
REVIEWS OF MODERN PH YSICS VOLUME 32, NUMBER 2 AP R IL, 1960

Accurate .& . .ectronic Wave .&unctions )':or t.xe
::—::.:V.:o.iecu. .e

W. KQLos't AND C. C. J. RQQTHAAN

Laboratory of Motecllar Strlctlre and Spectra, Department of Physics, University of Chicago,
Chicago 37, I/linois

INTRODUCTION form'
C=P ce,,

~ 'HE pioneering work of James and Coolidge' on the
ground state of the hydrogen molecule estab-

lished beyond a doubt the usefulness of including the
interelectronic distance explicitly in the wave function.
Subsequent applications of the method to a number of
excited states by these authors and Present' ' were
about equally successful. Wherever experimental energies
were known, the agreement between computed and
observed values was within 0.02—0.08 ev, the lower
figure applying to the ground state.

We considered it important to extend these calcu-
lations in accuracy and scope. The ideal goal is to
obtain accurate wave functions which correctly describe
the electronic, vibrational, and rotational motion of
the molecule. The present paper deals with electronic
wave functions only. We set ourselves the following
tasks: (1) to increase the accuracy of the energy cal-
culations by several significant figures; (2) to perform
calculations for many values of the internuclear distance
so that accurate potential energy curves could be
obtained; (3) to carry out more elaborate calculations
of the expectation values of various operators other than
the energy; (4) to compare the accurate wave functions
obtained with other more approximate wave functions,
one of which is the SCF (self-consistent field) function.

This comparison with more approximate wave
functions is of particular interest as a basis for under-
standing the validity and limitations of such functions
for more than two-electron systems, where we cannot
hope to construct wave functions of the same accuracy
as the best H2 functions. The present calculations should
stimulate further work, for instance, on the coupling of
the electronic wave function with nuclear moments.

where
C i +PiQPP&i+'+"PiPisiuiy

~,„,„=e '1'+1' $tr rtt'$s "rts'rts"

(2)

(3)

Obviously 4; is symmetrical in the indices 1 and 2, so
that it represents a singlet. If qi+s; is even C, is sym-
metrical with respect to inversion at the center of the
molecule; since there is no azimuthal dependence, this
means that 4; belongs to the species 'Z,+. The expansion
coefFicients c; satisfy

Z(H,; ES,;)c,=—0,

where

a,,=&c"
I xlc;), s;;=&4"lc ), (5)

and X is the electronic Hamiltonian. The energy 8 is
the lowest root of

Det(H —ZS) =0.

The electronic Hamiltonian is given by

+1++2+ +12)
where

Kg ———-', t4 —[(r.g)
—'+ (rw, )

—'], )i=1, 2, (8)

8('rs = (rts) '

For the evaluation of the matrix elements it is useful
to define the unsymmetrical Hamiltonian

X 2Kt+ Xts j

namely, since the C s are symmetrical in 1, 2 we find,
using Eqs. (2), (3), (5),

ACCURATE WAVE FUNCTION FOR THE GROUND
STATE; EVALUATION OF THE

ULATIVE ELEMENTS a;,=(c;I xlc;)=(c, l
x'lc, )

= (piqsrisilii I
X

I prqir~ s~ li~)'''
For a given internuclear distance E, the accurate

wave function for the ground state is expanded in the
+(r'e'p'q*t I

3('-'I p q»'t )
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expression for the overlap matrix elements S,; can be
'A. S. Coolidge, H. M. James, and R. D. Present, J. Chem. obtained from (10) by replacing K' by the identity
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(pqr» I
p'q'r's'Ii') in terms of the primitive integrals obvious; so is (pqr»I p'q'r's'p'& T. he complete results

are

dV dV ($
a

rl a)—is—2a(n+fm)

X (pili'$2"g2'r»". (11)

First we transform the contribution from the kinetic
energy. We write

(Pqr—»I ~iI P'q'"~'I '&

dV, q„,(2)q„, (2)

X dV, LV, p„,(1)r»"7 I V, q„,, (1).»"7, (12)

(Pqr» I
&'I P q'r"'I'&

(ci (Kn+2 err" Ksirr")
2ciI P(Ks+i pr Kr7 i sr —)+2K@+i ari~7

+D'(p+ 1) pp'—7 (K,;„p —K-;—,,;;p)
Lq(q+1) qq'7(Knar8" Kn, a 2,rr")—

+2PK; i,qra" -2qKy—,; 2,r.")--
i,qriir+K~a, yri Kg, y+i, ra"

(Pq-. I
P'q"""&=K;+„;; K-. ;-+-,.;;——,

with

(15)

where

p„,(x) =e-.&i(,~g,~. (13)

The integral over electron 1 in Eq. (12) is transformed
as follows:

p=p+p, ', )i=p+p', p=(y'p+Iip')/p, (16)

and q„r, 8, q, r, s defined analogous to p and p. The
evaluation of the primitive integrals E„,„,I" in terms of
standard functions was given in a preceding paper' for
—1&&@&~4, which is necessary and sufIicient for wave
functions which contain terms with r~2 and. r~2'.

