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the microscopic variables at the present. Such a system
is "MarkofFian" in the trivial sense of being deter-
ministic. (Quantum mechanical systems arealso covered

by these remarks. For these, determinism means tk.at
the probability of any future event is determined by a
complete speci6cation of the present state. )

2. The Auctuations are computed with reference to
an equi/ibrium state.

By using such modest assumptions, Callen and co-
workers, ""Kubo, "Lax,"Ekstein and Rostoker, "and
others44 have been able to establish a generalized
quantum mechanical Nyquist theorem relating noise in
some variables to the admittance of the system for
these same variables. 4' A corresponding classical proof
for a single variable was given by Richardson. 4'

Richardson also tried to calculate the noise in a "driven
system, " i.e., the Quctuations from a nonequilibrium

steady state. He found that there was then no necessary
connection between the noise and the impedance of the
system. In other words, the conventional Nyquist
theorem breaks down for nonequilibrium situations.

There has also been work on irreversible processes

' See R. B. Barnes and S. Silverman, Revs. Modern Phys. 6,
162 (1934) for a discussion of Brownian motion as a natural limit
to measuring processes.

'9Proceedings of the First, Second, and Third Berkeley Syrrz-
Posia on Afathematzcal Statistics and Probability, Jerzy Neyman,
editor .(University of California Press, 1949, 1951, 1956)."J.E. Moyal, J. Roy. Stat. Soc. Series 13, 2, 150 (1949). An
extensive review paper emphasizing mathematical and physical
foundations of stochastic processes.

' E. M. Montroll and M. S. Green, Ann. Rev. Phys. Chem. 5,
449 (1954). References 26-31 provide useful review papers.

"A. Van der Ziel, Proc. Inst. Radio Engrs. 46, 589 (1958).
"A. Van der Ziel, Proc. Inst. Radio Engrs. 46, 1019 (1958).
'4 K. M. van Vliet, Proc. Inst. Radio Engrs. 46, 1004 (1958)."R. L. Petritz, Photocondgctivity Conference (John Wiley R

Sons, Inc. , New York, 1954), pp. 49—77.
3'R. L. Petritz, Proc. Inst. Radio Engrs. 40, 1440 (1952).

References 32—36 include a review of the experimental literature
on noise in solids.

"H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
"Callen, Barasch, and Jackson, Phys. Rev. 88, 1382 (1952)."J.Jackson, Phys. Rev. 87, 471 (1952).' T. A. Kaplan, Phys. Rev. 102, 1447 (1956).' R. Kubo, Can. J. Phys. 34, 1274 (1956); J. Phys. Soc. Japan

12, 570 (1957),
4~ M. Lax, Phys. Rev. 109, 1921 (1958)."H. Ekstein and N. Rostoker, Phys. Rev. 100, 1023 (1955).
44H. Mori, J. Phys. Soc. Japan 11, 1029 (1956). J. Weber,

Phys. Rev. 101, 1619, 1620 (1956).
4' References 36—".4 consider the mean response of a system to

erst order in the driving forces. H. B. Callen, Phys. Rev. 111,367
(1958) has calculated the probability of any speci@ed response to

erst order. W. Bernard and H. B. Callen, Revs. Modern Phys. 31,
1017 (1959) have calculated the rfzean response to second order
in the driving forces, and the fluctuations to first and second order
in the driving forces. The first (second) order noise in a weakly
driven system has been expressed in terms of third (fourth) order
time-displaced moments at equilibrium. This result is a purely
formal one, since it is no easier to compute equilibrium time-,
displaced higher moments than it is to compute the noise directly.
However, the Bernard-Callen work represents the first micro-
scopic calculation of noise in a nonequilibrium state.

46 J. Richardson, Inst. Radio Engrs. Trans. on Inform. Theory
IT-l, No, 1, 62 (1955).

by Bergmann" and Lebowitz" in which the 6rs t
assumption is modified. The system is treated in a
Hamiltonian way, but the interaction with reservoirs
is handled by a stochastic assumption.

Before leaving the microscopic domain, we should
note that the fluctuations in one variable, or in any
pair of variables at one time, can be computed by means
of statistical mechanics (which also makes assumptions
f and 2). See, for example, Tolman, ' Fowler, " and
Landau and Lifshitz. 4

An excellent development of the theory of Quctua-
tions of extensive thermodynamic parameters has been
given by Greene and Callen49 who provide formulas for
second-, third-, and higher-order correlation moments
in terms of derivatives of extensive parameters with
respect to intensive parameters, i.e., the response of a
system's extensive parameters to static applied forces
(see Sec. 4). A knowledge of the complete response to

' a static force of arbitrary size provides a knowledge of
all moments and hence a knowledge of the complete
distribution function for a set of thermodynamic
parameters. For the case of a single parameter, this
distri. bution function has been written down explicitly
by Magalinskii and Terletskii. ~

Magalinskii and Terletskii also show that if one
knows the average time-dependent response (q(t)) to the
sudden turn on (or off) of a static force, one can write
the complete joint distribution function" of q(t) and

q(0). This work is interesting because it demonstrates
that if the response is linear in the force, the distribution
function is Gaussian. The proof, however, is based on
the equilibrium assumption. For the nonequilibrium
case, it may not be true. It is easy to demonstrate that
l~farko%an systems with linear responses are not neces-
sarily Gaussian.

The work of Magalinskii and Terletskii~ is not par-
ticularly helpful in computing noise, since it is precisely
the response (q(t)) assumed known by them that we
must obtain in order to compute the noise. This remark
is characteristic of the results of microscopic theories:
precise relationships are obtained, e.g. , between noise
and the response of the systems. Neither quantity can,
however, be computed from the formal expressions so
obtained. 4' Actual calculations of responses, e.g. , elec-
trical and thermal conductivity, are based on the
development of a transport equation. While a transport
description is detailed, we refer to it as macroscopic

4'P. G. Bergmann and J. L. Lebowitz, Phys. Rev. 99, 578
(1955)."J.L. Lebowitz and P. G. Bergmann, Ann. Phys. (¹Y.) 1,
1 (1957); J. L. Lebowitz and H. L. Frisch, Phys. Rev. 107, 917
(1957).

'9 R. F. Greene and H. B. Callen, Phys. Rev. 83, 1231 (1951).
V. B. Magalinskii and I. P. Terletskii, Soviet Phys. JETP 7,

501 (1958).
~' H. Takahasi, J. Phys. Soc. Japan 7, 439 (1952) gave an earlier

proof that certain time-delayed second moments could be calcu-
lated from the response to a sudden force. Essentially the same
results have also been obtained by R. H. Kraichnan, Phys. Rev.
113, 1181 (1959).
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since the time evolution of the system is computed
without comp/ete specification of all the microscopic
variables. Since one is usually concerned with the cal-
culation of the noise in a system whose transport prop-
erties have already been investigated, we assume that
the basic transition probabilities giving rise to the
transport equation are already known (usually from
microscopic calculations of collision rates). Our aim is
to show how this same information can be incor-
porated directly into a calculation of the noise. %e
therefore adopt a macroscopic viewpoint and propose
to show how noise can be computed by using a minimum
number of additional assumptions.

Previous work on the macroscopic treatment of noise
generally makes several of the following assumptions:

1. The system is Markoffian. In other words there is
some set of parameters e=ni, ng, n3, (tess than a
complete set of microscopic variables) with the property
that a knowledge of the present value of 0. at t=0
determines the mean value of e(t) for t&0 and even
the distribution of values of n(t). Furthermore, knowl-
edge of n(0) makes obsolete all information n(t) for t(0.

2. The system is stationary, i.e., invariant with
respect to a shift of the origin of time. Thus, all transi-
tion probabilities do not depend explicitly on time, and
all probabilities of joint events depend only on their
time separation.

3. The system is linear, i.e., its responses to external
forces are linear in these forces.

4. The system, at least from a microscopic point of
view, obeys time reversibility.

5. Fluctuations are from an equilibrium state.
6. The individual jumps from 0. to e' are sufficiently

small to permit the Fokker-Planck approximation.
7. The variables n(t) have a Gaussian distribution

(are Gaussian). Note.—3+6 imply 7.
8. The fluctuations in a(t) can be. regarded as pro-

duced by random forces—the Langevin viewpoint.

The macroscopic treatment presented here uses the
MarkoKan and stationary assumptions that are
common to all previous macroscopic work, plus an
assumption of quasi-linearity, which is appreciably less
restrictive than complete linearity. These assumptions
are discussed in more detail in Sec. 2. Fluctuations in a
variable of a nonlinear system can usually be handled
by a quasi-linear treatment of fluctuations in the dis-
tribution function for that variable. Fluctuations in
distribution functions are discussed in Sec. 12.

Since a number of extensive review papers" " and
books' ' exist, we indicate here only the relative im-
portance of some previous work for that which follows
later.

The macroscopic theory of fluctuations at one time
was developed by Einstein" by inverting Boltzmann's
relation (see Sec. 4). (A macroscopic justification for

"A. Einstein, Ann. Physik 33, 1275 (1910).

The theory of Brownian motion was developed ex-
tensively from the Langevin and Fokker-Planck view-
points. "'4 Except for time reversibility, all eight of the
given assumptions are used explicitly or implicitly. One
of the key results of this early work was the Einstein
relation between diGusion constant and mobility.
Because of the importance of this relation to our work,
we present two elementary derivations of this relation.
Mobility p, can be defined as the terminal velocity of a
charged particle per unit applied field,

and the diAusion constant can be defined in terms of
the particle current induced by a concentration gradient

j,.„= D(an/a—x). (1.2)

Einstein's" original idea is that if one sets up an electric
field in an open circuit, a concentration gradient will
build up big enough for the diffusion current to cancel
the drift current,

or
j= netIE eD(Bn/Bx—) =0,

n(x) ~ exp(tiEx/D). (1.3)

Under thermal eqli/ibrilm conditions, with the potential
energy

V= —eEx,

Boltzmann's law indicates a distribution

n(x) ~ exp( —V/kT). (1.5)

Comparison of the last three equations yields the
Einstein relations~

D= kT(tJ/e) =kTI.', (1.6)

where L,'=v/eE is the dc admittance to the applied
force eK

Conservation of particles yields the equation

an/at+ div (j /e) = an/Bt+ v ((3n/Bx)
—D(B'n/Bx') =0, (1.7)

where e=pE. is the drift velocity. The Green's function'
of this equation describing the density at x and t of a

"P.Langevin, Compt. rend. 146, 530 (1908).See also reference
20 and Sec. 8.

~A. D. Fokker, Ann. Physik 43, 812 (1914); M. Planck,
Sitzber preuss. Akad. Wiss. Physik. math. Kl. 324 (1917).See
also references 19 and 21, and Sec. 5.

5'A. Einstein, Ann. Physik 17, 549 (1905); 19, 371 (1906);
Investigations on the Theory of the Brownian 3IIovement (E. P.
Button, and Company, Inc. , New York, 1926); R. Furth,
Schmankungserscheinungen in der Physik (Vieweg and Sons,
Brauschweig, Germany, 1920)."P. M. 'Morse and H. Feshbach, 3Eethods of Theoretical
Physics (McGraw-Hill Book Company, Inc. , New York, 1953),
Sec. 7.4.

the Einstein point of view was given by Greene and
Callen. 4')

&nsteie Relation
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pulse which originated at x' at time 0 is

e(x,x't) = (4rrDt) l expL —(x x'—vt—)'/4Dt] (.1.8)

An interesting direct verification of the validity of the
Einstein relation for electrons and holes in a semicon-
ductor" was made by the Haynes technique of ob-
serving the mean drift and spreading of a pulse of
injected minority carriers.

Perrin~ used the Brownian motion of colloidal par-
ticles to measure their diffusion constant. When com-
bined with Stokes's law for the viscous drag on such
particles,

2i!'= 1/L' = 6n.an't, (1 9)

The noise at frequency f associated with velocity
fluctuations is by definition )see Eq. (2.3)]

2 2

G(v f)= lim —
ii~ s(t)e "~'dl ).Z'—voo T' —~sT

We now obtain the fundamental relation that the noise
at frequency 0 in v=dx/dt is equal to the diffusion

constant for x:
G(v, 0) =4D. (1.13)

I

The Nyquist" theorem relating the noise at frequency

f=co/2nto the admittance .F(cv),

G(v, f) =4kT ReF(co), (1.14)

~ Transistor Teachers Summer School, Phys. Rev. 88, 1368
(1952)."J.Perrin, A towns {Constable, London, 1916).See also reference
19.

"H. Nyquist, Phys. Rev. 32, 110 {1928).

where g is the viscosity of the surrounding medium and
a the radius of the particle, the Einstein relation (1.6)
yields a determination of Boltzmann's constant k, and
through the gas constant R, of Avogadro's number
X=It/k.

The second moment of Eq. (1.8) yields another defi-

nition of the diffusion constant,

D= (2T) '(/x(T) —x(0)—vT]') (1.10)

in terms of the mean-square displacement of a particle
in time T after the nonrandom drift part vT is sub-
tracted. (Angular brackets represent an ensemble aver-
age. ) The time T must be taken long compared to a
microscopic collision time t in order for the diffusion

equation (1.7) to be valid but is otherwise arbitrary.
One customarily takes the limit as T &~. [When—
complicated external forces are present, it is easier not
to try to subtract the nonrandom part and take instead
the limit T —+ 0, since the nonrandom part ofx(T) —x(0)
vanish linearly in T and does not contribute to the
diffusion constant, cf. Eq. (5.7).]

For the case of no drift, @=0, we can, by a shift of
origin, write

TI2 2

B lim (2T) '
~~ (=t)dl ).—T!2

reduces therefore at zero frequency to the Einstein
relation when we remember that F(0)=L'.

The previous remarks describe Brownian motion in
the absence of restoring forces. In the presence of
restoring forces V(cv) —+ 0 as co ~ 0 so that the noise at
zero frequency vanishes (see Sec. 7). Equation (1.13)
is obviously no longer true. The reason is that, in the
presence of restoring forces, Eq. (1.11) should be used
with T —+ 0 as previously remarked. The derivation of
Eq. (1.13) then fails, but D is still related to the dis-
sipative part of the admittance via the Einstein relation
as proven in Sec; 5.

G(v, f) =4Re)t e '"'(v(t)v(0))dt.
0

(1.15)

In the presence of a constant (velocity independent)
relaxation time, the decay from a fixed initial value v(0)
has the form

thus
(v(t))ep= exp( —t/r)v(0); (1.16)

and
G(v, f) =4 Rer(1+iv)r) —'(v(0)v(0)), (1.17)

D= r(vv). (1.18)

To establish the Nyquist and Einstein relations, for the
case of a relaxation time, we must calculate the response
to an applied field, " "

therefore
dv/dt v/r = (e/m) E—exp (ia)t);

v(t) =ti, (ra)E exp(ia)t),

(1.19)

(1.20)

with the mobility at frequency co given by

e 7

t (~)=-
m 1+icor

(1.21)

Comparison of Eqs. (1.17) and (1.18) with Eq. (1.21)
yields

G(v,f)= 4m(vv) Rel'(&u); I'(co) =p(co)/e, (1.22)

D= m(vv)ti(0)/v. (1.23)

60 N. Wiener, Acta. Math. 55, 117 (1930);J. Math. Phys. 5, 99
(1926).

6' A. I. Khintchin, Math. Ann. 109, 604 (1934).
6'For early derivation of Nyquist noise from the Lorentz

picture of an electron gas, see references 63—67.
68 J. Bernamont, Ann. Phys. 7, 71 (1937).
' D. A. Bell, J. Inst. Elec. Engrs. London 82, 522 (1938).

5 C. J. Bakker and G. Heller, Physica 6, 262 (1939).
'6 E. Spenke, Wiss. VeroGentl. Siemens-Werken 18, 54 (1939).
"The last paper has been criticized by A. Van der Ziel, J. Appl.

Phys. 21, 399 (1950) since it yields a result based on the classical
rather than the quantum equipartition laws. This difhculty has
since been eliminated by the quantum treatments in references
41—45. See also Eq. (7.12) and reference 68.

Ãyguist Theorem

The Wiener60-Khintchin" theorem Lsee Eq. (2.5)]
permits Eq. (1.12) to be rewritten in the form



FLUCTUATIONS FROM NONEQUILIBRIUM STEADY STATE

These are equivalent to the usual relations (1.14) and
(1.6) with kT replaced by m(vv). (We write vv rather
than n' because, in the three-dimensional case, the
theorems remain valid with D„„a tensor computed
from (e,v, ).) In the equilibrium case, (mv')=kT, but
the above relations are valid for the nonequilibrium
case as well for the case of a constant relaxation time.
The ratio C=(mv')/kT represents a correction factor
to the Einstein and Nyquist relations which appears in a
generalized form later.

For the case in which the basic collision processes
cannot be described by a relaxation process, the mo-

. bility must be calculated by solving a transport equa-
tion. This is usually dificult to do in practice. In
principle, however, we have shown" that a small added
ac electric field, E(I)=E(0) exp(ia&t), perturbs a sta-
tionary distribution fo(v) into fo(v)+fi(v, t), where

(v(/))~i=~ «F (v~v, k)dv (1.26)

is the mean velocity at time t for an electron which
started with velocity v' at time 0.

If fo represents a thermal equilibrium distribution,
then

Bfo(v')/Bv'= —(mv'/kT) fo(v'),

and we can write

(1.2'1)

(1.28)

where e(0) =e', and the average is taken with respect

"Equation (1.24) is based on Eq. (4.13) of reference 42 which
is derived by assuming arbitrary transition probabilities m
from velocity v to velocity v', and in this sense generalizes the
proofs mentioned in reference 62 which assume the existence of a
relaxation time. Van der Ziel's remark (reference 6) that Spenke's
derivation (reference 66) might have yielded the quantum-
mechanical correction factor of Eq. (7.12) if he had taken into
account inelastic collisions is shown here to be false since our

~ ~
~

~

~ ~

~ ~

~

~

~ ~

~

~
resent derivation includes inelastic collisions, but the result
Eq. (1.28)g yields the classical Nyquist theorem. Microscopic

derivations yielding the quantum correction factor are given in
references 41-45.

y W(v, v', I)dt, (1.24)

in which W(v, v, t) represents the probability of finding
a particle with velocity v at time t if it started with
velocity v' at time 0 in the absence of the added ac
electric field. The mean added drift velocity due to the
added field may be obtained by multiplying Eq. (1.24)
by v and integrating. The result is a ("differential" )
mobility tensor

e p" i' afo(v')
p(co) = ——l' e '"'dI (v(t))—, dv', (1.25)

m~p Bv'
where

to the equilibrium distribution fo Comparison with
Eqs. (1.15) and (1.13) then yields the usual Nyquist
and Einstein relations. Although we have used the
language of a conduction problem, if x is any variable,
and if eE= F is the force which acts on it, then the
noise in v= dx/dt is related to the admittance Y= v/F.
For example, x could be a magnetization, I' a magnetic
field, and 7 would be, aside from a frequency factor, a
magnetic susceptibility. '

Callen and Greene"" have given a particularly
intuitive derivation of the Nyquist theorem for the
thermal equilibrium case. Their derivation is based on
the following syllogism:

1. The frequency dependence of the noise is deter-
mined by the Fourier transform of the function (e(I)).0
which describes the "regression" from a spontaneous
fluctuation of amount e(0).

2. The regression of fluctuations obeys the macro-
scopic equations of motion.

3. The macroscopic equations of motion are de-
scribable in the frequency domain by the admittance
of the system, ergo there must be a relation between
the noise and the admittance.

The second point was carefully stated as an assump-
tion by Onsager" in his derivation of the Onsager
relations. deGroot' has argued that the only distinction
between a fluctuation and a macroscopic deviation is
one of size. Hence, if the system is linear, e.g. , describable
by a linear transport equation, one would expect macro-
scopic decay and microscopic regression to obey identical
laws.

Callen and Greene do not make explicit use of the
Onsager assumption. Instead they argue that the
regression (s(t)).0 can be observed in three logically
distinct ways.

(a) Observe the system without disturbing it. When-
ever the velocity s(0) is observed, wait a time t and
measure the velocity. The average of such measure-
ments is the desired (v(t))~0.

(b) Clamp a "microcanonical" constraint on the
system for t&0 requiring e to take the value v(0).
Release the constraint at 1=0 and observe at time t.
Callen and Greene argue that (a) and (b) are equivalent
because they both give equal weight to all microstates
consistent with v(0).

(c) For all 1&0 add an extra external force chosen to
make the mean ii equal to v(0). At t=0 release the
extra force and observe il(t). Callen and Greene argue
that the step from (b) to (c) constitutes the usual re-
placement of a microcanonical ensemble by a canonical
one, a change which "as we know, does not inhuence the
macroscopic thermodynamics of the system. "

"R.Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
'0 H. B. Callen and R. F. Greene, Phys. Rev. 86, 702 (1952).
7' R. F. Greene and H. B. Callen, Phd: Rev. 88, 1378 (1952')

gives a generalization of the previous(t'eference to many variables."L. Onsager, Phys. Rev. Bi, 405 (1931';88, 2265 (1931).
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Approach (c) is actually used to compute the "re-
gression. " The added force hF for t&0 and zero for
t&0 is represented by a Fourier integral, and the
response to each frequency component computed by
means of the admittance at that frequency. The final
result is the Nyquist theorem Eq. (1.14).

