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Fig. 7; the horizontal line indicates the classical vibra-
tional "sweep" of the zero-point vibration.

We also explored to some extent the possibilities of
superposition of conhgurations using wave functions
defined by Eqs. (1)—(3) with ted=0 and also introduced
m,x,' and x„~ ' terms as discussed previously. Virtually
the same calculation was carried out by Hagstrom";
his results are in excellent agreement with ours. In
Table XVI we compare some of the more important
results of these computations with those obtained with

"S. Hagstrom (unpublished).

the SCF function and with the wave functions which
contain r» explicitly.
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GLOSSARY OF GENERAL TERMS AND SYMBOLS'

Orbital: An adjective used as a noun and introduced
as a brief term meaning "one-electron orbital wave
function, " that is, either an eigenfunction of a one-
electron Schrodinger equation or an approximation
thereto. ' It is the nearest quantum mechanical coun-
terpart to the electron orbit of Bohr theory. The
practice of referring to "one-electron orbitals, " in
other words, "one-electron one-electron orbital wave
functions" should be discouraged. Could one have a
two-electron one-electron orbital wave functions

Spinorbital: This was introduced as a brief term' mean-
ing "one-electron wave function including spin. "
The frequent practice of referring to it as two words
"spin orbital" is confusing, suggesting di.Gerent
meanings from that intended. To better indicate the
pronunciation, the spelling could perhaps be changed
to "spinnorbital. "

AO: Central field atomic orbital Lcf. Eq. (1)) or, in
molecular contexts, sometimes a linear combination
(hybrid) of these.

MO: Molecular orbital.
SCF: Self-consistent field.
SCF AO or MO: Cf. Eqs. (1) and (2).
CI: Configuration interaction.
STO: Slater-type orbital Lcf. Eq. (3)].

*This work was assisted by a grant from the National Science
Foundation.

~ Tables I and II contain a proposed classification and termi-
nology for various spec@c types of LC—STO approximations to
SCF AO's and MO's.' R. S. Mulliken, J. Chem. Phys. 28, 2005 (1955},Sec. II.3(b).

i =orbital exponent: The variable parameter in any
STO Lcf. Eq. (3)].

LC—STO MO: Linear combination of STO's (not neces-
sarily all alike in t but all alike in m or X) to approxi-
mate an MO.

Free-atom MO, free-atom t' Terms used in describing
LCAO —MO's to indicate that the AO's or the AO f
values used are the AO's or the f's which are suitable
(Slater i's and AO's) or optimal (best simple AO's)
in describing the AO's of free atoms.

LCAO —MO's: MO's approximated by linear combina-
tions of free-atom or of modified AO's; since the latter
in turn are approximated by LC—STO forms, LCAO
MO's in general are most conveniently considered
as LC—STO forms.

INTRODUCTION: USES AND LIMITATIONS OF SELF-
CONSISTENT FIELD WAVE FUNCTIONS

~~VERY exact atomic or molecular wave function
~ must conform to one of the group-theoretical

species (taking into account both spin and orbital char-
acteristics) of the appropriate symmetry group. For
light atoms and molecules it is suQicient for many pur-
poses to use wave functions in which spin-orbit inter-
action is neglected, so that each wave function has a
de6nite spin quantum number and a definite orbital
species (I., S coupling case for atoms, and the analo-
gous case for molecules) .

An exact wave function even of the I,, 5 or I., S-like
type does rot correspond to a single-electron configura-
tion, and exact wave functions are perhaps most
convergently represented by linear combinations of
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terms involving not atomic or molecular orbitals but
products of powers and exponentials of one single co-
ordinate at a time (cf. the Hylleraas form for the He
atom and the James-Coolidge form for H2using the inter-
electronic distance r~2 as one coordinate, but note that
the use of r;; as a coordinate has not been shown to be
practicable except for 2-electron or perhaps at most 3-
electron systems) .

