Studies in Molecular Structure. II. LCAO-MO-SCF Wave Functions for Selected First-Row **Diatomic Molecules***

BERNARD J. RANSIL

Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois

I. GLOSSARY OF GENERAL TERMS AND SYMBOLS^{1,2}

AO-Atomic orbital.

STO—Slater-type AO: $S_{n \, lm} = N_n(\zeta) r^{n-1} e^{-\zeta r} Y_l^m(\theta, \varphi)$. ζ —Orbital exponent of an AO or STO and a variable

parameter. MO-Molecular orbital.

- LCAO-MO, LCSTO-MO-Molecular orbitals approximated as a linear combination of AO's or STO's of like *m*.
- CI-Configuration interaction.
- SCF-Self-consistent field.
- SCF-AO, SCF-MO-Self-consistent field AO's or MO's. The terms "accurate SCF-AO" and "accurate SCF-MO" are used to denote the best possible oneelectron wave functions (which are solutions to the Hartree-Fock self-consistent field equations). These terms are synonomous with Hartree-Fock AO and and Hartree-Fock MO.
- Free atom AO's (free atom ζ 's)—Terms used to describe AO's or ζ 's which are suitable (e.g., Slater AO's and Slater ζ 's) or optimal (best atom AO's and best atom ζ 's) in describing AO's of free atoms.
- Slater AO's (Slater ζ 's)—A specific type of free atom AO; STO's in which the ζ 's (Slater ζ 's) are those obtained from the empirical scheme devised by Slater.³
- Slater MO's-Molecular orbitals constructed as linear combinations of STO's.
- Best atom AO's (best atom ζ 's)—Another specific type of free atom AO; these are STO's, the ζ 's of which (best atom ζ 's) are determined by a variational procedure. Best atom AO's have been reported by Roothaan⁴ for first-row atoms (inner and valence shells) in a single determinantal approximation.

- Best atom MO-Molecular orbitals constructed as linear combinations of best atom AO's.
- Best MO-A term referring either to AO's or MO's meaning only that the ζ 's have been determined so as to minimize the molecular energy.
- Limited MO's-Molecular orbitals constructed from a basis set of STO's comprising only inner and valence shell STO's.
- Extended MO's-Molecular orbitals constructed from inner shell, valence shell and extra-valence shell STO's.
- Best limited MO's-Molecular orbitals constructed from inner and valence shell STO's only, the ζ 's of which have been optimized with respect to the molecular energy by a variational procedure.
- Best extended MO's-Same as the preceding except that extra-valence shell STO's are used in constructing the MO's.

Definitions

A. An SCF-LCAO-MO as discussed in this paper is defined as

$$\varphi_i = \sum_p c_{ip} \chi_p(\zeta) \tag{1}$$

(1) where the $\chi(\zeta)$'s are STO's centered on each atom,

$$\chi_p(\zeta) = N r^{n-1} e^{-\zeta r} Y_l^m(\theta, \phi).$$
⁽²⁾

(2) ζ , the orbital exponent, is preferably determined by a variational procedure. According to a scheme for the empirical determination of the orbital exponents devised by Slater⁵ (and later given a theoretical basis by Gombás and Gáspár⁶), ζ is defined as

$$\zeta = Z^*/n^*, \tag{3}$$

where Z^* is an effective nuclear charge and n^* an effective principal quantum number of the AO. If the c's are determined by Slater's rules, the $\chi(\zeta)$ are called simply "Slater orbitals"; if determined by minimizing the atomic or molecular total energy in a single determinantal approximation they are called "best atom AO's" and "best MO AO's," respectively.

^{*} Work supported in part by the National Science Foundation and by Wright Air Development Center, U. S. Air Force, through contract with the Office of Scientific Research of the Air Research and Development Command.

¹ The Glossary given here for the most part follows the Glossary recently compiled by R. S. Mulliken with some assistance and critical comment by the author. While the merits of the latter Glossary are many, it unfortunately does not provide a simple nomenclature for the single determinant functions given here, which fall under the classification STO-ζ. The author has therefore introduced a few new terms where necessary.

² The Glossary is compiled with a single determinantal function in mind; if the labels are to serve their purpose, their use should be limited to those AO's and MO's determined in the manner de-

³ J. C. Slater, Phys. Rev. 37, 57 (1930).
⁴ C. C. J. Roothaan, Tech. Rept., Laboratory of Molecular Structure and Spectra, University of Chicago (1955).

⁵ J. C. Slater, footnote 3. ⁶ P. Gombás and R. Gáspár, Acta Phys. Acad. Sci. Hung. **3** 317 (1952).

(3) The c_{ip} are MO coefficients determined by the Roothaan SCF procedure.⁷

B. The N-electron, normalized single-determinantal wave function for a singlet closed-shell ground state in terms of SCF-LCAO-MO's is given symbolically by

$$\Psi = (\varphi_1 \alpha) (\varphi_1 \beta) (\varphi_2 \alpha) \cdots (\varphi_n \alpha) (\varphi_n \beta).$$
(4)

(2n=N), the total number of electrons.) The corresponding total energy is

$$E = \int \Psi^* H \Psi dv. \tag{5}$$

C. The N-electron wave function denoted by the term Slater LCAO-MO is a normalized single-determinantal function [Eq. (4)] for which

(1) the MO coefficients c_{ip} have been determined by solution of the secular equation⁷

$$(F - \epsilon_i S) C_i = 0 \tag{6}$$

(2) employing the Roothaan SCF procedure, and the ζ 's are Slater ζ 's.

D. The N-electron wave function best atom LCAO-MO is a single-determinantal wave function calculated as in Sec. C except that the ζ 's are best atom rather than Slater ζ's.

E. The N-electron wave function denoted as best limited LCAO-MO is a single-determinantal function calculated in the same manner as C and D except that the energy has been minimized with respect to the ζ 's (as well as the c_{ip}); these optimized ζ 's are a function of the internuclear distance and differ from the Slater and best atom ζ 's.

F. The term extended LCAO-MO identifies a normalized single-determinantal N-electron wave function which meets the description D, except that the MO expansions include STO's of higher principal quantum number than those of the valence shells of the constituent atoms.

Dissociation Energy: The experimental dissociation energies referred to are D_e , the sum of an observed dissociation energy D_0^0 , and the zero-point vibrational energy. A summary of experimental data consulted for this study is given in Paper I, Table VII.⁸ Calculated dissociation energies are obtained by taking the difference between the calculated total molecular energy and the sum of atomic energies calculated by the same procedure: $E_M(AB) - E_A - E_B$.

Total Energy: The total molecular energy (E_M) of a diatomic molecule AB is defined as the sum of the energy required to remove the electrons to rest at infinity (i.e., the electronic energy E_e) and the energy

of the two nuclei of charge Z_A and Z_B , respectively, fixed a distance R_{AB} from each other $(Z_A Z_B / R_{AB})$: $E_M = E_e + Z_A Z_B / R_{AB}$.

Units9

All energies and internuclear distances are given in atomic units (a.u.) unless clearly marked otherwise. Dipole moments are given in debye units.

II. BASIS FUNCTIONS

Because the atomic integrals were expressed and calculated in terms of STO's which constitute a nonorthogonal basis set and because the observables calculated here are invariant under the transformation to an orthogonal basis set, the wave functions and energies were also computed in terms of the STO's.

The tabulated MO's consequently are those for a nonorthogonal basis set. A table of the overlap integrals [Sec. VI, Table C] necessary for conversion to MO's in terms of orthogonal AO's if it is desired is given. MO's tabulated for the orthogonal basis set are on file at the Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago.