Onsager and Machlup" have remarked, however,
that a system whose future depends on the initial state
but not on whether it arrived there by a spontaneous
Quctuation, a constraint, or an applied force, is Markof-
fian. Indeed they prove that a set of Gaussian random
variables obeying the linear regression equation are of
necessity Markoffian, i.e., they claim that Callen and
Greene have tacitly made the Markoffian assumption.

In my opinion, all of these remarks are correct and
are related to the fact that macroscopic systems can be
described by thermodynamic variables. The fact that
in practice there is no distinction between microcanon-
ical and canonical ensembles"4 is closely related to the
MarkofFian behavior of macroscopic systems for a
suitably chosen" set of thermodynamic variables.

It is of interest that the microscopic proofs of the
Xyquist theorem do not require the use of the Markof-
fian assumption (except in the trivial sense that the
future is determined by a complete description of the
present), but lean heavily on the assumption that one
is dealing with fluctuations from an equilibrium state.

We can shed some light on the success of the micro-
scopic proofs by comparing Eq. (1.15) for the noise
with Eq. (1.25) for the mobility. We see that bot.h
expressions are averages involving the same regression
(v(t))~p. It is the weight factors v(0) fp and Bfp/Bv that
are logically distinct. For the thermal equilibrium case
they are proportional to one another via Eq. (1.27). In
the absence of equilibrium, Kq. (1.27) is no longer
obeyed, and there is no longer any necessary relation
between the noise and the admittance —this is essen-
tially Richardson's remark. "

Ke anticipate, however, that even for nonequilibrium
problems, the Nyquist and Einstein relations still
remain approximately correct. Our confidence is based
on Wannier's~' "thorough investigation of the motion
of gaseous ions in strong electric fields. He finds that
for any one of the principal directions e, the diffusion
and mobility tensors obey

eD = (Bv„/BE&)rN(hv„tt v„), (1.29)

where Bv„/BE is the differential mobility for an added
field, and m(dv„Av ) is twice the mean random energy
along n (i.e., Av„= v„—(v„)).Wannier finds this relation
to be obeyed exactly for the case of a constant mean
free time between collisions. For the case of a hard-

"L. Onsager and S. Machlup, Phys. Rev. 91, 1505, 1512 (1953)."The relation between canonical and microcanonical ensembles
is discussed by M. Lax, Phys. Rev. 97, 1419 (1955). An example
where the two rlIsagree is described.

"G.H. Wannier, P&ivy. Rev. 83, 281 (1951)."G.H. %ann& r., Phd. 8:-'ev. 87, 795 (1952).
7' G. H. Wannier, Bell System Tech. J. 32, 170 (1953).

sphere model, with mass ratio unity between the ions
and the neutrals they collide with, Wannier finds, as a
result of a long numerical calculation, that the longi-
tudinal diffusion coefficient is 18% less than Eq. (1.29)
would indicate. In other words, within 18%, one could
have used for fp(v) a pseudo-Boltzmann distribution
with a diGerent mean velocity and temperature for each
principle direction so that

Bfp/Bv„= —fpm(v„—(v„))/kT„.

Since fp is properly normalized,

(v„)JI fi(v)dv=0, (1 31)

thus v (t) in Eq. (1.25) can be replaced by v (t) (v). Th—e
use of Kq. (1.30) then reduces (1.25) to the Einstein
relation (1.29) connecting the diffusion constant with
the differential mobility when we identify

kT =m((v„—(v„))') (1.32)

N. Hashitsume, Progr. Theoret. Phys. (Kyoto) 15, 369
(1956).

in accord with the pseudo-Boltzmann distribution.
The basic reason for the 18% discrepancy' in the

hard-sphere problem, for the nonequilibrium case, is
that one has a constant mean free path, rather than a
constant mean free time, i.e., r= 1/v, so that Eq. (1.19)
becomes nonlinear. The nonlinearity is appreciable
since 7 varies considerably over the range of thermal
fluctuations of velocity.

Noise problems can therefore be divided into two
categories: (1) those in which the parameters of the
system do not change significantly when the variables
fluctuate thermally, (2) those in which the changes
induced in the parameters by Auctuations are large.
Problems of the first category are handled by a quasi-
linear approximation, i.e., we expand about some
steady-state value, and treat the deviations by means
of linear equations which represent a multivariable
generalization of Eq. (1.19). Problems of the second
category require that one discuss distribution functions
of the variables in question. Instead of directly dis-
cussing fluctuations in the variables, we instead discuss
Quctuations in the distribution functions —from which
all the necessary physical results can be computed (Sec.
12). The fluctuation in the distribution functions is
usually sufficiently small for them to be treated in a
quasi-linear way, even if the original variables would
have required a nonlinear treatment. Many distribution
functions, indeed, obey strictly linear equations, as for
example, in the problem considered by Wannier.

Our macroscopic treatment of linearized systems is
closely related to the approach of Onsager" and
Hashitsume, " whose papers supplied the inspiration
and motivation for the work presented here. We differ
from Hashitsume and from Onsager and Machlup"



(also Siegel, "and Tisza and Manning ") in two ways.
(1) We do not assume that we are dealing with Gaussian
variable. We only attempt to calculate in detail the
first and second moments of our variables (all that is
needed for admittance and. noise calculations). If one
adds the assumption of Gaussian variables, one could
immediately write down the complete distribution
function from the computed first and second moments.
We do not do this because the added information is,
for our present purposes, superQuous, and may be
wrong. " (2) We do not assume that we are dealing with
Quctuations from an equilibrium state but allow non-
equilibrium steady states.

2. Review of Our General Assumptions

Since noise represents a small Quctuation super-
imposed upon a signal, a system, although nonlinear
"in the large, " behaves in a "quasi-linear" way for
small deviations from a particular bias position. (This
remark may be veri6ed in detail by examining the
result Eq. (5.36) of an exact and elegant treatment by
Kac and Siegert~ of the square law detection of signal
plus noise for the case in which the input signal is large
compared to the noise: s)&1.) Thus, the linear proced-
ures we apply are applicable to nonlinear systems pro-
viding the signal (+ noise) remains in the neighborhood
of some "bias" position, A discussion of the correction
produced by nonlinearities is given in Sec. 14.

Once the restriction to quasi-linear processes is made,
the requirement of a stationary random process is a
rather weak one. We may be dealing with Quctuations
from an equilibrium state, or a steady state, or even
with Quctuations about some time dependent motion
("signal" ). If I(t) is a random variable representing
such a fflctuution, i.e., such that

(2.1)

obeying (2.1), may be defined by"

2 pk'
G(I,f) = lim — I(t)e ' '~'dt

+~00
(2 3)

where the factor 2 arises from the convention that the
total dissipated "power" is given by

r~ 00

&I')= lim — P(t)dh=)' G(f)dfr-T J, (2.4)

so that G&f) includes contributions from both fre-
quencies f and f (W—e.abbreviate G(I,f) by G(f) or
G(I) if the other symbol is known from context. )

That G(f)df as given by Eq. (2.3) actually represents
the noise in the frequency interval df has been veriaed
by Ekstein and Rostoker's illuminating analysis" of the
process of noise measurement.

If one represents Eq. (2.3) as a product of two
integrals, one in t, the other in t', then the integral
contains &I(t)I(/)&, which in view of Eq. (2.2) is a
function only of t—t'. Thus, one may integrate over
1+V for fixed t 1'. The —result can, by using Eq. (2.2),
be simplified to the form

G(f) =2 ~ e-'-'&I(&)I(0))d~, (2.5)

G(f) =G+(f)+G (f), - (2.6)

where &o=2mf. To obtain a result expressed only in
terms of future values of t, we split the region of inte-
gration and make use of the relation

(I(t)I(0))= (I(0)I(—t) ),

based on stationarity, to obtain

the requirement of stationarity may be represented by
the statement that the ensemble average,

&I(~+nI«)) =&I«)I(0)&,

G+(f) =2 e '"'&I(&)I(o)&«,
Jo

G (f)=2 " e' '(I(0)I(&)&d&.J,

(2 &)

(2.S)

is independent of t, i.e., as far as the noise is concerned,
there is.no absolute origin of time. When we construct
a MarkoSan master equation, we interpret the require-
ment of stationarity to mean that the fundamental
transition probabilities describing the stochastic process
are independent of time.

The noise power G(f)df in. the frequency interval df,
associated wl'tll the statlollal'y iandom vallable I(/)

"A. Siegel, Phys. Rev. 102, 953 (1956); 106, 609 (1957}.
~L. Tisza and I. Manning, Phys. Rev. 105, 1695 (1957).. See

also a similar approach in reference 81.
8' D. Falkoff, Ann. Phys. (N. Y.) 4, 325 (1958).
~For example, the. moments calculated in Eqs. (14.37) to

(14.40) do not bear the relationship required for a Gaussian dis-
tribution.

~ M. Kac and A. J. F. Siegert, J. Appl. Phys. 18, 383 (1947).

It is customary at this point to note that the averages
in (2.7) and (2.8) are identical, so that G (f)=G+( f), —
and G(f) can be expressed as the cosset transform of
4&I(t)I(0)) (the Wiener-Khintchin theorem). In the
case in which I(t) represents a vector or a set of variables
[I,(t)j, it is clear that &I,(t)I, (0)&W(I, (0)I,(t)). G(f)
is then a matrix with components G, ,(f) and its parts
obey

6 (f)=6+'( f),-—(2.9)

where f indicates the transposed, matrix', i.e., 6 and
6+ are Hermitian adjoints of one another, and their
sum 6 is a Hermitian matrix.

Our problem of finding the noise spectrum is therefore
reduced to the evaluation of a second moment (I(t)I(0)).
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It is not necessary, therefore, to have knowledge of the
complete distribution function W[I(0,)I(t)j but only
of its second moments. It is certainly not necessary to
restrict oneself at the outset to Gaussian random vari-
ables. 82 However, those statements about the second
moments that are correct about Rll kinds of random
variables remain correct for Gaussian variables. The
assumption of Gaussian variables does not lead to
incorrect results, provided no information beyond the
second moments is used.

We prefer to take as our key assumption that we are
dcRllng with R MarkofIIRQ 1RndoIQ p1occss. For R

MarkofIian system the present separates the past from
the future: knowledge of the system at one instant,
the present, permits a prediction of the "average" fu-
ture and indeed of the probability of various possible
futures. Information about the past is not needed, and
indeed is nat relevant when available. A MarkoKRQ
system in the random variable (or set of variables) a
is therefore completely characterized by the conditional
probability P[e(0) I e,tl that the system will be in the
state e at time t if it was in the state e(0) at time 0.
This conditional probability is not arbitrary, however,
it must obey the Smoluchowski consistency condition, "

for any I' in 0 &t' & t, namely, the probability of passing
from n(0) to e in time t is composed of the probabilities
of passing through some intermediate state 0.' in the
time t' times the probability of a subsequent transition
to the 6nal state in the remaining time $—3'.

It may seem rather arbitrary to assume that we are
dealing with a MarkoKan system. After all, the future
of a physical system can be predicted only if we know
thc 1QltlRl positions Rnd momentR of Rll thc pRl'ticlcs

composing the system. Yet it is an empirical fact that
for most physical systems of interest, the future of a
small set of macroscopic variables can be predicted from
their present values, e.g., for an electric circuit we must
know the initial charges on the condensers and the
initial currents, for heat flow in a rod we need know

only the initial temperature distribution. Similarly,
viscous fluid fIow is adequately described by the
Navicr-Stokes equation, and the motion of added car-
riers in a semiconductor usually is described adequately
by a di6usion equation with drift and recombination
terms. A detailed discussion of the Markoffian assump-
tion has been given by M. S. Green. s'

"This equation is discussed by Wang and Uhlenbeck, reference
21, and Chandrasekhar, reference 19. See also A. Kolmogoroff,
Math. Ann. 104, 415 (1931);108, 149 (1933}.

8'M. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398
(1954).An~ther attempt- to justify a Markofhan approach is given
by'

¹ G. Van Kampen, Physica 20, 603 (1954).The most careful
justi6cation of a Marko%an approximation for quantum mechan-
ical systems has been given by L. Van Hove, Physica 21, 517
(1955}.

lim I'[e(0)
I n, t]= lF (n). (2.11)

The joint probability distribution for n(0) and e(t)
can then be written as the probability of finding

e (0)= eo times the probability that given n(0) = eo,
n(/) will take the value e a time t later:

~(eo,e) =~(ao) &(eoI e,t) (2.12)

As we have previously remarked, we do not need.

We may understand the MarkofIian behavior of most
physical systems in the following way: each system has
a small number of approximate integrals of the motion.
Wc therefore may introduce a small set of new variables
e which constitute approximate integrals of the motion
and vary slowly, i.e., at macroscopically measurable
rates, and the remainder constitute variables g that
change at rates too fast to be observed on. the time scale
of the experiment. The equations for (i then can be
solved in the adiabatic approximation, i.e., treating the
e's as constants. Because of the fast time constants of
the I1 s, the latter rapidly come into equilibrium with
the instantaneous values of the e. By neglecting the
short time delay, the Il's are functions of the instan-
taneous e's. Thus dn/dt= f(0.,$) =f[n, g (a)]=g(e) is

-approximately a function only of e, and the n's predict
their own future.

The MarkoKRQ character of a physical system is then
simply its ability to forget quickly the initial values of
the nonrelevant variables —the g's. Strictly speaking,
the equation for the e's should be written in the form

Ae/Aking(n), where Dt may be small macroscopically
but must be larger than the forgetting time for the g's.

Our problem then is not to explain how a system can
behave in a Markoman way but to choose a sufIIiciently

complete set of variables e so that a Markoffian de-

scription is possible. Clearly, the omission of any
relevant slowly varying variable would prevent suc-
cessful prediction of the future from the present. (For
quantum systems, one often chooses I and g to be the
diagonal and OB-diagonal elements of the density
matrix in a suitable representation. )

In practice, the choice of a set of relevant variables
can be made from a knowledge of the relaxation rates
in the physical system, For example, added carriers in
a semiconductor may drift or diGuse in milliseconds
and recombine in microseconds, but equilibration of
velocities of these carriers takes place in mean free times
of the order of 10 " seconds. For an examination of
noise in a frequency range well below 10" cycles per
second, the density of carries e(r, t) obeying a diffusion

equation should constitute an adequate description,
whereas at higher frequencies, a phase-space description

f(r, p, /) would be necessary.
After a sufFiciently long time, our system not only

forgets the initial g's, it also forgets the initial n's, and
approaches an equilibrium or a steady state,
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this complete probability distribution but only its
second moment,

(e(0)e(t))= noW(ao)dno(e(t)) p, (2 13)

subject to (e(0))=ap. Since e constitutes a set of
macroscopic variables, A. is a matrix.

A formal solution of Eq. (3.6) can be written im-
mediately:

(e(t)) p
——exp( —A.t)eo. (3 7)

where

(n(t)) p= t PLn(0) ~n, tJedn (2.14)

Comparison with Eq. (2.13) indicates that we can write
the quantity we really wish to calculate in the form

is the conditional mean of n(t), subject to the initial
conditions n(0) = ap.

(e(t)e (0) )=exp( —A.t) (ne),

(nn) = )I eaW(n)da

(3 g)

(3.9)
METHOD OF SOLVING MARXOFFIAN

NOISE PROBLEMS

3. Quasi-Linear Systems

Equations (2.13) and (2.14) show that our problem
can be decomposed into two parts: the determination
of the equilibrium or steady-state distribution W(e),
and the average regression of a ffuctuation (a(t))~p. We
now address ourselves to the latter problem with the
following simpliffcations: (1) the variables a(t) are
already chosen to be deviations from the equilibrium
or steady-state values, i.e., (n(t))=0; (2) the system
behaves in a linear way with respect to these deviations

Equation (2.10) can be rewritten in the form

P(aola, t+~t) = de'P(apIe', t)P(e'Ie, ~t), (3 1)

has been written without the subscript zero, since (ee)
is independent of time.

According to Eq. (2.7), with I(t) replaced. by n(t),
the positive frequency contribution to the noise can be
written

6+(f) = 2 (ipp+A)'(ee), (3.10)

(where we write briefly &p, rather than pp times the unit
matrix) and according to Eq. (2.9), the negative fre-
quency contribution is

G (f)=2(an)( i(o+—&~) ', (3.11)

where A.t is the transpose of A.. (If these results are
generalized from real to complex variables, it is appro-
priate to interpret At as the Hermitian adjoint matrix. )

If, for example, we were concerned with the noise in
a variable I(t) =P C„e„it would be given by

(3.12)G(I,f) =Z., .C&-(f)C.,

G„(f)= 2 (top+A.),o-'(non. )
+2(n~o) ( i(a+A—t)I„', (3.1—3)limP(e,

~
n, t) =S(ep —a).

g—oo
(3 2)

where the integral over e' would be replaced by a sum
if e could take only discrete values. We have, in addi- with
tion, the initial condition

On multiplying Eq. (3.1) by n and integrating over n,
we obtain

(n(t+Dt)) p
——

) dn'P(epi a)t)JI P( e~n, At)ede. (3.3)

Our assumption that the system behaves in a linear
way can now be expressed more precisely by the
statement that the last integral in Eq. (3.3) is a linear
function of the e'. In view of Eq. (3.2) we may take
this linear function to have the form

with summation over k understood.
In order to obtain a better understanding of A., we

derive the value of A. from an equation slightly less
fundamental than (3.1). For many stochastic systems
(Brownian motion is an exception), the probability
P(e'~ a,At) can be expanded for small ht:

P(e'in, ht) =b(n —a')(1—I'.ht)+Atw ., (3.14)

where m ~ can be regarded as the transition probability
per unit time from state o.' to state n, and

P(a'
i n, At) nde =a' AtAe'—(3.4) F = 'N dc (3.15)

or

"P(e'
i e,At) (e—n') de = AtAa'. —

is the total transition probability per unit time out of n,
Thus Eq. (3.1) can be written in the familiar form

Equation (3.3) then reduces to BP(e,t)/Bt= w dn'P(n', t) I' P(e, t) (3.16—)

or
d(a(t))/dt= —A(e(t) ) (3.6)

(a(t+at)).,= (a(t)).,—mat(n(t)). , (3.5)

)tT(e,e')da'P(n', t), .
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where
T(e,e') =F 5(n —n') —w.. (3.17)

The first term in (3.16) represents the rate of transitions
from all e' into n, whereas the second represents the
total of transitions out of e. The solution of Eq. (3.16)
appropriate to P(no~ nt) may be obtained by applying
the initial condition

P(n, 0) = b(np —e). (3.18)

For most noise problems, one starts by choosing a
relevant set of variables 0; and a set of transition prob-
abilities m „ that describe the stochastic process giving
rise to the noise. It would therefore be convenient to
express A. in terms of w . By multiplying Eq. (3.16)
by n and integrating, we obtain Eq. (3.6) with A.
defined by

An'= JI aT(n, e')dn

dP(n)/dt= Q. —T(n, n')P(n'), (3.27)
where

T(n, n') = [r(n)+g(n)]8 —r(n')5„, „+&—g(n')5„. ,

By using the notation

(f(n))=P f(n')P(n'), (3.28)

we can multiply Eq. (3.27) by n and sum to obtain

so that the decay rate is known from elementary con-
siderations. If it were not, we could write the analog
of Eq. (3.16), which gives a complete description of the
stochastic process:

dP (n)/dt = r (n+ 1)P (n+ 1)+g (n 1)P—(n —1)
—Lr(n)+g(n)]P(n), (3 26)

where P(n) is the probability that there are precisely
n electrons present. We see that F=r(n)+g(n), and
this equation can be written in the form

or

=F~le
J

ewe~~de (3.19)
d(n)/dh = —P.[P.nT (n,n') ]P(n.')

=-2"Lr(n') -g(n') ]P(n')
("(n) g("))

(3.29)

An'= — (n —n')w de
J

aa' (3.20)

so that F is a diagonal matrix, and both (3.19) and
(3.20) are presumed to be linear in n'. (The vanishing
of the constant term determines the steady state from
which e' is a fluctuation. See Sec. 5.) If n is a discrete
variable, integrals are to be replaced by sums.

To illustrate these remarks let us consider a simple
example discussed in detail by Burgess"—the statistics
of charge carrier fluctuations in semiconductors. When
there are e carriers in the conduction band, let the rate
of generation be g(n), and the rate of recombination be
r(n), with n the only fluctuating variable. For example,
for a strongly extrinsic e-type semiconductor with E
donors and a negligible number of holes, one might take
(with Burgess)

thus recovering the macroscopic equation (3.22) and the
results previously derived. Alternatively, one can work
directly with the analog of Eq. (3.19) and linearize by
using n'= np+n':

Q. nT(n, n') = r(n') g(n')—
=r(«) g(«)—+L"(«) g'(«—)]n' (3 3o)

In this way A appears as the coe%cient of n.
' and the

equilibrium or steady-state eo is determined by the
vanishing of the constant term. If there were several
random variables, the procedure would be exactly the
same except that u would be a set of variables and A.
a tensor as in Eq. (3.19).

We anticipate the methods of Sec. 5 by noting that

P„(n np) 'T(n—,n') = —[g(n')+ r (n') ]
+2[r(n )—g(n )](n —np). (3.31)

g= p(lit —n), r =pn'

The macroscopic equation of motion is

dn/dh = g (n) —r (n).