However, a practicable approach which has been more
thoroughly explored is that of using CI (configuration
interaction or superposition of configurations). Here
linear combinations are formed from pure-electron-
configuration wave functions, constructed from AO's for
atoms or MO's for molecules, and the coefficients
(and in general also the internal parameters of the
orbitals used) are determined by energy optimization.
According to the original philosophy of CI, each con-
figuration would be represented ideally by a carefully
determined SCF wave function (or a linear combina-
tion of these in the case of degenerate states) . Thus,
for an accurate ground state wave function, the leading
term in the CI would be the SCF wave function (or
functions) of the ground state, and the smaller terms
would be SCF functions of all excited states of the same
species as the ground state. However, excited state
SCF functions are not easily determined, and besides,
convergence is slow and requires extensive inclusion of
continuum SCF functions.

On the other hand, more rapid convergence can be
obtained if the single-configuration wave functions of
which the best linear combination is to be sought are
rot SCF functions, but are regarded merely as variation
functions so chosen as to give most rapid convergence
toward the exact wave function. The parameters to be
varied now include both the CI coefficients and the
internal parameters within each single-configuration
function. These internal parameters are the same ones
that are varied in seeking a close approximation to an
SCF function, but in the context of CI they must, in
general, be reburied simlltaeeously for all the configura-
tions in the CI function. Such a procedure being a
formidable one, it is necessary to examine very carefully
the configurations used and other matters so as to ap-
proach the desired goals with maximum economy for a
finite number of terms.

The foregoing considerations indicate that acmrate
SCF wave functions are not necessary as way stations
on the road toward accurate wave functions. Moder-
ately accurate SCF functions and energies, if obtain-
able without excessive eGort, should, however, be of
orientational value in seeking accurate wave functions.
Further, they may be very valuable as way stations in
case it should prove that they are practically obtainable,
but that the calculation of accurate wave functions is
for the present, except for systems with very few elec-
trons, only a distantly attainable goal. In this event,
if serni empirica/ rules can be obtained for the estimation

of correlation energies (that is, the differences in energy
between SCF and accurate wave functions) for atoms
and diatomic molecules, one then can at least progress
toward useful knowledge and considerable understand-
ing of atomic and molecular energies. Such semiempiri-
cal understanding will be further illuminated by ac-
curate theoretically determined wave functions and
energies which will definitely be attainable for systems
containing small numbers of electrons (for two-electron
atoms and molecules, the problem has already been
solved). Further, it may turn out that some of the
atomic and molecular properties which can be com-
puted when exact wave functions are known can also
be computed with moderate accuracy from SCF wave
functions.

Additional strong justification for e6ort devoted
toward attaining moderatel'y accurate SCF wave func-
tions for atoms and simple molecules is to be found in
the light which they can throw on the regularities of
atomic and molecular structure and valence theory in
terms of relatively simple single-electron-configuration
concepts. This conceptual simplicity appears likely to
be lost when one looks at accurate wave functions. How-
ever, conversely, this is no reason for not seeking the
latter. In fact, given an accurate wave function, it will

presumably not be too difficult to project olt of it less
accurate but conceptually simpler desired approxima-
tions, including SCF functions. Hence, insofar as the
search for accurate wave functions is presently feasible,
it may be wise to aim one's effort directly toward them
rather than toward even moderately accurate SCF
functions.

Nevertheless, our effort at Chicago (while not neg-
lecting accurate wave functions and CI) at present
emphasizes the search for good SCF wave functions,
especially for molecules; at the moment, for diatomic
molecules containing H, He, and jor first-row atoms. We
feel that much is to be learned from SCF molecular
wave functions, and recent experience has made us
optimistic that these can be approximated fairly well
without excessive computational effort—although we
have not yet proved to what extent this hope will
be justified. We also feel that molecular wave functions
using good SCF MO's, not just the usual simple LCAO-
MO's, may prove to be about as good approximations
to exact molecular wave functions as SCF atomic
functions are to exact atomic functions.

This memorandum is devoted mainly to approximat-
ing SCF AO's and MO's as linear combinations of AO's;
more precisely, of STO's (Slater-type AO's). Although
expansions of diatomic MO's in elliptic coordinates are
also useful, and we are devoting some attention to these
for the lightest molecules, we feel that LC—STO's
(linear combinations of STO's) are more useful in gen-
eral. In the course of reviewing recent and current work.
in this Laboratory, the necessity became apparent to
Dr. B. J. Ransil and the writer for developing a sys-
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tematic terminology to describe various different ways
of choosing disposable parameters (in particular, i'

values) in constructing AO's and MO's as LC—STO's.
Most of what follows is devoted to this rather annoying
matter of terminology. However, it is hoped that the
result is much more than a matter of terminology;
namely, that it will make it easier to see the possibilities
for approaching good SCF AO's and especially MO's
more rapidly.