Atomic Integrals

The atomic integrals (in terms of nonorthogonal, complex STO's) were obtained from digital computer programs developed by the personnel of the Laboratory of Molecular Structure and Spectra, University of Chicago.10

Atomic Orbital Indexing

The MO coefficient subscript p indexes the atomic orbitals. The numbering of orbitals differs from the hydride to homopolar and heteropolar cases: The two cases are given below.

 $Hydride^{11}$

Atom	1 <i>s</i>	2 <i>s</i>	2po	2 <i>p</i> π	$2p\bar{\pi}$
A	1	2	3	5	6
В	4	•••	•••		•••

⁹ E. R. Cohen, J. W. M. Dumond, T. W. Layton, and J. S. Rollett, Revs. Modern Phys. **27**, 363 (1955). ¹⁰ The analyses for most of the integral programs are based, to some extent, on the following papers: C. C. J. Roothaan, J. Chem. Phys. **19**, 1445 (1951); K. Ruedenberg, ibid. **19**, 1459 (1951); K. Ruedenberg, ibid. **19**, 1459 (1951); K. Ruedenberg, C. C. J. Roothaan, and W. Jaunzemis, ibid. **24**, 201 (1956), and C. C. J. Roothaan, ibid. **24**, 947 (1956). Publication of the paper anglusce is planned by C. C. J. Roothaan, The tion of the new analyses is planned by C. C. J. Roothaan. The programing and coding of all but the exchange integrals was done by M. Yoshimine and C. C. J. Roothaan. The greater part of the analyses and the programing and coding of the exchange integrals was the work of A. D. McLean.

¹¹ Atom B is always hydrogen.

⁷C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951)

⁸ Bernard J. Ransil, Revs. Modern Phys. 32, 239 (1960), this issue.

<u></u>											
Atom	1 <i>s</i>	2 <i>s</i>	2po	2 <i>p</i> π	$2par{\pi}$						
A	1	2	3	7	9						
В	4	5	6	8	10						

Homopolar and Heteropolar

Choice of Internuclear Distance

The wave functions tabulated here have been computed for the best values of the spectroscopic internuclear distances R_e available when the computations were begun. All values of R_e and the orbital exponents (ζ 's) are given with the tables of wave functions.

An attempt at computing R_e has been made for H₂ completely optimizing the ζ 's and for HF, LiH, Li₂, N₂, and F₂ using the best-MO ζ 's for the experimental R_e . The calculated R_e differs from experimental usually by 0.05 to 0.1 a.u. The limited experience with CI in the field today indicates that it probably corrects in the right direction.

III. COMPUTATIONAL ACCURACY OF THE WAVE FUNCTIONS

Because of the loss of figures encountered in computing certain hybrid integrals, their accuracy is limited at times (depending on the ζ and R values) to five decimal places, rather than the usual six to eight. Obviously, the accuracy of the computed energies and wave functions can never exceed five decimal accuracy when this occurs. Because the ζ and R values lie in a trouble-free range, this source of computational error is never serious in the calculations tabulated here.

Another, and more drastic limitation to the accuracy of the wave function is the convergence criterion which is imposed while iterating the MO's. Because higher accuracy seemed unnecessary (in view of the foregoing remarks on integral accuracy and the well-known deficiency of the initial approximation), convergence was defined, and iteration automatically interrupted, when two successive sets of coefficients agreed in the fifth decimal place.

In practice, convergence was rapidly reached for the hydrides and homopolars; in a few cases, so rapidly that consistency between two successive sets of coefficients reached the seventh or eighth decimal place before iteration was interrupted. By that time the total and orbital energies agreed to the tenth significant figure. Repetition of any of these runs produced an exact duplicate in integrals, coefficients, and energies. Usually, however, duplication yielded total energies differing in the eighth significant figure and coefficients differing in the sixth decimal place.

For the heteropolars, convergence was usually from three to ten times slower. Consequently the coefficients are accurate to the fifth or sixth decimal place and the total energies to about the eighth significant figure. Repetition of any of these calculations produced results which begin to differ in the fifth or sixth decimal place in the coefficients and in the eighth significant figure in the total energy.

Dipole moments are very sensitive to the MO coefficients and are probably accurate to about the third significant figure for heteropolar molecules. Probably six significant figures are reliable in the case of the homopolars and hydrides.

IV. ACKNOWLEDGMENTS

The backbone of a research undertaking of this character is an extensive digital computer library, which implies years of programing and preparation involving many workers. Without the continuing cooperative effort of the group comprising the LMSS staff from roughly 1955 on, this research and its continuing phases could not have been, and continue to be, carried out to the degree of completeness indicated here.

The author particularly acknowledges the extensive analytic foundations laid by Professor C. C. J. Roothaan and Professor K. Ruedenberg, the programing achievements of Professor Roothaan, A. D. McLean, S. Fraga, A. Weiss, and M. Yoshimine, and the invariably reliable desk calculations of Mr. T. Kinyon. He is further indebted to Professor R. S. Mulliken and Professor Roothaan for their continuing interest, ever-stimulating suggestions and support, and to Dr. M. Krauss (National Bureau of Standards) and Professor J. W. Richardson (Purdue University) for their careful reading and constructive criticism of the manuscript.

Finally, the past and continuing cooperation of the staff of the Computation Section, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, is gratefully acknowledged.

V. TABLES OF MOLECULAR WAVE FUNCTIONS

		Slater LC	CAO-MO	Best atom	LCAO-MO	Best limited	LCAO-MO	
	ζ18 ζ28 ζ2ρσ	2.2 0.0 0.0	70 55 55	2.6 0.6 0.6	865 372 372	2.6 0.6 0.7	894 335 609	
		Cip	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	
$1\sigma_g$	$c_{11} = c_{14} \\ c_{12} = c_{15} \\ c_{13} = c_{16}$	$\begin{array}{c} 0.70442 \\ 0.01050 \\ 0.00074 \end{array}$	-2.42666	$\begin{array}{c} 0.70476 \\ 0.00922 \\ 0.00077 \end{array}$	-2.43582	-0.70477 -0.00950 -0.00033	-2.43551	
$1\sigma_u$	$c_{21} = -c_{24}$ $c_{22} = -c_{25}$ $c_{23} = -c_{26}$	$\begin{array}{c} 0.70501 \\ 0.03310 \\ 0.01140 \end{array}$	-2.42653	$\begin{array}{c} 0.70541 \\ 0.03000 \\ 0.01027 \end{array}$	-2.43565	$\begin{array}{c} 0.70544 \\ 0.02090 \\ 0.00315 \end{array}$	-2.43523	
$2\sigma_{\theta}$	$c_{31} = c_{34} c_{32} = c_{35} c_{33} = c_{36}$	$\begin{array}{r} 0.14919 \\ -0.52597 \\ -0.11913 \end{array}$	-0.17892	$\begin{array}{r} 0.14603 \\ -0.52172 \\ -0.12368 \end{array}$	-0.18062	$\begin{array}{r} 0.14397 \\ -0.52979 \\ -0.11438 \end{array}$	-0.18134	
$2\sigma_u$	$c_{41} = -c_{44} \\ c_{42} = -c_{45} \\ c_{43} = -c_{46}$	$\begin{array}{r} 0.11835 \\ -0.74974 \\ 0.28653 \end{array}$	0.02907	$0.11389 \\ -0.75904 \\ 0.28271$	0.02530	$0.11404 \\ -0.95612 \\ 0.15828$	0.02755	
3σο	$c_{51} = c_{54} c_{52} = c_{55} c_{53} = c_{56}$	$ \begin{array}{r} -0.00288 \\ -0.30758 \\ 0.67398 \end{array} $	0.09168	$\begin{array}{c} 0.00526 \\ 0.31088 \\ -0.67796 \end{array}$	0.08668	$\begin{array}{c} 0.00002\\ 0.26479\\ -0.63690 \end{array}$	0.10791	
3σ _u	$\begin{array}{c} c_{61} = -c_{64} \\ c_{62} = -c_{65} \\ c_{63} = -c_{66} \end{array}$	$\begin{array}{r} 0.03685 \\ -2.19314 \\ -1.66708 \end{array}$	0.35792	-0.02570 2.33160 1.72737	0.34868	$\begin{array}{r} 0.01313 \\ -1.61268 \\ -1.40974 \end{array}$	0.39592	
E _M	(a.u.)	-14.8	4075	-14.8	34111	-14.84149		