(3.21)

(3.22)

To the lowest nonvanishing under (for corrections see
Sec. 14) the right-hand side, (3.31) becomes

—[g(no)+r(no) ]+2[r'(no) —g'(np)](n' —no)'

The steady-state number of electrons eo obeys

g(no) =r(np) (3.23)

so that in this strongly extrinsic case

no= —o&+ ('&'+KN)»- (3.24)

where E=p/p is the equilibrium constant for the
ionization process. By expanding Eq. (3.22) about
equilibrium, n=eo+n, we get

dn/dh= —An; A=r'(no) g'(no) = 2pno—+y (3 25)
' R. E. Burgess, Proc. Phys. Soc. (London) B69, 1020 (1956);

868, 661 (1955); Physica 20, 1007 (1954).

so that when Eq. (3.27) is multiplied by (n —np)' and
summed over e, one obtains

d(n')/dt g (np)+ r (np) 2A(n'), — (3.32)

where O.=n —eo. The steady-state Quctuationobtained
by setting Eq. (3.32) to zero is

( ')=Lg( .)+ ( o)]/(2&)
or

((n —no)')—g(no)/[r'(no) —g'(no)]. (3.33)

This result agrees with the one obtained by Burgess '
by the more dificult procedure of finding the steady-



FLUCTUATIONS FROM NON EQU I L I B RIU M STEAD Y STATE

state solution P(rt) of Eq. (3.26), locating its maximum
at ep, and approximating it by a Gaussian near n= ep
so that

((e—Np)') = —2/[d' lnP(e)/dry)n =np. (3;34)

For the special case defined by Kq. (3.21), Eq. (3.33)
can be simplified to

In order to express these moments in more familiar
language, we recall that thermodynamic forces are
usually defined in terms of derivatives of one of the

thermodynamic functions. By taking entropy as basic
thermodynamic potential, the force conjugate to e; and
tending to restore the latter to equilibrium may, in
Onsager's" notation, be defined by

ep(lv —ep)Sp
((he)') =——

2mp+E 2X—ep
(3.35) therefore

X„=BS/an;= —P; s;,n;,

s;;= —O'S/Bn, cia.;= —(BX,/Bu, ).

(4 5)

(4.6)

4. Fluctuations at a Given Instant
from Equilibrium

We have given a formal expression LKqs. (3.10—3.11)g
for the noise associated with n in terms of a matrix A.
that is known macroscopically [or via Eq. (3.20)] and
the moments (ea.) associated with a pair of variables at
the same instant of time. When we are dealing with
deviations from an equilibrium state, the Quctuation
moments (ea) can be evaluated by thermodynamic
methods. We therefore consider first the equilibrium
case and return later to the more general problem of
fluctuations from a nonequilibrium steady state.

Einstein" founded the macroscopic theory of thermo-
dynamic fluctuations by suggesting that Boltzmann's
principle expressing the entropy 5 as Boltzmann's
constant times the logarithm of the probability of a
given Quctuation,

S(n) = k 1nW(e),

can be inverted to yield W if the entropy is known. In
the neighborhood of equilibrium, the entropy may be
expanded as

S=Sp—ip P,, s,;n;n,+higher terms. (4.2)

The Einstein treatment of Quctuations then yields

W(0.)~X exp( ——;n s n/k) (4 3)

where E is a factor chosen to provide normalization. By
omitting the higher terms, the approximation of treating
the n's as Gaussian variables is made. It is then a
purely mathematical exercise" to calculate the moments
of this distribution,

or
(n,n, )=k(s—'),"

(nn)=ks ', (4.4)

where s ' is the matrix reciprocal to the one whose
elements are s;,,

' K. M. van Vliet and J. Blok, Physica 22, 231 (1956).
"See, for example, S. O. Rice, reference 22, Eq. (2;9-1} and

H. Cramer, Mathematical, Methods of Statistics (Princeton Uni-
versity Press, Princeton, New Jersey, 1946).

Equation (3.33) has been referred to as the generation-
recombination theorem by Van Vliet and Blok" and
has been generalized by them to the case of a set of
occupancies e;.

(If n, is a fluctuation in a variable u; so that

Qg =Gg
—Qg, (4.7)

then pjX,/Bn; means BX,/Bu; evaluated at the equi-
librium value a;= (a;).)

The matrix equation (4.5) can be inverted to give

n, = —P, (s
—');.X. (4.8)

1 r.

W(a) =E exp —LS(a) —Sp —P X;n,]. (4.10)
k 1=1

Now S(e)—Sp possesses linear terms in a, but these
terms are precisely canceled by P X,n;. Thus, Einstein's
distribution is precisely correct, with the linear terms
omitted but quadratic and all higher-order terms kept.

One might expect that the second moments, Eq.
(4.4) computed from Eq. (4.3), with neglect of the
higher-order terms, would be good approximations to
the exact second moments. The surprising result estab-

' M. Klein and L. Tisza, Phys. Rev. 76, 1861 (1949).

so that,

(s
—');;= &3n,—/BX; = Ba,—/BXg (4.9)

expresses the change in the equilibrium c; per unit
change in applied force X; from the equilibrium force.

The form of Eq. (4.2), containing no linear terms,
implies in view of Kq. (4.5), that at equilibrium (when
a=0) the forces X, vanish. One might think, therefore,
that Eq. (4.3) is limited in usefulness to describing the
Auctuations of internal variables because external vari-
ables are either subject to an external force or to a
constraint, in which case they could not fluctuate. For
example, one could break up a liquid into cells and
consider the fluctuation in the number of particles in
each cell, but the total number of particles would be
fixed." Under such circumstances, one would also be
restricted to considering fluctuations about an equi-
librium state of uniform density.

Fortunately, the microscopic theory of fluctuations
has been adequately developed from a canonical point
of view, i.e., for systems interacting with reservoirs that
apply external forces to the system. ' An elegant and
critical development of this theory has been given by
Greene and Callen" which leads to a simple derivation
of the macroscopic "Einstein" distribution function.
The result takes the form
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lished by Greene and Callen is that these "approximate"
second moments are exact. By the use of these moments,
we have then in no way committed ourselves to the
approximation that our variables are Gaussian (al-
though for most macroscopic variables that might very
well be a good approximation). In addition, we are
permitted to use these moments when the parameters
are subject to external forces X;%0.

Thermodynamic forces are more conventionally
de6ned in terms of derivatives of the internal energy,

P,= 8U(ai, a2, ,a,)/Ba;. (4.11)

The P, represent external forces acting on the system.
Work done by the system is then

t'W= —P P,da, ,

the heat How into the system is

8Q=bU —P P,da;,

and the entropy change is given by

(4.13)

dS =hQ/T = (1/T)d U P(P;/T—)da;. (4.14)
i=1

Thus, we may regard the entropy as a function of
U=ao, a&, a2, , a,. The entropy de6nition of force
then yields

(4.15)

and in accordance with (4.14), we may adopt the con-
vention Pp = 1, Xo= 1/T. We should remember,
however, that pressure is de6ned conventionally as a
force of the system on the surroundings so that if
a~= V= volume, Pj = —R

By combining Eqs. (4.4) and (4.9), we have

((~E)')= —kL~U/~(1/T) ji~l»
=kT{TCp —P[T(BV/BT)p+P(8V/BP) rj).

(4.19)

Equation (4.17) now may be used to obtain the volume
fluctuations

((d, V)') = kT(B—V/8P) r

and the corr'elation

(4.2O)

(AEhV) = kT(B—U/BP) r
=kT[T(BV/BT) p+P(BV/BP) rj, (4.21)

whereas one must use (4.16) to obtain

(~V~E)= kL~V/—~(1!T)](pi» (4 22)

which can be reduced to (4.21) after some manipulation.

Let us now consider an example that is useful later:
a nondegenerate n-type semiconductor with n electrons
in the conduction band. If the conduction band is in
contact with a reservoir of chemical potential p, the
Quctuation in the number of carriers, according to Kq.
(4.17), is

((An)') =kT(8n/Bp) r. (4.23)

Shockley" has shown, however, that for a set of nonin-
teracting electrons, in the nondegenerate case when
Boltzmann statistics are applicable, "the mean number
of electrons is given by

n=1V, expL(p —E,)/kTj, (4.24)

where p, is also referred to as the Fermi level, E, is the
energy of the bottom of the conduction band, and N.
is the effective number of states in the conduction band.
By combining (4.23) and (4.24), we obtain the expected
result

(a;a, )= k(Ba,/—BX;)x, (4.16) ((~n) 2)=n. (4.25)

where the subscript X is a reminder that all X's but X;
are to be held fixed. Providing j~0, i.e., e, /hE= the
energy change, T is among the variables held 6xed, and
in view of (4.15), we can write

(n;n, )= kT(Ba;/BP;) r, p, (4.17)

where T and all but one P are now held fixed. [Under
an adiabatic constraint, one holds 5 rather than T
fixed. ' j

In addition to the variables a~, . , a, that we allow
to vary, there are additional variables a,+&, a„+2, ~ ~ ~

that are understood to be kept fixed; and these are
kept fixed during the differentiations in (4.16) and
(4.17). For example, energy fluctuations at constant
volume are given from (4.16) by

((DE)')= k/BU/8(1/T) jv=kC T' —(4.18)

whereas if both energy and volume are allowed to vary,
we use (4.16) to obtain a less familiar result,

"See Appendix A of reference 71 or Appendix 3 of reference 70.

If there are N& donor states or traps occupied, on the
average by 8 electrons in contact with a reservoir of
chemical potential (=Fermi level) pi, then, by using
Fermi statistics,

and
8=1V,/{1+expL(E,—p,)/kTj)

((a8)')=kT(a8/ap, )r
= 8(cV,—8)/Ã, .

(4.26)

(4.27)

If both n and 8 were allowed to vary simultaneously,
we would expect a distribution function

(~n)' (~6)2-
H/'~ exp ——

2((an)') 2((S8)')
(4.2g)

the term in Anon vanishing because n does not depend
on p& nor n on p, . If, however, n does not have its private

9' W. Shockley, Electrons and HoLes in SemwConductors (D. Van
Nostrand Company, Inc. , Princeton, New Jersey, 1950).

9 D. J. Oliver, Proc. Phys. Soc. (London)' B70, 244 (1957),
discusses the case in which the number of free carriers is so high
as to require the use of Fermi statistics,
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reservoir but derives its electrons from the donors, then
we must impose the condition

(4.29)

state values are ao and Auctuations are e=a —af).

Because of the Marko%an character of our system, the
distribution function P(a, t) of a at the time t obeys an
equation of the form

When this condition is imposed on (4.28), we find
that the new Quctuations are given in terms of the old by f

P(a, I+&I)=) da'P(a', t)P(a'~ a,&t), (5.1)

e+B=Eg—E.. (4.31)

In the absence of compensating centers, Eq. (4.30)
reduces to the result [Eq. (3.35)J previously obtained
by nonthermodynamic methods. If, in the "kinetic"
method, one chooses an equilibrium constant E (which
measures the ratio of ionization to capture rates) that
disagrees with the thermal equilibrium values, then Eq.
(3.35) remains correct, and so does Eq. (4.30). Thus,
the thermodynamic method has a more general validity
than one might have suspected.

Since the cross section for electron capture is sensitive
to the electron energy, one may drive E from its
equilibrium value by changing the electron energy dis-
tribution via a strong electric field. The value of E
then is found, by combining Eqs. (3.23) and (3.21), to
be

E=p/p=noo/(S —No) =no(X—Ro)/4o. (4.32)

If no and Ro are expressed in terms of p and p& by Eqs.
(4.24) and (4.26), we obtain

IF=X, exp[(K—&,)/k2'j exp[(p —p~)/&&j. (4 t33)

The equilibrium value of E is obtained by setting
p, =p, ~. A strong field causing E to differ from its equi-
librium value then can be handled in the thermodynamic
context by saying that it permits (and indeed insures)
that @WE&. It is as if we are dealing with a system in
equilibrium with two reservoirs subject to the con-
straint he= —AA. A justi6cation of this viewpoint is
given in Sec. 12.

S. Fluctuations at One Time from
a Steady State

Although, as shown in the last section, thermo-
dynamic methods are easy to apply and are even
applicable to some cases that would not ordinarily be
considered in thermodynamic equilibrium, we must now
return to the general case of Quctuations from a steady
state where thermodynamic methods may be open to
question.

I.et us deal with a set of variables a whose steady-

n8(E, —Ii)
(4.30)

eg,+8(X,—8)

In the presence of E„compensating centers, Eq.
(4.30) is to be used in conjunction with

where P(a'
~
a,ht) is the probability of a transition from

a' to a in time ht. If we were to use the initial condition

P(a,0) =h(a —a') (5,2)

the solution would be the conditional probability
P(ao~ a,t). However, we need not restrict ourselves to
this initial condition. Our transition probability is
assumed known and must obey the normalization and
initial conditions

~P(a'~ a,At)da=1, (5.3)

P(a'
~
a,0) =8(a—a'). (5 4)

As a consequence, any moment of a—a' taken with
respect to P(a'

~
a,ht) vanishes when ht ~ 0. We

assume, however, that the first two moments are ex-
pandable in powers of Af; therefore, for small ht,

, P(a'~ a,hI) (a—a')da= A(a')DI, (5.5)

P (a'
~
a,ht) (a—a') (a—a') da = 2D (a') ht, (5.6)

where A is the "drift vector" and D is the diffusion
matrix, since i.t describes the mean square displacement
in the time ht,

(5 7)D = &hara)/(2dt).

If we multiply Eq. (5.1) by a, and on the right-hand
side use a—a'+ a', we obtain

or
(a(t+dd)) = (a(t))+(A[a(I) j)At (5.8)

d&a(t) n(I) )/dh =2(D(a) )+(A(a) a)+ (nA(a) ). (5.12)

a&a(I))/ZI = &A[a(I)]). (5.9)

If we multiply Eq. (5.1) on the left by (a—ao) (a—ao)
and on the right by its equivalent

(a—ao) (a—ao) = (a' —ao) (a' —ao)+ (a—a') (a—a')

+ (a—a') (a' —ao)+ (a' —ao) (a—a'), (5.10)

we obtain

&n(I+aI)n(I+AI))= &a(I)a(I))+2(D(a))AI
+&A[a(t))n(I))AI+(n(t)A[a(I) ))at (5.11)

or



D=-,' ~(n —n')(e —n')w .de

We now make use of the quasi-linear nature of most in agreement with our previous definition (3.20), and
.noise problems to insert a= ao+n and retain only the
nonvanishing terms of lowest order. In particular, we (5.25)

Jmay write
A(a) A(ap) —A.n,

D(a) D(ao) = D,

where a comparison with Eq. (5.9) indicates
steady-state values ao should be chosen so that

A(ap) =0,
and therefore

d(n)/dt= —A.(n),
and

(5.13)

(5 14)

that the

(5.15)

(5.16)

is expressible directly in terms of the transition proba-
bilities that describe our stochastic process.

When dealing with fluctuations from an equilibrium
state, it is often more convenient to use the Einstein
relation (5.18) to evaluate D from the fluctuations (ae)
given by the thermodynamic formula (4.16).

A remark concerning the relationship between the
procedure we have described and the Fokker-Planck
method is in order here. '4 If the transition probability

d(ae)/dt =2D —A (ee)—(ne)A t, has the character that all moments higher than the
second vanish faster than d, t,

where A.~ is the transpose of A.. The steady-state
moments (ne) then can be obtained by solving the

2D =A(nn)+ (nn)A. t. (5.18)

As we demonstrate later, this equation is a generalized
Einstein relation between diffusion constants and
mobilities.

The diBusion constant can be seen to be symmetric
from its definition (5.6) as well as from (5.18).

Equation (5.18) can be solved readily in a represen-
tation in which A. is diagonal and then transformed
back to the original representation. It is easier to
guess that the solution has the form

(ae) =2 ~ exp( —cU) D exp( —A.tt)dt, (5.19)

and verify that this result is correct by inserting into
(5.18) and integrating one term by parts.

We show from time reversibility in the next section
that (en)A"=A(ne) so t.hat the moments for time
reversible problems are more easily computed by means
of

(en) =A.—'D =D (A.')-' (5.20)

from A. and D, and the latter are simply related to the
erst two moments of the transition probability [Eqs.
(5.5) and (5.6)7.

For those problems in which the transition prob-
ability is itself expandible in ht

E(a'i a,ht) =B(a—a') (1—1'LD)+waa'At, (5.21)

we have

P(n) ~ exp[——',a S n7,

where S must be a symmetric matrix. Since

BP/Bn= —S aP,

(5.29)

(5.30)

then by expanding in powers of a' —a, the Smoluchowski
integral equation (5.1) is converted into the Fokker-
Planck differential equation, '~"
BP(a t) B 8 8=-2 — [A'(a)P7+Z [D';(a)P7,

Bt 88i '~ ~~i ~~j
(5.27)

where terms of higher derivative than the second do not
appear because of (5.26).

The condition (5.26) on the moments would be
satisfied for an idealized Brownian motion for which
the transition probability has the form

P(a'
~

hat) exp[ —(a a')'/(4Dht) 7, —

but it would not be satis6ed for any process in which
P(a'

~
tlat) is itself expandable in LD as in Eq. (5.21), for

then al/ the moments vanish only linearly in AI.
On introducing the linearization approximation, the

Fokker-Planck equation becomes

BE(n,t) ( B B B
(A,,n, P)+D,, P . (5.28)

'& ~-~&i ~O!i ~0!j
We seek a stationary solution of the form

A(a') =Jf(a a')waa de~A (—ao) —A.(a' —ao) (5.22)

and

the stationary Fokker-Planck equation becomes

8 8
0=—(X uP)+—D —P

BEE 80! Bc
(5.31)

therefore

D (a ) =
2 J

I (a—a ) (a—a )waa'da,

A.e'= —f(e—e')w. , da,

(5.23)

(5.24)

=B(L nP)/Bn, (5.32)

"See references 19, 21, and 54. Attempts to provide a justi-
Qcation for the Fokker-Planck approximation have been given by
Green, reference 85, and by references 94 and 95.

'4 N. G. Van Kampen, Physica 23, 707 {1957).
'~ R. T. Cox, Revs. Modern Phys. 22, 238 {1950);24, 312 {1952).
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where

Thus
L=w —D S.

S= D-&.w

(5.33)

(5.34)

CONNECTIONS %'ITH ONSAGER, EINSTEIN,
I,ANGEVIN, AND THEVENIN

6. Time Reversibility

But
0=[traceL —(Le Sn)]P. (5.35)

Ln Sa=e LtS n=-'Ln LtS+StL n], (5.36)

where the symbol t stan. ds for transpose, so that the
Fokker-Planck equation is satisfied if

makes L vanish, and yields a solution, provided D 'A.
is a symmetric matrix. (For systems having an under-

lying time reversibility, this is shown to be true in the
next section. ) fn any case, the differentiations in Eq.
(5.32) can be completed to yield

(e(t) e)= (e(—t)e). (6.1)

We have succeeded in obtaining formal expressions
for the noise associated with arbitrary quasi-linear,
Markman processes. .There are some simplifications
that can be made for processes that have an underlying
time-reversible basis —even when the macroscopic
equations used possess an irreversible character.

Onsager" has remarked that in the absence of mag-
netic fields and Coriolis forces our statistical mechanical
systems obey time reversibility, whose macroscopic
consequence can be expressed in the form

traceL= trace(A. —DS) =0

StL+ LtS=o

(5.37)

(5.38)

(We have tacitly assumed that all the quantities e are
even under time reversal. See Sec. 10 for odd variables. )
By applying stationarity, Eq. (2.2), we get

or since S is symmetric, we have, by using Eq. (5.33),

San+At S=2SDS. (5.39)
The trace of

(n(t) a)= (ee(t) ). (6 2)

Equation (6.2) says simply that (n(t) n) = exp( —A t) (nn)
is a symmetric matrix, i.e.,

~+S-&XiS=2DS (5.40) exp( —At)(na) = (ae) exp( —Att). (6.3)

yields Eq. (5.37) so that we only need solve (5.39).
The latter, however, can be rewritten in the form

AS '+S 'A~=2D, ' (5.41)

displaying its identity with the result (5.18) obtained
by our methods, when it is recalled that a distribution
(5.29) leads to moments

(ee)= S—' (5.42)

[fn the equilibrium case S=s/k, cf. Eq. (4.4), where s
is related to the entropy by (4.2).]

ln summary, a linearized Fokker-Planck approxi-
mation is equivalent to treating the e as Gaussian
variables. Since P(n) is then completely specified by
the moments, it could have been written down directly
from the moments computed by our linearization
procedure, which does not assume the 0. are necessarily
Gaussian.

We may further remark, that the time displaced
moments (e(t)e(0)) have been calculated by a pro-
cedure which treats n(t) as a linear function of the a(0),
as in Eq. (3.7), so that if the e(0) are Gaussian variables
so are the n(t). The joint distribution of e(0) and n(t)
is then a Gaussian, with known moments LEq. (3.8)],
and the Gaussian constructed with these moments is
automatically a solution of the time-dependent Fokker-
Planck equation (4.28).

Since the calculation of the noise spectrum requires
only the knowledge of the moments and not the com-
plete distribution, our discussion of the Fokker-Planck
equation was merely a digression to show the connection
with the work of others.

Sy applying this condition at small times, we find that

A.(ne) = (ne)A. r (6 4)

is also a symmetric matrix (for steady-state as well as
equilibrium processes) .

We now make connection with Onsager's notation
to demonstrate that Eq. (6.4) is a statement of the
Onsager relations. Onsager chooses to represent the
response of the cruxes a; to the thermodynamic driving
forces X,= BS/Bn, = —Q s,,n, by

or

where

u;=Q 1.;,X, .

Q R;,n, =X,,

R L=i.