SELF-CONSISTENT-FIELD ORBITALS

Any SCF wave function is a single elect-ron cong-glra
lion approximation to the wave function of an atomic
or molecular state. Further, in an SCF wave. function,
the SCF orbitals, which form an orthonormal set, obey
the Hartree-Pock equations, or generalizations of these
(cf. C. C. J. Roothaan") and minimize the energy
within the constraints imposed by the single-electron-
conGguration requirement. The orbitals in an SCF
wave function may be said to be "optimized. "

These orbitals are central-Geld AO's in the case of
an atom, or MO's conforming to the symmetry group of
the equilibrium nuclear skeleton in the case of a mole-
cule. For an atom and a diatomic molecule, respectively,
they take the forms

AO's: R„g(r) I',„(8)Q) )

Diatomic MO's:

f'N& speci6ed for any particular atom with a particular
electron configuration by a well-known set of simple
rules given by Slater, and used as radially nodeless
approximations to AO's.

In a broad program foreshadowed in an earlier paper
by Roothaan, ' SCF orbitals can be conveniently ap-
proximated as LC—STO's whose coegcients and orbital

exponents can be determined by energy-variation
methods. The desired approximations can be ap-
proached increasingly closely by using an increasingly
well-chosen variety and/or increasing number of STO's
in approximating each SCF AO or MO. A large part
of the recent and continuing effort of this Laboratory
has been devoted to a comprehensive search for the
most suitable sets of STO's and of the best f values for
these to effect adequate convergence with a minimum
number of terms. (Prior to and concomitant with this
effort, extensive work has been done on methods of
computing the numerous energy integrals required in
evaluating the energy of any wave function using the
type of approximation just indicated and of carrying
out the required variation procedures. )

Because of the confusing variety of ways in which a
limited set of STO's and their t' values can be selected,
especially in constructing MO's, a brief descriptive
classiGcation and nomenclature is given here, erst for
AO's, then for MO's.

LC-STO AO's

F(», p, or equivalent coordinates) e++&. (2)

with
~Nl)))(e) 0') = ~Nl (r) P l))) (9) ))t')

RNi(r) = constrN 'exp —iN~r, (3)

which may be called Slater-type functions (STO's),
are useful as approximations to SCF (or other) AO's

and MO's of any kind. In (3), fN& is known as the
orbital exponent and may be used as a variation param-
eter; r is in atomic units. STO s may be designated as
1Vs (1s, 2s, ) if l=o; 1Vp if l=1, Ed if l=2, and so

on, and further distinguished in terms of ) values, e.g.,
Sdo, Edm, and Edb for l=2 with ) =0, 1, and 2, re-
spectively. When STO's are used in constructing AO's,

iN& is independent of m or /, but when they are used in
constructing diatomic MO's, t may be taken different
(iN)~) for different X values; the generalization for
polyatomic MO's is obvious.

Slater AO's are STO's with particular values of
3 (a) C. C. J. Roothaan, Revs. Modern Phys. 82, 1'79 (1960),

this issue; (b) 23, 69 (1951).

In (1), i and n are the azimuthal and principal quantum
numbers, m is the magnetic quantum number; in (2),
X=i m

i
is a characteristic quantum number for di-

atomic or, in general, linear-molecule MO's.
As is well known, suitable linear combinations of

radially nodeless analytical forms of the type

Every SCF free-atom AO Lcf. Eq. (1)) evidently can
be approximated by a linear combination of a set of
STO's all having a common factor Fi (8, P). We have
therefore to consider only the characteristics of the
radial factor. In an SCF AO, this factor has e-/-1
nodes and n-l loops. Since STO's are radially nodeless,
the necessary nodes (in case n) i—1) must be supplied

by forming LC-STO's with coef5cients not all alike
in sign. Table I, which is self-explanatory, contains a
classiGcation of LC—STO AO's into types. For each type,
the AO's may be optimized, giving the closest approach
possible to SCF AO's within the limitations imposed

by the use of a Gnite set of STO's, by varying the
coefficients and the f's, using Roothaan's SCF equa-
tions.

