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INTRODUCTION

HE pioneering work of James and Coolidge! on the
ground state of the hydrogen molecule estab-
lished beyond a doubt the usefulness of including the
interelectronic distance explicitly in the wave function.
Subsequent applications of the method to a number of
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excited states by these authors and Present’® were
about equally successful. Wherever experimental energies
were known, the agreement between computed and
observed values was within 0.02-0.08 ev, the lower
figure applying to the ground state.

We considered it important to extend these calcu-
lations in accuracy and scope. The ideal goal is to
obtain accurate wave functions which correctly describe
the electronic, vibrational, and rotational motion of
the molecule. The present paper deals with electronic
wave functions only. We set ourselves the following
tasks: (1) to increase the accuracy of the energy cal-
culations by several significant figures; (2) to perform
calculations for many values of the internuclear distance
so that accurate potential energy curves could be
obtained; (3) to carry out more elaborate calculations
of the expectation values of various operators other than
the energy; (4) to compare the accurate wave functions
obtained with other more approximate wave functions,
one of which is the SCF (self-consistent field) function.

This comparison with more approximate wave
functions is of particular interest as a basis for under-
standing the validity and limitations of such functions
for more than two-electron systems, where we cannot
hope to construct wave functions of the same accuracy
as the best H, functions. The present calculations should
stimulate further work, for instance, on the coupling of
the electronic wave function with nuclear moments.

ACCURATE WAVE FUNCTION FOR THE GROUND
STATE; EVALUATION OF THE
ULATIVE ELEMENTS

For a given internuclear distance R, the accurate
wave function for the ground state is expanded in the
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Obviously ®; is symmetrical in the indices 1 and 2, so
that it represents a singlet. If ¢;+4s; is even ®; is sym-
metrical with respect to inversion at the center of the
molecule; since there is no azimuthal dependence, this
means that ®; belongs to the species 'Z,*. The expansion
coefficients ¢; satisfy

2(Hij—ES:)c;=0, @
i
where
Hij=(®;| 50]®;), Si=(®:|®;), ®)

and JC is the electronic Hamiltonian. The energy E is
the lowest root of

Det(H— ES)=0. (6)
The electronic Hamiltonian is given by
» JC= 3C1+ 3Ca+ IC1a, O
where
H=—3M—L0a)+ )], A=1,2, (8)
F1o= (r12)™%

For the evaluation of the matrix elements it is useful
to define the unsymmetrical Hamiltonian

5{3’=25C1+ 3(312; (9)
namely, since the ®;s are symmetrical in 1, 2 we find,
using Egs. (2), (3), (),

Hij=(®s] 30| ®5)=(2:| 3’| ®;)
= (pagarssius| 3| pgirisius)
+{pigerssini| 3| risipsqins)
F(risipiquna] 3| pigsrisius)

H{risipiqins| 3| 758:piqims), (10)

where (pgrsu| 3’| p'q'r's’u’) is an obvious symbolic

abbreviation for (¥pgrsu| 3¢’ | ¥prq/rs7w). The analogous
expression for the overlap matrix elements S;; can be

- obtained from (10) by replacing 3¢’ by the identity

operator.
We now proceed to evaluate (pgrsu| 3¢'| p'q’r's'v’) and
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(pgrsu|p’q’r’s'v’) in terms of the primitive integrals

qurs“=fdeldVg(512—1712)-13—%(&%2)
XEPmEa ' r12t,

(11)

First we transform the contribution from the kinetic
energy. We write

= (pgrsu| M| p'q'7's'w')
=fdv2¢’rs(2)¢’r’s’(2)

X f AV [Vigp(Dre] [Vagwe Ore],  (12)

where

(13)

The integral over electron 1 in Eq. (12) is transformed
as follows:

Ppg(\) =70 E\PY1,

del{ [V1epe(1) ] [Vieper (1) Jrae

+ op(1) eprar(1)[Virt]- [V ]
FLepd(1)Viepq (1) ] [r12* Virg* ]
+[¢’p’q' (l)vlﬁ%q(l)] : [7'12"‘711'12",]}

= [T 0] [T (1

+p'#’ @pq(l) Op'g (1)712“4_”/_2
+ (1) ep (D) Viepq (1)
F 1 0prar (1) V10pg(1) ] [Varsg+ )

- del{l‘M/<qu(1) @prgr (D712

— (utu") [eepi(1DA1ppe (1)

+I"I§0p’q’(1)A1‘qu(1)]rl2u+“'; (14)
where we used Green’s theorem. This expression is still
valid if either u=0 or u'=0; it holds, in addition, for
u=pu'=0 if we interpret in this case

w/ (utu)=u'/ (utu')=3.

The desired expression for the kinetic energy contri-
bution in terms of the primitive integrals (11) is now
easily obtained by substituting (14) into Eq. (12),
using the well-known expression for A; in elliptic coor-
dinates, and carrying out the differentiation. The other
contributions to {pgrsu|3¢’'|p'q'r's'v') are simple and
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obvious; so is (pgrsu|p'q’r's’'v’). The complete results
are

(pgrsu| €' | p'q'r's'’)
= —4R (K p12,75"— K pz7s")
—2a[p (Kpt1,a7" — Kp1,575") +2K 511, 775" ]
+[B(B+1)— pp’ (K pars®— K 52,2757
—[3(g+1)—qq' J(K 5z7s"— K 5,5-2,75")
+2PK5 537" — 24K p,3-2,75"}
Fur (K pro,g757 72— K 5,312,772
- 8R_1K5+1,§F§‘7+Kﬁ+2,§7§ﬁ_1—K5,§+2,F§E_1,
(pgrsu| p'q'r's'w' )= K 2,57 — K 5 342,55",
with

(15)

p=ptu', p=p+p’, b=Wptup)/a, (16)

evaluation of the primitive integrals K ,,.s* in terms of
standard functions was given in a preceding paper® for
—1< k<4, which is necessary and sufficient for wave
functions which contain terms with 755 and 7392

ACCURATE WAVE FUNCTIONS FOR
EXCITED STATES

The lower electronic excited states can be treated in
the same fashion as the ground state. The states we
treated were:

(1) The repulsive 3Z,* state, which dissociates into
normal atoms. The wave function is in this case repre-
sented by

D=V psgirisiui— Wrisivigins,

where ¢;+s; is odd, and ¥4, is given by Eq. (3). The
expression for the matrix elements (®;]3C|®;) and
(®;|®;) is a rather obvious modification of Eq. (10).
Since this state is the lowest of its species, the energy
is again the lowest root of the appropriate secular
equation.

(2) The attractive =, state, which dissociates into
1s and (2s, 2ps) atoms. For the wave function ®; Eq.
(2) holds, but now ¢;+s; is odd. Again, the energy is
the lowest root of the secular equation.

(3) The first excited (attractive) Z,+ state, which
dissociates into a proton and the ground state of H—.
The wave function is of the same form as for the ground
state, but the energy is the next to the lowest root of
the secular equation. When carrying out the calculation
there is no need to keep the wave function orthogonal
to the ground state function; it is sufficient to always
pick the next lowest root in the secular equation at
every stage of approximation, which guarantees that
this energy is always an upper bound to the actual
energy.’