ACCURATE WAVE FUNCTIONS FOR
EXCITED STATES

+v„,(1)v... (1)I ~,r»~7 P7,r»"7

+L~na(1) ~i~a 9 (1)7 Lr»"~ir»"7

+I:vv'(1)~i~.a(1)7 Lr»"~ir»"'7)

The lower electronic excited states can be treated in
the same fashion as the ground state. The states we
treated were:

(1) The repulsive 'Z„+ state, which dissociates into
normal atoms. The wave function is in this case repre-
sented by

C'~ =+yiQir;s;p, ,—0'r, siyigipi)

+» ~.~(1)q"(1)r»"+" '

+(u+u') '6 ~-(1)~ivv'(1)

+p,'v, ., (1)V,q„,(1)7 P,r»+'7)

=) dVi(»'v. a(1) v'a (1)r»"+"' '

(~+I') 'C q—..(1)~ivy a (1)

+~'v, ' (1)~ v-(1)7 '+"' (14)

where we used Green's theorem. This expression is still
valid if either @=0 or p =0; it holds, in addition, for
p, =p'= 0 if we interpret in this case

~/(~+~') =~'/4+~') =
2

The desired expression for the kinetic energy contri-
bution in terms of the primitive integrals (11) is now

easily obtained by substituting (14) into Eq. (12),
using the well-known expression for A~ in elliptic coor-
dinates, and carrying out the diGerentiation. The other
contributions to (pqr»I X'I p'q'r's'p'& are simple and

where q,+s, is odd, and %„,„,„is given by Eq. (3). The
expression for the matrix elements (C, I KIC;& and

(C;IC;& is a rather obvious modi6cation of Eq. (10).
Since this state is the lowest of its species, the energy
is again the lowest root of the appropriate secular
equation.

(2) The attractive 'Z„+ state, which dissociates into
ls and (2s, 2po) atoms. For the wave function C; Eq.
(2) holds, but now q,+s, is odd. Again, the energy is

the lowest root of the secular equation.

(3) The first excited (attractive) 'Z, + state, which
dissociates into a proton and the ground state of H .
The wave function is of the same form as for the ground
state, but the energy is the next to the lowest root of
the secular equation. When carrying out the calculation
there is no need to keep the wave function orthogonal
to the ground state function; it is sufFicient to always
pick the next lowest root in the secular equation at
every stage of approximation, which guarantees that
this energy is always an upper bound to the actual
energy. '

' W. Kolos and C. C. J. Roothaan, Revs. Modern Phys. 32, 205
(1960), this issue.

P. O. I.odin (private communication).
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&p=Q iii9 i) (17)

where the basis functions p; are defined by

and q, is always even since all functions p, are of species
0,. The orbital (17) is normalized, hence

Q u,S,,a, =1, (19)

where

(2o)

The orbital coeKcients satisfy the pseudoeigenvalue
problem

APPROXIMATE WAVE FUNCTIONS FOR
THE GROUND STATE

For more than two-electron systems, accurate cal-
culations are far more difricult than for H2. In particular,
it seems at present rather impossible to include the
interelectronic distances explicitly in the wave functions
for more than two electrons, or certainly for more than
three or four. In order to gain some insight into the
reliability of more approximate wave functions for
e-electron systems, it is useful to carry out such calcu-
lations on H2 and compare the results with the accurate
ones.

An approximate function of great interest for e-elec-
tron systems in the SCF function. The SCF function
for H2 was first determined by Coulson, ' who used a
five-term expansion in elliptic coordinates for the
orbital. In a preceding paper' we reported a slightly
improved orbital using the same terms as Coulson's but
minimizing also for the exponent n. In conjunction with
the present work we decided to increase the flexibility
of the orbital by increasing the number of terms. The
orbital is expanded according to

p= pi+ pi i iJ= &+iji)
7i=Pa+Pi, g=gi+gi. (27)

The primitive integrals E„,„, are given by Eq. (11),
and A„(x) is given in a preceding paper, ' Eq. (26). The
SCF calculation is performed by iteration, using each
time the coefficients a, which solve Eq. (21) to calculate
the SCF Hamiltonian F,; according to Eq. (22) for the
next approximation. The usual exchange contribution
is absent in Eq. (22); this is possible in this special case
of two paired electrons forming a singlet ground state.

Another important form of wave function is a super-
position of configurations. Equations (1)—(3) define
such a superposition if p, =0. For the ground state
q;+s, must be even; the terms with g, and s; even
represent configurations of the type a,cr, ', those with

q; and s; odd configurations of the type cr„cr„'. Obviously
the set thus obtained is not sufficiently general; how-
ever, configurations of the types x,m,

' or ~„m„', l,l, ' or
8„5 ', etc. can easily be constructed from this set by
multiplying the appropriate terms with cos(pi —p2),
cos2(pi —

q 2), etc.

The evaluation of the matrix elements 5,;, II@ and
of the supermatrix elements ~l;,qi is elementary and
straightforward; the kinetic energy part of H,; is first
transformed into —,'J'd V(V'q;) (V'p;) using Green's
theorem. The integrated expressions for the various
quantities are

Hg=~R((q+1) 'I n'A~(2n) —npA~i(2n)

+p*pJAP 2(2n)3-+(I 1) '9—4JAP(2n))
—2mR'(q+1) —'A +i(2n), (26)

S; =-'vrR'I (q+1) 'A„p2(2n) —(q+3) 'A (2n)],

cfsi&& ~~@+2 eX 6 ~~@ a+2 $i

where we have used the abbreviations

P(F;;—eS;,)a, =0, (21)
EXPECTATION VALUES OF VARIOUS OPERATORS

FOR THE GROUND STATE

where
(22)

&' =(~'I —k~ —(r.) '—(r~) 'I v»),

' dViiEV2p;(1) p;(1)pq(2) pi(2)ri2 '. (23)

the total electronic energy is given by

&=Z o'(&';+R*~)ii; (25)

C. A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 (1938).

The orbital energy e is the lowest root of the secular
equation

Det(F—.S) =O; (24)

To judge the quality of an approximate wave func-
tion, the criterion of how close the calculated energy
agrees with the experimental one is often only a crude
measure. This is due to the fact that the root-mean-
square error in the wave function is roughly equal to
the square root of the relative error in the energy;
hence if the energy is accurate to, say four significant
figures, we expect the wave function to be accurate to
about two significant figures. The latter is furthermore an
average of that error integrated over the coordinates of
all the electrons; it is quite conceivable, and actually
almost always true in practice, that for certain critical
values of the electron coordinates the error in the wave
function is considerably larger, and sometimes infinite.
If expectation values of certain operators are evaluated
with the approximate wave functions, different oper-
ators may weigh these critical points quite differently,
and it is therefore quite possible that wave functions
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No. of
terms

2
3

5
6
7
8
9

10
11
12
13
14
15

652
00 00
00 02
00 10
0 1 0
00 0011 0110 0200 2000 0001 01
00 12
00 02,.