(6.5)

(6.6)

(6.7)

R is a "resistance" and L is a "conductance" or mobility
matrix. Combination of (6.5) with the definition (4.5)
of I leads to

de/dt= LX= —Lsn, (6 8)

and comparison with Eq. (3.6) leads to the identification

Thus

where

A.= Ls.

A.(nn)=kL C,

C = s(en)/k

(6.9)

(6.10)

(6.11)

is a correction factor that reduces to unity in the
classical thermal equilibrium case, cf. Eq. (4.4). Time
reversibility expressed by Eq. (6.4) th.en leads to the
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We introduce the abbreviation

5{t)=de(t)/dt

The time derivative of Eq (.6.1) leads to

(6.19)

a time-reversal relationship typical of variables e and
da/Ct which are, respectively, even and odd under time
reversal. (The case when both types of variables are
simultaneously present, e.g. , when inertial eGects are
important, has been considered by Casimir, '6 and
Machlup and Onsager, "and is discussed in Sec. 10.)

Equations (6.19) and (3.6}—(3.7) at t=0 lead to the
contradictory results

0 t .

t/7'

Fn. 1. The true regression of a Buctuation (solid curve) is
compared to the MarkoSan approximation (dashed curv
t &rs, the decay is exp( t/r), w—here r is a typical relaxati
and ~q is the "duration of a collision" or the forgetting tim
system.

&5(0)e(0))=0

Onsager relations
LC =O'Lt

CRI=RCt,
or (ha)/At= —A.(e), (6.22)

(6.13)
when ht is greater than the forgetting time of the fast
variables not included among the 0..

In what sense, then, does the MarkofI5an solution
approximate the correct one near 5=0? With the help
of stationary, Kq. (3.8) can be rewritten in the form

(e(t)e(u))=expC —&It—uI j&«) «r t». (6.23)

i.e., LC and RCt are symmetric matrices. We refer to
Kqs. (6.12) and (6.13) as'Onsager relations since, in
classical thermal equilibrium when C=1, they reduce
to the Onsager requirement that L and R=L—I be
symmetric. Practically the whole of irreversible thermo-
dynamics' consists at present in the application of the
Onsager relations with C= 1.

In the time-reversible case, the Einstein relation Kq.
(5.18) can be written, via (6.4) and (6.10), in the form

For t&u, take the transpose and apply (6.23):

(e(t)e(u) )= (e(u) n(t) &1,——fexp t
—A.

~
u —t

~ 1(en&)1,

=(na) expL —A.t(t—u( j for t&u. (6.24)D=&LC=uTL' C, (6.14)

e). For
on time &g(0)a(0))=—A.(na) W0. (6.21)
eof the

The failure of Eq. (6.21) is related to the fact that re-
versible systems can be only approximately Markman
in character (with less than a complete microscopic
descrlptlo11) ~

whlcll ls coIIlpal'able to Eq. (1.6) wttll tile col'1'ectloll

factor C. L is Onsager's conductance when —,X is used
as a driving force Oe the system. The more conventional
choice of driving force is P= —TX, as in Kq. (4.15), so
that the conventional admittance is-

(6.15)
(see also Sec. 7).

The factor kT in. Eq. (6.14) arises because all Quc-

tuations (en) from an equilibrium state are proportional
to kT. The Quctuations from a driven state may no
longer be proportional to kT, and this finds expression
in the correction factor C.

In the presence of a magnetic 6eld, time reversi-
bility is obeyed if one simultaneously reverses the mag-
netic field,

(e(t,H)e(O, H))=(e(—t, —H)n(0, —H)), (6.16)

which leads to the generalized Onsager relations

A(H)(n(H) n(H)) = (a(—H)a( —H) &A.t(—H) (6.17)

or

In view of Eq. (6.3), the expressions (6.23) and (6.24)
are equivalent. But to make them so, we need the ab-
solute value sign. As a consequence,

&Ii(t)n(0)&= —A. exp( —At)&en& for t&0, ('6.25)

&Ii(t)e(0})= (ae&A.t exp(A. 't) for t&0, (6.26)

with the result that at 1=0 there is a discontinuity in
slope,

(){+0)e(0))=—A.(ee), (6.27)

(6.28)

negative for f&0, positive for 3&0, with a cusp at 1=0.
In the time-reversible case, Eq. ('6.4) implies that these
slopes are equal in magnitude, therefore the solution
is indeed symmetric about 1=0, and in the true state
of aft@irs the cusp is slightly rounded to give zero slope
at the origin (see Fig. 1).

The width of the region in which the true e(t) differs
from the phenomenological cusp near 5=0 is of the
order v ~= duration of a collision, or the forgetting time
of the nonmacroscopic variables. On the other hand,

L(H)C(H) =Ct(—H) L'(—H). (6.18) "H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945).
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for larger times, e(t) exp( —t/r), where the relaxation
time g is the reciprocal of some eigenvalue of A.. Our
phenomenological description then is useful provided
v&(v, i.e., the forgetting times must be short compared
to typical relaxation times under study. In fact, one
must always choose a set of variables e for this con-
dition to be obeyed.

R(dn/dt)+an= X'= P/—T. (7.1)

To obtain the admittance at frequency co, we assume
that P has the time dependence exp(uut) so that
(de/dt) =icde, and we obtain

where
de/dt= Y(co)P, (7.2)

Y(~)= [R+(s/~)] '/T (7 3)

is the desired admittance. It is convenient for later
comparison to make use of (6.9) and (6.11) to rewrite
the admittance in the form

Y((u) =icdA(ice+A) .i[(ne)/(kT)]C ', (7.4)

where C is defined by Eq. (6.11).
The noise associated with e(t) is, by the original

definition (2.3), equal to co times the noise associated
with n(t). In view of Eq. (3.10), we can write

(g'G (e,f) = 2(—j(g) (m+A. —A.) (ia)+A.) '(ee)
2ico(ne—)+2mAgo&+A) . '(ne) (7..5)

The negative frequency contribution is obtained, as
usual, by reversing the sign af.co and taking the trans-
pose. The first term cancels, and by comparison with

(7.4), we can write

(a'G(e, f) = G[(de/dt), f]= 2kT[Y(co)C+Ct Yt ( cd)]—
(7.6)

Since Y(cd) is an admittance relating two real quan-
tities e and P, we must have

(7.7)

Tl'e Onsager relations (6.12)-(6.13), combined with the
symmetry of (en), imply that for the time-reversible
case,

(7 g)Y(~)C= C'Y" (~)

so that the Nyquist theorem can be simpli6ed to

G[(dn/dt), f]=4kT ReY(c0)C. (7.9)

7'. Nyquist Theorem

The Nyquist theorem relates the noise associated
with velocity fluctuations ri(t) at the frequency &a to the
admittance of the system.

We may calculate the admittance by adding an
external force" X'= P—/T —to the right-hand side of
(6.6), where T .is the absolute temperature. [See Eq.
(4.15).) On eliminating the internal force by means of
(4.5), we obtain

E(&c,)=Aa)p(ng+ c2)

=~&{[exp(Mc/kT) —1]—'+-', }
= —,'Ao)c coth (Puuc/2k T), (7.11)

whereas its mean classical energy is kT. But the mean
square displacement of qA, is proportional to its mean
potential energy, and hence its mean total energy.
Therefore, the ratio of quantum-mechanical to classical
vibration amplitudes obeys

C = (q~')q. M./(qa')ci= E(tuse)/kT. (7.12)

Any parameter'e(t) can be regarded as a linear corn
bination of all the normal coordinates y.. However, it
is clear from the original definition [Eq. (2.3)] of the
noise that only the Fourier component e(c0) is used,
i.e., only the modes qI, with frequencies coI, = co a6ect the
noise at frequency co. Hence, the correction factor is
simply E(Acd)/kT as shown in Eq. (7.10).

We see therefore that our correction factor C, the
ratio of the correct (ee) to its classically-computed
thermal equilibrium value, yields (1) the quantum cor-
rection in the thermal equilibrium case, (2) the cor-
rection to be applied when the system is driven away
from equilibrium.

The possibility that the usual Nyquist theorem would
be violated for a driven system was stated explicitly
by Richardson. ' He argued that the regression of Quc-
tuations obeyed. one set of diGerential equations, de-
scribable by an impedance, and the response of a
system to a perturbation was also describable by an
impedance, not necessarily equal to the first one. While
a Nyquist theorem would always exist relating the
noise to the regression of Quctuations, Richardson
questioned whether there was any connection
between the noise and the impedance to perturbations
exhibited by a driven system.

A Markoff system, however, cannot distinguish
between the response for t&0, after the initial condition
e(t)

~
c on= (0), and the response to a force bP=(BP/Bct) ~

e(0) for t &0 and 0 for t)0, since this force is calculated

Quantum-mechanical derivations of the Nyquist
theorem, based on a microscopic point of view and
thermal equilibrium, yield a Nyquist theorem in the
fOrm4' 4'

G[(dn/dt), f]=4k T Re[ Y (co)](Aa&/2k T)
Xcoth( A~/2 kT), (7.10)

where the frequency-dependent correction factor is
nearly unity for Aco«kT but approaches Aco/2kT for
Pun&&AT. It is interesting to note that these derivations
do not make use of the Marko%an assumption, although
they do apply only to fluctuations from an equilibrium
state.

The reason that quantum mechanics simply intro-
duces. a universal correction factor can be understood
as follows. The mean energy of a harmonic oscillator y.
of frequency ~& is given in quantum mechanics by
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in order that Eq. (3.6) for the average response remain
true. Our problem now is to give the random "force"
F(t) an autocorrelation (F(t)F(u)) consistent with the
requirements (6.23) and (6.24):

to produce the time-independent displacement n(0) for
t&0. If this force is analyzed into its frequency com-
ponents, the response can be expressed in terms of the
admittance of the system (see Callen and Green" ).
In this way the regression and hence the noise can be
calculated in terms of the admittance —hence, a
Nyquist theorem always exi~ts for a MarkoSan system,
However, this Nyquist theorem for a driven system is
generally of the form Eq. (7.6) containing the correction
factor C= s(en)/k. This correction factor arises even in
the Einstein relation (6.14).

The correction factor C appears in such a ubiquitous
way because it represents a breakdown in the thermo-
dynamic relationship between a fluctuation and a dc
admittance:

(e(t)e(u)) =Z(t —u) exp( —A.
i
t—ui)(nn)

+H(u —t)(ne) exp( —A'it —ui), (8.3)
where

a(t) =0, «0
=I,

'
t)0

is the Heaviside function, whose derivative obeys

dP(t)/dt =8(t}.

The autocorrelation in F(t) is given by

(F(t)F(u) )= ((d/dt+A) e(t) (d/dt+A)a(u))
= (d/dt+A)(n(t)n(u)}(~d/d u+A~), (8.6)

where ~ d/du is understood to act to the left. We now
insert Eq. (8.3) and make use of the relationship

(d/dt+A) II(t) exp( —A.t) = h (t)

(8.4)

(8.5)

(en)=kTBa/BP C, (7.13)

since s '/T represents the static ratio of displacement
Aa to force AP in conventional (energy language)
notation.

There are many cases of driven systems, in which the
fluctuations at one time (ee) are given by the thermo-
dynamic formula, without a correction factor. These
are usually cases in which the system is driven to a new

steady position with a modified stiffness matrix, but
the system behaves as if it were in equilibrium with
respect to the degrees of freedom under consideration,
although other degrees of freedom may be in a steady
nonequilibrium state. %e have already given an
example of this for concentration fluctuations in the
presence of a strong electric 6eld, which leads to a
nonequilibrium velocity distribution; yet the concen-
tration fluctuations where calculable by thermodynamic
methods Lsee Eq. (4.30)].

(8.7)
to obtain

(F(t)F(u) )= b (t—u) (en) (+—d/du+A. ')
+ (d/dt+A)S(t —u)(nn). (8.8)

But
d/du 8 (t—u) = —d/dt 8 (t—u}, (8.9)

with the result that

(F(t)F(u) )=h (t—u) (A(en}+ (ee)At) (8.10)

(8.11)=298(t—u)

in view of the Einstein relationship (5.18).
A random variable with a delta function autocorre-

lation is often described as completely random. " In
view of the Weiner-Khintchin theorem, such a variable
has a "white" (i.e., flat) noise spectrum.

The correctness of (8.11) may be verified by demon-
strating that it does indeed give rise to the desired
properties for e. Equation (8.1) can be rewritten in the
forn1

8. Langevin Method and Fluctuations in
Intensive Parameters

Ke already have a formal solution of the noise
problem in Eqs. (3.10) and (3.11), combined with Eq.
(4.4) or (4.17}for the fluctuations from an equilibrium
state, or Eqs. (5.19) and (5.20) for the fluctuations from
a steady state. Our solution describes the fluctuations e(t) =exp( At)e(0)+ & exp( As)F(t s)ds (8 12)
associated with extensive variables, the responses of the
system. Following I angevin, it has been customary to
regard these fluctuations in n as produced by fluctua-
tions in the corresponding intensive variables P, e.g.,

= P( } ( }+)"
Q

current fluctuations may be regarded as produced by
voltage fluctuations. The latter are representable in an por 6xed e(0) we then have that
equivalent circuit as noise voltage generators. The mag-
nitude and spectrum of these noise generators are then (n(t)e(u))~,
dered by the requirement that they give rise to the
noise already computed. = exp( —A.t)e(0)e(0) exp( —Atu)+)I ds') ds

For example, we can replace Eq. (3.6) by

dn/dt+A. e= F(t), (8.1) Xexp( —As' }(F(t—s')F(u —s)) exp( —A.'s). (8.14)

where

(F(t))=0,
Now introduce Eq. (8.10) for the autocorrelation in F.

(8.2):For the case t)u, 6rst integrate over s' so that the



FLUCTUATIONS FROM NONEQU ILI 8RIUM STEADY STATE

range of the delta function is covered:

=exp( —A.t)a(0)a(0) exp( —Atu)+ " ds
J,

Xexp[ A—(s+. t u—)7(A(nn)+(na)At)

Xexp( —Ats). (8.15)

so that
P(t) = TRF(t) (8.19)

(P(t)P(u)) = T'R(F(t) F(u))Rt
= T'R (Ls(aa)+ (aa) s'L') Rtb (t—u),

or, using RL= L~R~= |,
(P (t)P (u) )=kT(CR"+R'Ct) 8(t—u), (8.20)

where R'= TR is the conventional resistance and
Cs( n)/nk is the usual correction factor. At equi-

librium, C=1 and R'~= R', thus

(P(t)P(u)) = 2kTR'b(t —u). (8.21)

The integrand is the exact differential of

—exp[ —A. (s+t—u) 7(an) exp( —A.ts),

therefore, the result can be rearranged in the form

( (t) ( )) o= "p(—Alt —ul)(
+exp( —At)[n(0)n(0) —(aa)7 exp( —Atu). (8.16)

We see that as t and I, approach ~ with t —I fixed,
the autocorrelation approaches the desired stationary
value. Furthermore, an average over the initial values
cancels the second term, and again yields the desired
stationary answer (8.3).

Equation (8.12), also yields the macroscopically
expected result,

(a(t) )=exp( —At) a(0), (8.1'7)

so that Eq. (8.16) can be rewritten in terms of fluctu-
ations about the average motion

(L (t)-( (t))7L ( )-(.(u))7)-o
= exp[ —A.

l
t—u l7(nn) —exp( —A.t)(na)

Xexp(—Atu). (8.18)

Thus, the Quctuations about the average motion are
not stationary, in spite of the fact that we are dealing
with a linear system with time-independent transition
probabilities. The reason for this is clear: Equation
(8.18) must yield a vanishing result for the fluctuation
when t= N=O because of the imposed initial condition,
whereas the stationary expression takes the maximum
value (na) at this time!

Our expression for the fluctuations in F(t) is already
a simple and readily usable form. One may prefer,
however, to discuss the fluctuations in P(t), the con.-
ventional force. Comparison with Eq. (7.1) indicates
that

Application - of the Wiener-Khintchin theorem, Kq.
(2.5), leads to

G(P,f)df= 4kTR'd f, (8.22)

R'Ct= CR't (8.24)

so that the two terms in Eq. (8.23) make an equal
contribution.

The Nyquist theorem as used in practice is less
general than that just derived, in that the latter
describes the noise in a single variable rather than a
set—but is more general in that the voltage noise
source is not taken as flat but proportional to R(co), the
resistance at the frequency in question. The latter,
more general statement is usually arrived at by a ther-
modynamic argument": One connects a resistor E to
a black box containing an impedance Z=R(&o)+ix (co)

In order that the known transfer of power from E into
the box be balanced by an equal transfer in the reverse
direction, the box must be assigned an open-circuit
noise source 4kTJ?. (&v).

This proof, while simple and elegant, leaves two
questions unanswered: (1) How is it that one can
assume the validity of the usual circuit diagram pro-
cedure —assuming that the voltage noise may be
represented by a generator in series with the internal
impedance —for the purpose of computing power
transfer to a load? (2) In the case of a steady nonequi-
librium state (e.g. , current flow), what can one use to
replace the thermodynamic argument?

These questions are answered in the next section.

9. Validity of Circuit Diagrams:
Systems under Load

We have dehned fluctuations in the intensive vari-
ables (e.g. , voltages) by the requirement that they must
give rise through the equations of motion to the directly
computed noise in the extensive variables (currents).
This arti6cial approach has led some authors" to refer
to the fluctuations in the intensive variables as "ficti-
tious" or "hypothetical. "

The usefulness of considering "voltage" fluctuations
is that they permit one to use Thevenin's theorem to
compute the noise that arises when two complicated
systems are hooked together (one regarded as the load
of the other) in terms of parameters that describe each
separate system. Thevenin's theorem" states that a
complicated electrical network containing a variety of
generators may be replaced by a single generator, whose

"E. A. Guillemin, Consmlnication Xetveorks (John Wiley R
Sons, Inc. , New York, 1935), Vol. II, p. 181.

the conventional statement of the Nyquist theorem for
voltage fluctuations at equilibrium, whereas away from
equilibrium we have

G(P,f) =2kT(CR't+ R'C"). (8.23)

Time reversibility in the form Eq. (6.13) states that



M EL V I N LAX

voltage js the open-circuit output voltage of the system,
in series with a single impedance —the internal im-
pedance measured at the output terminals, with all the
generators short circuited.

The purpose of the present section is to derive directly
the noise in a loaded system and to show that the result
has the form required for Thevenin's theorem to be
valid for the thermal equilibrium case but not in
general. (It is not entirely obvious that the internal
impedance presented by the system to a noise generator
is necessarily the same as that presented to a signal—
although we anticipate that this should be true since
we have explicitly made use of the fact that, for
MarkofFian systems, the regression of fluctuations obeys
the macroscopic equations. )

%e consider the noise in the parameter a~. In other
words, we regard the l1 terminals as the output ter-
minals of our "network" and add a load across them,
i.e., we modify A = I,s to insert an added impedance s
in circuit 1 so that our new impedance is

Zi1 Zi1+ sr (9.1)

Z(de/dt) =P—z(de/dt),

de/dt= YP YE(de/d—t),

nl= Q; Vlg, —Viisel,

when we mage use of the fact that x has
element, with the result that

nl ——Q; Vii'I'1. ,
with

(9.3)

(9 4)

(9.5)

only an 11

(9 6)

oi
VI, ' ——VI;/(1+ Vlls),

ril ——V.,/(Z+ s), (9.8)

where the open-circuit voltage V„and the internal
impedance Z are customarily de6ned by

V-= Et(V»/VII)»
Z= 1/VII.

The positive frequency noise is therefore given by

G ( ) =2kT g;(V;C, '/Vi )/(Z+ ). (9.11)

Since the negative frequency noise is simply the complex
conjugate, we rationalize and take twice the real part
to obtain

Re[(Z*+s*)Q; V»C;I'/F'Ilj
G(a)11——4kT . (9.12)

I
Z+s I'

with aH other elements Z;, of the impedance, matrix
unmodi6ed.

The positive frequency part of the noise in n& is,
according to Eq. (7.14), given by

G+(ri)»=2kT Q; V». (Io)C,1', (9.2)

where the elements of 7', the matrix reciprocal to X',
can be computed easily as

Thevenin's theorem, Eq. (9.8), suggests that we
should expect an answer in the form

G(a)11=G(V..)/~Z+s~', (9.13)

where the noise source associated with the open-circuit
voltage depends only on the parameters of the system
and not the load. Equation (9.12) does not have this
required form. For the eq@~Bbrilm case, C,~=8,i so that
only the term j=1 survives, and Eqs. (9.12) and (9.13)
lead to a voltage source,

G(V) =4kT[Re(Z)+Re(s) j, (9.14)

which may be interpreted readily by assigning
Re[Z(co)j as a noise source associated with the system
and Re(s) as a noise source associated with the load.
(The latter could be made to vanish by choosing s pure
imaginary!) The use of circuit analysis and Thevenin's
theorem therefore seems to be valid for the case of
thermal equilibrium.