LCAO MO's

If an MO is approximated by a linear combination of
AO's, and each of the latter in turn by an LC—STO
form, the result is an LC—STO MO. Such an MO form
may be regarded either as an LCAO or directly as an
LC—STO. In the simplest and most familiar LCAO MO
forms, using one AO per atom and this approximated
by a single STO, the two viewpoints coincide. More
general MO expressions containing a larger number of
LC-STO terms may be regarded as useful and flexible
variational forms without regard to their relationship
to AO's.
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TABLE I.Approximation of SCF AO's as LC-STO AO's. '

A. Simple AO's

In these, each of the I—l loops which are present in the radial factor R„t(r) of the SCF AO Lcf. Eq. (1)g which is to be approximated
is represented by a single STO. These STO's Lcf. Eq. (3)7 have values of Pf running from I l u—p to N. Simple AO's are the simplest
LC-STO approximations which have the correct number of nodes. Simple AO's fall into several types depending on how the g values
of the STO's are chosen.

(a) Orthogonalzzed Stater AO's
A Slater AO is a single STO whose g is chosen according to Slater's rules. It is used to represent the outermost loop of a simple
AO. By orthogonalizing a set of Slater AO's, a set of LC-STO's of the "simple AO" type is obtained.

(b) s~~gr.-g ~0's
These have a single f for all STO's of all AO's of the same l but a diferent g for STO's of different l. The g's are chosen so as
to minimize the energy of the given state of the given atom. For example, in an electron con6guration is'2s'2P', one has

AO LC-STO
is=is(g)
2s =2s (g) —his (g)
2P-»(r').

(c) Hydrogertzc AO's
Solutions of the 1-electron central-Geld Schrodinger equation; these are a special case with I'=Z/tz for all the STO's of any AO.

(d) Best szraple AO's
In the most general type of simple AO's, g is optimized for each STO separately. For example,

AO LC-STO
is=is(g)
2s =2s (I') —Xls (1'")
2P-2P (f"')

Usually, however, g" is taken equal to g for simplicity. In either case, ) is chosen to make 2s orthogonal to is.

B. Multiple-g AO's

The outermost loop (and in general also others) is represented by more than one STO of the same form but different f For ex. ample,

AO LC-STO
2s =a~2s (g') +a22s (g")—'his (P)»=b»(f"')+b 2PQ''"')

The approximate AO's in this example may be called double-g AO's.

C. Extended AO's

Outermost loop (and in general also others) is represented by more than one STO including STO's of higher tz than for the SCF AO
being approximated. For example,

AO LC-STO
2s =ai2s (I') +az3s (f') + ~ ~ —Xls (I')
2P =b~2P (f")+bz3P (0")+

The added higher-n STO's may also be taken with different g values than for the main STO, but the improvement obtained thereby
though appreciable is not large. For example,

AO LC-STO
2P=b~2P(f")+bz3P(f"')+" .

D. Multiple-extended AO's

Approximations 8 and C, when each is extended to increasing numbers of terms, converge toward'the same limit. Approximation B
probably converges faster, but the variation procedure is less simple than for C. A judicious selection of terms from both B and C
may prove to be best according to Roothaan's recent experience with light atoms. Thus, the multiple-extended type of LC-STO AO
may be of especial importance.

~ Throughout, it is to be kept in mind that the set of SCF AO's considered are mutually orthogonal and their approximations as LC-STO MO's are to be kept
likewise.

Nevertheless, it is often useful in classifying LC—STO
MO's to think of them first as LCAO MO's, whose AO's
are then approximated as LC—STO AO's. However, it is
then very important to keep in mind that the coeK-
cients and l values in the LC—STO AO's used to build
an LCAO MO must, in general, be reburied if one is to
obtain the best approximation to a desired SCF MO.
In other words, good free-atom AO's (i.e., SCF AO's
or approximations to these) cartrtot, irt gerteral, be used

without modification to construct good simple LCAO
approximations to SCF MO's. However, in special
cases (in particular, nonbonding closed-shell MO's),
free-atom AO's may be suitable without much modifica-
tion.