00 1010 1011 11

r12

0
0
0
0
1
0
0
0
2
1
0
1
1
0
0

a=0.75

3.5960
4.0814
4.5297
4.5823
4.5967
4.6132
4.6931
4.6932
4.7073
4.7146
4.7220
4.7226
4.7262

0.=0.875 a=0.95

4.6464
4.6562
4.6562
4.6602
4.7048
4.7050
4.7057
4.7149
4.7265
4.7397
4.7408

3.6416
4.1263
4.6698
4.6705
4.6753
4.6912
4.7098
4.7098
4.7104
4.7183
4.7225
4.7406
4.7415

which yield good energies yield poor values for the
exptation values of other operators.

In order to gain some insight into these matters by
purely theoretical means, one can proceed as follows.

TAm, E I. Binding energies (in ev) for the ground state of H2
computed with 3- to 15-term wave functions and different ex-
ponents (R=1.4).

First ee calculate the expectation values of an operator
with various wave functions of the accurate form,
increasing the Qexibility of the wave function by in-
creasing the length of the expansion. Inspection of these
calculated expectation values as a function of the
expansion length then enables us to judge to how many
figures these expectation values have converged for the
best accurate wave function; these results are then
adopted as the "experimental" values for these quan-
tities. The expectation values calculated with various
other approximate wave functions (e.g., SCF) can then
be compared with these experimental values.

This procedure may seem somewhat awkward, since
one would really want to compare calculated values
with actual experimental values obtained from spec-
troscopic, thermodynamic, etc. measurements. The
difhculty is, however, that we have so far obtained only
an electronic wave function, and the results of actual
measurements strictly can be compared only with
values calculated from a wave function describing the
electronic, vibrational, and rotational motion. In addi-

tion, our electronic wave functions are calculated

TABLE II. Energies and expectation values of r» ' and p for the ground state of H2 computed with 4- to 40-term wave functions
(n =0.95, E.=1.4).

No. of
terms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

$1 $1

0 0
0 0
0 0
0 1
0 0
1 1
1 0
0 0
0 0
0 1
0 0
0 0
0 0
1 0
1 1
0 0
0 2
0 1
1 0
0 0
1 1
0 0

0
1
1 0
0 -0
1 0
1 0
1 2
2 0
1 0
0 0
1 0
0 1
1 0
1 2
1
0 2
3 0
2 1

$2 g2

0 0
0 2
1 0
0 1
0 0
0 1
0 2
2 0
0 0
0
1 2
0 2
1 0
1 0
1 1
1 0
0 2
0 1
2 0
2 0

2 0
0 2
1 1
1 0
0 2
2 0
0 2
3 0
3 0
1 0
3 0
1 2
2 1
3 0
1 2
2 1
3 0
3 0
2 1

r12

0
0
0
0
1
0
0
0
2

0
1
1
0
0
2
0
2
1
1
2
2
1
1
1
2
0
2
0
0
2
0
0
0
0
0
0
0
0
0

—Z(a.u. )

1.151645
1.171619
1.171645
1.171823
1.172407
1.173091
1.173091
1.173112
1.173402
1.173559
1.174224
1.174257
1.174269
1.174305
1.174308
1.174314
1.174316
1.174333
1.174335
1.174338
1.174348
1.174357
1.174357
1.174359
1.174360
1.174365
1.174375
1.174377
1.174413
1.174430
1.174432
1.174433
1.174433
1.174434
1.174440
1.174440
1.174440

D(ev)

4.1262
4.6697
4.6704
4.6753
4.6912
4.7098
4.7098
4.7103
4.7182
4.7225
4.7406
4.7415
4.7418
4.7428
4.7429
4.7430
4.7431
4.7436
4.7436
4.7437
4.7440
4.7442
4.7442
4.7443
4.7443
4.7444
4.7447
4.7448
4.7457
4.7462
4.7463
4.7463
4.7463
4.7463
4.7465
4.7465
4.7465

Ul28

1.00628
1.00056
1.00106
0.99984
0.99612
0.99913
0.99909
0.99920
0.99946
1.00051
1.00029
1.00030
1.00032
1.00040
1.00040
1.00036
1.00041
1.00043
1.00043
1.00039
1.00038
1.00033
1.00033
1.00030
1.00030
1.00029
1.00027
1.00026
1.00016
1.00017
1.00018
1.00017
1.00018
1.00017
1.00017
1.00017
1.00017

0.62942
0.59380
0.59405
0.59332
0.58928
0.59012
0.59012
0.58998
0.58961
0.58935
0.58768
0.58767
0.58766
0.58767
0.58767
0.58762
0.58766
0.58766
0.58765
0.58762
0.58761
0.58758
0.58757
0.58756
0.58756
0.58755
0.58752
0.58751
0.58745
0.58739
0.58739
0.58739
0.58739
0.58739
0.58737
0.58737
0.58737

«)

2.1825
2.1917
2.1909
2.1933
2.2153
2.2092
2.2093
2.2095
2.2092
2.2083
2.2111
2.2111
2.2116
2.2116
2.2115
2.2118
2.2114
2.2113
2.2114
2.2116
2.2116
2.2118
2.2118
2.2119
2.2119
2.2119
2.2121
2.2121
2.2123
g.2126
2.2126
2.2125
2.2126
2.2126
2.2127
2.2127
2.2127
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TAal.z GI. Energies and expectation values of r2 and 3'—r~ for the ground state of H„computed vrith 4- to 28-term
wave functions (n=0 95. , 2=1.4).