TABLE I. Molecule: Li₂; state: ${}^{1}\Sigma_{g}{}^{+}$ $(1\sigma_{g}{}^{2} 1\sigma_{u}{}^{2} 2\sigma_{g}{}^{2})$; R_{ε} : 2.672₅ A, 5.051 a.u.

TABLE II. Molecule: Be₂; state: ${}^{1}\Sigma_{g}{}^{+}$ $(1\sigma_{g}{}^{2} 1\sigma_{u}{}^{2} 2\sigma_{g}{}^{2} 2\sigma_{u}{}^{2})$; R_{s} : 2.0 A, 3.78 a.u.

		Slater LC	AO-MO	Best atom	LCAO-MO	Best limited	LCAO-MO	
	ζ1s ζ2s ζ2pσ	3.3 0.9 0.9	70 975 975	3.68 0.99 0.99	847 562 562	3.6845 0.9577 1.1286		
		Cip	ϵ_i (a.u.)	Cip	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	
1σ _g	$c_{11} = c_{14} \\ c_{12} = c_{15} \\ c_{13} = c_{16}$	$\begin{array}{c} 0.70462\\ 0.00894\\ 0.00133\end{array}$	-4.70522	-0.70493 -0.00776 -0.00136	-4.72673	$\begin{array}{c} 0.70493\\ 0.00795\\ 0.00125\end{array}$	-4.70933	
$1\sigma_u$	$c_{21} = -c_{24} \\ c_{22} = -c_{25} \\ c_{23} = -c_{26}$	$-0.70463 \\ -0.02568 \\ -0.01109$	-4.70529	0.70508 0.02333 0.01022	-4.72671	$ \begin{array}{r} -0.70518 \\ -0.01853 \\ -0.00641 \end{array} $	-4.70918	
$2\sigma_g$	$c_{31} = c_{34} c_{32} = c_{35} c_{33} = c_{36}$	$0.15794 \\ -0.51869 \\ -0.16369$	-0.42687	0.15447 0.51318 0.16892	-0.43118	$\begin{array}{c} 0.15355 \\ -0.52381 \\ -0.16167 \end{array}$	-0.42562	
$2\sigma_u$	$\begin{array}{c} c_{41} = -c_{44} \\ c_{42} = -c_{45} \\ c_{43} = -c_{46} \end{array}$	$0.14150 \\ -0.83502 \\ 0.19109$	-0.21930	$\begin{array}{r} 0.13640 \\ -0.84809 \\ 0.18457 \end{array}$	-0.22437	-0.13878 0.91363 -0.14353	-0.22080	
3σg	$c_{51} = c_{54} c_{52} = c_{55} c_{53} = c_{56}$	$0.02492 \\ -0.34356 \\ 0.64104$	0.04064	$ \begin{array}{r} -0.02263 \\ 0.34769 \\ -0.64310 \end{array} $	0.03176	-0.02774 0.30889 -0.61817	0.05549	
$3\sigma_u$	$\begin{array}{c} c_{61} = -c_{64} \\ c_{62} = -c_{65} \\ c_{63} = -c_{66} \end{array}$	0.07370 - 1.50193 - 1.39548	0.48519	$0.06643 \\ -1.58863 \\ -1.43807$	0.46917	-0.05551 1.15406 1.21764	0.54412	
E_M	(a.u.)	-29.0	5645	-29.0	5612	29.05825		

	Slater L	CAO-MO	Best atom	LCAO-MO	Best limited	LCAO-MO
ζ1s ζ2s ζ2ρσ ζ2ρπ	5.2 1.0 1.0 1.0	70 525 525 525	5.6 1.6 1.5 1.5	5726 5082 56805 56805	5.6 1.6 1.9 1.6	738 332 735 080
	Cip	ϵ_i (a.u.)	Cip	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)
$c_{11} = c_{14} \\ 1\sigma_g c_{12} = c_{15} \\ c_{13} = c_{16}$	$\begin{array}{c} 0.70443 \\ 0.00864 \\ 0.00123 \end{array}$	-11.36560	0.70488 0.00716 0.00124	-11.45152	0.70470 0.00781 0.00109	-11.33876
$\begin{array}{c} c_{21} = -c_{24} \\ 1\sigma_u \ c_{22} = -c_{25} \\ c_{23} = -c_{26} \end{array}$	-0.70457 -0.02095 -0.00856	-11.36414	$\begin{array}{c} 0.70505 \\ 0.01814 \\ 0.00775 \end{array}$	-11.44999	$-0.70504 \\ -0.01460 \\ -0.00441$	-11.33696
$\begin{array}{c} c_{31} = c_{34} \\ 2\sigma_g c_{32} = c_{35} \\ c_{33} = c_{36} \end{array}$	$\begin{array}{c} 0.17342 \\ -0.51467 \\ -0.18460 \end{array}$	-1.03337	$\begin{array}{r} 0.17124 \\ -0.50913 \\ -0.18992 \end{array}$	-1.06469	$\begin{array}{r} 0.17228 \\ -0.52447 \\ -0.18586 \end{array}$	-1.02837
$\begin{array}{c} c_{41} = -c_{44} \\ 2\sigma_u c_{42} = -c_{45} \\ c_{43} = -c_{46} \end{array}$	$0.15683 \\ -0.76802 \\ 0.24962$	-0.48984	$\begin{array}{c} 0.15356 \\ -0.76401 \\ 0.25061 \end{array}$	-0.51609	$\begin{array}{c} 0.16220 \\ -0.85274 \\ 0.19646 \end{array}$	-0.48312
$\begin{array}{c} c_{51} = c_{54} \\ 3\sigma_g c_{52} = c_{55} \\ c_{53} = c_{56} \end{array}$	$\begin{array}{r} 0.03938 \\ -0.36099 \\ 0.62980 \end{array}$	-0.04977	0.03766 -0.37038 0.63513	-0.08076	-0.04798 0.32490 -0.60734	-0.02220
$\begin{array}{c} c_{61} = -c_{64} \\ 3\sigma_u c_{62} = -c_{65} \\ c_{63} = -c_{66} \end{array}$	$ \begin{array}{r} -0.09793 \\ 1.39700 \\ 1.31834 \end{array} $	0.99277	0.09636 -1.49400 -1.36737	0.92410	$ \begin{array}{r} 0.08235 \\ -0.98006 \\ -1.09702 \end{array} $	1.12990
$\begin{array}{ccc} 1\pi_u & c_{77} = c_{78} \\ 1\pi_g & c_{87} = -c_{88} \end{array}$	$-0.61638 \\ 0.85500$	$-0.43579 \\ 0.25506$	$0.61123 \\ 0.86927$	$-0.45999 \\ 0.21706$	$0.61486 \\ 0.85912$	-0.42033 0.26473
E_M (a.u.)	-75.	21122	-75.	19880	-75.	22381

TABLE III. Molecule: C₂; state: ${}^{1}\Sigma_{\sigma}{}^{+}$ $(1\sigma_{\sigma}{}^{2} 1\sigma_{u}{}^{2} 2\sigma_{\sigma}{}^{2} 2\sigma_{u}{}^{2} 1\pi_{u}{}^{4})$; R_{o} : 1.2422 A, 2.3475 a.u.