8 W. Kolos and C. C. J. Roothaan, Revs. Modern Phys. 32, 205
(1960), this issue.
7P. O. Lowdin (private communication).
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APPROXIMATE WAVE FUNCTIONS FOR
THE GROUND STATE

For more than two-electron systems, accurate cal-
culations are far more difficult than for H,. In particular,
it seems at present rather impossible to include the
interelectronic distances explicitly in the wave functions
for more than two electrons, or certainly for more than
three or four. In order to gain some insight into the
reliability of more approximate wave functions for
n-electron systems, it is useful to carry out such calcu-
lations on Hy and compare the results with the accurate
ones.

An approximate function of great interest for n-elec-
tron systems in the SCF function. The SCF function
for H, was first determined by Coulson,® who used a
five-term expansion in elliptic coordinates for the
orbital. In a preceding paper® we reported a slightly
improved orbital using the same terms as Coulson’s but
minimizing also for the exponent a. In conjunction with
the present work we decided to increase the flexibility
of the orbital by increasing the number of terms. The
orbital is expanded according to

=2 aipi, (17)
where the basis functions @; are defined by
pi= ek EPint, (18)

and ¢ is always even since all functions ¢; are of species
oy. The orbital (17) is normalized, hence

Z a;Sia;=1, (19)
£%)

where
Sii={p:| ¢3)- (20)

The orbital coefficients satisfy the pseudoeigenvalue
problem

2 (Fij—eSij)a;=0, (21)

where
(22)

Fii=H;i+3 Jiinarar,

[y
Hij={pi| — 30— (ra) 1= (1) 03),
Sijkz=fde1dV2¢i(1) ei(D) er(2) e1(2)r1s7t. (23)

The orbital energy e is the lowest root of the secular
equation

Det(F—eS)=0; (24)
the total electronic energy is given by
E=Z d,(H,,"l‘F,])d] (25)
27

8 C. A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 (1938).
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The evaluation of the matrix elements S;;, H;; and
of the supermatrix elements ¢ is elementary and
straightforward; the kinetic energy part of H,; is first
transformed into %/°dV(Ve,):(Ve;) using Green’s
theorem. The integrated expressions for the various
quantities are

Hj=wR{(qg+1)""[a?4 ,(2a) —apA ,—1(2c)
+pipid p—2(20) 14 (g—1)7'9ig;4 »(22)}

—2rR2(q+1)"4 p11(22), (26)
Si=37R[(g+1)74 p42(20) — (¢+3)74,(2) ],
Jiitr=Kpi2,057 " —Kp,et2,57
where we have used the abbreviations
p=pitpi 9=¢:tg,
p=prtpy, =gtq (27)

The primitive integrals K p,rs are given by Eq. (11),
and A4 ,(x) is given in a preceding paper,® Eq. (26). The
SCF calculation is performed by iteration, using each
time the coefficients a; which solve Eq. (21) to calculate
the SCF Hamiltonian F,; according to Eq. (22) for the
next approximation. The usual exchange contribution
is absent in Eq. (22); this is possible in this special case
of two paired electrons forming a singlet ground state.

Another important form of wave function is a super-
position of configurations. Equations (1)-(3) define
such a superposition if u=0. For the ground state
¢:+s; must be even; the terms with ¢; and s; even
represent configurations of the type o,0,’, those with
¢: and s; odd configurations of the type oy0.’. Obviously
the set thus obtained is not sufficiently general; how-
ever, configurations of the types mym,” or myr./, 8,6," or
8.0./, etc. can easily be constructed from this set by
multiplying the appropriate terms with cos(e1— ¢2),
cos2(p1— ), etc.

EXPECTATION VALUES OF VARIOUS OPERATORS
FOR THE GROUND STATE

To judge the quality of an approximate wave func-
tion, the criterion of how close the calculated energy
agrees with the experimental one is often only a crude
measure. This is due to the fact that the root-mean-
square error in the wave function is roughly equal to
the square root of the relative error in the energy;
hence if the energy is accurate to, say four significant
figures, we expect the wave function to be accurate to
about twosignificant figures. The latter isfurthermore an
average of that error integrated over the coordinates of
all the electrons; it is quite conceivable, and actually
almost always true in practice, that for certain critical
values of the electron coordinates the error in the wave
function is considerably larger, and sometimes infinite.
If expectation values of certain operators are evaluated
with the approximate wave functions, different oper-
ators may weigh these critical points quite differently,
and it is therefore quite possible that wave functions
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TasLE I. Binding energies (in ev) for the ground state of H,
computed with 3- to 15-term wave functions and different ex-
ponents (R=1.4).

No. of

terms  &Him f2ne 712 a=0.75 «=0.875 «=095
1 00 00 O
2 00 02 O
3 00 10 O 3.5960 3.6416
4 01 01 O 4.0814 4.1263
5 00 00 1 4.5297 4.6464 4.6698
6 11 01 0 4.5823 4.6562 4.6705
7 10 02 O 4.5967 4.6562 4.6753
8 00 20 O 4.6132 4.6602 4.6912
9 00 00 2 4.6931 4.7048 4.7098
10 01 01 1 4.6932 4.7050 4.7098
11 00 12 O 4.7073 4.7057 4.7104
12 00 02 1 4.7146 4.7149 4.7183
13 00 10 1 4.7220 4.7265 4.7225
14 10 10 O 4.7226 4.7397 4.7406
15 11 11 O 4.7262 4.7408 4.7415

which yield good energies yield poor values for the
exptation values of other operators.

In order to gain some insight into these matters by
purely theoretical means, one can proceed as follows.

W. KOLOS AND C. C. J.

ROOTHAAN

First we calculate the expectation values of an operator
with various wave functions of the accurate form,
increasing the flexibility of the wave function by in-
creasing the length of the expansion. Inspection of these
calculated expectation values as a function of the
expansion length then enables us to judge to how many
figures these expectation values have converged for the
best accurate wave function; these results are then
adopted as the “‘experimental” values for these quan-
tities. The expectation values calculated with various
other approximate wave functions (e.g., SCF) can then
be compared with these experimental values.