A characteristic feature of good LCAO —MO's is AO
hybridisaA'oe, that is, entrance into any LCAO of
AO's, hence STO's, diGering in 1. For either atom in a
diatomic molecule, AO's which have diBerent 1 but the
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TABLE II. Approximation of SCF MO's as LC-STO MO's. ~

General features of LC-STO MO classification

I C-STO MO's can be classified under essentially the same four headings as AO's (simple, multiple, extended and multiple-extended).
This classi6cation, as in the AO case, describes the number and kind of STO's used. LC-STO MO's can also be classi6ed under three head-
ings of a diferent kind which has no analog for AO's. Both kinds of classification are used below, simultaneously, but with priority
for the second kind because of its special importance.

1. Free-atom-g MO's

LC-STO MO's with the g values in the STO's taken equal to those for the same STO's in free-atom AO's (cf. Table I). This makes
I' the same for any one STO in every MO where it appears, in addition to specifying a particular (free-atom) value of f
A. Free-atom-g simple MO's

By simple MO's are meant LC-STO MO's all containing just one STO for each radial loop of every valence-shell AO of correct
symmetry (e.g., of every valence-shell 0 AO in the case of a 0., 0.„or0.„MO), for every atom in the molecule; or {as an equivalent
alternative description) all containing one STO representing the outer loop of every valence-shell and everyinner-shel/ AO of correct
symmetry, for every atom. The following, if free-atom values of the indicated g's are used, are examples of free-atom-g simple
MO's.

mo, (m=1—3):c~&$1soQ&)+i'sa(fr)5+c &[2s (fs)+2ss(fs))+c 8$2po, (fs)+2pm, Q's)],

¹

~ no, (n 1, 2=): c„,Ds, (f',) iss(—f,)]+c„,(2s, (f,) 2'(—f,)]+c„s[2Ps,(fa) 2Pe—, (fs)],

,isr, : d(2Pno(fg) +2pnb($3) ];
mo (m = 1—3):c~r Iso Qr) +c~'s2sc (fs) +cm31sa (1&) +c~42Poc(f'4) ~'

CH
im. : 2Psrc (I'4)'

(a) Best atomic-g simple MO's
Here f values as for the best simple AO's Pcf. Table I, Sec. A (a) ]are used.

(b) Sfatcr f310's-
Here Slater I' values are used Lcf. Table I, Sec. A(a)].

B. Free-atom-g multiple-g MO's

By multiple-g MO's are meant LC-STO MO's containing the same number of types (as specified by S, l, X) of STO's as simple
MO's, but with some (or possibly all) STO's of the simple MO replaced each by a linear combination of two (or possibly more)
STO's of the same type but differing in g, in the same way as for multiple-g AO's (cf. Table I, Sec. 8). For example, the free-
atom-f simple MO's of Ng and CH given in Sec. 1.A of this table become free-atom-g multiple-g (here double-g) MO's if some or
all of the individual STO's of a C or N atom are each replaced by a linear combination of a pair of like STO's with two different

g values determined by optimizing the energy with respect to this g pair in a multiple-g AO expression for the C or N AO s.

C. Free-atom-g extended MO's

These differ from free-atom-g simple MO's in that STO's of higher than valence-shell n are added, in the same way for each
atom as for extended AO's (cf. Table I, Sec. C).

D. Free-atom-g multiple-extended MO's

(Cf. Table I, Sec. D.)