TABLE IV. Molecule: N₂; state: ${}^{1}\Sigma_{o}{}^{+}$ $(1\sigma_{o}{}^{2} 1\sigma_{u}{}^{2} 2\sigma_{o}{}^{2} 2\sigma_{u}{}^{2} 1\pi_{u}{}^{4} 3\sigma_{o}{}^{2})$; R_{e} : 1.094 A, 2.068 a.u.

	Slater L	CAO-MO	Best atom	LCAO-MO	Best limited	LCAO-MO	
518 528 52ρσ 52ρσ	6.70 1.95 1.95 1.95		6.0 1.9 1.9 1.9	5652 9236 9170 9170	6.6675 1.9170 2.2524 1.9090		
	c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	
$c_{11} = c_{14} \\ 1\sigma_g c_{12} = c_{15} \\ c_{13} = c_{16}$	0.70447 0.00842 0.00182	-15.72176	0.70493 0.00688 0.00184	-15.80452	$\begin{array}{c} 0.70480\\ 0.00743\\ 0.00203\end{array}$	-15.64705	
$c_{21} = -c_{24}$ $c_{22} = -c_{25}$ $c_{23} = -c_{26}$	-0.70437 -0.01972 -0.00857	-15.71965	-0.70494 -0.01656 -0.00744	-15.80219	$\begin{array}{c} 0.70494 \\ 0.01502 \\ 0.00567 \end{array}$	-15.64423	
$\begin{array}{c} c_{31} = c_{34} \\ c_{32} = c_{35} \\ c_{33} = c_{36} \end{array}$	$\begin{array}{c} 0.16890 \\ -0.48828 \\ -0.23970 \end{array}$	-1.45241	$ \begin{array}{r} -0.16618 \\ 0.48390 \\ 0.24276 \end{array} $	-1.47922	$-0.16328 \\ 0.49029 \\ 0.24824$	-1.42106	
$\begin{array}{c} c_{41} = -c_{44} \\ c_{42} = -c_{45} \\ c_{43} = -c_{46} \end{array}$	$\begin{array}{r} 0.16148 \\ -0.74124 \\ 0.26578 \end{array}$	-0.73066	-0.15799 0.74773 -0.26068	-0.75409	$ \begin{array}{r} -0.15963 \\ 0.80527 \\ -0.23244 \end{array} $	-0.71370	
$\begin{array}{c} c_{51} = c_{54} \\ c_{52} = c_{55} \\ c_{53} = c_{56} \end{array}$	$ \begin{array}{r} -0.06210 \\ 0.40579 \\ -0.60324 \end{array} $	-0.54451	$ \begin{array}{r} -0.05986 \\ 0.40879 \\ -0.60431 \end{array} $	-0.56759	-0.06640 0.38257 -0.58527	-0.55548	
$\begin{array}{c} c_{61} = -c_{64} \\ c_{62} = -c_{65} \\ c_{63} = -c_{66} \end{array}$	-0.10969 1.20696 1.21625	1.100865	$\begin{array}{r} 0.10547 \\ -1.25520 \\ -1.24382 \end{array}$	1.04956	$0.09239 \\ -0.96578 \\ -1.07595$	1.22618	
$\begin{array}{c} \pi_u \ c_{77} = c_{78} \\ \pi_g \ c_{87} = -c_{88} \end{array}$	$-0.62450 \\ 0.83452$	-0.57951 0.27290	$0.62200 \\ 0.84059$	$-0.60486 \\ 0.24041$	$-0.62139 \\ 0.84211$	$-0.54540 \\ 0.30021$	
E_M (a.u.)	-108.	57362	-108.	55808	-108.63359		

	Slater LO	CAO-MO	Best atom	LCAO-MO	Best limited	LCAO-MO		
ζ1s ζ2s ζ2pσ ζ2pπ	8. 2. 2. 2.	70 60 60 60	8.6 2.5 2.5 2.5	501 639 498 498	8.6 2.5 2.4 2.5	504 776 934 688		
	c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)		
$c_{11} = -c_{14}$ $1\sigma_u c_{12} = -c_{15}$ $c_{13} = -c_{16}$	$\begin{array}{c} 0.70451 \\ 0.01092 \\ 0.00158 \end{array}$	-26.21758	0.70509 0.00865 0.00135	-26.38210	$\begin{array}{c} 0.70506 \\ 0.00874 \\ 0.00140 \end{array}$	-26.35953		
$\begin{array}{c} c_{21} = c_{24} \\ 1\sigma_g c_{22} = c_{25} \\ c_{23} = c_{26} \end{array}$	$\begin{array}{c} 0.70483 \\ 0.00912 \\ -0.00022 \end{array}$	-26.21721	$\begin{array}{c} 0.70535 \\ 0.00717 \\ -0.00011 \end{array}$	-26.38193	$\begin{array}{c} 0.70530 \\ 0.00726 \\ -0.00014 \end{array}$	-26.35934		
$\begin{array}{c} c_{31} = c_{34} \\ 2\sigma_g c_{32} = c_{35} \\ c_{33} = c_{36} \end{array}$	$0.17327 \\ -0.67160 \\ -0.08540$	-1.58408	$0.16892 \\ -0.66881 \\ -0.08450$	-1.63270	$\begin{array}{r} 0.17048 \\ -0.66955 \\ -0.08350 \end{array}$	-1.62585		
$\begin{array}{c} c_{41} = -c_{44} \\ 2\sigma_u \ c_{42} = -c_{45} \\ c_{43} = -c_{46} \end{array}$	$0.18643 \\ -0.75834 \\ 0.07461$	-1.31728	$\begin{array}{c} 0.18233 \\ -0.76066 \\ 0.07102 \end{array}$	-1.36795	$0.18374 \\ -0.75916 \\ 0.07242$	-1.36128		
$\begin{array}{c} c_{51} = c_{54} \\ 3\sigma_g c_{52} = c_{55} \\ c_{53} = c_{56} \end{array}$	-0.03841 0.17685 -0.65244	-0.50371	$\begin{array}{c} 0.03784 \\ -0.18035 \\ 0.65032 \end{array}$	-0.55685	$ \begin{array}{r} -0.03841 \\ 0.18357 \\ -0.64770 \end{array} $	-0.54610		
$\begin{array}{c} c_{61} = -c_{64} \\ 3\sigma_u \ c_{62} = -c_{65} \\ c_{63} = -c_{66} \end{array}$	$-0.04303 \\ 0.20640 \\ 0.78597$	0.38634	$\begin{array}{r} 0.04257 \\ -0.21279 \\ -0.79297 \end{array}$	0.32801	$0.04403 \\ -0.22057 \\ -0.80001$	0.34242		
$\begin{array}{ccc} 1\pi_u & c_{77} = c_{78} \\ 1\pi_g & c_{87} = -c_{88} \end{array}$	$0.69104 \\ 0.72434$	-0.56445 -0.43181	$0.68958 \\ 0.72604$	-0.61427 -0.47932	$0.69015 \\ 0.72538$	-0.60792 -0.47444		
E_M (a.u.)	-197.	85686	-197.	87409	-197.	-197.87694		

TABLE V. Molecule: F₂; state: ${}^{1}\Sigma_{g}{}^{+}$ $(1\sigma_{u}{}^{2} 1\sigma_{g}{}^{2} 2\sigma_{g}{}^{2} 2\sigma_{u}{}^{2} 1\pi_{u}{}^{4} 3\sigma_{g}{}^{2} 1\pi_{g}{}^{4})$; R_{s} : 1.418 A, 2.680 a.u.