This procedure may seem somewhat awkward, since
one would really want to compare calculated values
with actual experimental values obtained from spec-
troscopic, thermodynamic, etc. measurements. The
difficulty is, however, that we have so far obtained only
an electronic wave function, and the results of actual
measurements strictly can be compared only with
values calculated from a wave function describing the
electronic, vibrational, and rotational motion. In addi-
tion, our electronic wave functions are calculated

TaBLE II. Energies and expectation values of 7157 and £ for the ground state of H; computed with 4- to 40-term wave functions

(@=0.95, R=1.4).
No. of
terms fEom Eame 7T —E(a.u.) D(ev) V/2E {ra™) (&)

1 00 00 0

2 00 0 2 0

3 00 10 0

4 01 01 0 1.151645 4.1262 1.00628 0.62942 2.1825

5 00 00 1 1.171619 4.6697 1.00056 0.59380 2.1917

6 11 01 0 1.171645 4.6704 1.00106 0.59405 2.1909

7 10 0 2 0 1.171823 4.6753 0.99984 0.59332 2.1933

8 00 20 0 1.172407 4.6912 0.99612 0.58928 2.2153

9 00 00O 2 1.173091 4.7098 0.99913 0.59012 2.2092
10 01 01 1 1.173091 4.7098 0.99909 0.59012 2.2093
11 00 1 2 0 1.173112 4.7103 0.99920 0.58998 2.2095
12 00 0 2 1 1.173402 47182 0.99946 0.58961 2.2092
13 00 10 1 1.173559 4.7225 1.00051 0.58935 2.2083
14 10 10 0 1.174224 4.7406 1.00029 0.58768 2.2111
15 11 11 0 1.174257 4.7415 1.00030 0.58767 2.2111
16 00 10 2 1.174269 4.7418 1.00032 0.58766 2.2116
17 0 2 0 2 0 1.174305 4.7428 1.00040 0.58767 2.2116
18 01 01 2 1.174308 4.7429 1.00040 0.58767 2.2115
19 10 20 1 1.174314 4.7430 1.00036 0.58762 2.2118
20 00 2 0 1 1.174316 4.7431 1.00041 0.58766 2.2114
21 11 11 2 1.174333 4.7436 1.00043 0.58766 2.2113
22 00 20 2 1.174335 4.7436 1.00043 0.58765 2.2114
23 10 0 2 1 1.174338 4.7437 1.00039 0.58762 2.2116
24 11 11 1 1.174348 4.7440 1.00038 0.58761 2.2116
25 10 10 1 1.174357 4.7442 1.00033 0.58758 2.2118
26 00 0 2 2 1.174357 4.7442 1.00033 0.58757 2.2118
27 10 20 0 1.174359 4.7443 1.00030 0.58756 2.2119
28 10 02 2 1.174360 4.7443 1.00030 0.58756 2.2119
29 1 2 30 0 1.174365 4.7444 1.00029 0.58755 2.2119
30 20 30 0 1.174375 4.7447 1.00027 0.58752 2.2121
31 10 10 2 1.174377 4,7448 1.00026 0.58751 2.2121
32 00 30 0 1.174413 4.7457 1.00016 0.58745 2.2123
33 10 1 2 0 1.174430 4.7462 1.00017 0.58739 2.2126
34 01 21 0 1.174432 4.7463 1.00018 0.58739 2.2126
35 10 30 0 1.174433 4.7463 1.00017 0.58739 2.2125
36 1 2 1 2 0 1.174433 4.7463 1.00018 0.58739 2.2126
37 11 21 0 1.174434 4.7463 1.00017 0.58739 2.2126
38 0 2 30 0 1.174440 4.7465 1.00017 0.58737 2.2127
39 30 30 0 1.174440 4.7465 1.00017 0.58737 2.2127
40 21 21 0 1.174440 4.7465 1.00017 0.58737 2.2127
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Tasre III. Energies and expectation values of #2 and 322—2 for the ground state of Ha computed with 4- to 28-term
wave functions (¢=0.95, R=1.4).

No. of
terms G m £ 1 —E(a.u.) D(ev) V/2E () (322—1%)
1 00 00 0
2 00 0 2 0
3 00 10 0
4 01 01 0 1.151645 4.1262 1.00628 2.4290 0.5148
5 00 00 1 1.171619 4.6697 1.00056 2.4609 0.4823
6 11 01 0 1.171645 4.6704 1.00106 2.4587 0.4803
7 10 0 2 0 1.171823 4.6753 0.99984 2.4653 0.4822
8 00 20 0 1.172407 4.6912 0.99612 2.5456 0.4855
9 00 00 2 1.173091 4.7098 0.99913 2.5276 0.4835
10 10 10 0 1.173943 4.7329 1.00087 2.5334 0.4860
11 0 2 0 2 0 1.173970 4.7337 1.00104 2.5327 0.4868
12 00 0 2 1 1.174191 4.7397 1.00085 2.5347 0.5227
13 00 10 1 1.174254 4.7414 1.00018 2.5382 0.5221
14 11 11 0 1.174282 4.7422 1.00021 2.5381 0.5215
15 00 10 2 1.174296 4.7426 1.00023 2.5412 0.5224
16 10 2 0 0 1.174307 4.7429 1.00014 2.5433 0.5230
17. 01 01 1 1.174313 4.743 1.00021 2.5432 0.5199
18 01 01 2 1.174314 4.743 1.00022 2.5428 0.5205
19 10 20 1 1.174314 4.7430 1.00022 2.5429 0.5202
20 00 20 1 1.174317 4.7431 1.00027 2.5408 0.5201
21 11 11 2 1.174336 4.7436 1.00034 2.5404 0.5159
22 00 20 2 1.174338 4.7437 1.00033 2.5408 0.5157
23 10 0 2 1 1.174341 4.7438 1.00032 2.5414 0.5148
24 11 11 1 1.174350 4.7440 1.00036 2.5412 0.5138
25 10 10 1 1.174358 4.7442 1.00034 2.5423 0.5135
26 00 0 2 2 1.174358 4.7442 1.00033 2.5423 0.5145
27 10 10 2 1.174359 4.7443 1.00033 2.5424 0.5145
28 10 0 2 2 1.174360 4.7443 1.00033 2.5426 0.5142
neglecting certain other smaller effects, like relativistic ~given by
corrections, coupling with nuclear moments, etc. The 2
true experimental values do contain all these effects. Q=ead(R*—3_ (3n2—n?)); (29)
A=1

As a result, even if we had obtained calculated values
for operators with an electronic-vibrational-rotational
wave function, comparison with experiment would still
leave some uncertainty as to whether a discrepancy was
due to the approximate nature of the wave function as
a solution of the actual Hamiltonian used or to the
neglect of certain small terms in the Hamiltonian.

The operators we investigated were 71571, &5, 7,2, and
3z2—r% The first two are not directly comparable to
experimental data, but give some idea about the wave
function: 7457 is the total electronic repulsion energy;
and £=(%;) is an ellipsoid with the protons as foci,
which is a measure for the size of the molecular charge
cloud. The other two operators do have a direct relation
to experiment, namely, the Larmor term in the molar
diamagnetic susceptibility is given by®-

2
xr=§Nroa* 3° (n?);
=1

(28)

N is Avogadro’s number, 7o=e?/mc? is the classical
electron radius, and ao="7#2/me? is the Bohr radius for
infinite nuclear mass. For the evaluation of (7)), lengths
are measured in Bohr radii. The operator 3z2—7;2
is related to the molecular quadrupole moment, which is

% J. H. Van Vleck, Theory of Electric and Magnetic Suscepti-
bilities (Oxford University Press, New York, 1932).

the term ea®R? represents the contribution of the
nuclei. In Egs. (28) and (29) the contributions from
the two electrons are the same. By using the most
recent values for the physical constants,”® we obtain
for the last two formulas in cgs units

xz=1.5847X10-5(r2), (30)
0=1.3449X10-28(R*— 2(3z2—r:2)).  (31)

The actual evaluation of {(r1571), (£1), (r2) and (3z,2—7r2)
in terms of primitive integrals is straightforward, and
we omit the explicit formulas.