No. of
terms

1
2
3
4
5
6
7
8

10
11
12

14
15
16
17.
18
19
20
21
22
23
24
25
26
27
28

D 0 0 0
0 0 0 2
0 0 1 0
0 1 0 1
0 0 0 0
1 1 0 1
1 0 0 2
0 0 2 0
0 0 0 0
1 0 1. 0
0 2 0 2
0 0 0 2
0 0 1 0
1 1 1
0 0 1 0
1 0 2 001 01
0 1 0
1 0 2 0
0 0 2 0
1 1 1 1
0 0 2 0
1 0 0 2
1 1 1 1
1 0 1 0
0 0 0 2
1 0 1 0
1 0 0 2

0
0
0
0
1
0
0
0
2
0
0
1
1
0
2
0
1
2
1
1
2
2
1
1
1
2
2
2

—E(a.u. )

1.151645
1.171619
1.171645
1.171823
1.172407
1.173091
1.173943
1.173970
1.174191
1.174254
1.174282
1.174296
1.174307
1.174313
1,174314
1.174314
1.174317
1.174336
1.174338
1.174341
1.174350
1.174358
1.174358
1.174359
1.174360

D(ev)

4.1262
4.6697
4.6704
4.6753
4.6912
4.7098
4.7329
4,7337
4.7397
4.7414
4.7422
4.7426
4.7429
4.7430'
4.7430
4.7430
4.7431
4.7436
4.7437
4.7438
4.7440
4.7442
4.7442
4.7443
4.7443 .

V/2E

1.00628
1.00056
1.00106
0.99984
0.99612
0.99913
1.00087
1.00104
1.00085
1.00018
1.00021
1.00023
1.00014
1.00021
1.00022
1.00022
1.00027
1.00034
1.00033
1.00032
1.00036
1.00034
1.00033
1.00033
1.00033

2.4290
2.4609
2.4587
2.4653
2.5456
2.5276
2.5334
2.5327
2.5347
2.5382
2.5381
2.5412
2.5433
2.5432
2.5428
2.5429
2.5408
2.5404
2.5408
2.5414
2.5412
2.5423
2.5423
2.5424
2.5426

(3s'—r')

0.5148
0.4823
0.4803
0.4822
0.4855
0.4835
0.4860
0.4868
0.5227
0.5221
0.5215
0.5224
0.5230
0.5199
0.5205
0.5202
0,5201
0.5159
0.5157
0.5148
0.5138
0.5135
D.5145
0.5145
0.5142

neglecting certain other smaller eGects, like relativistic
corrections, coupling with nuclear moments, etc. The
true experimental values do contain all these effects.
As a result, even if we had obtained calculated values
for operators with an electronic-vibrational-rotational
wave function, comparison with experiment would still
leave some uncertainty as to whether a discrepancy was
due to the approximate nature of the wave function as
a solution of the actual Hamiltonian used or to the
neglect of certain small terms in the Hamiltonian.

The operators we investigated were rt2 ', (t, rp, and
38~'—r~2. The erst two are not directly comparable to
experimental data, but give some idea about the wave
function: x~2

' is the total electronic repulsion energy;
and $=($t) is an ellipsoid with the protons as foci,
which is a measure for the size of the molecular charge
cloud. The other two operators do have a direct relation
to experiment, namely, the I armor term in the molar
diamagnetic susceptibility is given by'

2

gI, = ,'cVreao' p-(rp); (28)

/t/ is Avogadro's number, ro e'/mc' is t—h—e classical
electron radius, and ae ——k'/ere' is the Bohr radius for
inhnite nuclear mass. For the evaluation of (rP), lengths
are measured in Bohr radii. The operator 3si2—r~2

is related to the molecular quadrupole moment, which is

given by

Q = sac'(R' —Q (3sP—rP));
X=1

the term euo2E2 represents the contribution of the
nuclei. In Eqs. (28) and (29) the contributions from
the two electrons are the same. By using the most
recent values for the physical constants, " we obtain
for the last two formulas in cgs units

xr, = 1 584/&(10 '(rp) (3o)

Q=1.3449X10-"(R'—2(3sP—rP)}. (31)

The actual evaluation of (rtm '), ($t), (rp) and (3sp —rp)
in terms of primitive integrals is straightforward, and
we omit the explicit formulas.

RESULTS AND DISCUSSION

The computations were carried out on the Remington
Rand Univac Scienti6c 1103 and 1103A computers at
Wright-Patterson Air Force Base. The first set of com-
putations was a slight extension of the erst calculations
by James and Coolidge. ' The binding energy was
computed for 8=1.4, which is close to the equilibrium
distance, for various values of n and expansions of up
to I5 terms. The results are shown in Table I; the
energies on a horizontal line in this table apply to a
wave function containing the terms in the second

'J. H. Van Vleck, Theory of E/ectric and Magnetic Suscepti- "E. R. Cohen and J. %. DuMond, Hantlmh der I'hysik
bilities (Oxford University Press, New York, 1932). (Springer-Verlag, Berlin, 1957), Vol. 35, p. 82.
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column oe and above that horizontal line. These com-
putations served as a mutual check between our results
and those of James and Coolidge, ' and also to determine
the best value of o, . This best value is dependent on the
expansion used but appears to converge for longer ex-
pansions (although the value of u would be immaterial
for infinite expansion length). Curiously, for the 11-term

expansion there are two minima in the energy at about
n=0.75 and ix=0.95, the latter giving a slightly lower

energy than the former. It was just this case from which
James and Coolidge determined n =0.75; clearly n =0.95
is a better choice, since that minimum is lower and
persists for the longer expansions.