TABLE VI. Molecule: LiH; state: ${}^{1}\Sigma^{+}$ (1 σ^{2} 2 σ^{2}); R_{e} : 1.5953₅ A, 3.015 a.u.

		Slater LO	CAO-MO	Best atom	LCAO-MO	Best limited	LCAO-MO	
	ζ18 ζ28 ζ2ρσ	Li 2.70 0.65 0.65	H 1.00	Li 2.6875 0.6372 0.6372	H 1.00	Li 2.6909 0.7075 0.8449	H 0.9766	
		c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	
1σ	C11 C12 C13 C14	$\begin{array}{r} 0.99658 \\ 0.01605 \\ -0.00514 \\ 0.00600 \end{array}$	-2.44695	$\begin{array}{c} 0.99703 \\ 0.01384 \\ -0.00506 \\ 0.00615 \end{array}$	-2.45412	$\begin{array}{c} 0.99581 \\ 0.01738 \\ -0.00729 \\ 0.00627 \end{array}$	-2.42568	
2σ	C ₂₁ C ₂₂ C ₂₃ C ₂₄	$\begin{array}{r} 0.13097 \\ -0.32335 \\ -0.23106 \\ -0.68526 \end{array}$	-0.30350	$\begin{array}{c} 0.12908 \\ -0.32298 \\ -0.22951 \\ -0.68757 \end{array}$	-0.30379	$\begin{array}{c} 0.14056 \\ -0.30778 \\ -0.21144 \\ -0.70388 \end{array}$	-0.29858	
3σ	C31 C32 C33 C34	$\begin{array}{c} 0.13433 \\ -0.80523 \\ 0.59916 \\ 0.14750 \end{array}$	0.01668	$\begin{array}{c} 0.12900 \\ -0.80287 \\ 0.60122 \\ 0.14531 \end{array}$	0.01324	$\begin{array}{c} 0.16164 \\ -0.88948 \\ 0.49500 \\ 0.27388 \end{array}$	0.05004	
4σ	$\begin{array}{ccc} c_{41} & -0.0238\\ c_{42} & 0.8688\\ c_{43} & 1.1166\\ c_{44} & -1.2858 \end{array}$		0.34924	$\begin{array}{r} 0.01881 \\ -0.86285 \\ -1.10939 \\ 1.27455 \end{array}$	0.33885	$ \begin{array}{r} -0.03451 \\ 0.84249 \\ 1.19011 \\ -1.30139 \end{array} $	0.44639	
E_M	(a.u.)	-7.	96666	-7.	96598	-7.96992		

		Slater LO	CAO-MO	Best atom	LCAO-MO	Best limited	l LCAO-MO
	518 528 52ρσ	B 4.70 1.30 1.30	H 1.00	B 4.6794 1.33825 1.21055	Н 1.00	B 4.6805 1.2955 1.3168	H 1.1860
		c_{ip}	ϵ_i (a.u.)	Cip	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)
1σ	C11 C12 C13 C14	0.99664 0.01818 0.00600 -0.00734	-7.69969	$\begin{array}{c} 0.99680 \\ 0.01646 \\ 0.00572 \\ -0.00688 \end{array}$	-7.71395	$\begin{array}{c} 0.99707 \\ 0.01506 \\ 0.00458 \\ -0.00479 \end{array}$	-7.66412
2σ	C21 C22 C23 C24	$\begin{array}{r} -0.16773\\ 0.57039\\ 0.21778\\ 0.48162\end{array}$	-0.64749	$\begin{array}{r} -0.17665\\ 0.58613\\ 0.20368\\ 0.47576\end{array}$	$\begin{array}{cccc} -0.00688 & -0.00479 \\ \hline -0.17665 & -0.16703 \\ 0.58613 & -0.65371 & 0.60348 \\ 0.20368 & 0.24477 \\ 0.47576 & 0.45490 \end{array}$		-0.63820
3σ	C31 C32 C33 C34	$\begin{array}{r} -0.14454\\ 0.81788\\ -0.55368\\ -0.44488\end{array}$	-0.34594	$\begin{array}{r} -0.14841 \\ 0.78871 \\ -0.57431 \\ -0.41873 \end{array}$	-0.34478	-0.14227 0.76543 -0.59282 -0.37269	-0.32767
4σ	C41 C42 C43 C44	$\begin{array}{r} 0.09172 \\ -0.92769 \\ -1.14539 \\ 1.42270 \end{array}$	0.46730	$\begin{array}{r} -0.10384 \\ 0.95452 \\ 1.17594 \\ -1.46719 \end{array}$	0.45679	$ \begin{array}{r} -0.08724 \\ 0.81025 \\ 1.07989 \\ -1.33298 \end{array} $	0.58388
E_M	r (a.u.)	-25.	06210	-25.	05509	-25.	07460

TABLE VII. Molecule: BH; state: ${}^{1}\Sigma^{+}$ $(1\sigma^{2} 2\sigma^{2} 3\sigma^{2})$; R_{e} : 1.2325 A, 2.329 a.u.

TABLE VIII. Molecule: NH; state: ${}^{1}\Sigma^{+}$ $(1\sigma^{2} 2\sigma^{2} 1\pi^{4})$; R_{e} : 1.045₅ A, 1.976 a.u.

		Slater L	CAO-MO	Best atom	LCAO-MO	Best limited	l LCAO-MO
•	ζ18 ζ28 ζ2ρσ ζ2ρπ	N 6.70 1.95 1.95 1.95	Н 1.00	N 6.6652 1.9236 1.9170 1.9170	H 1.00	N 6.6703 1.9442 2.0959 1.7697	Н 1.4096
		c_{ip}	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)	Cip	ϵ_i (a.u.)
1σ	C11 C12 C13 C14	$\begin{array}{c} 0.99601 \\ 0.01862 \\ 0.00199 \\ -0.00593 \end{array}$	-15.31801	$\begin{array}{c} 0.99675 \\ 0.01547 \\ 0.00167 \\ -0.00491 \end{array}$	-15.38799	0.99699 0.01357 0.00079 -0.00328	-15.58738
2σ	C21 C22 C23 C24	$\begin{array}{c} 0.20908 \\ -0.76582 \\ -0.14156 \\ -0.34297 \end{array}$	-0.87022	$\begin{array}{r} 0.20717 \\ -0.78259 \\ -0.14645 \\ -0.31910 \end{array}$	-0.88830	$\begin{array}{c} 0.21586 \\ -0.84062 \\ -0.15340 \\ -0.27502 \end{array}$	-0.96322
3σ	C31 C32 C33 C34	$\begin{array}{r} 0.14182 \\ -0.79870 \\ 0.42444 \\ 0.76336 \end{array}$	0.00293	$ \begin{array}{r} -0.13460 \\ 0.78563 \\ -0.43378 \\ -0.76029 \end{array} $	-0.01543	$\begin{array}{r} -0.11821 \\ 0.62262 \\ -0.56154 \\ -0.60654 \end{array}$	-0.03215
4σ	C41 C42 C43 C44	$\begin{array}{c} 0.07125 \\ -0.58658 \\ -1.03867 \\ 1.03595 \end{array}$	0.58475	$\begin{array}{r} -0.06922 \\ 0.59905 \\ 1.04242 \\ -1.06409 \end{array}$	0.55857	$ \begin{array}{r} -0.07076 \\ 0.52433 \\ 0.95360 \\ -1.05184 \end{array} $	0.72254
$1\pi, 1\bar{\pi}$	Ca	1.00000	-0.23778	1.00000	-0.25774	1.00000	-0.31111
<i>E_M</i> (a.u.)		-54.	25984	-54.	27581	-54.32459	