RESULTS AND DISCUSSION

The computations were carried out on the Remington
Rand Univac Scientific 1103 and 1103A computers at
Wright-Patterson Air Force Base. The first set of com-
putations was a slight extension of the first calculations
by James and Coolidge.! The binding energy was
computed for R=1.4, which is close to the equilibrium
distance, for various values of a and expansions of up
to 15 terms. The results are shown in Table I; the
energies on a horizontal line in this table apply to a
wave function containing the terms in the second

WE. R. Cohen and J. W. DuMond, Handbuch der Physik
(Springer-Verlag, Berlin, 1957), Vol. 35, p. 82.
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column o7 and above that horizontal line. These com-
putations served as a mutual check between our results
and those of James and Coolidge,' and also to determine
the best value of a. This best value is dependent on the
expansion used but appears to converge for longer ex-
pansions (although the value of @ would be immaterial
for infinite expansion length). Curiously, for the 11-term
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expansion there are two minima in the energy at about
a=0.75 and «=0.95, the latter giving a slightly lower
energy than the former. It was just this case from which
James and Coolidge determined a=0.75; clearly a=0.95
is a better choice, since that minimum is lower and
persists for the longer expansions.

Having roughly optimized =0.95 for the equilib-

TaBLE IV. Total and potential energies (negative values) for the ground state of H, computed with 40-term wave functions.

Interpolated values

R\« 0.55 0.75 0.95 1.15 —E(u) D(ev) V/2E «
0.4 0.116159 0.070477
2.393350 2.581826
0.6 0.769577 0.767817
2.677134 2.692277
0.8 1.019976 1.020012 1.018605 1.020175 0.5490 1.306482 0.6550
2.666502 2.667387 2.668597
0.9 1.083543 1.083627 1.083239 1.083651 2.2761 1.219026 0.6856
2.623531 2.623881 2.627796
1.0 1.124410 1.124517 1.124428 1.124517 3.3881 1.143352 0.7592
2.570838 2.571394 2.572728
1.1 1.149855 1.150023 1.150021 1.150043 4.0826 1.093637 0.8477
2.513719 2.515112 2.515591
1.2 1.164576 1.164889 1.164913 1.164716 1.164930 4.4877 1.055048 0.8715
2.455134 2.458174 2.458405 2.460316
1.3 1.172286 1.172322 1.172250 1.172323 4.6889 1.024703 0.9170
2.402416 2.402648 2.403511
1.35 1.173891 1.173934 1.173894 1.173934 4.7327 1.011824 0.9538
2.375324 2.375621 2.376217
1.39 1.174369 1.174419 1.174396 1.174420 4.7459 1.002439 0.9871
2.354108 2.354489 2.354942
1.40 1.174388 1.174440 1.174421 1.174442 47465 1.000209 0.9958
2.348867 2.349278 2.349703
1.41 1.174370 1.174425 1.174409 1.174428 4.7461 1.998022 1.0040
: 2.343657 2.344097 2.344497
1.45 1.173950 1.174015 1.174010 1.174022 4.7351 0.989695 1.0340
2.323101 2.323677 2.323997
R\« 0.95 1.15 1.35 1.55 1.75
1.5 1.172806 1.172810 1.172650 1.172828 4.7026 0.979056 1.0549
2.298863 2.299122 2.300458
1.6 1.168515 1.168533 1.168454 1.168003 1.168538 4.5859 0.963510 1.0863
2.251699 2.251923 2.252680 2.255676
1.8 1.154937 1.154982 1.154972 1.154814 1.154985 4.2171 0.938545 1.2138
2.167467 2.167888 2.168247 2.169401
2.0 1.137869 1.137973 1.137997 1.137946 1.137999 3.7549 0.921651 1.3140
2.096283 2.097403 2.097758 2.098364
2.2 1.119844 1.119903 1.119909 1.119800 1.119920 3.2630 0.910970 1.4589
2.039589 2.040184 2.040715 2.041631
2.4 1.101912 1.102032 1.102083 1.102058 1.102084 2.7777 0.905188 1.5838
1.993156 1.994388 1.995065 1.995865
R\« 1.55 1.75 1.95 2.15 2.55
2.6 1.085245 1.085288 1.085218 1.085288 2.3207 0.903420 1.7257
1.960110 1.961067 1.962183
2.8 1.069925 1.069947 1.069822 1.069956 1.9035 0.904991 1.8798
1.935775 1.937076 1.938538
3.0 1.056171 1.056286 1.056276 1.056297 1.5318 0.909253 2.0338
1.918440 - 1.920176 1.921833
3.2 1.044065 § 1.044291 1.044395 1.044076 1.044395 1.2080 0.915342 2.1535
1.907392 1.909784 1.911918 1.916549
R\« 1.95 2.15 2.55 2.95
3.6 1.024975 1.025365 1.025649 1.025047 1.025663 0.6983 0.931231 2.4781
1.901333 1.905194 1.911327 1.916993
3.8 1.017316 1.017895 1.018482 1.018281 1.018506 0.5035 0.939760 2.6481
1.899753 1.904895 1.912639 1.918837
4.0 1.011510 1.012471 1.012606 1.012653 0.3443 0.947843 2.8154
1. 91462 1.921749
4.2 1.38?8511 %.80";28; 1.007867 1.007867 0.2141 0.954844 2.9566
1.903245 1.924605

1.915874
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TaBLE V. Variation of R close to R, for the ground state of
H, with 40- and 50-term functions, «=0.995.

No. of
terms R(a.uw.) —E(au.) D(ev) -V V/2E
40 1.3809  1.174369  4.7445  2.359300  1.004497
1.3909  1.174426  4.7461  2.354061 1.002218
1.3959  1.174440 4.7465  2.351452  1.001095
1.3999  1.174444  4.7466  2.349371  1.000206
14009  1.174444  4.7466  2.348852  0.999984
14019  1.174444 4.7466  2.348332  0.999763
14059  1.174440  4.7465  2.346258  0.998884
14109  1.174426  4.7461  2.343672  0.997795
14209 1.174371  4.7446  2.338523  0.995649
50 13999  1.174448  4.7467  2.349370  1.000202
14009  1.174448  4.7467  2.348851  0.999981
1.4019  1.174448  4.7467  2.348331  0.999760

rium distance, we now kept « fixed at this value and
gradually increased the expansion length to 40 terms.
The order in which new terms are added to the wave
function permits a very large number of paths along
which the same 40-term wave function can be reached.
Our path is therefore somewhat arbitrary ; we exercised
some judgment, however, by rejecting terms which
did not improve the total energy in the eighth figure.
The results are shown in Table II, in which we listed,
in addition to the total energy E and the binding energy
D, the expectation values {r15™') and (£;), and also the
ratio V/2E, where V is the potential energy (E and V
both contain the nuclear repulsion). For any value of
R this ratio satisfies

V/2E=1+43(R/E)(dE/dR), (32)

which is a consequence of the virial theorem.! Inci-
dentally, Eq. (32) also holds if V and E are taken as
electronic energies only, omitting the nuclear repulsion
from both. From Eq. (32) we see that V/2E should
become unity if R is the equilibrium distance; this is
true for the exact electronic wave function. The limiting
value 1.00017 for this rate at R=1.4 indicates that the
equilibrium distance is slightly larger than 1.4. Table IT
shows that (r157%) and (1) have converged to 4-5 sig-
nificant figures for the 40-term wave function, while the
total energy has converged to 6-7 figures and the bind-
ing energy to 4-5.