Having roughly optimized +=0.95 for the equilib-

TABLE IV. Total and potential energies (negative values) for the ground state of H2 computed with 40-term wave functions.

Rgu
0.4

0.6

0.8

0.9

1.0

1.2

1.3

1.35

1.39

1.40

1.41

1.45

Rgn

1.5

1.6

1.8

2.0

2.2

2.4

R+n
2.6

2.8

3.0

3.2

3.6

3.8

4.0

4.2

0.55

0.116159
2.393350
0.769577
2.677134
1.019976
2.666502
1.083543
2.623531
1.124410
2.570838
1.149855
2.513719
1.164576
2.455134

0.95

1.172806
2.298863
1.168515
2.251699
1.154937
2.167467
1.137869
2.096283

1.55

1.085245
1.960110

1.95

1.024975
1.901333
1.017316
1.899753

0.75

0.070477
2.581826
0.767817
2.692277
1.020012
2.667387
1.08362'?
2.623881
1.124517
2.571394
1.150023
2.515112
1.164889
2.458174
1.172286
2.402416
1.173891
2.375324
1.174369
2.354108
1.174388
2.348867
1.174370
2.343657
1.173950
2.323101

1.15

1.172810
2.299122
1.168533
2.251923
1.154982
2.167888
1.137973
2.097403
1.1.19844
2.039589
1.101912
1.993156

1.75

1.085288
1.961067
1.069925
1.935775
1.056171
1.918449
1.044065 I
1.907392

2.15

1.025365
1.905194
1.017895
1.904895
1.011510
1.904624
1.005981
1.903245

0.95

1.018605
2.668597
1.083239
2.627796
1.124428
2.572728
1.150021
2.515591
1.164913
2.458405
1.172322
2.402648
1.173934
2.375621
1.174419
2.354489
1.174440
2.349278
1.174425
2.344097
1.174015
2.323677

1.35

1.172650
2.300458
1.168454
2.252680
1.154972
2.168247
1.137997
2.097758
1.119903
2.040184
1.102032
1.994388

1.95

1.085218
1.962183
1.069947
1.937076
1.056286
1.920176
1.044291
1.909784

2.55

1.025649
1.911327
1.018482
1.912639
1.012471
1.914627
1.007388
1.915874

1.15

1.164716
2.460316
1.1'?2250
2.403511
1.173894
2.376217
1.174396
2,354942
1.174421
2.349703
1.174409
2.344497
1.174010
2.323997

1.55

1.168003
2.255676
1.154814
2.169401
1.137946
2.098364
1.119909
2.040715
1.102083
1.995065

2.15

1.069822
1.938538
1.056276
1.921833
1.044395
1.911918

2.95

1.025047
1.916993
1.018281
1.918837
1.012606
1.921749
1.007867
1.924605

1.119800
2.041631
1.102058
1.995865

2.55

1.044076
1.916549

Interpolated values
—E(a.u. ) D(ev) V/2E n

1.020175 0.5490 1.306482 0.6550

1.083651 2.2761 1.219026 0.6856

1.124517 3.3881 1.143352 0.7592

1.150043 4.0826 1.093637 0.8477

1.164930 4.4877 1.055048 0.8715

1.172323 4.6889 1.024703 0.9170

1.173934 4.7327 1.011824 0.9538

1.174420 4.7459 1.002439 0.9871

1.174442 4.7465 1.000209 0.9958

1.174428 4.7461 1.998022 1.0040

1.174022 4.7351 0.989695 1.0340

1.172828 4.7026 0.979056 1.0549

1.168538 4.5859 0.963510 1.0863

1.154985 4.2171 0.938545 1.2138

1.13'?999 3.7549 0.921651 1.3140

1.119920 3.2630 0.910970 1.4589

1.102084 2.7777 0.905188 1.5838

1.085288 2.3207 0.903420 1.7257

1.069956 1.9035 0.904991 1.8798

1.056297 1.5318 0.909253 2.0338

1.044395 1.2080 0.915342 2.1535

1.025663 0.6983 0.931231 2.4781

1.018506 0.5035 0.939760 2.6481

1.012653 0.3443 0.947843 2.8154

1.007867 0.2141 0.954844 2.9566
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TABLE V. Variation of E close to E& for the ground state of
H2 with 40- and 50-term functions, o, =0.995.

No. of
terms

1.3809
13909
1.3959
1.3999
1.4009
1.4019
1.4059
1.4109
1.4209

1.174369
1.174426
1.174440
1 17AAAA

1.174444
1 17AAAA

1.174440
1.174426
1.174371

E.(a.u.) —E(a.u.) D(ev)

4.7445
4.7461
4.7465
4.7466
4.7466
4.7466
4.7465
4.7461
4.7446

2.359300
2.354061
2.351452
2.349371
2.348852
2.348332
2.346258
2.343672
2.338523

V/2E

1.004497
1.002218
1.001095
1.000206
0.999984
0.999763
0.998884
0.997795
0.995649

2.5-

2.0-

1.D-

50 1.3999 1.174448 4.7467 2.349370 1.000202
1.4009 1.174448 4.7467 2.348851 0.999981
1.4019 1.174448 4.7467 2.348331 0.999760