<u></u>		Slater LC	AO-MO	Best atom	LCAO-MO	Best limited	LCAO-MO
	ζ18 ζ28 ζ2ρσ ζ2ρπ	F 8.70 2.60 2.60 2.60	H 1.00	F 8.6501 2.5639 2.5498 2.5498	H 1.00	F 8.6533 2.5551 2.6693 2.4965	Н 1.3163
		Cip	ϵ_i (a.u.)	Cip	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)
1σ	C ₁₁ C ₁₂ C ₁₃ C ₁₄	$\begin{array}{c} 0.99627 \\ 0.01632 \\ 0.00243 \\ -0.00460 \end{array}$	-26.13948	$\begin{array}{c} 0.99709 \\ 0.01301 \\ 0.00210 \\ -0.00366 \end{array}$	-26.25971	$\begin{array}{c} 0.99713 \\ 0.01273 \\ 0.00209 \\ -0.00332 \end{array}$	-26.26612
2σ	C ₂₁ C ₂₂ C ₂₃ C ₂₄	$\begin{array}{c} 0.24346 \\ -0.93218 \\ 0.09066 \\ -0.16060 \end{array}$	-1.47646	$\begin{array}{r} 0.23918 \\ -0.94111 \\ -0.09787 \\ -0.14232 \end{array}$	-1.50298	$\begin{array}{c} 0.23719 \\ -0.93992 \\ -0.09042 \\ -0.15365 \end{array}$	-1.48860
3σ	C31 C32 C33 C34	$\begin{array}{r} -0.08394 \\ 0.47149 \\ -0.68695 \\ -0.57613 \end{array}$	-0.56559	$ \begin{array}{r} -0.07888 \\ 0.45526 \\ -0.70538 \\ -0.54961 \end{array} $	-0.59073	$\begin{array}{r} -0.07566 \\ 0.42221 \\ -0.71146 \\ -0.51612 \end{array}$	-0.60558
4σ	C41 C42 C43 C44	$ \begin{array}{r} -0.08000 \\ 0.55994 \\ 0.80646 \\ -1.05015 \end{array} $	0.47711	$ \begin{array}{r} -0.07766 \\ 0.57012 \\ 0.79565 \\ -1.07819 \end{array} $	0.44756	$ \begin{array}{r} -0.07691 \\ 0.53922 \\ 0.80463 \\ -1.07437 \end{array} $	0.66916
1π , $1\bar{\pi}$	Cπ	1.00000	-0.46455	1.00000	-0.49005	1.00000	-0.46863
E_M (a	.u.)	-99.	17854	-99.	49147	-99.53614	

TABLE IX. Molecule: HF; state: ${}^{1}\Sigma^{+}$ (1 σ^{2} 2 σ^{2} 3 σ^{2} 1 π^{4}); R_{e} : 0.9171 A, 1.733 a.u.

TABLE X.^a Molecule: CO; state: ${}^{1}\Sigma^{+}$, $(1\sigma^{2} 2\sigma^{2} 3\sigma^{2} 4\sigma^{2} 1\pi^{4} 5\sigma^{2})$; R_{e} : 1.1281₉ A, 2.132 a.u.

		Slater LO	CAO-MO	Best atom]	LCAO-MO			Slater LC	AO-MO	Best atom 1	LCAO-MO
	ζ1s ζ2s ζ2pσ ζ2pπ	C 5.70 1.625 1.625 1.625	O 7.70 2.275 2.275 2.275 2.275	C 5.6726 1.6082 1.56805 1.56805	O 7.6580 2.2461 2.22625 2.22625		ζ18 ζ28 ζ2ρσ ζ2ρπ	C 5.70 1.625 1.625 1.625	O 7.70 2.275 2.275 2.275	C 5.6726 1.6082 1.56805 1.56805	O 7.6580 2.2461 2.22625 2.22625
		c_{ip}	e; (a.u.)	c_{ip}	ϵ_i (a.u.)			c_{ip}	ϵ_i (a.u.)	Cip	ϵ_i (a.u.)
1σ	C ₁₁ C ₁₂	-0.00021 0.00694 0.00626		0.00014 -0.00586 -0.00524	-20.81172		C45 C46	$0.65294 \\ -0.63503$		-0.65264 0.63639	
10	C14 C15 C16	-0.99603 -0.02018 -0.00576		$\begin{array}{c} 0.99683 \\ 0.01661 \\ 0.00505 \end{array}$		5σ	C51 C52 C53	-0.14025 0.75786 -0.56582 0.00215	-0.48078	-0.13573 0.76218 -0.56148 0.00184	-0.50698
2σ	C ₂₁ C ₂₂ C ₂₃	0.99643 0.01707 0.00587	-11.35323	$\begin{array}{c} 0.99708 \\ 0.01413 \\ 0.00521 \\ 0.00521 \end{array}$	-11.44369		C54 C55 C56	0.00213 0.03656 -0.43792		0.04066 - 0.45046	
	C24 C25 C26	-0.00024 -0.00542 -0.00069		-0.00030 -0.00453 -0.00031		6σ	C61 C62 C63	-0.09155 0.96935 1.25088 0.11070	0.93222	0.08903 -1.00957 -1.28576 -0.11681	0.85994
3σ	C31 C32 C33	-0.11522 0.24006 0.16874	-1.49881	$\begin{array}{r} 0.11397 \\ -0.22414 \\ -0.15542 \\ 0.21170 \end{array}$	-1.53348		C64 C65 C66	-1.12888 -0.94147		$\begin{array}{r} -0.11031 \\ 1.17759 \\ 0.94646 \end{array}$	
	C34 C35 C36	-0.21481 0.75883 0.22322		-0.76872 -0.23892		1π	C77 C78	$-0.46864 \\ -0.77124$	-0.58308	-0.46058 -0.77140	-0.61240
	C41 C42	$0.14683 \\ -0.53827$	0 22024	-0.14563 0.53638	0 75002	2π	C 87 C 88	-0.92245 0.68973	0.26082	$0.93131 \\ -0.69601$	0.22143
4σ	C43 C44	-0.06682 0.12625	-0.73234	0.05995 0.12315	-0.75993	EA	r (a.u.)	-112	. 34357	-112	.32604

^a No values for best limited LCAO-MO.