More important than (r;5) and (¢;) are the expec-
tation values (#,2) and (32,2—7%). The latter, however,
could not be computed for the 40-term function without
first computing more primitive integrals. We did the
best we could with the available integrals; this neces-
sitated eliminating 12 terms from the 40-term set,
which, however, raised the energy only by 0.002 ev.
Table III shows that for the 28-term function (r,2) and
(32:2—71%) have converged to 3-4 and 2-3 significant
figures, respectively.

The next computation was aimed at obtaining an

1 J. C. Slater, J. Chem. Phys. 1, 687 (1933).
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F16. 1. The optimum exponent « as a function of R for the 1Z,+
ground state and the 32,* and 1=, excited states of Ha.

accurate potential energy curve for the ground state.
For each of 27 values of R in the range 0.4-4.2 a cal-
culation was carried out with the same 40 terms as in
the previous calculation but reopening the variation of

‘a. The computed values of E and V are contained in

the second through the sixth columns of Table IV. For
each value of R the best « was then determined by inter-
polation, minimizing E under the assumption that E
versus a is a parabola. This assumption is not quite
correct ; namely, in those cases where we had four points
for a given R, the best « turns out differently depending
on which three points are used for the interpolation.
This ambiguity, however, hardly affects the minimum
value of E, since E versus « is very shallow near that
minimum. The interpolated values for E, D, V/2E, and
« are listed in the seventh through the tenth columns.
The validity of the interpolation procedure is further
confirmed by Fig. 1, where we plotted the interpolated
optimum values of « against R; evidently they lie on
a smooth curve.

In order to obtain accurate theoretical values for the
binding energy D, and the equilibrium internuclear
distance R,, we computed more points of the potential
energy curve densely spaced around R=1.4, with the
40-term function and «=0.995, the best value at that
distance; this was then repeated for just 3 points with
a 50-term function. The resulting values of E, D, V, and
V/2E are tabulated in Table V. The computed values
of D,, 4.7466 and 4.7467 ev for the 40- and 50-term
functions, respectively, are in excellent agreement with
the experimental value'? 4.746640.0007 ev. The most
accurate determination of R, is obtained by invoking
the condition V/2E=1; we find by this criterion

R.=1.40083 a.u.=0.74128 A
and
R,=1.40081 a.u.=0.74127 A

for the 40- and 50-term functions, respectively. The

12 G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1950).
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TasLE VI. Normalized wave functions for the ground state of Ho.

No. of terms 5 12 24 40 50
Total energy (a.u.) —1.171619 —1.174191 —1.174329 —1.174444 —1.174448
Binding energy (ev) 4.6697 4.7397 4.7435 4.7466 4.7467
R(a.u.) 14 14 1.4 1.4009 1.4009
a 0.95 0.95 0.95 0.995 0.995
Em &g 12 Coefficients

00 00O 0 2.144423 2.192089 2.016368 2.077318 2.065908
00 0 2 0 1.683396 1.098975 1.010767 1.141281 1.282036
00 10 0 —0.064683 —0.139338 0.042082 0.137330 0.144619
01 01 0 —0.513879 —0.377500 —0.301973 —0.422304 —0.430253
00 00 1 0.815868 0.859247 0.987970 0.835795 0.787198
11 01 0 —0.058316 —0.360711 —0.246455 —0.235454
10 0 2 0 0.078257 0.154088 0.205304 0.148273
00 20 0 0.150633 0.108738 0.105701 0.109859
00 00 2 —0.052156 —0.217363 —0.212159
10 10 0 —0.126629 —0.084347 —0.086291 —0.081387
02 0 2 0 0.132561 0.275836 0.196963 0.182892
00 0 2 1 0.248411 0.224562 0.203037 0.198555
00 10 1 —0.249321 0.259626 0.324658
11 11 0 0.024821 —0.041260 —0.010794
00 10 2 —0.079797 0.077830
10 2 0 0 —0.036452 —0.049768 —0.055114
01 01 1 0.237109 0.173868 0.130714
01 01 2 —0.056570 —0.050854
10 20 1 —0.005136 0.008895 0.014963
00 20 1 —0.019956 —0.103278 —0.132980
11 11 2 —0.001197 0.000362
00 20 2 0.002553 0.006992
10 0 2 1 —0.026238 —0.072222 —0.050940
11 11 1 —0.004118 0.027074 0.018027
10 10 1 0.082550 0.023814 0.017554
00 0 2 2 0.057081 —0.014601
10 10 2 —0.011466 —0.015172
10 0 2 2 0.005322 0.012656
1 2 30 0 —0.000293 —0.000202
20 30 0 —0.001157 —0.000856
00 12 0 0.091499 0.095599 —0.009469
00 30 0 0.026725 0.035829 0.036963
10 1 2 0 —0.033981 —0.020202 —0.022325
01 21 0 0.047649 0.053233
10 30 0 0.005164 0.004690
12 1 2 0 0.001963 0.004707
11 2 1 0 —0.008791 —0.017531
0 2 30 0 0.004723 0.011140 0.017270
3 0 30 0 0.000103 0.000082
21 2 1 0 —0.000908 0.000031
00 1 2 1 0.094436
00 30 1 0.001789
00 30 2 —0.000394
00 1 2 2 —0.004475
20 30 1 —0.000121
10 1 2 1 —0.014893
2 0 30 2 0.000011
10 1 2 2 0.001016
02 30 1 —0.003443
02 30 2 0.000225

most recent experimental value®® of 0.74116 A appears
to be in disagreement with the computed result. How-
ever, this experimental value was obtained from a
spectroscopic analysis plus theoretically computed cor-
rections; we expect that a more careful calculation of
these corrections would improve the agreement.

Our computer program yielded, besides energies, also
the coefficients of the normalized wave functions. To
present all the wave functions we obtained is obviously
impractical; a selected set, including our best 40- and
50-term functions, is given in Table VI.

