MO method. (see refer-
ence 16.)

The C values are from the computations of the present paper (cf, Table V). The values for Np and CH were computed using orthonormal AO's, all others using

trons occupy the positive hybrid and small or repulsive
if they occupy the negative hybrid) (see Fig. 6). If
only the Coulomb energy were involved, the lone-pair
electrons would then in the ground state certainly oc-
cupy the positive hybrid, giving extremely strong
binding. However, they actually are found to occupy
the negative hybrid, even though the Coulomb energy
contribution to the binding is then enormously re-
duced. This must be attributed to the fact that occupa-
tion of the positive hybrid by the lone-pair electrons
would result in a very strong exchange repulsion (non-
bonded repulsion) toward the other atom, together

with only a weak attraction by the bonding electron
in the negative hybrid, whereas for occupation of the
negative hybrid by the lone-pair electrons and of the
positive hybrid by the cT valence electron, the net
exchange energy is very much more favorable. Evi-
dently the minimization of the exchange energy counts
more than minimization of the Coulomb energy in the
three-a-electron situation where the two cannot be
simultaneously minimized.

The results listed for Li2 in Table VI not only show a
relatively large —C (1.28 ev) but also a remarkably
small —(X+R), 0.10 ev, of which some part must be
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FIG. 6. Coulomb energy of LiH, Li~, CH, N~ at r, as a function
of the degree of promotion n' (full-line parts of curves: positive
hybrid for 0 valence electron; dashed-line parts of curves: negative
hybrid for o valence electron). In each case, what is believed to
be the actual state of hybridization is marked on the curve. For
LiH, Li2, the 2s" AO was used; for CH,¹,the 2s'" AO.

' H. M. James, J. Chem. Phys. 2, 794 (1934).
'9 James made also a more accurate variational calculation using

elliptic coordinates, but this is not useful for present purposes.

attributed to —R. Even supposing R negligible (in
fact, the literature" indicates that the wave function
actually has very little ionic character, which would be
the main contributer to R here), —X is still remark-
ably small. Now —X necessarily includes not only the
exchange attraction between the valence electrons but
also the exchange repulsions between each E shell
(1s' lone pair) on one atom and the valence electron on
the other and (but probably negligible) between the
two K shells; also' multiple-exchange terms. We must
probably conclude that in Li2 the nonbonded repulsions
have nearly canceled the exchange attraction, which
one would otherwise have expected to be much larger,
perhaps about 1 or 2 ev.

It is of interest here that the 1s,'—2hy& nonbonded
repulsions when computed by Mulliken's rough em-
pirical magic formula for a 9% positive hybrid 2hy
amount to 1.16 ev, so that the +0.10 ev value found

previously for the net —X could be accounted for by
+1.26 ev bonded exchange attraction minus 1.16 ev
nonbonded repulsion. (The magic formula gives 2.66 ev
for the bonded attraction but, as is discussed further
in Sec. V, it lumps C and X together. ) These rough
results are in agreement with the earlier conclusions of
H. M. James" that the binding energy in Li, is greatly
diminished by nonbonded repulsions. James' VB
calculation" assumed no hybridization, in which case
—C is small (cf. Fig. 6 or Table V) though much
larger than in H2. The assumption of 9% hybridization
makes —C much larger, to give the results shown in
Table VI, where nearly all of B is attributable to —C.

In Fig. 6, however, one notes that —C would be con-
siderably larger if there were more hybridization. That
this is not actually realized may probably be attributed
to X+a.'hP: the nonbonded repulsions plus n'AP in-

creasingly raise the energy as n increases, and although

—C and the bonded attraction also continue to increase
with n, their sum may well increase less rapidly than
the other terms so that energy minimization occurs
at 9% hybridization.

An examination of Figs. 3—6 now throws further light
on the relations of C and X in general. The fact that,
for r=r„ the Coulomb binding energy —C for CH
and especially for N2 in Fig. 5 is still continuing to
increase strongly, while the total binding energy —U
is decreasing, can only mean that the exchange part
—X of the binding energy is now decreasing strongly
and must have already begun decreasing even at some r
value greater than r.."How can this be explained? It
should be recalled that X is a sum of a number of ex-
change terms, including the bonding terms but also
several nonbonded repulsion terms. "It must probably
be concluded that on the whole these exchange repul-
sion terms (including those involving the E shells)
increase rapidly for r&r„while the bonding terms
increase more slowly or (for hybrid 0 bonds) finally
reach a maximum and then decrease. "One thus sees
that these exchange repulsions must play a very im-
portant part in limiting the stability of most molecules
and determining their r, values. A familiar extreme
case is that of F2, but the present calculations show

that also in N2 and even in hydrides such as CH, these
nonbonded repulsions are important and increasingly
so for r &r,. Figure 4 shows that if interatomic exchange
forces were absent, —C might sometimes reach very
large values at very small r, values.

In complete contrast, C for H2 (cf. Fig. 1) has its
minimum at r&r„and one sees that the roles of X
and C are now reversed; X must continue to increase
for r&r., while C has become repulsive instead of
attractive. In H2, X consists only of a bonded attraction
and includes no nonbonded repulsions.

V. CONCLUSIONS

The analysis in Sec. IV of the results obtained in the
present calculations shows that the usual procedure in

VB theory of neglecting Coulomb energies, not to
mention promotion energies, nonbonded repulsions and
attractions, and overlap integrals, can yield only a
caricature of the true structures of bond energies. The
empirical exchange integrals obtained by the neglect
of most or all of these factors can seldom be expected
to have much relation to the true theoretical exchange

integrals or even to the effective exchange integrals g
of Eq. (4). It appears that they must usually corre-

spond to composites of Coulomb and exchange terms

strongly modified by overlap corrections and the other
neglected terms mentioned. It is further evident from

~ Of course —8 must also be changing, but experience indicates
that it should, if anything, still be increasing at r &r,."And some nonbonded attraction terms, but these probably are
smaller and vary less rapidly with r.