		Ke.	1.202 A, 2.383	a.u.					. 1.51 A, 2.05	a.u.	
		Slater LO	CAO-MO	Best atom			Slater LO	CAO-MO	Best atom LCAO-MO		
	518 528 52pσ 52pπ	B 4.70 1.30 1.30 1.30	F 8.70 2.60 2.60 2.60	B 4.6794 1.33825 1.21055 1.21055	F 8.6501 2.5639 2.54985 2.54985		518 528 52pσ 52pπ	Li 2.70 0.65 0.65 0.65	F 8.70 2.60 2.60 2.60	Li 2.6865 0.6372 0.6372 0.6372	F 8.6501 2.5639 2.5498 2.5498
		Cip	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)			Cip	ϵ_i (a.u.)	c_{ip}	ϵ_i (a.u.)
1σ	C11 C12 C13 C14 C15 C16	$\begin{array}{c} -0.00023\\ 0.00410\\ 0.00482\\ -0.99616\\ -0.01767\\ -0.00290\end{array}$	-26.36560	$\begin{array}{c} 0.00020 \\ -0.00331 \\ -0.00390 \\ 0.99699 \\ 0.01418 \\ 0.00244 \end{array}$	26.46924	1σ	C11 C12 C13 C14 C15 C16	$\begin{array}{c} -0.00017 \\ -0.00228 \\ -0.00324 \\ 0.99629 \\ 0.01606 \\ 0.00075 \end{array}$	-26.04530	$\begin{array}{c} 0.00017\\ 0.00177\\ 0.00250\\ -0.99710\\ -0.01280\\ -0.00061\end{array}$	-26.12619
2σ	C ₂₁ C ₂₂ C ₂₃ C ₂₄ C ₂₅ C ₂₆	$\begin{array}{c} 0.99659\\ 0.01558\\ 0.00425\\ -0.00037\\ -0.00256\\ 0.00192 \end{array}$	-7.65211	$\begin{array}{c} 0.99680\\ 0.01387\\ 0.00385\\ -0.00038\\ -0.00221\\ 0.00187\end{array}$	-7.68511	2σ	C21 C22 C23 C24 C25 C26	$\begin{array}{c} 0.99415\\ 0.01865\\ -0.00302\\ -0.00798\\ 0.02696\\ 0.01734\end{array}$	-2.42511	$\begin{array}{c} 0.99458\\ 0.01610\\ -0.00357\\ -0.00781\\ 0.02724\\ 0.01715\end{array}$	-2.43092
3σ	C31 C32 C33 C34 C35 C36	$\begin{array}{c} 0.06237 \\ -0.10525 \\ -0.09502 \\ 0.24323 \\ -0.92713 \\ -0.12339 \end{array}$	-1.64128	$\begin{array}{c} 0.06288\\ -0.09248\\ -0.07656\\ 0.23925\\ -0.93934\\ -0.13519\end{array}$	-1.66403	Зσ	C31 C32 C33 C34 C35 C36	$\begin{array}{r} 0.07912 \\ -0.05250 \\ -0.06044 \\ 0.25248 \\ -0.98783 \\ -0.04173 \end{array}$	-1.33902	$\begin{array}{c} 0.07925 \\ -0.04296 \\ -0.04834 \\ 0.24769 \\ -0.99524 \\ -0.04596 \end{array}$	-1.34426
4σ	C41 C42 C43 C44 C44 C45 C46	$\begin{array}{c} 0.11198 \\ -0.35804 \\ -0.17849 \\ -0.07464 \\ 0.40521 \\ -0.81910 \end{array}$	-0.72778	$\begin{array}{c} 0.11758 \\ -0.35503 \\ -0.15237 \\ -0.07118 \\ 0.39294 \\ -0.82789 \end{array}$	-0.74802	4σ	C41 C42 C43 C44 C45 C46	$\begin{array}{r} 0.08745 \\ -0.11874 \\ -0.09605 \\ -0.02339 \\ 0.12722 \\ -0.97846 \end{array}$	-0.39981	$\begin{array}{c} -0.08815\\ 0.10478\\ 0.08303\\ 0.02166\\ -0.11824\\ 0.98274\end{array}$	-0.40308
5σ	C51 C52 C53 C54 C55 C56	$\begin{array}{c} 0.18001 \\ -0.89287 \\ 0.45204 \\ -0.01864 \\ 0.09208 \\ 0.28407 \end{array}$	-0.35362	$\begin{array}{c} 0.18709 \\ -0.89163 \\ 0.45647 \\ -0.01662 \\ 0.07781 \\ 0.30782 \end{array}$	-0.36217	5σ	C51 C52 C53 C54 C55 C56	$\begin{array}{c} 0.15911 \\ -0.89939 \\ 0.46059 \\ -0.01288 \\ 0.06330 \\ 0.07384 \end{array}$	0.02964	$\begin{array}{c} 0.15336 \\ -0.89717 \\ 0.46436 \\ -0.01185 \\ 0.05940 \\ 0.06751 \end{array}$	0.02409
бσ	C61 C62 C63 C64 C65 C65	$\begin{array}{c} 0.08444 \\ -0.64000 \\ -1.12175 \\ -0.10605 \\ 0.82366 \\ 0.63634 \end{array}$	0.60736	$\begin{array}{r} 0.09456 \\ -0.66600 \\ -1.13904 \\ -0.10309 \\ 0.84797 \\ 0.61054 \end{array}$	0.54930	бσ	C61 C62 C63 C64 C65 C66	$\begin{array}{c} 0.05627 \\ -0.54355 \\ -0.99198 \\ -0.08754 \\ 0.60783 \\ 0.21674 \end{array}$	0.26989	$\begin{array}{c} 0.05399 \\ -0.55028 \\ -0.99248 \\ -0.08247 \\ 0.59843 \\ 0.19728 \end{array}$	0.25785
1π	C77 C78	$-0.29531 \\ -0.90257$	-0.61982	$-0.28354 \\ -0.90499$	-0.63940	1π	C77 C78	$-0.35981 \\ -0.88890$	-0.34088	$-0.33756 \\ -0.89867$	-0.34835
2π	C87 C88	$0.97360 \\ -0.46954$	0.21018	0.97957 - 0.47006	0.18309	2π	C ₈₇ C ₈₈	$0.94158 \\ -0.47528$	0.16462	$0.95030 \\ -0.45761$	0.15604
E _M	(a.u.)	-123	. 61550	-123	E_M	r (a.u.)	-106	.36521	-106.38126		

 TABLE XI.* Molecule: BF; state: ${}^{1}\Sigma^{+}$ ($1\sigma^{2} 2\sigma^{2} 3\sigma^{2} 4\sigma^{2} 1\pi^{4} 5\sigma^{2}$);
 TABLE XII.* Molecule: LiF; state: ${}^{1}\Sigma^{+}$ ($1\sigma^{2} 2\sigma^{2} 3\sigma^{2} 4\sigma^{2} 1\pi^{4}$);

 R: 1 262 A, 2.385 a.u.
 R: 1.51 A, 2.85 a.u.

^a No values for best limited LCAO-MO.

H He Li Be B

^a No values for best limited LCAO-MO.