13 G, Herzberg and L. L. Howe, Can. J. Phys. 37, 636 (1959).

For the three excited states mentioned previously,
5z, 12,4, and Z,%, we carried out calculations with
34, 34, and 40 terms, respectively, for different R values,
varying again « for each R value. The results are given
in Tables VII-IX; the interpolated « values for the
83,1+ and 12, states are also plotted in Fig. 1. For the
excited =, state we computed only for two « values
so that quadratic interpolation was not possible; time
did not permit us to complete the necessary compu-
tations for this case. The equilibrium distances and
energies for the two attractive excited states 'Z,* and
13+, as obtained by interpolation from Tables VIII and
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TaBLE VII. Total and potential energies (negative values) for the lowest 3Z,* state of Hs
computed with 34-term wave functions.

Interpolated values

R\a 0.75 0.95 1.15 —E(au) 14+E(ev) V/2E

1.1 0.663466
1.952795

1.3 0.751875
1.951418

14 0.783024 0.778108 0.766040 0783150 59004 1249340  0.7125

: 1.961382 1.998449 2.057146

15 0.808950 0.806599 0.799400 0.808950 51984 1221238  0.7530
1.975638 1.999232 2.043679

1.7 0.850323 0.850091 0.847984 0850456  4.0693  1.180484  0.8253
2.006261 2.014488 2.035155

1.8684 0.877538 0.877884 0.877338 0.877889  3.2226  1.156410  0.9276
2.025708 2.031174 2.039893

21 0.906515 0.907519 0.907619 0907687 25118 1129022  1.0722
2.037345 2.046870 2.050112

R\a 0.75 1.15 1.55

23 0.925075 0.927381 0.926943 0927540 19716 1109912  1.2862
2.032877 2.054490 2.063516

2.4429 0.935167 0.938718 0.938729 0938979  1.6604  1.094240  1.3521
2.021892 2.053826 2.050461

2.7 0.947455 0.954390 0954880 0954880  1.2277  1.074142  1.5492
1.987367 2.0453540 2.051367

R\a 1.55 1.95

2.9 0.964039 0.964019
2.043047 2.047858

31 0.970907 0.971168
2.032939 2.037439

33 0.975924 0.976457
2.021357 2.027329

35 0.980302

2017141

and IX, as well as those obtained for the ground state,
are compared with experimental data in Table X. The
agreement for the two excited states is notably poorer
than for the ground state. To a certain extent this was
to be expected. In molecular orbital approximation the
82,7 and 12, states are represented by lo,10,, and the
13t state by le,20, with some admixture of the 1o,2
For such states a wave function with two different o’s
should do much better than with one «; or in other
words, for a single a the expansion lengths we used were
probably inadequate. The potential energy curves for
these three excited states and the ground state are
plotted in Fig. 2.

One point which needs further clarification is the
astonishingly good agreement between the calculated
and observed dissociation energy for the ground state;
such good agreement should occur after having made the
appropriate corrections for finite nuclear masses. The
agreement obtained indicates that this correction is
virtually the same for R, as for infinite separation,
where it is known to be 0.0148 ev. Van Vleck™ calcu-
lated this correction for R, with an approximate wave
function and obtained 0.0141 ev. Our good agreement
therefore should be considered somewhat fortuitous

14 J. H. Van Vleck, J. Chem. Phys. 4, 327 (1936).

until this correction has been computed accurately for
R.; this, however, necessitates constructing accurate
electronic-vibrational wave functions, which is outside
of the scope of this research.

We also computed the potential energy curve for the

Etew
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Fi1c. 2. Computed potential energy curves for Ha.
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TasLE VIII. Total and potential energies (negative values) for the lowest 1=, state of Hz
computed with 34-term wave functions.

Interpolated values

R\« 0.55 0.75 0.95 1.15 —E(u) 14E(v) V/2E e
1.2 0.656343
1.698902
14 0.703667 0.694912 0.671639 0.634393 0703744 80611  1.163201  0.5294
1.641736 1.690720 1.748480 1.812535
1.6 0.727917 0.726536 0.714628 0.692856 0.728632  7.3839  1.01330 . 0.6238
1.589305 1.632007 1.675787 1.727470
1.8 0.739680 0.742694 0.737242 0.724871 0.742783  6.9988  1.063596  0.7212
1.551975 1.584736 1.617100 1.657888
2.0 0.750218 0.748460 0.741828 0.750265  6.7952  1.032531  0.7778
1.546346 1.570701 1.601620
2.2 0.752737 0.753182 0.750003 0.753440  6.7088  1.012709  0.8746
1.513820 1.533895 1.556465
2.3 0.752769 0.754010 0.751986 0754033  6.6927  1.005124  0.9260
1.498859 1.518096 1.537289 _
24 0.752198 0.754117 0.752984 0.754143  6.6897  0.998332  0.9757
1.484350 1.503501 1.519947
2.4429 0.751796 0.753982 0.753166 0.754060  6.6920  0.995534  0.9957
1.478216 1.497518 1.512985
2.5 0.751130 0.753658 0.753215 0.753841  6.6979  0.991850  1.0202
1.470085 1.489753 1.504100
R\a 0.95 1.15 1.35 1.55
2.6 0.7527437 0.7528455 0.7509885 0753042  6.7197 0984883  1.0604
1.476540 1.480435 1.505081
2.7 0.7514548 0.7520005 0.7508047 0752031  6.7472 0979552  1.1127
1.463619 1.475656 1.489064 ‘
2.8 0.7498499 0.7507724 0.7500981 0.7478728 0.750777  6.7813 0974593  1.1656
1.450795 1.462497 1.474115 1.488773
3.0 0.7474280 0.7475050 0.7463859 0747619  6.8672 0904114  1.2629
1.437234 1.446544 1.457573
32 0.7433835
1.429515
34 0.7393575
1.403486
3.6 0.7346130
1.378685
38 0.7293479
1.354631

He,H molecular ion; the results are given in Table XT.
The behavior of a a a function of R became somewhat
erratic in this case for R>1.34; this may be due to the
fact that the optimized o for these R values is the result
of an extrapolation rather than an interpolation, and
calculations for larger values of « seem indicated. Again,
time prevented us from investigating this point further.

Tasre IX. Total and potential energies for the first 1Z,* excited
state of H,, computed with 40-term wave functions.

. a=0.75 a=0.95
R(a.u.) —E(au) —V(au) —E(au) —V(u)
14 0.681254 1.607352 0.652368 1.667010
1.6 0.705487  1.534631 0.689181 - 1.576106
1.8 0.714997 1.471155 0.705853 1.502236
1.9 0.716350 1.442075 0.709654 1.470291
2.0 0.716122 1.414470 0.711410 1.441123
21 0.714678 1.388229 0.711626 1.414470
2.2 0.712287 1.363310 0.710680 1.390091
24 0.705508 1.317670 0.706406 1.347588
2.6 0.697101 1.278861 0.700251 1.313434

The SCF calculations followed very much the same
patterns as the calculations with the accurate wave
functions just described. Starting with a 5-term SCF
function for H, for R=1.4 obtained previously,® we
gradually increased this to 9 terms; see Table XII.
Note that the cusp value deviates only in the fourth
decimal place from its correct value, —1, for the 9-term
function. This probably means that our 9-term SCF
function, obtained by the expansion method, is equiv-
alent to a solution of the Hartree-Fock integro-dif-

TaBLE X. Comparison of calculated and observed equilibrium
fiistar)lces (in A) and energies (relative to two normal H atoms,
in ev).