"Like the corresponding overlap integrals: cf. R. S. Mulliken,
J. Am. Chem. Soc. 72, 4493 (1950).



Sec. IV that the true exchange integrals and even the
effective exchange integrals g must often be much larger
than is usually supposed.

In the past, true VB theory calculations except for
H2 have been much too discouragingly complicated,
but they have now become worth considering again in
view of the fact that for diatomic molecules at least,
all the necessary individual one- and two-electron
integrals can be obtained by machine calculations.
However, in Eq. (11), computation of the term X,
which one may hope to express in the form g;X;(y s,
8's), in general involves so numerous and complicated
integrals as to make an exact calculation still extremely
dificult, though not entirely impracticable for simple
molecules. Some CGort toward obtaining reasonably
good simpli6ed approximations of the form gX; is
being made in this Laboratory, although vrhether this
will be successful is not yet apparent. Even then, one
vrould still have to face the serious problem of practic-
able approximate expressions for the terms denoted by
Bin Eq. (11).

In Rn cRrllcl pRpcI') onc of thc writers ploposcd R
"magic formula" similar to Eq. (11), including simple
expressions for promotion energy, bonded attraction,
and nonbonded repulsion and attraction terms ex-
plicitly. Parameter values for these expressions @&ere

determined empirically from three molecules so as to
make it possible to compute bond energies for other
molecules. The magic formula differed from Eq. (11)
in two respects: (1) it did not include a C term; (2)
the bonded attractions vrere represented by expressions
based on molecular orbital rather than VB theory.
By means of item (2), part of E of Eq. (11) corre-
sponding to ion-pair terms in VB theory vras, in CGect,
taken into the bonded attraction terms. The need to
improve the magic formula, in particular by explicitly
including C instead of lumping it into the eft'ective
bonding and exchange integrals, was discussed at
some length, "and it was suggested that an improved
magic formula including C explicitly might lead to
improved agreement between computed and observed
binding energies. The present work supports this sug-
gcstlon.

In other earlier papers, "it was shown that there is a
nearly one-to-one correspondence betvreen the oc-
currence, on the one hand, of positive (bonding) and
negative (antibonding) overlap populations in LCAO-
MO theory and, on the other hand, of bonded attrac-
tions and nonbonded repulsions in VB theory. How-
ever, the correlations are often somewhat rough. This
may vrell be ascribable in part to the fact that both
theories in their usual form give rather poor approxi-
mations to true molecular wave functions. 25 The present

O' Reference 2, p. 309.~ R. S. Mulliken, J. Chem. Phys. 28, 2343 (1955}.
2' In LCAO theory, somewhat better results might be expected

if self-consistent 6eld AO's were used. LCf. A. M. Karo, J. Chem.
Phys. $1) 182 (1959).j

paper suggests the possibility that the correlations
found might be improved if proper allowance vrere
made in the VB theory for the Coulomb energy terms.
On the other hand, it should be pointed out that in
the SCF—LCAO MQ calculations, the to/al energy
including both resonance and Coulomb terms is mini-
mized, so that the overlap population should be a
measure (to the extent that the approximation is a
good one) of the quantum mechanical response of the
electron distribution to all the forces acting. Hence,
perhaps after all, the overlap populations should rot
be closely correlated with pure exchange terms; The
matter may be worth further study.

VI. SUMMARY

Computations of the Coulomb energy part of the
binding energy in the valence-bond method, using
Slater atomic orbitals, with hybridization, have been
made for LlH) BH) CH) NH) HF) L12) N2) Rnd F2) Rnd
for excited states of H2. The Coulomb energy is much
larger for P0 and especially for s-pg hybrid bonds than
for s bonds. Using degrees of hybridization which are
believed to be actually present, it amounts to 30—40%
of the gross bond energy in typical cases, as compared
with 1%%uo for Hm at equilibrium in its ground state. For
L4 the figure 1s 93%%uo.

In hypothetical cases with more favorable hybridiza-
tion, the Coulomb energy would assume very large
values. For two ground-state N atoms vrith their 2-
quantum lone-pair electrons in positive digonal hybrid
orbitals, the computed gross binding energy wouM
exceed 60 cv, at an r, of perhaps 0.5 A, and even after
subtracting about 20 ev promotion energy, the net
binding energy vrould be as much as 50 ev. That'this
large binding energy for N2 is not actually realized must
be attributed to an overcompensating extremely large
exchange repulsion between the lone pairs in the two
atoms. Contrastingly, in the actual N2 molecule, the
lone-pair 0 electrons are in negative hybrid orbitals,
and the bonding 0. electrons in positive hybrid's, greatly
vrcakening both the total Coulomb attraction and the
nonbonded exchange repulsion but strengthening the
exchange attraction. Nevertheless, the Coulomb at-
traction still contributes 6.7 ev to the (gross) binding
energy. These and other conclusions are discussed.

The fact that in Lim the Coulomb energy is 93% of
the gross binding energy is explained by the fact that,
since there are no lone pairs in the valence shell, maxi-
mum Coulomb energy and exchange attraction energy
are novr mutually compatible instead of antagonistic.
The smallness of the net exchange energy must be at-
tributed to the presence of strong exchange repulsions
involving the E shell of each atom and the valence
electron of the other.
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