In the nonthermal equilibrium case, Eq. (9.12)
appears, at least in some cases, to contradict Thevenin's
theorem, for the term in s* leads to a noise source that
depends both on the system and on the load. For the
special case in which s=hsii/iso is pure reactive, L is
not modified, nor is D, so that the Einstein relation in
the form (7.16) indicates that C= (k L)-'D is unmodified
i.e., O'=C. The first term in Eq. (9.12) then can be
shown to be equal to the open-circuit noise source that
would be computed by the usual circuit analysis via
Eq. (9.9):
(I V-(~) I'&=((YP)1*(YP)I&/I V»l' (9.15)

= (Y*(P(~)*P(~)&Y)»/~ V»l'. (9.16)

By making use of Eq. (8.23), our result can be written

(i V (cd) i')=2kT(Y*(CR'I+R'C')Y)II/i F'„i' (9.17)

ol; llslllg R= 2(Z+Z ) and tile Ollsagel' I'elatlolls Eq.
(7.8),

(/ V..(co) f')=4kT Re(YC)II/J VII f', (9.18)

which is simply ~Z~' times the current noise shown in
Eq. (7.6). The first term in the numerator of Eq. (9.12)
reduces to this form when one writes Z*=l/VII*.
Thus, we have arrived at the identical open circlit-
voltage noise in three ways: (1) by considering the
current noise in the presence of a load, (2) by combining
the individual voltage generators via the circuit Eq.
(9.9), and (3) by multiplying the current noise by the
absolute square of the internal impedance.

For the case in which s has a real part, O'WC. For
the general validity of a circuit viewpoint, one should
demonstrate that the total voltage fluctuation, minus
the part we have already computed, depends only on
s and not on the system. This I have not yet succeeded
in doing. In the presence of a load the system generator
for the nonequilibrium case appears to be modi6ed by
the load. In the thermal equilibrium case this diTiculty
does not occur.
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The general problem of the Quctuations of intensive
variables has always been a thorny one. There seem to
be methods available, at least in principle, for a direct
calculation of the Quctuations of intensive thermo-
dynamic variables. ' It is not clear therefore that one
should de/1M pressure fluctuations by the requirement
that they give rise to the observed volume Quctuations
through an equilibrium relationship, e.g.,

hII'= (BI'/BV)rhV, (9.19)

since this procedure assumes that the equilibrium
equation of state E=P(V,T) holds during the fluctua-
tions as well.

I avoid the difhculty of a direct calculation of the
Quctuations in intcnslvc vallablcs by Mguing that onc
always measured Quctuations in extensive variables.
The usefulness of discussing Quctuations in intensive
variables is that they make it easy to compute the new
Quctuations in extensive variables when a load is
placed on the system. The proper procedure then is to
calculate the Quctuations in the extensive parameters
without and with a load. The.way in which the Quc-
tua, tions depend on the load then indicate that in the
thermal eqeilibrilm case there is a reasonable way to
define Quctuations in the intensive parameters to yield
the correct load dependence, and this definition is
consistent wi'th the assumption that the intensive and
extensive parameters are connected by the phenomeno-
logical equatioils.

At high frequencies an equation such as (9.19) must
cease to be valid, but in that case d t/' does not provide
an adequate number of variables for a Markman
description to be valid. Our present view, in short, is
that the Quctuations in the intensive variables can be
computed from those in the extensive variables by the
phenomenological relations, providing a complete set of
variables has been used which yields a Markman
system. This remark is valid only for the equilibrium
case, and an equation such as (9.12) must be used for
the general nonequilibrium case.

EXAMPLES

10. Systems Possessing Inertia

Because the systems previously discussed involved
6rst-order time derivatives and were described in terms
of a resistance and stiGness matrix, it might appear that
new methods are required. to handle systems possessing
inertia. The latter are commonly described by diGer-
ential equations second order in the time. It is well
known, however, that (barring the anomalous case in
which one cannot solve for the second derivatives in
tcl'Ins of t11osc of lowcl' order) second-order systcIIls caII
be reduced. to first-order systems by doubling the
number of variables —the new ones are the set of first
time derivatives. The extension to systems possessing
inertia is then a purely formal one except for con-
siderations of time reversibility.

n.=q a=i 2 g
~&„=P;=[m(dq/Ch) 3,,

(10,3)

so that I= (q,y) obey the set of first-order equations

dq/Ch= m Iy, — (10.4)

dy/dt= —yy —sq+ P, (10.5)

so that de/Ch= —A.II with

(10.6)

&s, y
)' (10.7)

where we treat e as a two-component quantity with
.components Q and p.

Time reversibility can be expressed in the form

(q(t) q(0)) = (q (0)q(h) ), (10.8)

&.(h) p(0)) = &p&0).(»),

( (h) (o))=—( (—h) (o))= —
& (o) (h)) (1o1o)

or in the form

[~(ee)];;=K;Z;[(~n)AIj;;, (10.»)
where E,=+1 for 1&i(1V,E,= —1 for /+1(i&2iV.

lt follows from (10.10) that at h=o

(10.12)

If the Quctuations at one time diGer from their thermal
equilibrium value, we can [cf. Kq. (6.11)]write them
as the thermal equilibrium value times a, correction
factol,

(s-', Oq tC 0~
(ae)=AT/

(0, m3 (o $3
(10.13)

where the oG-diagonal elements have been set equal
to zero because of Kq. (10.12). Then

to, —$~
A( .)=

I l. (1o.14)
&C, RS

The general prototype of a system possessing inertia
is a system of E coupled oscillators. We may adopt

m'(d'q/de)+ R'(dq/ch)+ s'q =P (10.1)

as out phenomenological equations, where P, I', R',
s' are the conventional (energy language) external
driving force, mass, resistance, and stiGness matrices,
respectively. These quantities diGer by a factor T from
the corresponding entropy language quantities used
before:

m'= Tm, R'= TR, s'=Ts, (10.2)

with P= —TX, as in Kq. (7.1).To simplify the notation
in this section, we drop the primes in Kq. (10.1).

We now convert to a set of 6rst-order equations by
doubling the number of variables,
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Time reversibility in the form (10.11) is equivalent to
the statement that the diagonal part of A(nn) is
symmetric, but its oG-diagonal parts are antisymmetric
with respect to one another:

where the last form has used Eq. (10.13). Since the
noise in dq/dt is &u times that in q, Eq. (10.25) aj'ees
with the usual Nyquist theorem

6~(dq/dt) =2kTY(a))C. (10.26)

and
RS= (StR"),

c'= —(- s)=s.
(10.15)

(10.16)

As a test of consistency, we note that the 22 com-
ponent of Eqs. (10.21) and (10.23) yields, for the
noise in p,

According to our development of the Langevin point
of view in Eq. (8.11), the noise may be calculated by
introducing a source whose autocorrelation is

G+(p) =2m Y( )&pp&

Since dq/dt=m —'p, we can write

(10.27)

where
(P(t)P(N)) =2D8(t —I),

2D =A&nn&+&nn)At

(0, 0

ho, RCtyCRt)

(10.17)

(10.18)

6 (dq/dt)=m-'6 (p)(mt) —' (10.28)

(10.30)

=2Y(~)&pp&/mt. (10.29)

In view of Eq. (10.13), the noise in dq/Ch also can be
written as

6+(dq/dt) =2kT Y(co)St,

in agreement with Eq. (8.20). It is pleasing that we can
verify directly, without such heuristic arguments as
presented by Hashitsume, " for a simple harmonic
oscillator that no noise source enters the relation [(Eq.
(10.4)) between velocity and momentum.

It may be of interest to verify the Nyquist theorem
directly without benefit of the Langevin viewpoint. The
admittance relating dq/dt to P can be obtained directly
from Kq. (10.1):

Y(co)= [R+ia&m —i(s/co)] —'. (10.19)

The positive frequency component of the noise may
be computed from the positive Fourier component Eq.
(2.7) of the autocorrelation,

(&qq), (qp) &

(n(t)n(0))=exp( At)
I I, (10.20)
«pq&, &pp&t

2 (&qq), 0
G+(n) =

~
(, (10.21)

(i~+A) ~ o, &pp&&

where we have discarded the vanishing cross terms,

which agrees completely with the usual theorem Eq.
(10.26) if one remembers that St= C in accord with Kq.
(10.16).

11. Continuous Parameter Example: Ambipolar
Drift of Carrier Concentration Fluctuations

Although the methods described relate to a set of
parameters n; depending on a discrete index i, we have
not made special use of the discreteness of this index;
therefore, i could be replaced by a continuous index x.
The only change in the formalism is that sums over i
are replaced by integrals over x.

In order that our statements do not appear too
abstract, we illustrate them by the example of the
influence of ambipolar drift of carrier concentration
fluctuations discussed by Hill and van Vliet. ' This
influence becomes important at electric fields high
enough for the drift time between electrodes to be
comparable to or shorter than the recombination time.

In the presence of a constant current generator, con-
centration fluctuations generate voltage fluctuations at
the output terminals proportional to the induced
resistance fluctuations:

(10.22) or
AV(t) =DE(t)I

and
(Y(R+io)m)/ice, Y/ice )

(i~+A) '=
I I, (10 23)—mYs/ia, mY )

or
6+(q) = (2/~') Y( )s&w)

G~ (q) = (2/oP) Y ((o)ETC,

(10.24)

(10,25)

where Y is the admittance, Eq. (10.19).
The noise associated with q may be computed from

Kqs. (10.21) and (10.23) by taking the 11 component.
After discarding an irrelevant term 2/iso, which cancels
out of the total noise, the positive frequency part can
be written

6V AR 6I' APIJ, „+ANIJ,„
V E. I' Pp„+NIJ„„

(11.2)

where P and N are the total number of holes and elec-
trons in the region between the electrodes, and AP, 5Ã
are the corresponding fluctuations. Under ambipolar
conditions, charge neutrality prevails (except for times
of the order of a dielectric relaxation time 10 " sec)
so that

A~V =AP, (11.3)
9 J. E. Hill and K. M. van Vliet, Physica 24, 709 (1958); (a)

M. Lax and P. Mengert, "Influence of trapping, diffusion, and
recombination on carrier concentration fluctuations, "Proceedings
Second Conference on Semiconductor Surfaces, December 2—4,
1959, J. Phys. Chem. Solids (to be published).
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and the voltage autocorrelation can be written

(~V(t)~V(0»= V'[('+')/(P+N')]'
X g P(t)t1P(0)), (11.4)

A correlation at t/0 arises for x'/x because a single
carrier can propagate from x' to x in time I.

In view of Eq. (11.5), the autocorrelation for the
total number of carriers is

where b=tl, „/p„ is the mobility ratio, and AP(t) is the
total hole fluctuation between the electrodes. -For a
one-dimensional geometry, Hill and van Vliet write

(~P(t)~P(0)) = ((~P)')@(t),
I

C (t) = —dx
i

dx'K(x, x', t),
L, Jo ao

(11.13)

(».14)

SP(t) = Zp(x, t)dx, (11.5)

n;(t) =P;[exp (—A.t)],,n, (0)

for the continuous case is

(11.6)

where hp(x, t), the fluctuation in local concentration,
constitutes the basic set of parameters n(x) of the
problem, and L is the distance between the electrodes.
The equation analogous to

and the voltage noise, from (11.4), (11.14), and (2.5), is

t' 1+b q'
G(V) = V'i

i ((hP)') 4 cosa&tC (t)dt. (11.15)
&P+Nb) ~ 0

The corresponding current noise may be obtained by
multiplying by (I/V)'. If holes and electrons fluctuated
independently, one would have, by Eq. (4.25),

((AN)') =N ((hP)') =P (11.16)

e, (t) = I [exp( —At)]„dx'n .(0). (11.7)
(assuming there are no fluctuations in bound electrons).
Under conditions of charge neutrality, by the argument
leading to Eq. (4.30), we obtain

[exp (—At)]...=K(x,x', t),

is known for this problem, we can write

(11.8)

SP(x,t) = K(x,x",t)dx"SP(x",0) (11.9)

so that the correlation at different times,

(ap(x, t)Zp(x', 0))

' K(x,x",t)dx" (t1p(x",0)hp(x', 0)), (11.10)

is reduced as usual to a knowledge of the correlations
at one time. Since Quctuations in added carrier concen-
tration (electron-hole pairs) occur without a change in
Coulomb energy, it will be a good approximation to
regard the added pairs as noninteracting. Thus there
will be no correlation between Quctuations in added
carrier concentrations at diferent points. The Debye-
Huckel theory of Coulomb correlations"' is shown in
Appendix C of reference 98(a) to reduce approximately
to the same delta function autocorrelation that would
be obtained by the methods of Sec. 12 in the absence
of two-body forces. Thus we take

(AP(x",0)AP(x', 0))= ((DP)')I. 'a(x"—x'), (11.11)

where the coefficient of the delta function has been
chosen, considering Eq. (11.5) so that the fluctuation
in the total number of carriers is ((hP)' ). Equation
(11.10) now yields

(t1p(x t)t1p(x' 0))=((hP)')L—'K(x x')t). (11.12)

By assuming, for the moment, that the "Green's
function, "

A = 1/r+v, a/ax D,a'/ax—' (11.22)

[The reader may have anticipated, in view of our
matrix notation that A. e would become an integral
instead of the sum which appeared in the discrete case,

A.e(x) = )t A., dx'n(x').

99 W. van Roosbroeck, Phys. Rev. 91, 282 (1953).

(11.23)

((~P)') = ((~N)') =NP/(N+P) (11.17)

(even when the quasi-Fermi levels of the two bands are
unequal).

To determine C (t) we must obtain K. We now show
that K(x,x', t) represents the response at x at time t
due to a unit pulse which originates at x at time 0. In
view of Eq. (11.8), as t —+ 0,

K (x,x', t) ~ '(1), =a(x—x'). (11.18)

Since we only use E for t)0, we may define E to
vanish for I(0, i.e., we may set

K(x,x', t)= [exp( —At)]„H(t), (11.19)

where H(t) is the Heaviside jump function [cf. Eqs.
(8.3) and (8.4)] so that

(a/at+A)K(x, x', t) =a(x x')a(t), (1—1.20)

in accord with Eq. (8.5). In other words, K is the
response at x and t to a pulse originating at x' at time 0.

The phenomenological equations for ambipolar dif-
fusion have been given by van Roosbroeck, " For the
one-dimensional case, these equations take the. form

(a/at+ 1/r~v. a/ax D.a'/ax')(ap(x)t)—)=0. (11.21)

Thus we may interpret A. as the operator
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The integral notation is indeed more general. Differen-
tial operators are certainly special cases of integral
operators. For example, if we take

t1„=(1/r) 8 (x—x') —v,b'(x —x') —D,b". (x—x'), (11.24)

where 8' and 8" are first and second derivatives of a
delta function, then insertion into Eq. (11.23) and
integration by parts lead to the same result as the
direct use of Eq. (11.22).]

The parameters v, and D, in (11.21) are the ambi-
polar drift velocity and diffusion constant defined by"

t .= (N P)t .t—vj(N t-+Pt 'v) (11 25)

The noise spectrlrN exhibits osczllutioes with a period
ha)T, = 2m.

For the case in which diffusion is included, the
Green's function becomes

E (x,x', t) = (4v.D,t) ~ exp[ —(t/r) —(x—x'—v,t)'/
(4D,t)j. (11.35)

For the purposes of evaluating 4 (t) by Eq. (11.14), it is
more convenient to re-express Eq. (11.35) in terms of
the integral representation

K(x x' t) = (2v)—' exp( —t/r)

Rlld

D = (&V+P)DvD„/(iVD„+PDv), (11.26)
)&Jtdk exp[ik(x —x' —v, t) —Dok'tj (11.36)

sm(kL/2) '
(11 27) 4 (t) =-

2v- ~ „(kL/2)D =kTtj, „/e; Dv= kTts„/e.

where the individual diGusion constants and mobilities with the result that
are related by the Einstein relation

However, the ambipolar constants are not so related.
We must now solve Eq. (11.20) with Eq. (11.22) for

A.. For the case in which diffusion is unimportant, the
solution (with neglect of end effects) can be written
immediately as J

cosh)t4(t)dt

&&exp[—(ikv, +D,k2+ 1/r) tj (11.37)

T.=I./v. (11.30)

is the time required to drift between electrodes.
If we convert Eq. (11.15) to current noise by multi-

plying by I2/V', and eliminate one I by means of

IT = [e(Ppv+Np„) V/L'](L'/p, V)
= e(P+rtN)'/(IN PI b), (11.31)—

where b=p /tj, „, we obtain the current noise in the
form given by Hill and van Vliet, "

It (x,x', t) =exp( —t/r)8(x —x'—v.t) (11.28)

so that Eq. (11.14) yields

4(t)=exp( —t/r)[1 —(t/T, )] for t(T,
=0 for t&T, (11.29)

where

(8/Bt+A)n(x, t) =F(x,t), . (11.39)

j'sinx) '
dx!&x)

(1/r)+(4D. /L') x'
X (11.38)

[(1/r)+ (4D./I. ')x'j'+[(u+ (2x/T )]'
Equations (11.37) and (11.38) exhibit a distribution of
relaxation times (1/r)+D, k and a distribution of
center frequencies ke . For large enough L, the right-
hand side of Eq. (11.38) reduces to the familiar
r/(1+co'r'). Equation (11.38) is evaluated exactly in
reference 98(a).

As a closing remark, we note that the Langevin
viewpoint leads to an equation of the form

where
G(I) = 2eI„,

2I(b+2+b ')

I (NIP) —(PIN) I

where the random noise source F(x,t) obeys Eq. (8.11),

(F(x,t)F(x', t'))=2D(x, x')b(t —t'), (11.40)
(11.33)

and Eq. (5.18) requires that
and

TQ

W=W(cur, coT,) = costate "'[1 (t/T )) (—d/ t)T

(r/T, )' T~ 1—(cur)' exp( —T,/r)
+

1+(ar)' r 1+(err)' 1+(a)r)'

2D(x,x') =A(n(x, 0)n(x', 0))+transpose (11.41)

or, for this example,

2D(x,x') = [(1/r)+v.d/dx D.d'/dx'j—
X(hp(x, 0)hp(x', 0))+transpose (11.42)

=2((&P)')/L[(1/r)b(x —x') —D.b"(x—x') j,
where the term in v,b'(x —x') is odd in x—x' and cancels
when the transpose on x and x' is added. This result
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might have been dificult to deduce by more intuitive
methods. '"

In this section we have demonstrated how easy it
is to apply our methods to variables o. with a continuous
index x. Our argument was incomplete in that the
Quctuations at diferent points at the same time were
assumed to be uncorrelated on the basis of heuristic
arguments. Even if we accept these arguments, the
conclusion, Eq. (11.11), that the correlation is propor-
tional to 5(x"—x') is not guaranteed since derivatives
of delta functions could occur. Hashitsume" has in-
deed shown that the usual expression for the entropy,
valid near an equilibrium state, leads to the delta func-
tion form. Our heuristic arguments suggest that, for a
problem in which only one-body forces and one-body
collisions are important, this form remains valid even
in the nonequilibrium case. In the next section we make
a direct calculation of the Quctuations at one time by
means of Eq. (5.18), and verify the delta function form
for fluctuations from a steady state. [In the case when
the total number of carriers is fixed, we 6nd a correction
term of nondelta function form. In the Hill-van Vliet
experiment this correction term is unnecessary because
there is no constraint on the total number of added
electron-hole pairs. ]

GENERALIZATIONS OF OUR METHOD TO
CONTINUOUS PARAMETER AND

NONLINEAR SYSTEMS

Equation (12.4) demonstrates that the noise in a can
be calculated readily if the fluctuations in e(a,t) are
known. In particular, one must know the time-dis-
placed correlation function whose importance in physi-
cal applications has been emphasized by Van Hove, '"
Vineyard, "' Glauber, '" and others. "'

The introduction of distribution functions e(a)
rather than the original variables a, like the intro-
ducti'on of second quantization into quantum mechanics,
sets up a more powerful formalism than necessary for
most problems. There are three occasions, however,
when such a formalism is desirable, if not absolutely
necessary:

(1) When we are concerned with fluctuations in
quantities that are more naturally expressible in terms
of n(a) than a. For example, in the previous section we
were more concerned with the total number of carriers
in a region than with the position of each, and it was
more natural to work with Ap(x) than with x.

(2) When the fluctuations in a are so large that the
quasi-linear approximations made in Eqs. (5.13) and
(5.14) are no longer valid. It is still generally true that
the fluctuations in e(a) are suKciently small for linear-
ization to be valid when the e(a) are the random
variables. For example, the velocities of conduction
electrons in a solid vary widely compared to their
average (drift) value. Thus, it is not legitimate to
adopt a phenomenological equation of the form

12. Fluctuations in Distribution Functions dv/dt= v/r— (12.5)

We have been concerned largely with the Quctuations
in a set of parameters a or in their deviations e= a—ao
from the steady-state value ao. We could concern our-
selves equally well with Quctuations"' in the distribu-
tion functions n(a, t) such that e(a, t)da represents the
number of systems between a and a+da at time t. If we
call na(a) the steady-state value of the distribution
function, then we may write

ao ——j aeo(a)da,

a(t) = "ahe(a, t)da,

(12.1)

(12.2)

where
Dn(a, t) =n(a, t)—eo(a), (12.3)

with the result that

(e(t)n(0)) = t aa'dada'(De(a, t)d e(a'0)). (12.4)

',~ M. Solow and R. L. Petritz, "Theory of noise in a multidi-
mensional semi-conductor with a p-n junction, " Navord Rept.
5762, thesis, Catholic University (1958). See also Van der Ziel,
reference 33.

'OI For applications of the Nyquist theorem to fluctuations in
continuous systems. See S. M. Rytov, Soviet Phys. JETP 6, 130
(1958); Soviet Phys. Doklady 1, 555 (1956).

unless a relaxation time exists and is independent of
velocity. " (Even if a relaxation time 7.=r(v) existed,
one could not linearize Eq. (12.5) by setting v= vo+Av
because hv»vo. ) However, the distribution function
e(v) can be treated by a linearization procedure.