State 13,7+ 13,+ 13+
Ecale —4.7467 6.6892 7.7153
Eobs —4.7466 6.6220 7.6586
Reaic 0.74127 1.258 1.095
Robs 0.74116 1.2926 1.012
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TasrE XI. Total and potential energies (negative values) for the ground state of Heyt+
computed with 40-term wave functions.
Interpolated values
R\« 1.55 1.75 1.95 —E(.u.) —D(ev) V/2E a
0.8 3.356146
8.291381

1.0 3.599289 3.599041 3.598095 3.599296 10.903 1.091658 1.5789
7.858302 7.860355 . 7.865674

11 3.648290 3.648233 3.647790 3.648314 9.569 1.051899 1.6205
7.674957 7.676450 7.679420

1.2 3.671895 3.671960 3.671791 3.671966 8.926 1.023542 1.7056
7.515822 7.517208 7.519510

1.3 3.679443 3.679606 3.679628 3.679636 8.717 1.003469 1.8814
7.381839 7.383399 7.385652

1.32 3.679608 3.679790 3.679845 3.679845 8.711 1.000285 1.9368
7.358028 7.359673 7.361957

1.34 3.679419 3.679621 3.679709 3.679713 8.715 0.997361 2.0044
7.335192 7.336944 7.339272

14 3.677072 3.677339 3.677521 3.677636 8771  0.990036  2.2785
7.272398 7.274646 7.277184

1.6 3.657536 3.658237 3.658773 3.659397 9.268 0.974326 2.4998
7.119275 7.126460 7.131117

1.8 3.631857 3.633829 3.635045 3.6355 992  0.9717 2.1717
7.031137 7.052783 7.064212

ferential equation to an accuracy of four decimal places
or better.

Next we computed the SCF function and energy as
a function of R, varying and optimizing « for each R;
see Table XIII. The a versus R curve for this case
practically coincides with the corresponding curve for
the accurate ground state function within the limits of
accuracy of the optimization of . The same calculation
was carried out for He,t+; the results are collected in
Table XIV.

The total electronic energy curves for the ground state
of H,, computed with the SCF function and the 40-term
expansion, are plotted in Fig. 3; the values at R=0

TasLE XII. Convergence of the SCF energy and orbital cusp

for Hy (¢=0.95, R=1.4).

No. of

terms £ 9 —E(a.u.) D(ev) Orbital cusp
1 00
2 10
3 20
4 0 2
5 1 2 1.133571 3.6344 —0.96067
6 30 1.133573 3.6345 —0.96192
7 4 0 1.133576 3.6346 —0.96380
8 2 2 1.133604 3.6353 —0.97725
9 0 4 1.133629 3.6360 —0.99989

TasLE XIII. SCF energies (negative values) for the ground state of Hz computed with 9-term orbitals.

Interpolated values

R\« 0.55 0.75 0.95 1.15 1.55 1.95 —E(a.u.) D(ev) a
0.4 0.078693 0.061186

0.6 0.729990 0.729544

0.8 0.980742 0.980734

1.0 1.085110 1.085138 1.085117 1.085138 23166  0.7656
1.2 ‘ 1.125022 1.125025 1.124987 1.125029 3.4020 0.8629
13 1.132015 1.132024 1.132011 1.132024 3.5923 0.9319
1.375 1.133625 1.133641 1.133635 1.133642 3.6364  0.9989
1.400 1.133610 1.133629 1.133625 1.133630 3.6360 1.0162
1.425 1.133355 1.133377 1.133375 1.133379 3.6292 1.0300
1.45 1.132880 1.132906 1.132904 1.132908 3.6164 1.0412
1.5 1.131336 1.131370 1.131371 1.131375 3.5747 1.0560
1.6 1.126285 1.126342 1.126348 1.126239 1.126352 3.4380 1.0701
1.8 1.110810 1.110939 1.110957 1.110927 1.110967 3.0194 1.2826
2.0 1.091319 1.091572 1.091612 1.091611 1.091648 2.4937 1.3476
2.4 1.049143 1.049286 1.049331 1.049282 1.049331 1.3423 1.5432
2.8 1.008214 1.008357 1.008361 1.008376 0.2279 1.7597
3.2 0.971095 0.971443 0.971443 0.971512 —0.7751 1.8265
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of Hey** computed with 9-term orbitals.

Interpolated values

W. KOLOS AND C. C. ]J.

1.75

1.95

R\a 155 —E(a.u.) —D(ev) «
0.8 3.309953 3.309683

1.0 3.545087 3.545052 3.544913 3.545088 12.378 1.583
1.2 3.609087 3.609083 3.609047 3.609089 10.637 1.628
1.3 3.611170 3.611179 3.611160 3.611180 10.580 1.725
1.332  3.609330 3.609344 3.609330 3.609344 10.630 1.750
1.364 3.606548 3.606569 3.606558 3.606569 10.705 1.788
1.6 3.567517 3.567627 3.567665 3.567665 11.764 1.955
1.8 3.523379 3.523675 3.523811 3.523821 12.957 2.020
2.0 3.479477 3.479812

are known from calculations on He.!® The ground state
binding energies for Hy and He,™, computed with the
SCF function, the 40-term expansion, and the con-
figuration-interaction function determined by McLean
et al.,1% are plotted in Figs. 4 and 5, respectively. For Hy
above R=4.0, our 40-term function becomes inferior to
the configuration-interaction function. This is because
our wave function is a polynomial in ¢ and n which
requires more and more terms for increasing R in order
to approach the correct asymptotic form

exp[ — 3R (¢1+£) ] cosh[3R (n1—n2) J.

There are two important reasons for obtaining the
SCF results. Firstly, the correlation energy, that is, the
difference between the SCF energy and the exact
energy, is expected to vary smoothly (and often little)

Ecaw
-2

-4

-6l 40terms

-30 1 1 1 1 el I L L
Raw

Fic. 3. The electronic energy for the ground state of Hs, computed
with the SCF function and the 40-term expansion.

16 See C. C. J. Roothaan and A. W. Weiss, Revs. Modern Phys.
32, 194 (1960), this issue; and further footnotes given in that paper.
(a) A. D. McLean, A. W. Weiss and M. Yoshimine, Revs. Modern
Phys. 32, 211 (1960), this issue.
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Fic. 4. Potential energy curves for the ground state of H,
computed with the SCF function, configuration interaction, and
the 40-term expansion.

when a system undergoes a continuous or small finite
physical change. A careful study of the correlation
energy in a number of representative cases may open
up the possibility of making energy predictions from
SCF computations exceeding by far the accuracy of the
SCF energies. Secondly, the expectation values of

Efev)
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40 terms CI
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.
8 1 1 1 1 1 1 J
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F16. 5. Potential energy curves for the ground state of He,*+
computed with the SCF function, configuration interaction, and
the 40-term expansion,
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F16. 6. Correlation energy curves for Hy and He,*+,

operators which do not explicitly involve the inter-
electronic distances, in particular, charge distributions
and electric moments, may perhaps be rather reliably

TaBLE XV. Correlation energies for Hy and Hey™ from 40-term
functions and 9-term SCF functions; comparison of {#?) and
(322—72) for H,, computed with 28-term functions and 9-term

FUNCTIONS FOR H.