Rtaa)

e.o vs S.O S.s ~.O

rium distance, we now kept n fixed at this value and
gradually increased the expansion length to 40 terms.
The order in which new terms are added to the wave
function permits a very large number of paths along
which the same 40-term wave function can be reached.
Our path is therefore somewhat arbitrary; we exercised
some judgment, however, by rejecting terms which
did not improve the total energy in the eighth figure.
The results are shown in Table II, in which we listed,
in addition to the total energy E and the binding energy
D, the expectation values (ri2 ') and ($i), and also the
ratio V/2E, where V is the potential energy (E and V
both contain the nuclear repulsion). For any value of
E this ratio satisfies

V/2E =1+,'(R/E) (dE/dE)-, (32)

"J.C. Slater, J. Chem. , Phys. I, 687 (1933).

which is a consequence of the virial theorem. " Inci-
dentally, Eq. (32) also holds if V and E are taken as
electronic energies only, omitting the nuclear repulsion
from both. From Eq. (32) we see that V/2E should
become unity if E. is the equilibrium distance; this is
true for the exact electronic wave function. The limiting
value 1.00017 for this rate at R= I.4 indicates that the
equilibrium distance is slightly larger than 1.4. Table II
shows that (ri2 ') and Qi) have converged to 4—5 sig-
nificant figures for the 40-term wave function, while the
total energy has converged to 6—7 figures and the bind-
ing energy to 4-5.

More important than (rim ') and ()i) are the expec-
tation values (ri') and (3s,'—rP). The latter, however,
could not be computed for the 40-term function without
first computing more primitive integrals. We did the
best we could with the available integrals; this neces-
sitated eliminating 12 terms from the 40-term set,
which, however, raised the energy only by 0.002 ev.
Table III shows that for the 28-term function (ri2) and
(3s2'—ri') have converged to 3—4 and 2—3 significant
figures, respectively.

The next computation was aimed at obtaining an

FIG. 1.The optimum exponent e as a function of R for the 'Zg+
ground state and the 'Z„+ and 'Z„+ excited states of H2.

accurate potential energy curve for the ground state.
For each of 27 values of R in the range 0.4—4.2 a cal-
culation was carried out with the same 40 terms as in
the previous calculation but reopening the variation of
n. The computed values of E and V are contained in
the second through the sixth columns of Table IV. For
each value of E. the best n was then determined by inter-
polation, minimizing E under the assumption that E
versus n is a parabola. This assumption is not quite
correct; namely, in those cases where we had four points
for a given g, the best n turns out differently depending
on which three points are used for the interpolation.
This ambiguity, however, hardly affects the minimum
value of E, since E versus n is very shallow near that
minimum. The interpolated values for E, D, V/2E, and
n are listed in the seventh through the tenth columns.
The validity of the interpolation procedure is further
confirmed by Fig. I, where we plotted the interpolated
optimum values of n against E; evidently they lie on
a smooth curve.

In order to obtain accurate theoretical values for the
binding energy D, and the equilibrium internuclear
distance R„we computed more points of the potential
energy curve densely spaced around E.=1.4, with the
40-term function and n=0.995, the best value at that
distance; this was then repeated for just 3 points with
a 50-term function, The resulting values of E, D, V, and
V/2E are tabulated in Table V. The computed values
of D„4.1466 and 4.7467 ev for the 40- and 50-term
functions, respectively, are in excellent agreement with
the experimental value" 4.7466+0.0007 ev. The most
accurate determination of E, is obtained by invoking
the condition V/2E=1; we find by this criterion

R,= 1.40083 a.u. =0.74128 A

E,= 1.4008j. a.u. =0.74127 A

for the 40- and 50-term functions, respectively. The

' G. Herzberg, Spectra of Biufomk Moleceles (D. Van Nostrand
Company, inc. , Princeton, New Jersey, 1950).
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Tsar.z VI. Normalized vive functions for the ground state of H2.

(R~)
g~ (e~)

No. of terms
Total energy
Binding ener
R(a.u. )

0 0 0 0
0 0 0 2
0 0 1 0
0 1 000 0011 01
1 0 0 2
0 0 2 0
0 0 0 0

0 1 0
0 2 0 2
0 0 0 2
0 0 1 0
1 1 1
0 0 1 0

0 2 0
0 1 0 1
0 1 010 20
0 0 2 0
1 1
0 0 2 0
1 0 0 2
1 1 1 1
1 0 1 0
0 0 0 2
1 0 1 0

0 0 2
2 3 0

2 0 3 0
0 0 1 20030
1 0 1 2
0 1' 2
1 0 3 0

2 1 2
1 1 2 1
0 2 3 0
3 0 3 0
2 1 2 1
0 0 1 2
0 0 3 0
0 0 3 0
0 0 1 2
2 0 3 0
1 0 1 2
2 0 3 0
1 0 1 2
0 2 3 0
0 2 3 0

5-1.171619
4.6697
1.4
0.95

2.144423
1.683396—0.064683—0.513879
0.815868

12-1.174191
4.7397
1.4
0.95

2.192089
1.098975—0.139338

—0.377500
0.859247-0.058316
0.078257
0.150633-0.052156—0.126629
0.132561
0.248411

24—1.174329
4.7435
1.4
0.95

Coef6cients

2.016368
1.010767
0.042082—0.301973
0.987970-0.360711
0.154088
0.108738

-0.084347
0.275836
0.224562

—0.249321
0.024821

-0.036452
0.237109

—0.005136
-0.019956

—0.026238
-0.004118

0.082550

0.091499
0.026725—0,033981

0.004723

40—1.174444
4.7466
1.4009
0.995

2.077318
1.141281
0,137330—0.422304
0.835795—0.246455
0.205304
0.105701—0.217363—0.086291
0.196963
0.203037
0.259626—0.041260—0.079797—0.049768
0.173868—0.056570
0.008895—0.103278—0.001197
0.002553—0.072222
0.027074
0.023814
0.057081-0.011466
0.005322—0.000293—0.001157
0.095599
0.035829