2. STO-g MO's

LC-STO MO's with g values in the STO's optimized as follows. A single g is determined for each STO in such a way as to minimize
the energy of the molecule in any particular MO electron con6guration and state. Thus some of the constraints imposed on the
choice of f values in free-atom-g MO's (see Sec. 1) are released, but there remains the often rather severe constraint that the same

g is used for any one STO in every MO where it appears; this constraint is removed in MO-g MO s (see Sec. 3). It is regrettable
that the term "STO-g MO's" is scarcely self-explanatory. A more nearly descriptive but still hardly self-explanatory name would
be "STO-optimized-g MO's. "

Thus in the states of Ng with electron configuration 1', 10. 2o-~~2o. '1m„3', and in that of CH with con6guration 10~20~30'1x,
the free-atom-g simple MO s expressions given in Sec. 1.A of this table become STO-g simple MO's if all the g's (now four distinct

g s for N& and fwe for CH) are optimally determined for the molecule instead of being given free-atom values. It should be noted
that the g values so determined for 2p2I STO's are now different from those for 2po STO's; STO-f MO's are thus more Qexible than
free-atom-g MO's.

A. STO-g simple MO's

These are simple MO s, as defined in Sec. 1.A of this table, whose g values have been determined in the manner just described
for STO-g MO's. The N~ and CH examples discussed are examples of STO-g simple MO's.

B. STO-g multiple-g MO's

These are multiple-g MO s as defined in Sec. 1.8 of this table, whose g values have been determined in the manner described
for STO-g MO's.
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C. STO-g extended MO's

These diGer from STO-g simple MO's in that STO's of higher than valence-shell E and $ are added. For example, the following
STO s would be the most important additions to the LC-STO MO expressions give~ for

¹
and CH in Sec. 1.A of this table:

'nur, (sa= 1—3), add c 4[Bso(ts)+Bss(ts) ]+c s[Bpo (f's) +Bpos Q s) ]+c s[Bdo~(l s) +Mos(l s) ],
Ns ~ No„(a=1, 2), add c 4[3s (f s) —Bss(l s) ]+c„r[Bpo (1 8) Bp—os(gs)+c s[Bdo, (fs) Bd—os Qs) 7,'

1~„,add d,[3po.,(14)+Bp~(f'4)]+ds[Bdo (1'~)+Bdoo(l'g)] to A[2po (1'4)+2pm(l's)];

mo (sa= 1 3),-add c~&2sH (i'3) +cm62poa (t3) +cm73sc (is) +cm83poo Qs) +cmSBdoc(i 2) 1

CH
lo, add Bpoc(l'5), Bdoc(ls), and 2poss(f's) to 2poc(ls).

Full use of STO-g extended MO s obviously involves a great increase in computational eGort. This eGort can be diminished if
the g's of the higher-n STO's are in most cases set equal to those of related valence-shell STO's, as has been done in a plausible
way in the preceding descriptions. Only further experiment can show what are the wisest choices to obtain good results with
minimum eGort, but it is likely that higher-I f s chosen somewhat in the manner just illustrated will be satisfactory.

D. STO-g multiple-extended MO's

(Cf. Table I, Sec. D.)
3. MO-g MO's

LC-STO MO s with g values in general individually optimized for each STO in each occupied MO. A more fully descriptive name would
be "MO-optimized-g MO's, "but even this term is, regrettably, hardly self-explanatory. Full use of this method would involve much
computational effort, but in simple cases (excited H2 and repulsion curve for two He atoms) ' it has proved extremely valuable.
In the LC-STO simple MO expressions for N2 and CH given in Sec. 1.A of this table, full use of this method would require nine
cr, and six O„MO f's, also one x~ f, in the case of N2, and in the case of CH, twelve o-MO g's and one x-MO f. However, nearly as
good results may be expected if various judicious simplifications are made; for example, in

¹ perhaps the use of the same f for the
1s STO in all the MO's and another single f for the 2s and another for the 2pe in the 1~, and j.o„MO's; but in any event, diGer-
ent g's for the 0, than for the o „valence-shell MO's.

A. MO-f simple MO's

These are simple MO's, as defined in Sec. 1.A of this table, whose f values have been determined in the manner described for
MO-f MO's. The

¹ and CH examples just discussed are examples of MO-g simPle MO's.

B.MO-g multiple-g MO's

These are multiple-g MO s as defined in Sec. 1.8 of this table, whose g values have been determined in the manner described
for MO-f MO's. They are, in general, diGerent for every STO and every MO, but in practice many simplications should be pos-
sible with little loss of accur'aey.