(3) When pair forces and/or two-body collisions are
involved. For example, if the Coulomb forces between
electrons are important in inQuencing their motion or in
producing collisions between pairs of electrons, one
cannot use a one-body transition probability m„.„but
needs instead a two-body transition probability
x,",',, „and it is then simpler to follow the changes
in n(v, t) than in the velocities of a single or a pair of
particles.

The procedure now described requires no origiriality.
It is a straightforward application of the methods
introduced in this paper to the variables n(u, t) rather
than a. (We understand that u can also represent a set
of variables, but do not indicate this by boldface type

'~ L. Van Hove, Phys. Rev. 95, 249 (1954).' ' G. H. Vineyard, Phys. Rev. 110, 999 (1958).'~ R. J. Glauber, Phys. Rev. 9&, 1692 (1955).' ~ The time-displaced correlation function was apparently
introduced by G. I. Taylor, Proc. London Math. Soc. Ser. 2, 20,
196 (1920), and has been extensively applied to the theory of
turbulence. See, for example, G. K. Batchelor; Theory of Homo-
geleous Turbulerice (Cambridge University Press, New York,
1953). .
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since no confusion can occur. ) We indicate the pro-
cedure for the case of one-body collision. Since the
changes in e(a, t) are governed by the changes in a, we
expect to express them in terms of the same transition
probability m, , that was used in our previous de-
scription which followed the motion of a single "par-
ticle." In that description, m, represented the transi-
tion probability for a "collision" which carries the
particle from state a (which is singly occupied before
the collision) to state a' (which is empty before the
collision —since the particle was then in a).

In our present description there are ii(a) and e(a')
particles in states a and a' before the collision, and the
transition rate m, , is replaced by

wi,.ep(a) w. t rsp(b)

1+ceo(a) 1+amp(b)
(12.11)

However, if one requires that three states a, b, c be con-
sistent with one another under this requirement, one
finds that

f(b,a) =wt,./w. g (12.12)

the state of minimum entropy production has been
pointed out by Klein and Meijer. '~-'"

The steady-state values eo(b) are, as usual, deter-
mined by setting the right-hand side of Eq. (12.10) to
zero. One is tempted to make the terms on the right-
hand side cancel in pairs by detailed balance:

&(o o) = [1+&N(o )]wa'a&(a) (12 6) must satisfy the consistency requirement:

where the first factor takes account of quantum sta-
tistics, with &=0, —1, or +1 for Boltzmann, Fermi-
Dirac, and Einstein-Bose statistics, respectively. ' ' We
treat the "states" u as having discrete values, and use
sums. These sums can be converted later to integrals
for the continuous case.

The "master" transition probability from e(a) to
rc'(a) now can be written

W(e', e) = P x(a', a)b[N'(a'), e(a')+1]
a,a' gu

Xb[N'(a), I(e)—1] g b[N'(o"), ii (a")], (12.7)
rtl I ~rt ~l

where b(m, e)= 1 for m= n and 0 otherwise is a
Kronecker delta function.

We now perform the calculation defined by Eq. (5.5)
to obtain the bth component of the first moment of
the transition probability:

f(c,a) = f(c,b)f(b,a), (12.13)

a functional equation whose only solution is of the form

f(b,o) =g(b)/g(a) (12.14)

Thus if the ratio of forward to reverse transition prob-
abilities has the form (12.14), then there is a steady-
state solution of the form

~0(a) =Kg(a)
1+enp(a)

where the proportionality constant X is determined by
normalization (i.e., by the requirement that the total
number of particles be given correctly). Even in the
nonequilibrium case, we can choose to define a quasi-
Fermi" level p by means of

A g(e) =Q„.[N'(b) —e(b)]8'„„. (12.8)
lt= exp(ti/kT). (12.16)

If one inserts Eq. (12.7) and sums first over e', the only
terms in the sum which contribute are those for which
a=b and a'=b,

Ag(~i) = —Q. x(u', b)+Q. x(b, a) (12.9).

Therefore, from Eqs. (5.9) and (12.6),

d(it(b, t)}/dt= —Q;([1+en(a')]m(b))w b

+Q,([1+ee(b)]N(u) )wp, . (12.10)

This phenomenological equation is of the usual trans-
port type. The mean rate of increase of particles in b is
equal to the diGerence between the mean rates of Qow
into and out of b. The approach to a steady state of the
solutions of an equation like (12.10), at least for the
Boltzmann case, has been discussed by Siegert"' and
Watanabe. "'The relation between the steady state and

' 'S. Vonsovsky, J. Phys. U.S.S.R. 10, 367 (1946). See also
Tolman, reference 6, Eq. (100.31)."'A. J. F. Siegert, Phys. Rev. 76, 1708 (1949)."' S. Watanabe, Revs. Modern Phys. 27, 26, 40, 179 (1955).

Under thermal equilibrium conditions,

g(a) = exp[ —E(a)/kT], (12.17)

and Eq. (12.15) yields 'the conventional equilibrium
result

1zo(G) =, j 6+exp[(E(a) —ti)/kT]} '. (12.18)

A nonequilibrium steady state may obey Eqs. (12.14)

' ' M. J. Klein and P. H. E. Meijer, Phys. Rev. 96, 250 (1954).
The principle of minimum entropy production was formulated by
Prigogine, reference 10. Discussions and applications of this
principle are given in references 110—114.

» M. J. Klein, Phys. Rev. 98, 1736 (1955).'" P. H. E. Meijer, Phys. Rev. 103, 839 (1956)." J. M. Ziman, Can. J. Phys. 34, 12A, 1256 (1956), demon-
strates that the minimum entropy production principle is equiva-
lent to the variational principle formulated by M. Kohler, Z.
Physik 124, 772 (1948); 125, 679 (1949); Ann. Physik (6) 6, 18
(1949) and applied by him to the solution of transport problems.
Later uses of this variational principle include references 113 and
114.

»3E. H. Sondheimer, Proc. Roy. Soc. (London) A203, 75
(1950); A234, 391 (1956).

»'D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc.
(London) A219, 53 (1953).
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to (12.16) but not (12.17) or (12.18). In that case, a
steady state obeying detailed balance, "' Eq. (12.11),
but not thermal equilibrium, Eq. (12.18), is obtained.
In general one obtains a steady state in which neither
equilibrium nor detailed balance occur.

In any case, for small deviations from a steady state,
we set

n(a) =np(a)+he(a), (12.19)

The equation for the second moments, after lineari-
zation, according to Kq. (5.17), is

d(he(b)Ae(c))/dt=2Dp. i4(h n(
—a)h e(c))

(hn—(b)hn(a))A. „, (12.22)

where summation over the repeated index a is under-
stood. The diffusion matrix Dp, is defined as in Kq. (5.6)
in terms of the second moment of the transition prob-
ability,

2Dp, =g. [e'(b) —e(b)][e'(c)—e(c)]W„„. (12.23)

By using the deanition (12.7) of W„„,one obtains

2Dp, = —[1+pe(b)]wp, e(c)—[1+pe(c)]w,pe(b) (12.24)

for c&b. The two terms in Db, are equal under detailed
balance but not otherwise. For c=b, we obtain

2Dbp =Q.[1+pe(b)]wp. e(a)
+P,[1+pe(a)]w pn(b). (12.25)

The two sums in Eq. (12.25), become equal when we
replace n(a) and e(b) by their steady-state values, since
it is just the difference of these terms in Kq. (12.10)
that represents a deviation from a steady state.

The steady-state second moments (Ae(a)he(c)) now
are chosen so that the right-hand side of Eq. (12.22)
vanishes, i.e., so that the Einstein relation is obeyed.
In a formal way, this is accomplished by Eq. (5.19) or
(5.20). In practice, however, for an arbitrarily chosen
mb, we cannot expect to invert easily the matrix A. We
expected, by intuitive arguments in Sec. 11, that there
would be no correlation between fluctuations in dif-
ferent states. We therefore try a solution of the form

(hn(a)De(c)) =F(c)B(a,c) (12.26)

to see under what condition it works. [We use a
Kronecker delta function since u and b could refer to
discrete states, e.g., quantum states. In the continuous

f

"'M. J.Klein, Phys. Rev. 97, 1446 (l955), claims to show by an
example, however, that the principle of detailed balance cannot
hold in nonequilibrium steady states.

and rewrite Kq. (12.10) in the form

d(Ae(b, t))/dt= —P, Ab, (he(a, t)), (12.20)
where

Aq = —[1+& e(pb)] wp+ ppn(b) wp bWa

App=g {[1+pep(a)]w.p wp—,pnp(a)} (.12.21)

a sum on a and c in Eq. (12.31) yields

((AE)')= kT(BXp/Bu), (12.32)

a result which we anticipate to be correct if particles
are interchanged with a reservoir ("grand canonical
ensemble" ). However, we have postulated only those
transitions m ~ which take a particle from a to a'
without changing the total number of particles in the
system; therefore, E should not Auctuate. The resolu-
tion of this paradox consists in noticing that we have
found so far only a particular solution of the Einstein

case when sums are replaced by integrals, b(a, c) is
replaced by 8(a—c), the Dirac delta function. ]For the
Boltzmann case &=0, we find that this supposition is
always successful in the form

(Dn(a)Dn(c))= np(c)b(a, c) . (12.27)

For the Fermi-Dirac and Einstein-Bose case, we find
that the ansatz

(Ae(a)de(c)) = [1+pep(c)]ep(c) b (a,c) (12.28)

is successful, providing the steady state is such as to'
obey detailed balance, Eq. (12.11), i.e., when the ratio
of transition probabilities obeys Kq. (12.14). (If the
ratio of transition probabilities is arbitrary, then aq. .

ansatz of the form (12.26) can be shown to fail, even
though it is successful for the Boltzmann case. )

The fluctuations (12.27) and (12.28) are precisely
what one would obtain if one assumed the validity of
the customary entropy formula,

S=—k Q.{n(a) inn(a) —p[1+pe(a)]
Xln[1+pe(a)]}, (12.29)

and evaluated the fluctuations from the second deriva-
tives of the entropy via Eqs. (4.2) and (4.4), i,e., by
assuming the validity of the Einstein-Boltzmann point
of view away from equilibrium. This suggests that the
usual entropy formula is valid away from equilibrium
for the Boltzmann case. For the Fermi and Einstein
cases, the same remark applies provided one is in the
neighborhood of a state of detailed balance. "'

Conversely, . for the Fermi and Einstein cases, if one
is not near a state of detailed balance, Kq. (12.29) does
not yield the correct Auctuations, and its use as an
expression for the entropy is certainly open to question.

The formula

XBep/H, = kTBnp/Bu= (1+pep)np (12.30)

permits us to combine Kqs. (12.27) and (12.28) into
the single equation

(hn(a)ae(c)) =kT(pep(c)/By)h(a, c) (12.31)

in a form identical to that used in the thermal equi-
librium case, Eq. (4.23).

If we denote the total number of systems by

X=+ n, (a),
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relation. This solution is not unique if one can find a
solution of the homogeneous equation

Hy using

g np(c)[1 —np(c)]=+ np(c) =n, (12.39)
Q Ap. (hn(a)hn(c)) =0. (12.33) free

t The last term in Eq. (12.22) then also vanishes since
it is the transpose of (12.33).]

By regarding (hn(a)An(c)) as a function of the first
variable a, we see that such a homogeneous solution
would automatically obey Eq. (12.20) with d(Dn(b, t))/dt
=0. Thus, we could generate a new steady-state solu-
tion,

n p(a),„=n p(a)+A (hn(a) hn(c))q, , (12.34)

with arbitrary A. YVe have tacitly assumed in the past
that our system possesses a unique steady-state solu-
tion. And indeed, we continue to assume that our steady
solutions are unique excePt for normalisatpon "P.

Since the Boltzmann equation is linear, a new steady-
state solution can be obtained by taking An(a) ~ np(a)
or, by symmetry,

(hn(a)Dn(c))h, = np(a)np(c) . (12.35)

Equation (12.27) now can be replaced by

(Dn(a)An(c) )=np(c) 8(a,c)—(np(a)np(c)/1Vp), (12.36)

where the factor —1/1Vp has been chosen so that 1V does
not fluctuate from its steady value Xo. For the Fermi
and Einstein cases, we can obtain new steady solutions
by changing the total number of particles by means of a
change of X in Eq. (12.15) or the quasi-Fermi level ti.
For this case, An(a) ~Bnp(a)/Ba, and we obtain the
final result

(Dn(a)hn(c))
=kT(Bnp(c)/Bp)B(a, c) (kTBnp(a)/B—tl)

)((kT Bn, (c)/Bp)/(kTB1Vo/Bti) (12.37)
or

(tin(a) An(c))

=np(c)L1+pnp(c)]b(a c)

np(a) L1+pnp(a)]np(c) f 1+pnp(c)]
(12.38)

Pb np(b)L1+pnp(b)]

The added term is of order 1/1V and therefore is
unimportant in calculating the fluctuations in any
small porti'on of a large system. However, this term
does aGect fluctuations in appreciable parts of a system.

Consider, for example, a set of free electrons in dif-
ferent velocity states plus a set of bound electrons in
traps. Let us calculate the Quctuations in the total
number of free electrons, assuming that Boltzmann
statistics is adequate for the free states, but that Fermi
statistics is necessary for the bound states. Then we
must sum Eq. (12.38) on a and c over the free states.

n (b)L1 —np(b}]=1V (t1/1V )L1—(t1/1V )], (12.40)
bound

where Ã& is the number of traps, n the steady number
of free carriers, and 8 the steady number of bound
carriers, Eq. (12.38) yields

((An)') =n-
n+ttL1 —(tt/1Vg) ] (12.41)

in. agreement with Eqs. (4.30) and (3.35), the latter
equations having been derived by two diGerent methods
for a two-state system.

As an exercise for the reader, we suggest the deriva-
tion of Eq. (12.38) from the distribution fuction

BLP tin(a)] exp f ——', P[hn(a)]'/(Lhn(a)]')) (12.42)

where (Lhn(a)]') is taken from the grand canonical
result Eq. (12.31), and the constraint is imposed by the
multiplying delta function.

The method which first suggested Eq. (12.38) to the
author is discussed in Sec. 13.These various approaches
were taken in order to make absolutely certain of the
strange looking correction term in Eq. (12.38). After
completing the manuscript, I found that in the thermal
equilibrium case this correction was known to Fowler. "'

The results of this section are, in a certain sense,
obvious. For "particles" which move independently of
one another, the occupancy of a given state is com-
pounded of independent events, each "particle" having
the same probability of occupying a given state. If the
supply of "particles" is inexhaustible, we find that each
state has a Poisson probability distribution of occu-
pancy, and there is no correlation. between the states.
The second moment (12.27) is characteristic of such a
Poisson distribution.

If one deals with a fixed total number of "particles"
X, then we have the usual probability game of dis-
tributing X balls among a set of boxes, box u having
probability np(a)/1V, which leads to the standard multi-
nomial distribution whose second moments are in ac-
cord with Eq. (12.36). The constraint h(p, n(a), 1V)

thus leads to correlations between the occupancies. In
fact, the multinomial distribution is simply the Poisson
distribution, with the foregoing constraint as a multi-

plying factor, renormalized to unit total probability.
A formal proof of the validity of the multinomial distri-
bution for this Boltzmann problem has been given by
Mathews, Shapiro, h,nd Folkoff.""

The probability distribution for any sma, ll number of
states, obtained by summing the multinomial distribu-
tion over the occupancy of all other states can be

»'Uniqueness has been established under fairly general con-
ditions by Lebowitz and Bergmann, reference 48.

»7 See Fowler, reference 7, Eqs. (2115)and (2123);-(a) Mathews,
Shapiro, and Fulkoff, Bull. Am. Phys. Soc. Ser. II, 4, 15 (1959).
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13. Transformations on Random Variables

In solving problems involving a set of random vari-
ables, it is sometimes convenient to make a linear
transformation to a new set of random variables in such
a way that no correlations exist between the new
variables.

Let us consider first a single variable I(I) with auto-
correlation

(I(I)I*())= (I, ), (13.1)

where we have not assumed stationarity r(t,s) =r(I s). —
Suppose that the variables t and s are limited to some
domain B. Let f„(I) be the set of orthonormal eigen-
functions of the integral equation"' "'

r(t, s)f (s)ds=v„f„(t) (13.2)

written down immediately by regarding all other states
combined as a single state. For example, the distribution
in occupancy of a single state e is a binomial distribution
with probability p=ms(a)/X that state a is occupied
and q=1—p that the particle is in any other state. In
particular, the second moment of this binomial distri-
bution, Xpq, agrees with Eq, (12.36) for c=u, whereas
Eq. (12.36) with cuba can be derived from a "trinomial"
distribution which considers states e, c, and the re-
mainder as the three possibilities.

The preceding results for the Boltzmann case lead us
to suggest simple solutions to the problems for Fermi
and Bose statistics when detailed balance"' is obeyed.
For the case of an inexhaustible reservoir, there will be
no correlation between the states. For the Fermi case,
state a is full or empty with probabilities ns(u) and
1—sp(o), respectively. For the Bose case, the prob-
ability of occupancy n(a) is

~["( )]=( (~)/[I+"o( )]}""/[I+~o()]
which is simply the result for thermal equilibrium with
the equilibrium occupancy n(a) replaced by the steady,
nonequilibrium occupancy ns(a).

The probability of a complete set of occupancies
fe(a)} is obtained by multiplying together the prob-
abilities for each state a. If the total number of par-
ticles is fixed, one must multiply by the constraint
h(g, n(a),$) and restore the normalization. Equations
(12.28) and (12.38) yield second moments in agreement
with these conclusions for the case of infinite and finite
reservoirs, respectively.

constitute an uncorrelated set for

(c„c„*)= ~f„*(t)dt "ds(I(t)I*(s))f„(s)

=v„, f *(I)f (t)dt=v„b„, „
(13.4)

In general, I(I) is real, and the f„(t) can be chosen real;
however, it is sometimes convenient to make a complex
choice. For example, if

«(I,s) =r(I—s), (13.5)

and the domain of t is —00 (II& ~, as is appropriate
for a stationary random process, then the integral, Kq.
(13.2), has the set of eigenfunctions exp( —icoI) which
form a continuum on co, arid one may verify by direct
computation that if

i(cv) = exp( —i(ot)I(I)dt, (13.6)

then

where
(s(a))i*(a)'))=orb((o' &o)G—((o),

G(a)) =2)I' exp( —is)t)(I(t)I(0))dt

(13.7)

(13.8)

d =Q 0 „c„/(v„)&, (13.9)

g„= U„(co)i((u)/[vrG((e)]&dc',
aJ

(13.10)

and the resulting variables d or g will be uncorrelated
and have mean square unity (i.e., orthonormalized).

This lack of uniqueness is precisely what enables us
to start with a set of variables n, (t) and construct a new
set P (I) such that

is the noise spectrum. Equation (13.7) states that the
different Fourier components of a stationary random
variable are uncorrelated. This is the reason for the
efficacy of the Fourier approach to noise introduced
by Schuster"' and %iener, "and successfully exploited
by Rice."

It should be remarked that the construction we have
given of uncorrelated variables does not lead to a
unique result. After normalizing our variables to
c„/(v )' or i(ur)/[mG(co)]*", we can make any orthogonal
or unitary transformation,

with eigenvalues v„. Then the random variables
(p„(t)p„(N))=b „F(t—I), (13.11)

c„= I f„"(I)I(s)ds (13.3)

»8 K. Karhunen, Ann. Acad. Sci. Fennicae Ser. A. I. 34 (1946);
ibid. 37 (1947).

1» M. Kac and A. J. F. Siegert, Ann, Math. Statigticg IS, 438
(1947), See also reference 14.

i.e., variables that are uncorrelated at t=N=O and
remain uncorrelated for arbitrary time differences.

A procedure for accomplishing (1$.11) may be
outlined briefly as follows:

~" A. Schuster, Proc. Roy. Soc. (London) A77) 136 (1906)..
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(1) Find an orthogonal transformation which diagon-
alizes the real symmetric matrix (u,n, ). (Such a solution
always exists. "') The new variables are uncorrelated but
not normalized.

(2) Make a scale change in the new variables to
provide normalization,

(13.12)

(3) The combined action of (1) and (2) constitutes
a similarity transformation S under which

Occasionally, A. and A,~ can be diagonalized by the
same set of eigenvectors and the complication of a
biorthogonal set of random variables need not be
introduced.

To illustrate these remarks we consider the Boltzmann
transport equation,

Bf/Bt=J~w(v, v')f(v')dv' [1/r—(v)]f(v), (13.26)

where

(n'e') = S(nn) St,

9'= SDS~,

~'= S~S

(13.13)

(13.14)

(13.15)

1/r(v) = ~I w(v', v)dv' (13.27)

is the mean collision rate. We take as our steady-state
solution a Boltzmann distribution,

and

2D'=w'+w'~ (13.16)

(13.17)

such that A.'= 0' is a real symmetric matrix.
(5) Hence, an orthogonal transformation exists, "'

Hence, the symmetry of (nn) and D is preserved, but
that of A. is altered.

(4) The Einstein relation, Eq. (5.18), and time
reversibility, Eq. (6.4), take the forms

w(v, v') fs(v') =w(v', v) fs(v). (13.29)

Our theory of fluctuations in distribution functions,
Eq. (12.27), yields for the fluctuations at one time

(&f(v)hf(v'))= fs(v)b(v v'), —(13.30)

fs(v)=TV(m/2~kT)& exp( —-', nw'/kT), (13.28)

normalized to a total of Ã particles, and assume that
detailed balance holds:

if we neglect the correction in Eq. (12.36) for the case
of a fixed total number of particles.