TABLE A. First-row orbital exponents.											
Slater 5			Slater 5				Best atom 5				
1 <i>s</i>	$2s = 2p\sigma = 2p\pi$	1s	2 <i>s</i>	$2p\sigma = 2p\pi$		1 <i>s</i>	$2s = 2p\sigma = 2p\pi$	1 <i>s</i>	2 <i>s</i>	$2p\sigma = 2p\pi$	
$1.0 \\ 1.7 \\ 2.7 \\ 3.7 \\ 4.7$	0.65 0.975 1.3	$1.0 \\ 1.6875 \\ 2.6865 \\ 3.6847 \\ 4.6794$	0.6372 0.9562 1.33825	(0.6372) (0.9562) 1.21055	C N O F	5.7 6.7 7.7 8.7	1.625 1.95 2.275 2.6	5.6726 6.6652 7.6580 8.6501	1.6082 1.9236 2.2461 2.5639	1.56805 1.9170 2.22625 2.54985	

VI. APPENDIX

	B. SCI	F inpu	t infor	mation.	TABLE C. One-center overlap integrals.						
		Electron configuration ^a			Internuclear distance $R_e^{\rm b}$		Molecule	Overlap integral	Slater LCAO-MO	Best atom LCAO-MO	Best limited LCAO-MO
Molecule	State	\$	+p	-p	Α	a.u.	Тін	S.,	0 1662 6484	0 1620 4403	0 1030 7013
$\begin{array}{c} \mathrm{Li}_2\\\mathrm{Be}_2\\\mathrm{C}_2\end{array}$	$\begin{bmatrix} 1 \Sigma_{g}^{+} \\ [1 \Sigma_{g}^{+}] \\ 1 \Sigma_{g}^{+} \end{bmatrix}$	3 4 4	0 0 1	0 0 1	2.672_{5} 2.0 1.2422	5.051 (3.780) 2.3475	BH NH FH	$S_{12} \\ S_{12} \\ S_{12} \\ S_{12} \\ S_{12}$	0.2099 1853 0.2279 2130 0.2377 1090	$\begin{array}{c} 0.1020 & 4103 \\ 0.2216 & 0079 \\ 0.2248 & 6784 \\ 0.2346 & 3500 \end{array}$	$\begin{array}{c} 0.2101 & 5522 \\ 0.2284 & 5502 \\ 0.2332 & 2147 \end{array}$
${f N_2} {f F_2}$	${}^{1}\Sigma_{g}^{+}$ ${}^{1}\Sigma_{g}^{+}$	5 5	1 2	1 2	$\begin{array}{c} \textbf{1.094} \\ \textbf{1.418} \end{array}$	2.068 2.680	${f Li_2} {f Be_2}$	$S_{12} = S_{45}$ $S_{12} = S_{45}$	$\begin{array}{c} 0.1662 & 6484 \\ 0.1937 & 9309 \end{array}$	$\begin{array}{c} 0.1620 \ 4403 \\ 0.1888 \ 9342 \end{array}$	0.1601 1469 0.1894 0733
LiH BH NH*	$1\Sigma^+$ $1\Sigma^+$ $1\Sigma^+$ $1\Sigma^+$	2 3 2	0 0 1	0 0 1	1.5953₅ 1.2325 Г1.045₅7	$3.015 \\ 2.329 \\ 1.976$	$\begin{array}{c} \mathrm{C_2} \\ \mathrm{N_2} \\ \mathrm{F_2} \end{array}$	$\begin{array}{c} S_{12} = S_{45} \\ S_{12} = S_{45} \\ S_{12} = S_{45} \end{array}$	$\begin{array}{c} 0.2204 & 7827 \\ 0.2279 & 2130 \\ 0.2377 & 1090 \end{array}$	$\begin{array}{c} 0.2185 & 0310 \\ 0.2248 & 6784 \\ 0.2346 & 3500 \end{array}$	$\begin{array}{c} 0.2239 \ 2555 \\ 0.2235 \ 0663 \\ 0.2366 \ 1054 \end{array}$
HF	$1\Sigma^{+}$	3	1	1	0.9171	1.733	CO	$\substack{S_{12}\\S_{45}}$	$0.2204 \ 7827 \\ 0.2334 \ 4716$	$\begin{array}{c} 0.2185 & 0310 \\ 0.2307 & 4713 \end{array}$	
BF	Σ^{+}	5	1	1	1.262	2.385	\mathbf{BF}	S ₁₂	$0.2099 1853 \\ 0.2377 1090$	0.2216 0079	
LiF $^{1}\Sigma^{+}$ 4 1 1 1.51 2.85							LiF	$S_{12} \\ S_{45}$	0.1662 6484 0.2377 1090	0.1620 4403 0.2346 3500	

TABLE B. SCF input information.

^b 1 a.u. = 0.5291 A.

REVIEWS OF MODERN PHYSICS

VOLUME 32. NUMBER 2

APRIL, 1960

Role of Coulomb Energy in the Valence-Bond Theory^{*,†}

SERAFIN FRAGAT AND ROBERT S. MULLIKEN

Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago 37, Illinois

I. INTRODUCTION

I^N VB (valence-bond) theory calculations using covalent structures only, the binding energy is regarded as the sum of two terms, namely, a Coulomb-term and an exchange term.^{1,2} For the hydrogen molecule the computed energy at the r value at which it is a maximum (about 1.0 A) is about 12% of the experimental binding energy at that r value. (At the equilibrium internuclear distance in H₂, however, the contribution of the Coulomb energy to the binding energy is only about 1%.) It has very often been assumed that the ratio of Coulomb to total binding energy is about 12% in any chemical bond.

There are relatively few accurate calculations on this subject. Rosen and Ikehara³ computed the Coulomb and exchange binding energies for the interaction between a pair of identical neutral atoms, each having one *ns* electron, for n=1, 2, 3, 4, 5. The results showed that both energies decrease with increasing n, but that the proportion of Coulomb energy in the total binding energy increases with increasing n. On extrapolating beyond n=5 they found greater values for the Coulomb than for the exchange binding energy. It has been shown also that for p electron bonds the Coulomb binding energy can have larger values than for selectron bonds.⁴ The same is true for bonds formed by 2s-2p hybrid orbitals; the calculations of Woods⁵ on CH₄ showed a Coulomb binding energy greater than 50% of the total binding energy.⁶ A few unpublished calculations made some time ago in this Laboratory by C.W. Scherr also indicated large Coulomb energies. Fischer⁷ too has made some calculations of Coulomb energies, but in a modified way directed toward the evaluation of hybridizations.

These few calculations raise the serious question

^{*} First presented at the Symposium on Molecular Structure and Spectroscopy at the Ohio State University, June, 1958; later at the June, 1959 Conference on Molecular Quantum Mechanics at Boulder, Colorado.

[†] This work was assisted by a grant from the National Science Foundation and by a contract with the Office of Naval Research. The integral computations were carried out at the Wright Air Development Center, Dayton, Ohio, supported by a contract with the U.S. Air Force.

[‡] Supported by a fellowship from the Fundacion Juan March.

[‡] Supported by a fellowship from the rundation function, Madrid, Spain. ¹ Cf. J. H. Van Vleck and A. Sherman, Revs. Modern Phys. 7, 167 (1935); L. Pauling and E. B. Wilson, *Introduction to Quantum Mechanics* (McGraw-Hill Book Company, Inc., New York, 1935); H. Eyring, J. Walter, and G. E. Kimball, *Quantum Chem-istry* (John Wiley & Sons, Inc., New York); C. A. Coulson, *Valence* (Clarendon Press, Oxford, England, 1957). ² R. S. Mulliken, J. Phys. Chem. 56, 295 (1952).

 ³ N. Rosen and S. Ikehara, Phys. Rev. 43, 5 (1953).
 ⁴ J. H. Bartlett, Phys. Rev. 37, 507 (1931).
 ⁵ H. J. Woods, Trans. Faraday Soc. 28, 877 (1932).

⁶ For more references on the subject cf. reference 2, Sec. XIII. ⁷ I. Fischer-Hjalmars, Arkiv Fysik 5, 349 (1952); 7, 165 (1953).