SCF functions.

Correlarion energy (r% for Hp (3z2—72) for Hs
~ 9-term 9-term

ZR H. He,#* 28 terms SCF 28 terms SCF
0.00 0.04204 0.04426
0.60 0.0396
0.80 0.0393
1.00 0.03938 2.0488 0.2285
1.10 2.1710 0.2921
1.20 0.03990 2.2941 2.3120 0.3629 0.3456
1.30 24180 2.4412 0.4370 0.4127
1.35 2.4802 0.4754
1.40 0.04081 2.5430 2.5736 0.5157 0.4867
1.45 2.6067 0.5587
1.50 2.6713  2.7095 0.6050 0.5691
1.60 0.04219 0.0465 2.8031 2.8484 0.7081 0.6598
1.70 2.9380 0.8256
1.80 0.04401 3.0756 0.9577
2.00 0.04635 0.05388
2.40 0.05275 0.06288
2.60 0.06867
2.80 0.06175
3.20 0.07331  0.09173
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F16. 7. Expectation values of (322—#%) computed with the SCF
function, a S-term expansion by James and Coolidge, and our
28-term expansion.

predicted from the SCF function. In the present case
the molecular quadrupole moment and the Larmor
terms in the diamagnetic susceptibility are the quan-
tities of interest. In the second and third column of
Table XV and in Fig. 6, the correlation energies of H,
and He,™ are compared. Since the SCF wave function
cannot dissociate properly, it becomes a poor wave
function for large R, and the correlation energy in-
creases considerably. The correlation energy curves for
H, and He,™ are very similar only if we plot them
against ZR rather than R. In the remaining four columns
of Table XV we compare the expectation values (r2)
and (332—?) for H, as' computed with our best 28-term
function and the 9-term SCF function. Our results for
(322—72), together with a curve computed by James and
Coolidge® with a 5-term wave function, are plotted in

TaBLE XVI. Energies and some expectation values for the ground state of Ha, R=‘1.4, computed with various wave functions.

No. of Types of terms
terms evenn oddn cos(pr—es2) 712 7122 D(ev) (r%) (322—72) (r1271) 712 £

21 x 3.8981 2.6160 0.6368 2.0709 2.2338

27 x x 4.3789 2.5723 0.6077 2.1337 2.2197

40 x x x 4.6924
5 % x x 4.6697 2.4609 0.4823 0.5938 2.1917

15 x x x 4.7371 0.5876 2.1694 2.2114

24 x x x 47435 0.5873 2.1703 2.2128

12 x x x x 4.7397 2.5347 0.5227

20 x x x  x 4.7431 2.5408 0.5201

28 x x x x 4.7443 2.5430 0.5157

40 x x x x 4.7465 0.5074 2.2127
5-term SCF 3.6344 0.6586 2.0394 2.2222
9-term SCF 3.6360 2.5736 0.4867
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Fig. 7; the horizontal line indicates the classical vibra-
tional “sweep” of the zero-point vibration.

We also explored to some extent the possibilities of
superposition of configurations using wave functions
defined by Egs. (1)-(3) with u=0 and also introduced
mymy’ and mr, terms as discussed previously. Virtually
the same calculation was carried out by Hagstrom!;
his results are in excellent agreement with ours. In
Table XVI we compare some of the more important
results of these computations with those obtained with

16 S, Hagstrom (unpublished).
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the SCF function and with the wave functions which
contain 7y, explicitly.
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Self-Consistent Field Atomic and Molecular Orbitals
and Their Approximations as Linear Com-
binations of Slater-Type Orbitals®

R. S. MULLIKEN

Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago 37, Illinois

GLOSSARY OF GENERAL TERMS AND SYMBOLS!

Orbital: An adjective used as a noun and introduced
as a brief term meaning “one-electron orbital wave
function,” that is, either an eigenfunction of a one-
electron Schrodinger equation or an approximation
thereto.? It is the nearest quantum mechanical coun-
terpart to the electron orbit of Bohr theory. The
practice of referring to ‘“‘one-electron orbitals,” in
other words, “one-electron one-electron orbital wave
functions” should be discouraged. Could one have a
two-electron one-electron orbital wave function?

Spinorbital: This was introduced as a brief term? mean-
ing “one-electron wave function including spin.”
The frequent practice of referring to it as two words
“spin orbital” is confusing, suggesting different
meanings from that intended. To better indicate the
pronunciation, the spelling could perhaps be changed
to “spinnorbital.”

AO: Central field atomic orbital [cf. Eq. (1)] or, in
molecular contexts, sometimes a linear combination
(hybrid) of these.

MO: Molecular orbital.

SCF: Self-consistent field.

SCF AO or MO: Cf. Egs. (1) and (2).

CI: Configuration interaction.

STO: Slater-type orbital [cf. Eq. (3)].

* This work was assisted by a grant from the National Science
Foundation.

1 Tables I and II contain a proposed classification and termi-
nology for various specific types of LC-STO approximations to
SCF AQ’s and MO’s.

2 R. S. Mulliken, J. Chem. Phys. 23, 2005 (1955), Sec. IL.3(b).

¢{=orbital exponent: The variable parameter in any
STO [cf. Eq. (3)].

LC-STO MO: Linear combination of STO’s (not neces-
sarily all alike in / but all alike in 7 or\) to approxi-
mate an MO.

Free-atom MO, free-atom {: Terms used in describing
LCAO-MO’s to indicate that the AO’s or the AO ¢
values used are the AO’s or the {’s which are suitable
(Slater ¢’s and AQ’s) or optimal (best simple AQ’s)
in describing the AO’s of free atoms.

LCAO-MOQ’s: MO’s approximated by linear combina-
tions of free-atom or of modified AO’s; since the latter
in turn are approximated by LC-STO forms, LCAO
MO’s in general are most conveniently considered
as LC-STO forms.

INTRODUCTION: USES AND LIMITATIONS OF SELF-
CONSISTENT FIELD WAVE FUNCTIONS

VERY exact atomic or molecular wave function

must conform to one of the group-theoretical
species (taking into account both spin and orbital char-
acteristics) of the appropriate symmetry group. For
light atoms and molecules it is sufficient for many pur-
poses to use wave functions in which spin-orbit inter-
action is neglected, so that each wave function has a
definite spin quantum number and a definite orbital
species (L, S coupling case for atoms, and the analo-
gous case for molecules).

An exact wave function even of the L, .S or L,S-like
type does not correspond to a single-electron configura-
tion, and exact wave functions are perhaps most
convergently represented by linear combinations of