Since our moments are already in diagonal form, we

may start our procedure with step (2) by introducing

v) (13.31)

p, = Q o„„n„', (13.18)

which diagonalizes A.':
(13.19)A.'p„= x,p„.

(6) The orthogonality of the transformation pre- ~f(v) =[f.(v)]'g(
serves the orthonormality [Eq. (13.12)] of the fluctu-

to obtain the normalized moments,

(13.20) (g(v) g(v')) =b(v v')— (13.32)

A~y„=P „y„

which form a set orthogonal to the P's, "'

and

(13.22)

(13.23)

with the result that

(p (~)p.)=«p( —~'~) (p.p.)
=exp( —X,t)b„, (13.21)

has the desired lack of correlation shown in Eq. (13.11).
(7) In the absence of time reversibility, cl' is not

symmetric. It can be diagonalized by P„but the nonor-

thogonality of the transformation destroys Eq. (13.20).
One can then introduce the eigenvectors y„of the
transposed matrix

Our phenomenological equation now takes the form

Bg/Bt= ~L (v, v') g (v', t)dv' g(v, t)/r (v), —(13.33)

where

L(v, v')=[f (s)s] ~ w(v, v')[f s( v)]& (13.34)

is a real symmetric matrix because of the detailed
balance condition (13.29), as promised in step (4). But
real symmetric matrices always possess a set of ortho-
normal eigenvectors, "' which we may assume to be
complete, i.e., there exists a complete set of functions

P &(v) obeying

L(v, v')dv'f„~(v') g„~(v)/r(v)—
(p, (t)y, )= exp( —X,r)b...
(p,7, (t))= exp( —X.t)8,.

(13.24)

(13 25) and
= —X yg„i(v) (13.35)

'"H. Weyl, The Theory of Groups and Quanta Mechanics,
translated by H. P. Robertson (E. P. Dutton and Company, Inc. ,¹wYork, 1931), Chap. 1, Sec. 5.

"2 Morse and Feshbach, reference 56, p. 884.

lk„i(v)y„., (v)dv=b„„.8((,
aJ

(13.36)

where the eigenvalues X„~, of the original equation [Eq.
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(13.26)j have been shown to be semipositive function only of the angle p between the vectors

X„i&0 (13.37)

by Siegert. "' We use a double index notation, n for
radial dependence, / for angular dependence, for reasons
which shortly become evident. In any case, we now
can write

w(v, v') =w(v, v'; cosy),

I.(v, v') =I (s,v'; cosy),

we may take the f t to be of the form

4 „,(v) =LP„,(s)/vj V, (cos8),

(13.45)

(13.46)

(13.47)

Af(vt)Lf. (v)3 '=g(vt)=Bc- (t)4- (v), (1338)

with
Ft(cos8) 7 p (cos8)dQ= 8 )p (13.48)

(- - )= it-( )4' ( )d d '(g( )g( '))

=5„„5)),

A comparison between Eqs. (13.33), (13.35), and
(13.38) also yields

V~(cos8) = (2t+1/4s. )V'g(cos8).

Then the F t obey an integral equation of the form

(13.49)

~
Et(s,v')F ~(v')dv' —F i(e)/~(v) = I „tP„i,— (13.50)

8(c„i(t))/Bt= —X„t&c„t(t)).

Thus, the autocorrelation is

(13.40)
and

P t(v)P„)(v)dv=h„„, (13.51)
&c„)(t)c„.( (0))=exp( X„(t)8.„—8n, (13.41)

8'i(v, v') = vv' I.(e,v', cosy) Pi(cosy) dD. (13.52)

and the fluctuations of Af(v, t) are now completely with the kernel given by
determined via Eq. (13.38).

Actually, one member of our set must be

4«(v) =[fs(v))'*/&', (13.42)

corresponding to the original Boltzmann distribution,
with eigenvalue F00=0, and we assume that this is the
only stationary solution. The condition that there be
no fluctuation in the total number of particles can, by
using Eqs. (13.38), (13.42), and (13.36), be written in
the form I(t) = h(v) f(v, t)dv (13.53)

These results justify our double indexing procedure.
With the help of Eqs. (13.38) and (13.41), the auto-

correlation of any variable of the form

0= I Zfdv=P c„&(t) ~P„&(v)P«(v)dv= c«(t) (13 42) can be written in the form

so that the variable coo does not fluctuate. If we assume
n, l

the validity of Eq. (13.39) for all other variables, we
now have Xexp( —X~ ~t) (13.54)

&g()g("))=Z~.«)~. (")&. .") or, when Eqs. (13.45) to (13.47) hold,= 2 f.i(v)It. i(v')

=8( „')—Ly ()f„('))I/~ (1343) &AI(t)AI(0))=Z' vlf (v) jth&(v)F„, (s)ds
E, n 4

where we have assumed completeness in replacing the
unrestricted sum by 8(v—v'). Finally, we obtain

where
Xexp( —Il, „tt), (13.55)

&Af(v) Af(v') )

=Lfs(v)fs(") j'8(v —v') —fs(v)fs(")/&, (13.44)
h, (s) = "h(v) I', (cos8)da. (13.56)

in agreement with Eq. (12.36) for the correction due to
the constraint of a fixed total number of particles.

For the common case in which w(v, v') is invariant
against a simultaneous rotation of v and v', i.e., is a

The foregoing sums are primed to indicate the omission
of the n=0, l=0 term which does not contribute to the
fluctuations. The fluctuations in I(t) contain a sum of
decay times weighted by a factor which depends on the
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(AI(t)AI(0))=p/J fs(v)h&(v) expL —X&(v)t]v'dv.

(13.58)

Equation (13.57) is equivalent to the statement that
the random variable

Fi(v, t) =Q F„~(v)c„i(t) (13.59)

extent to which h(v) couples the lowest mode goo to
the others.

Unfortunately, the calculation of Eq. (13.55) requires
a detailed knowledge of all the eigenstates and eigen-
values associated with the scattering probabilities
w(v, v'). When the scattering is nearly elastic, as is
often the case, it is possible for the terms in l/0 to
make the relaxation approximation

Q„F„~(v)F.~(v') exp( —X„)t)

=8(v—v') expL —),(v)/], (13.57)

by means of which Eq. (13.35) can be simplified to

Planck type,

BFO/Bl= ~Ko(v, v')dv' —1/r(v) Fo(v)

+ J"Kp(v, v')(v' —v)dv' Fo'(v)

+~ JI'KQ(v, v')(v' —v)'dv' Fv"(v). (13.66)

The eigenvalue problem obtained by setting BFo/&'
= —XpFO involves a second-order differential equation
that can be reduced easily to Sturm-Liouville form.
Exact and approximate methods of finding eigenvalues
and eigenfunctions of such second-order equations are
well known, "and are not discussed here.

If the Quctuations in v were small compared to mean
v, then we would have a slightly nonlinear system, and
the much simpler procedures of the next section could
be used.

Comparison with Eq. (13.50) indicates that F~(v, t)
obeys

f
BF~/Bt= K~(v, v')F ~(v')dv' —F~(v)/r(v). (13.61)

The assumption of nearly elastic collisions is equivalent
to the statement that K~(v, v') has a sharp peak near
v'=v. Thus, it is legitimate to write

I'K,
(v,v')F i(v')dv'=F, (v) I'Ki(v, v')dv' (13.62)

which immediately leads to Eq. (13.60) with

X,(v) =1/r(v) —
J

"K((v,v')dv' (13.63)

J
W(V', V)dV

XL1—vfs(v)~~(cosp)/v'fB(v)] (13.64)

= &1
—P~(cos~)&ir(v), (13.65)

if we set v'=v inside the brackets.
The relaxation approximation, Eq. (13.60), breaks

down for the case 1=0, because Fo(v, t) is normalized
and does not decay, but approaches equilibrium by
drift and diGusion of the speed or energy. [Equation
(13.65) would yield Xo(v) =0.] For this case, F&(v') in

Eq. (13.61) is expanded about v'=v up to terms of
second order, leading to an approximation of Fokker-

decays approximately as

(F~(v,t))=exp[ —X~(v)t]FE(v, 0). (13.60)

14. Slightly Nonlinear Systems

We turn to the consideration of slightly nonlinear
systems for several reasons. (1) We can extend the
scope of the quasi-linear methods we have introduced
and estimate the errors in a strictly linear approach.
(2) We can explain the contradictory results already
obtained by MacDonald'" van Kampen"' Davies"'
and Alkemade. "' (3) We can reconsider the physical
assumptions made by the preceding authors.

We consider in detail the problem proposed by
MacDonald: a condenser C in series with a nonlinear
resistance I=I(V) such that, with V=q/C,

dq/dt= —I(q/c) —=A(q) —(Aq+Bq'+rq'). (14.1)

With van Kampen, we emphasize that this problem is
more difFicult than the purely mathematical one of
noise of known statistical properties passing through a
nonlinear device. "7 The problem of Brownian motion
in a nonlinear field of force considered by Kramers"
is in the same category, because the random force is

is unchanged. We are concerned specifically with the
case in which the dissipative element is nonlinear. In
in this case, the random noise source is itself modified,
in an as yet unknown way, by the nonlinearity.

Alkemade considered an idealized vacuum diode by
kinetic methods. We discuss his results in due course.
The remaining three authors all make the Brownian

'" D. K. C. MacDonald, Phys. Rev. 108, 541 (1957).
»4

¹ G. Van Kampen, Phys. Rev. 110, 319 (1958)."'R. O. Davies, Physica 24, 1055 (1958)."'C. T. J. Alkemade, Physica 24, 1029 (1958).
»'D. M. Middleton, J. Appl. Phys. 22, 1143, 1153 (1951),

provides references to the literature on noise passing through
nonlinear devices.

»g H. A. Kramers, Physica 7, 284 (1940).
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motion approximation If.we write

1 f

D„(q)= lim — (q' —q) "P(q
~

q', At)dq'/(At),
ht—+O~f g

where

(14.2)

expressing A., 8, I', and g in terms of D, E, and F.These
conditions, which have not been stated before, can be
inverted approximately to express all quantities in
terms of A, 8, F. We write the results correct to fourth
order,

Di(q) =A(q) D2(q) =D(q),

then the Brownian motion approximation consists in
the assumption that all higher moments of the transition
probability P(q~Iq', At) vanish sufficiently rapidly for
D (q) to equal zero for rt)2. In short, MacDonald,
van Kampen, and Davies accept the validity of the
Fokker-Planck equation,

BP/»tt = »t/Bq[—A (q)P(q)]+ 8'/Bq'[D(q) P(q)]. (14.3)

Davies and van Kampen, moreover, assume that the
equilibrium condition implies that, even in the presence
of the nonlinearity, Eq. (14.3) possesses the usual
equilibrium solution P(q, t) —=W(q) with

W(q) = (2~kTC) & exp[ —
(q

—q)'!(2kTC)), (14.4)

where

q/o = —b(1—3g+b')

D=ho'[1+ 2g —b'(1 —4g+ b')],
E=ho'b(1 . g), —F=kg,

(14.12)

b=ao/X, g=r 2/X (14.13)

are dimensionless small quantities of first and second
order, respectively. [In an application to a real problem,
it would not be proper to use these relations beyond the
second order of accuracy without including contribu-
tions of higher-order nonlinearities. ]

For purposes of comparison with experiment, the
admittance G(V) may be defined by

I(V) =G(V) V= [Go+GiV+G~V']V. (14.14)

with Comparison with Eq. (14.1) then yields
14.5q=0,

A=Go/C; 8=G2/C' I'=G2/C', (14.15)

b= (G,/G. ) (kT/C) :; g= (G,/G, )-(kT/C). (14.16)
(q') =kTC, (14.6)

whereas MacDonald makes the milder assumption

((q—q)') =kTC= o'. (14.9)

Van Kampen eliminates A(q) from Eq. (14.3) by
means of (14.7), and then solves by a perturbation
from the linear case for the cases D(q)=1+yq' and
D(q) = 1+Pq. We show that van Kampen's perturbation
treatment is flawless. The discrepancy between van
Kampen and the other authors arises because he deter-
mines D(q) from A(q) by means of Eq. (14.8) with
D'(q) and q omitted. These terms are small, leading only
to second-order corrections, but that is precisely the
size of the eGect to be computed.

In fact, if we write

D(q) =D+Eq+Fq', (14.10)

then Eq. (14.8) leads to the conditions

I"0-'=J, Br'= E—Fq,
(14.11)Ao'= D Eq 2Fo' q = —(E—o')/D—

which he justified by-an argument based on the second
law of thermodynamics.

The neglect of q in W(q) [Eq. (14.4)]or in the second
moment [Eq. (14.6)) is certainly not consistent when
odd nonlinearities are present, i.e., if BWO in Eq. (14.1).

The condition that W(q) be a stationary solution of
the Fokker-Planck equation [Eq. (14.4)] is taken by
van Kampen and Davies to be

A(q) =[W(q))-i~[W(q)D(q))/»lq, (14.7)

A(q) = D(q) (q q—)/ '+D'(—q), (14.8)

where ~' is an abbreviation for

The nonlinear eGects then approach zero as C —+ ~,
and indeed are small for practical C's and moderate
ratios of Gi/Go and G2/Go.

In our computations, we do not start by assuming the
Fokker-Planck equation or the equilibrium distribution,
Eq. (14.4), because we do not agree with the assump-
tions involved. For most problems, the higher moments
D„(q) exist for r») 2. For linearized systems, the
"Brownian motion" approximation which neglects
them is adequate, because, as we have seen, the linear
calculation of noise simply does not .involve these
higher moments. However, as we show soon a calcula-
tion of the noise to the second order in the nonlinearity
(and this is the lowest nonvanishing increment in the
Brownian approximation) involves both Da and D»

We do not use the equilibrium Gaussian distribution
(14.4) for two reasons. First, we wish our calculations
to be valid for the nonequilibrium steady state; second,
even for the equilibrium case, Eq. (14.4) is likely not
to be precisely true. We prove the latter point by means
of two examples. The first, due to John Hopfield of
these Laboratories, makes use of an ideal rectifier with
infinite impedance for voltages in one direction, and
with essential zero impedance for voltages above some
threshold in the other direction. The voltage Quctua-
tions (and hence the charge fluctuations) on the con-
denser cannot be a Gaussian because voltage Quctua-
tions above the threshold in the "easy" direction cannot
occur.

This example suggests that, for slightly nonlinear
systems, there can be a small but significant deviation
from the equilibrium distribution. We demonstrate the
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X =e/(kTC) i. (14.20)

In terms of the dimensionless variables x'=x/d and
q'=q/(kTC):, we see that X is a proper measure of the
smallness of the coupling. In terms of these dimension-
less variables, the Boltzmann distribution takes the
form,

P(q') ~ ~j expL ——',(q' —Xx')' ——,
' f(x')]dx', (14.21)

of a convolution of two distributions exp( —2q') and
expL —

2f(x)] (we hereafter drop the primes). It is well
known that the characteristic function (i.e., the Fourier
transform) of F(q) is the product of the characteristic
functions of these two distributions, and the Thiele
semi-invariants are additive, "' so that, dropping the
primes,

(q) =0+X(x), (14.22)

(q') = 1+i~2(x'), (14.23)

((q—(q))') =0+1 '&(x—(*))'), (14 24)

((q—&q))') —3H(q —(q))')]'
=0+PL((x—(x))')—3((x—(x))')'], (14.25)

results which can also be obtained by integrating
q"= (q —Ax+Ax)" against Eq. (14.21) for I= 1, 2, 3, 4.
Thus, the third, fourth, and fifth semi-invariants vanish
vanish as X', A,4, ) ', etc. To accuracy X', the distribution
function is therefore a Gaussian. But the first and second
moments deviate from the expected values by terms of
order X and X', respectively. We may expect that the
moments in x are of order of magnitude unity. When
the distribution in x is uniform and centered,

latter remark by considering a low-density electron gas
colliding with impurity scatterers which interact with
the electric field produced by the charge on the con-
denser. The Hamiltonian for such a system can be
written

H= (P'/2m)+P V (x x,)—exE—+ (q'/2C), (14.17)

where
E= V/d=q/(dC), (14.18)

and d is the distance over which the voltage V is applied.
The interaction Hamiltonian over kT can be rewritten
as

P; ~/kT =—eqx/(dkTC) = —X(x/d) Lq/(kTC) '], (14.19)

where

obtained by setting T=1'K and C=1 titif(10 -"f) is
10 '. For practical purposes, one could neglect the shift
in (q'). Unfortunately, as we see, the fractional change
in the noise due to nonlinearities is of order 9 in the
case of a rectifier. The nonlinear problem is therefore a
very delicate one. The assumptions usually made,
which are quite reasonable, are no longer good enough,
because one now is attempting to compute the Quctu-
ations to a higher order of accuracy.

The starting point of our MarkofIian calculation is,
as usual, the transition probability integral equation
[Eq. (5.1)]. For simplicity of notation, we restrict
ourselves to one random variable. The equations for the
higher moments then can be derived by methods
precisely the same as those used to get Eq. (5.12) for
the second moments. With n=c —ao, we obtain, for the
first five moments,

d(n)/dt = (A (a)),

d(n')/dt =2(D (a) )+ 2(A (a)n),

(14.26)

(14.27)

D (a) =D +E n+F n' (14.31)

Then the preceding equations, with the unit of time
chosen so that A= 1, take the form

d(n')/dt= 6(D3(a))+6(D(a)n)+3(A (a)n') (14.28)

d(n')/dt = 24(D4 (a))+24(D3 (a)n)

+12(D(a)n')+4(A (a)n'), (14.29)

d(n')/dt = 120&Dg (a))+120(D4(a)n)

+60(D3(a)n'}+20(D(a)n')+5(A (a)n4), (14.30)

where D„(a) is defined by Eq. (14.2) with q replaced
by a. We use the letter u rather than q because the
present analysis is a general one, and is applicable to
other examples as well as to MacDonald's'" example of
a condenser in series with a nonlinear resistance. [Indeed
the foregoing equations are applicable to the case where
0, represents a set of variables. It is only necessary to
symmetrize the right-hand side. The numerical coef-
6cients actually indicate the number of distinct terms
that would be obtained if all indices were unequal. For
example, there are 4~=24 permutations of 4 indices,
hence the coeScient 24 in the 6rst two terms of Eq.
(14.29). In the third term, such permutations as Di~3n4
and D»o, 4+3 are not distinct, and there are only 12 terms
in the symmetrized expression. In other words, if we
were to write out all 12 terms, each such numerical
coeScient would be unity. ]

If one expands all moments to the second order,

d(n)/dt = —(n) —B(n') —I'(n'), (14.32)

and the correction in the second moment of the charge
is (V/12). Now the largest feasible value of

X'= e'/(k T))C

'" See H. Cramer, reference 88.

d(n')/dt =2D+ 2E(n) —2 (1—F)(n')

28(n') 21'(n4)—, (14.33—)

d(n')/dt =6D3+6 (D+E3)(n)+ 6 (E+F3)(n')
—3 (1—2F) (n') —38(n4) —31'(n'), (14.34)
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d(n4)/dt = 24D, +24 (D3+E4) (n)
+ 12(D+2ES+2F4) (n')

+12(E+2F3)(n') —4(1—3F)(n4)
48—(n') 4l—'(n'), (14.35)

d(n')/dt = 120D&;+ 120 (D4+Es) (n)
+60(Dq+ 2E4+2Fq) (n')

+ 20 (D+3Eg+ 6F4) (n')+20 (E+3Fg) (n')
—5(1—4F)(n') —58(n') —SF(n'). (14.36)

The steady-state moments may be obtained by
equating the time derivatives to zero and solving for
(n"). One may argue that one has more unknowns (n)
to (n') than equations. However, one may get a zeroth
approximation by setting all the nonlinear terms equal
to zero:

(n)"'=0 (n')&'i=D &n')&"=2D)

(n4)&oi =6D4+3D'

(n') &o' = 24D5+ 20DBD.