—0.020202
0.047649
0.005164
0.001963

-0.008791
0.011140
0.000103

—0,000908

50—1.174448
4.7467
1.4009
0.995

2.065908
1.282036
0.144619

-0.430253
0.787198

-0.235454
0.148273
0.109859—0.212159—0.081387
0.182892
0.198555
0.324658—0.010794
0.077830

—0.055114
0,130714—0.050854
0.014963—0.132980
0.000362
0.006992—0.050940
0.018027
0.017554—0.014601—0.015172
0.012656—0.000202

-0.000856
—0.009469

0.036963—0,022325
0.053233
0.004690
0.004707—0.017531
0.017270
0.000082
0.000031
0.094436
0.001789

-0.000394—0.004475—0.000121—0.014893
0.000011
0.001016—0.003443
0.000225

111OSt I'CCCIlt CXpCI'llllClltR1 VR1UC Of O.4116A RppCRI'S

to be in disagreement vrith the computed result. How-

ever, this experimental value was obtained from a
spectroscopic analysis plus theoretically computed cor-
rections; vre expect that a more careful calculation of
these corrections vrould improve the agreement.

Our computer program yielded, besides energies, also
the coefficients of the normalized vrave functions. To
present all the vrave functions vre obtained is obviously
impractical; a selected set, including our best 40- and
50-term functions, is given in Table VI.

l' G. Herzberg and L. I . Home, Can. J. Phys. 37, 636 (1959).

For the three excited states mentioned previously,
'Z +, 'Z„+, and 'Z,+, we carried out calculations with

34, 34, and 40 terms, respectively, for diferent Evalues,

varying again n for each R value. The results are given
in Tables VII—IX; the interpolated 0. values for the
'Z + and 'Z„+ states are also plotted in Fig. 1. For the
excited 'Z,+ state vre computed only for two o. values

so that quadratic interpolation vras not possible; time

did not permit us to complete the necessary COIQpu-

tations for this case. The equilibrium distances and

energies for the tvro attractive excited states 'Z„+ and
'Z +, as obtained by interpolation from Tables VIII and
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TABLE VII. Total and potential energies (negative values) for the lowest % + state of H2
computed with 34-term wave functions.

1.8684

Zgn
2.3

Rgn

2.9

0.75

0.663466
1.952795
0.751875
1.951418
0.783024
1.961382
0.808950
1.975638
0.850323
2.006261
0.877538
2.025708
0.906515
2.037345

0.925075
2.032877
0.935167
2.021892
0.947455
1.987367

1.55

0.964039
2.043047
0.970907
2.032939
0.975924
2.021357

0.778108
1.998449
0.806599
1.999232
0.850091
2.014488
0.877884
2.031174
0.907519
2.046870

0.927381
2.054490
0.938718
2.053826
0.954390
2.0453540

1.95

0.964019
2.047858
0.971168
2.037439
0.976457
2.027329
0.980302
2.017141

0.766040
2.057146
0.799400
2.043679
0.847984
2.035155
0.877338
2.039893
0.907619
2.050112

1.55

0.926943
2.063516
0.938729
2.059461
0.954880
2.051367

Interpolated values
—E(a.u. ) 1+8(ev) V/2E

0.907687 2.5118 1.129022 1.0722

0.927540 1.9716 1.109912 1.2862

0.938979 1.6604 1.094240 1.3521

0.954880 1.2277 1.074142 1.5492

0.783150 5.9004 1.249340 0.7125

0.808950 5.1984 1.221238 0.7530

0.850456 4.0693 1.180484 0.8253

0.877889 3.2226 1.156410 0.9276

and IX, as well as those obtained for the ground state,
are compared with experimental data in Table X. The
.agreement for the two excited states is notably poorer
than for the ground state. To a certain extent this was
to be expected. In molecular orbital approximation the
'Z„+ and 'Z„+ states are represented by ia, itT„, and the
'Z,+ state by I0,2~, with some admixture of the 10„'.
For such states a wave function with two diGerent o.'s

shouM do much better than with one o, or in other
words, for a single e the expansion lengths we used were

probably inadequate. The potential energy curves for
these three excited states and the ground state are
plotted in Fig. 2.

One point which needs further clarification is the
astonishingly good agreement between the calculated
and observed dissociation energy for the ground state;
such good agreement should occur after having made the
appropriate corrections for finite nuclear masses. The
agreement obtained indicates that this correction is
virtually the same for g, as for infinite separation,
where it is known to be 0.0148 ev. Van Vleck'4 calcu-
lated this correction for E, with an approximate wave
function and obtained 0.0141 ev. Our good agreement
therefore should be considered somewhat fortuitous

'4 J. H. Van Vleck, J. Chem. Phys. 4, 327 (1936).

until this correction has been computed accurately for
E, ; this, however, necessitates constructing accurate
electronic-vibrational wave functions, which is outside
of the scope of this research.

We also computed the potential energy curve for the

E(ev)
IO-

-I
-2-

Fxo. 2. Computed potential energy curves for H2.
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TanLE VIII. Totai and potential energies (negative values) for the lowest 'Z„+ state oi Hs
computed with 34-term wave functions.