C. MO-g extended MO's

These diGer from MO-g simple MO's in that STO's of higher than valence-shell g and l are added. The possibilities and com-
plications of this method can be appreciated by a consideration of the Ng and CH LC-STO MO s discussed in See. 2.C of this
table, but with diGerent t values for diGerent MO's as outlined at the beginning of Sec. 3-of this table, except for qualifications
on full generality as discussed in Sec. 2.C.

D. MO-t multiple-extended MO's

(Cf. Table I, Sec. D.}

~ Throughout, it is to be kept in mind that the members of any set of SCFMO's considered are mutually orthogonal, and their approximations as LC-STO MO's
are to be kept like@rise.

b See reference 4.
e See reference 5.

same X can be thought of as combined to form a single
hybrid AO, which is then combined (LCAO) with a
suitable (hybrid or nonhybrid) AO of the other atom to
form an LCAO MO.

Al/ereatiM/y, we can think of such an LCAO MO as a
linear combination to which, in general, each atom may
contribute several nonhybrid AO's differing in /, and
perhaps also in e, but of course all alike in X. This last
viewpoint appears to form the most useful basis for
dassifying LCAO MO's, and thereby LC—$&O MO's,

into types with respect to methods of choosing the
component STO s in such R wRy Rs to obtRin RcceptRble
approximations to SCF MO's with minimum numbers
of STO's and/or maximum computational economy.
This classi6cation into types is summarized in Table II.

TENTATIVE CONCLUSIONS ON MOST RAPIDLY
CONVERGENT CHOICES OF LC-STO MO's

Most of the computations done thus far, both here
and elsewhere, using LC—STO approximations to MO's,
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have been of the free-atom-f simple MO or (somewhat
better) the STO—f' simple MO type (see Table II for
descriptions of types). However, a few computations
have been made which indicate the possibility of radical
improvements by dropping certain rather severe con-

straints that are inherent in LC—STO MO s limited by
the two restrictions of being (a) free-atom-f or STO—f'

in type; (b) of the simple MO type. With reference to
restriction (a), the work of Huzinaga' and of Phillipson

and Mulliken' demonstrates strikingly the very great
advantages of using diGerent values for the same STO
in bonding and antibonding MO's (use of MO's of

MO f t—ype). With reference to restriction (b), un-

published work of J. W. Richardson indicates that the
use of double-f (in general multiple-f) MO's instead of

simple MO's also has great advantages; it is further

evident (and there are a few calculations to support
this statement) that the use of exteisded MO's instead of

simple MO's should have somewhat similar though

perhaps smaller advantages. It seems clear that by
judicious use of MO —l double-f and/or MO —l' extended

MO's, one may reasonably hope (at the cost of consider-

able but not prohibitive computational effort) to
obtain, with a quite moderate number of STO's,
convergence toward SCF MO's.

With specific reference to the multiple-l' method,

there exist two or three computations on HP in which

LCAO MO's have been constructed using SCF AO's.

These have given considerablylower energies than Slater-

' S. Huzinaga, Progr. Theoret. Phys. (Kyoto) 19, 125 (1957);
20, 15 (1958); 18, 139 (1957).

~ P. E. Phillipson and R. S. Mulliken, J. Chem. Phys. 28, 1248
(1958).

AO and STO—f' simple MO calculations. ' It seems clear
that the reason for this gain is that the single 2po and
the single 2ps STO of the simple MO method have been
replaced by what are essentially multiple-f 2p STO's
(since a 2p SCF AO can be closely approximated by a
linear combination of two or three 2p STO s with differ-
ent |'s). However, it is also clear that appreciable
further improvement on the use of a free-atom SCF AO
would be obtained by the use of triple-t' or probably
already by double-&. 2po and 2prr STO's whose forms
have been optimized for the molecule instead of for
the atom and thus differently for 2po and 2ps. (For the
free atom, the radial factor of the SCF AO is neces-
sarily identical for 2po and 2ps-. ) In connection with
the foregoing, it is worth remarking that the SCF-
LCAO —MO s values obtained using Slater or STO-f'
AO's, although these usually agree rather well with
observed ionization potentials, are very considerably
too low for the m MO's of HF and P2 when calculated
using simple MO's. ' lt seems likely that use of double-t'
MO's will yield much better agreements.
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