(14.37)

((~n)') = (n') —Dn)]' (14 41)

as known, one can compute this quantity to second

One may then iterate the resulting equations and cal-
culate (n4) to first order, (n') to second order, (n') to
third order, and (n) to fourth order. Actually, we are
content with one order of accuracy less than this, with
the result that

(n) &ai = BD+2 (8'—F)Di+ (3E—B' BF 2I'E- —
+8BFD SB'D)D+—(1281'—68')D, , (14.38)

(n') &"=D 2BDB+(F —3EB+58'D—3I'D)D-
+6(8' I')D4, (1—4.39)

(n') "&= 2Dg 5BD'+ 2ED—68D4. — (14.40)

For purposes of later comparison with the thermal
equilibrium case, we note that if one regards

E=8((hn)') (14.44)

so that the term in E is comparable in importance to
the one term kept by MacDonald. The term in 8' in
Eq. (14.43) does not appear in MacDonald's Eq. (27)
because he sets (q')=kTC, whereas we set ((q—q)')
=kTC. It is still an open question as to which if either,
of these assumptions is correct. LSee remark (5) at the
end of this section. )

If no nonlinear terms are present, Eqs. (14.32) to
(14.36) have a set of uncoupled normal modes with

(n") n exp( —itt). (14.45)

In the presence of nonlinearities, there are a set of
modes with characteristic decays exp (—X„t) with
X =m+small corrections due to nonlinearities. These
modes may be obtained by solving Eqs. (14.32) to
(14.36). The resulting secular determinant for the
eigenvalues ) is

order and express D to second order as

D= ((tIn)')+28D3 —6(8'—I')D,
[F—3E—B+(48'—3I') ((An)' )]((An)') (14.42)

and (n) is given to third order by

(n)"'= —BL((~n)')(1+8'((t~n)'))]
P[ 58((gn)2)2+2E((gn)2)

—68D,+2D,], (14.43)

where the first and second brackets represent (n') and
(n'), respectively. MacDonald's Eq. (27) for (q') takes
account of only our first term 581'((dn)')'. The last
two terms are discarded by the Brownian motion ap-
proximation, and the term in E is discarded by his
procedure which replaces D(q) by an average value-
his F. We see however, from the second of Eqs. (14.11)
that, under the thermal equilibrium approximation
(14.11), we have to second order

1—X,—2E,
—6(D+E3),

—24(D3+ E4),—120(D4+ E&;),

8,
(2—2F)—'A,

—6(E+Fg),
12 (D+2E3+2F4),
60 (D&+2E4+ 2—F&),

I', 0, 0
28 2F, 0

3—6F—X, 38, 3I'
12 (E+2Fg), . 4—12F—X, 48

20(D+3Ea+6F4),——20(E+3F3), 5 —20F—X

0,

after omitting terms in (n') and (n'). This determinant
is suSciently large to yield A& to fourth order, 'A& to
third order, etc. For practical purposes, we need X~

only to second order. Therefore, we may set the upper
left-hand 3&3 determinant equal to zero. Since one
wishes the result only to second-order accuracy, it is
more convenient to apply directly the Brillouin-%'igner
perturbation formalism, '"

'0 See E. Feenberg, Phys. Rev. 74, 206 (1948), Eq. (3), or
Morse and Feshbach, reference 56, Eq. (9.1.90). The original
references are L. Brillouin, J. phys. radium 3, 373 (1932); E. P.
Wigner, Math. u. naturw. Anz. ungar. Akad. Wiss. 53, 475 (1935).

X„=H„„+Q'
X—H

H„H „H„„+ Q' + . (1447)
man (I&

—jj~ ) (g —jj7„„)
P yEn

where the primed sum means that the numerator
contains no diagonal elements. This formalism can be
shown to be valid for our problem even when H is a
nonsymmetric or non-Hermitian matrix. In our case,
some of the o6-diagonal elements are large. To get
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results accurate to second order, it is necessary to use
the first three terms of this expansion,

II12+21 +1%31 +12+23+31
&i=1+ + + . (14.48)

l~1 If22 lil +88 (lil +22) (lil +88)

Since the numerators are already of second order, we
need only a zeroth-order approximation in the de-
nominators,

8(—2E) 1'(—6) (D+E,)
lj,8=1+ +

(—2)

8 (28) (—6) (D+E8)
(14.49)

(—1)(—2)

lI, ,=1+2EB+31'D 68'D. —

A similar treatment of X2 yields

li2=2 —2F+108E—1 2FD +36 8D2, (14.50)

although we need X2 only to zeroth order.
We now seek a solution of the complete time-

dependent equations subject to the initial condition,

(n" (t)) I
=o= La(o) 3" (14.51)

The solution of (n(t)) clearly can be written in the form,

(a(t)) = (n)+ci exp( —Kit)+c2 exp( —X2t)+ ., (14.52)

(c2a) = 28'D'+ 2BD +6 (I' 8'—)D,. (14.60)

The terms in D4 occur even to this order, because one
needs knowledge of the steady-state moment (n'). One
may specialize to the Fokker-Planck approximation by
setting D3——D4=0 in the foregoing expressions. If one
further makes use of the equilibrium assumption (whose
validity has already been questioned) in the form
(14.12), then the preceding formulas reduce to

(cin) =o'(1—2b') (14.61)

(cgg) = 2o 2b2 (14.62)

lj.i=A.(1+3g—4b'), (14.63)

where b and g are dimensionless 8 and F defined by Eq.
(14.13), and in the noise, Eq. (14.58), it is sufficient to
use X2= 2A.

We are now in a position to compare our results with
those of other authors who have made equilibrium
assumptions. For the case b=O, Davies and MacDonald
find an autocorrelation which can be written in our
notation with A.=1 as

(a(t)n(0))=o'(1 —3gt) exp( —t). (14.64)

Our result for comparison is

( (t) (0))= e pL —(1+3g)tj, (14.65)

which reduces to Eq. (14.64) on expanding in g.
Van Kampen works with units (q2) =1 and writes

where (n) is the steady-state value given by (14.38),
and enough terms are kept to yield second-order
accuracy in the final result. The two coefFicients c& and
c2 can be determined from the two initial conditions,

D= 1+yq2,

and quotes an eigenvalue to second order as

Xi——1+y—3y2.

(14.66)

(14.67)

( (o))= (o), (14.53)

d(n(t))/dt ~, = — (0)—8 '(0)—1'a'(0), (14.54)
Since his &=our F=our g, in view of Eq. (14.12) his
result lb, i=1+g disagrees with MacDonald, Davies, and
myself. We get X2=1+3g. The error is made in assum-
ing the validity of van Kampen's Eq. (6) Lsee our dis-
cussion following Eq. (14.8)j, which leads one to
assume that A =D= 1, when in fact, Eq. (14.11) for this
case (a2= 1, E=o) leads to

with the result that

c2 B(n' D)+F (n' 3n—D—)+a(—68'D 2EB—), (14.55)—
cq=n —0, —cq, (14.56)

where n is written briefly for a(0).
The autocorrelation in the fluctuations is then given

by

(n (t}n(0))—(n)'= (cin) exp (—lait)

+ (c2a) exp (—X2t), (14.57)

and by the Wiener-Khintchin theorem, the noise in n is

G(n,f)= 4(cin) +4(c2a)——. (14.5—8)

y 2+~2 g 2+~2

A=D —2F= j.—2g, (14.68)

and Eq. (14.63) now yields van Kampen's result,

lii = (1—2g) (1+3g)=1+g, (14.69)

to second order. In order to verify van Kampen's term
in y', we have made a calculation to fourth order of
accuracy for the case in which b=O. This is fairly easy
to do since one only needs the odd equations among
(14.32) to (14.36). The result is

With the help of the steady-state moments, Eqs.
(14.38) to (14.40), we find that to second order,

Xi ——A(1+3g—3g'),

4=A (3+21g+3g'),

(14.70)

(14.71)

(cia) =D+ (F—3EB+28'D 31"D)D-
4BD +12(8' 1')D—, (14.59)—( (t) (o))= 't:(1—lg') exp( —& t)

+-,'g' exp( —li8t) $. (14.72)
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The coe%.cients ~g' and 1—~g'agree with van Kampen.
To the desired accuracy, X3=3 is in agreement. The
term in 'A~ of order g' disagrees, however, with van
Kampen's result (14,.67) if one sets g=y, A= 1—2y. At
the moment, however, we are comparing two ways of
obtaining a Fokker-Planck equilibrium approximation,
and the results should agree except for arithmetic or
typographical errors. Since the term of order g' is not
likely to be of importance, we pursue this point no
further.

Van Kampen also considers the case

and quotes
D(q) = 1+Pq,

Xg
——1—2p',

(14.73)

(14.74)

where his p equals our b This a. ppears to disagree with
our Eq. (14.63). However, to convert to his units,
according to (14.12) we must set

using

A= (1+b')D/a'= (1+b') (1)(1+b') (14.75)

a'= (q') —(q)'=1 —b' (14.76)

Our general result for this quantity, obtained from
either the first or third expressions, is

lim &pPG(n, cp)/4=D(1+8 —EB)

=Aa'(1+3g 2b')—(14.79)

(14.80)

Terms in Dp and D4 have canceled in Eq. (14.79).
Equation (14.80) is obtained from (14.79) by using

the thermal equilibrium assumption (14.12). By com-
parison, MacDonald obtains the correction factor
(1+3g—Sb') due to a disagreement in (n) and (n')
which we have already discussed following Eq. (14.43).

Alkemade" has made a kinetic theory treatment of
the ideal recti6er:

I"Morse and Feshbach, reference 56, p. 462.

since he worked with units in which (q') = 1 rather than
((hq)') =o'= 1. As a result of Eq. (14.63), we then have

Xg = (1+2b') (1—4b') = 1—2b' (14 77)

in agreement with van Kampen.
For the case when both even and odd nonlinearities

are present simultaneously, the complete spectrum has
not previously been obtained. Our result, Eq. (14.58),
may be used in general form with Eqs. (14.49), (14.59),
and (14.60), or with the thermal equilibrium approxi-
mation using Eqs. (14.61) to (14.63). MacDonald and
Alkemade however, have obtained some limiting results
with which we can compare. Because of the Wiener-
Khintchin theorem and the usual asymptotic relations
between a function and its Fourier transform, "'

lim pp'G(n, pp)/4= lim([n(t) —n(0)]')/(2t)

= —(n(0)n(0)). (14.78)

I= Ip[exp (eV/kT) —1] (34.81)

=Ip[(e/kT)V+ p(e/kT)'V'+ ', (e/—kT)'V']. (14.82)

The use of Eqs. (14.14) to (14.16) yields

b= ', e/(—kTC)*'; g =e'/(6kTC).

Thus, to second order, 3g—2b' cancels and

lim 4p'G(n, cp)/4=Ao'= eIp,

(14.83)

(14.84)

in agreement with Alkemade's conclusion that there is
no correction to order e'/kTC.

Since we have obtained explicit results consistently
to the second order of nonlinearity, it is quite easy to
apply them to a variety of slightly nonlinear problems,
including nonequilibrium examples. Some words of
caution, however:

(1) A slightly nonlinear I(V) relationship does not
guarantee that from a microscopic viewpoint the non-

linearity is slight, e.g. , in an electr'on gas the mean drift
velocity may be small compared to the fluctuation
(kT/trt)' even though the gross I(V) relation is nearly
linear.

(2) In the nonequilibrium case, the noise is not
determined by I(V) alone, but depends independently
onD, E, F, etc.

(3) Even with the equilibrium assumption (14.11),
the noise to second order depends on D3 and D4, i.e.,
on some details of fluctuation mechanism, and not
simply I(V).

(4) When it is legitimate to make the Brownian
motion approximation, Eq. (14.27) ff lead to a set of
exact steady-state relations

(A (a)n"+')+ (44+1)(D(a)n")=0 (14.85.)

The case v=0 is a generalization of the Einstein
relation to nonlinear problems, and verifies Mac-
Donald's result

(Ii(q))=(G(q)q')/(kTC). (1486)

Equations (14.85) can be used to compute the steady
moments when A (a) and D(a) are known.

(5) Suppose, however, that D(a) is not known, then
these equations can be used to compute D(a) providing
the moments are known from equilibrium considera-
tions. We have indicated the results obtained by.
assuming the Gaussian distribution Eq. (14.4) but
have not established its validity. Indeed, Eq. (14.21) ff
contradict (14.4). It may not be possible to settle this
discrepancy by a purely thermodynamic argument:
The usual derivation of a Boltzmann distribution pre-
supposes that our system is coupled arbitrarily weakly

to a reservoir. The corrections to the usual moments
obtained from Eq. (14.21) are in fact associated with
the coupling energy. Unfortunately, these corrections
can be comparable to those associated with nonlinear
effects. MacDonald's second-law argument that (q')
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ca,nnot exceed kTC or one could, by the use of switches,
transfer energy from the nonlinear resistor to a linear
oiie is now dificult to maintain precisely since the
coupling energy that is disturbed while opening and
closing the switches can be comparable to the energy
one supposes one could transfer.

15. Summary

We may summarize by describing the procedure for
solving a typical noise problem. First, one must find a
set of parameters a=a&, a2, a3 sufficiently complete
such that a Markofhan description of the system is
possible with these parameters. (This is usually possible
although it may require that a, be a continuous function
of its index. If, for example, the density e(x) or the
velocity distribution function f(w) constitute the set,
then the index x or v is continuous. ) Let ao represent
the steady-state values of a, and e=a—ap the Quctu-
ations.

Then our MarkofFian assumption combined with a
quasi-linear assumption tells us that the variables 0.

must obey an equation of the form

d(a)/«+A(n) =0. (3.6), (5.16)

This represents the phenomenological description of our
system, and the elements of the matrix A. are the
"circuit parameters. " For a continuous system, A.
usually becomes a diGerential operator that is already
known. (In any case, a method of obtaining A. is
defined shortly. )

By means of the phenomenological equation, the
autocorrelation is given by

(u(t) e(0))= exp( —At) (a(0)n(0) ). (3.8)

The positive frequency component of the noise, defined

by

X= —P/T. (4.15)

The correlations also can be summarized in the
equivalent matrix equation

(ne)=ks '

where the s are the negative second derivatives of the
entropy

S=Sp—-', e s 0,. (4 2)

For the nonequilibrium case, the second moments of
n are to be determined from the Einstein relation

2D=A(nn)+. (en)At, (5.18)
i.e.,

(ea)=2 exp( —At)D exp( —Att)«, (5.19)

where the diffusion matrix D (and A) can be computed
from the basic transition probability of the Markoff
process,

wa = P(a~a', A/)/Ai,

by means of the relationships

(5.21)

A(a) =~| (a' —a)wa'ada'=A(ao) —Ae, (15.3), (5.22)

correlations between variables o., and n, at the same
time. For the thermal equilibrium case, these Quctu-
ations are given by the thermodynamic formula

(n,n, )= k8a—,/BX, = kT(8a,/8P, ), (4.16), (4.17)

where
X;= 85/Bu;, P, = BU/Ba, (4.11), (4.15)

are the thermodynamic forces in the entropy (S) and
energy (U) languages, respectively, and are related by

is given by

G+(f)=2 ~ '"( (~) (0))«,
Jp

(2.7) D(a) =-', "(a'—a)(a' —a)ua ada'=D(ao), (15.4), (5.23)

G+(f) =2(i(o+A) '(nn). (3 10) and the steady-state ao obeys

G-(/) = G+'( —f), (2 9)

The negative frequency component of the noise may
be obtained by reversing the sign of the frequency and
taking the transpose

A(ao) =0 (5.15)

The reason for these definitions is that the first and
second moments of the Smoluchowski equation (5.1)
lead to the rigorous equations

with the result that the total noise in e is d(a(t) )/«= (A(a)), (5.9)

G(e,f) = 2(i(a+A) —'(ee)+2(en) (—ice+At) —'.
(15.1), (3.13)

The corresponding noise in n can be obtained by
multiplying by ar' and dropping some canceling terms,

GDde/«), fj=2iuui(i(u+A) '(isa)—
(nn) ( ic—u+ )A—'t2icoA' (15.2), (.7.5)

Thus, our problem is reduced to a knowledge of the

d(n(t)n(t))/«=2(D(a))+(A(a)n)+(aA(a)). (5.12)

The linearization of the erst of these equations, with
our choice of ap, leads to our original assumed phe-
nomenological equations, and the linearization of the
second yields

d(n(t) n(t) )/«= 2 D—A(en) —(ea)At, (5.17)

whose steady-state solution yields the Einstein relation.
Can the above results for the autocorrelation be
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derived from an equation of Langevin type,

dn/dt+ cia = F(t), (8.1)

implies
( (i) (o))=( (o) (~)),

exp( —A.t) (na) = (aa) exp( A—tt),

(6.2)

(6.3)

which leads to the generalized Onsager relations or

(ne) =. (ae)A.t, (6 4)

and the Einstein equation is simplified for the time
reversible case to yield the moments directly:

(ee)=A. 'D. (5.20)

Comparison with the Onsager phenomenological
equations in the presence of an external force,

R(dn/dt)+ s(e)= —X'= P'/T, (7.1)

yields the admittance at frequency ~

Y((o) = (de/dh)/P= [R+ (s/imp) j '/T, (7.3)
and

A.=Ls, where L=R '

By introducing a correction factor

C = s(ne)/k,

(6.9)

(6.11)

which reduces to unity when the moments take their
equilibrium value, the Onsager, Einstein, and Nyquist
theorems take the corrected forms

LC= (LC)t= CtLt, (6.12)

2D=k[LC+(LC)tj=k(LC+CtLt), (15.3), (6.14)

G[(dn/dh), f'j= 2kT[Y ((o)C+C'Yt ( (v)] —(7.6)

=4kT ReY(co)C, (7.9)

where the last form makes use of time reversibility.
The external forces,

P(t) = TRF(t) =R'F(t),

where R' is the conventional resistance, obey

(8.19)

(P(s)P(u)) =kT(R'Ct+C'R's)h(t —u), (8.20)

with the result that the Nyquist law in the intensive
variable takes the corrected form

G(P,f)df 2kT(R'Ct+ CR't) df (8.23)

=4kTR'Ctd f, (15.4), (8.24)

where the last step assumes time reversibility.

if the random force F(t) is given suitable properties?
Yes. By using this equation as the definition of F, one
derives the condition

(F(t)F(u) )= 2D5 (t—u), (8.11)

usually assumed in the Langevin approach.
The condition of time reversibility,

The validity of discussing Quctuations in the forces
depends on whether the usual circuit diagram analysis
for computing the resulting Quctuations in the variables
is correct. This is tested in Sec. 9 by computing the
modified Quctuations in the extensive variables when a
load is added to the system. For the case of thermal
equilibrium, the resulting Quctuations agree with the
Quctuations in the P's and the usual circuit analysis.
For the steady nonequilibrium case, in the presence of
the load, a "voltage" generator is required whose
properties, in general, depend on both the system and
the load, in contradiction to the usual application of
Thevenin's theorem.

As a discrete example involving variables odd under
time reversal, the motion of a set of coupled oscillators
is discussed in Sec. 10. As an example of Quctuations in
continuous systems, we discuss in Sec. 11 the Hill-van
Vleit work on ambipolar drift of carrier concentration
Quctuations.

In Sec. 12 on Quctuations in distribution functions,
we use the Einstein relation to prove that

(An(u)hn(u'))=np(u) [1+pnp(u)]b(u —u'), (12.28)

where np(u) is the steady-state distribution function
and p=0, —1, +1 for Boltzmann, Fermi, or Einstein-
Bose statistics. This result justified the assumption by
Hill and van Vliet (Sec. 11) that concentration fluctu-
ations at diferent positions but the same time are uncor-
related. It is in contradiction with the assumption that
concentration Quctuations at different positions but the
same frequency are uncorrelated. Van der ZieP' and
Solow'~ make the milder assumption that the Luegeeie
sources giving rise to density Quctuations at a given
frequency and diferent positions are uncorrelated.
This may be true in their case, but we have shown in
Eq. (11.42) that this source correlation contains a term
in b" (x—x') as well as b(x—x') with the result that
such a Langevin treatment must be given extra care.
For the Fermi and. Einstein cases, Eq. (15.39) can be
justided only for Quctuations from a steady state obey-
ing detailed balance. For the Boltzmann case, there is
no such restriction. Ie uQ cases, me haec usslmed /hut

the basic stochuslic process is u one body trunsitio-n prob
ability rv, , from state u io u'. When the total number
Zn(u) is constrained not to fluctuate, the foregoing
equation is replaced by

(An(u) An(u') )

np(u)[1+ pnp(u)]np(u )[1+«p(u )g
(12.38)

P n, (b)[1y«p(b) j
Some physical arguments supported by Eqs. (12.28)
and. (12.38) have led us to conclude that the complete
distribution of occupancies has the same form in the
steady state as we know it to possess in the equilibrium
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state with the e&(a) interpreted as the steady, rather
than equilibrium, occupancies (providing detailed bal-
ance is obeyed in the Fermi and Bose cases).

In Sec. 13, we show that uncorrelated random vari-
ables can be obtained by (1) orthonormalizing the
fluctuations at one time, and (2) making an orthogonal
transformation to diagonalize A., which as a result of
(1) is symmetric in the time reversible case. The Boltz-
mann equation is considered as an example.

The slightly nonlinear case, in which the first two
moments of the transition probability can be written
approximately as

The moments D are defined by D„=D„(o,a) with

D„(o)= )t w. .(a' a)—"da'/n, !. (14.2)

(cgn) =a'(1 —2b'),

(c~)= 2a'b',

Xg=h. (1+3g—4b'),

(14.61)

(14.62)

(14.63)

In the Brownian motion approximation, one assumes
D„(a)=—0 for e)2. If, in addition, one imposes an
equilibrium condition, the preceding results simplify to

A (a) =—(An+Bn'+I'n'),

D(a) =DjEn+FcP,

(14 1)
where

(14.10)

(14.9)

b= Bo/A g= I' /oA (14.13)

where

X2
G(n, f) =4(c,n) +4(c,n), (14.58)

XP+GP 3,22+aa'

(c,n) =D+ (F 3EB+28'D —3rD)D-
—48D3+12(8'—I')D4, (14.59)

is treated in Sec. 14 by a set of moment equations. The
resulting noise spectrum is found to be

and it is sufhcient to take A.2=24. in the noise. These
results can be used to explain the discrepancies between
MacDonald, van Kampen, navies, and Alkemade.
However, they are based on an equilibrium assumption,
Fq. (14.8), whose validity is questionable. In fact, we

have work in progress which indicates that even at equi-
librium there is no unique relationship between D(q)
and A (q) so that a knowledge of the nonlinear response
I(V) is not adequate to determine the nonlinear correc-
tions to the noise.

(c2n) =28'D'+ 28D3+6 (I' —8')D4, (14.60)
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