1.2

1.8

2.0

2,2

2.4429

3.2

0.656343
1.698902
0.703667
1.641736
0.727917
1.589305
0.739680
1.551975

0.95

0.7527437
1.476540
0.7514548
1.463619
0.7498499
1.450795

0.694912
1.690720
0.726536
1.632007
0.742694
1.584736
0.750218
1.546346
0.752737
1.513820
0.752769
1.498859
0.752198
1.484359
0.751796
1.478216
0.751130
1.470085

0.7528455
1.489435
0.7520005
1.475656
0.7507724
1.462497
0.7474280
1.437234

0.671639
1.748480
0.714628
1.675787
0.737242
1.617100
0.748460
1.570701
0.753182
1.533895
0.754010
1.518096
0.754117
1.503501
0.753982
1.497518
0.753658
1.489753

1.35

0.7509885
1.505081
0.7508047
1.489064
0.7500981
1.474115
0.7475050
1.446544

0.634393
1.812535
0.692856
1.727470
0.724871
1.657888
0.741828
1.601620
0.750003
1.556465
0.751986
1.537289
0,752984
1.519947
0.753166
1.512985
0.753215
1.504100

0.7478728
1.488773
0.7463859
1.457573
0.7433835
1.429515
0.7393575
1.403486
0.7346130
1.378685
0.7293479
1354631

Interpolated values
—E(a.u. ) 1+E(ev) V/2E

0.703744 8.0611 1.163201 0.5294

0.728632 7.3839 1.01330, 0.6238

0.742783 6.9988 1.063596 0.7212

0.750265 6.7952 1.032531 0.7778

0.753440 6.7088 1.012709 0.8746

0.754033 6.6927 1.005124 0.9260

0.754143 6.6897 0.998332 0,9757

0.754060 6.6920 0.995534 0.9957

0.753841 6.6979 0.991850 1.0202

0.753042 6.7197 0.984883 1.0604

0.752031 6.7472 0.979552 1.1127

0.750777 6.7813 0.974593 1.1656

0.747619 6.8672 0.904114 1.2629

He2~ molecular ion; the results are given in Table XI.
The behavior of o. a a function of R became somewhat
erratic in this case for E&1.34; this may be due to the
fact that the optimized n for these E values is the result
of an extrapolation rather than an interpolation, and
calculations for larger values of 0, seem indicated. Again,
time prevented us from investigating this point further.

TABLE IX.Total and potential energies for the 6rst 'Z~+ excited
state of H2, computed with 40-term wave functions.

The SCF calculations followed very much the same
patterns as the calculations with the accurate wave
functions just described. Starting with a 5-term SCF
function for H2 for 8=1.4 obtained previously, 6 we

gradually increased this to 9 terms; see Table XII.
Note that the cusp value deviates only in the fourth
decimal place from its correct value, —1, for the 9-term
function. This probably means that our 9-term SCF
function, obtained by the expansion method, is equiv-
alent to a solution of the Hartree-Fock integro-dif-

R(a.u.)
1.4
1.6
1.8
1 9
2.0
2.1
2.2
2.4
2.6

0,=0.75—E(a.u. ) —V(a.u.)

0.681254 1.607352
0.705487 1.534631
0.714997 1.471155
0.716350 1.442075
0.716122 1.414470
0.714678 1.388229
0.712287 1.363310
0.705508 1,317670
0.697101 1.278861

0.=0.95—E(a.u.} —V(a.u.)

0.652368 1.667010
0.689181 1.576106
0.705853 1.502236
0.709654 1.470291
0.711410 1.441123
0.711626 1.414470
0.710680 1.390091
0,706406 1.347588
0.700251 1.313434

State

Eegic
Eobs
~ca~c
~0b

—4.7467
—4,7466

0.74127
0.74116

6.6892
6.6220
1.258
1.2926

lg +

7.7153
7.6586
1.095
1.012

Thsx.z.x. Comparison of calculated and observed equilibrium
distances (in A) and energies (relative to two normal H atoms,
in ev),
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TABLE XI. Total and potential energies (negative values) for the ground state of Hes++
computed with 40-term wave functions.

0.8

1.0

1.2

1.3

1.32

1.34

1.4

1.6

1.8

1.55

3.599289
7.858302
3,648290
7.674957
3.671895
7.515822
3.679443
7.381839
3.679608
7.358028
3.679419
7.335192
3.677072
7.272398
3.657536
7.119275
3.631857
7.031137

1.75

3.356146
8.291381
3.599041
7.860355
3.648233
7.676450
3.671960
7,517208
3.679606
7.383399
3.679790
7.359673
3.679621
7.336944
3.677339
7.274646
3.658237
7.126460
3.633829
7.052783

1.95

3.598095
7.865674
3.647790
7.679420
3.671791
7.519510
3.679628
7.385652
3.679845
7.361957
3.679709
7.339272
3.67'?521
7.277184
3.658773
7.131117
3.635045
7.064212

Interpolated values
—E(a.u. ) —D(ev) V/28

3.6355 9.92 0.9717 2.1717

3.599296 10.903 1.091658 1.5789

3.648314 9.569 1.051899 1.6205

3.671966 8.926 1.023542 1.7056

3.679636 8.717 1.003469 1.8814

3.679845 8.711 1.000285 1.9368

3.679713 8.715 0.997361 2.0044

3.677636 8.771 0.990036 2.2785

3.659397 9.268 0.974326 2.4998

ferential equation to an accuracy of four decimal places
or better.

Next we computed the SCF function and energy as
a function of E, varying and optimizing n for each R;
see Table XIII. The 0. versus E. curve for this case
practically coincides with the corresponding curve for
the accurate ground state function within the limits of
accuracy of the optimization of n. The same calculation
was carried out for He2~; the results are collected in
Table XIU.

The total electrorIic energy curves for the ground state
of H2, computed with the SCF function and the 40-term
expansion, are plotted in Fig. 3; the values at E.=O

No. of
terms —Z(a.u. ) D(ev) Orbital cusp

0 0
1 0
2 0
0 2
1 2
3 0
4 0
2 2
0 4

1.133571
1.133573
1.133576
1.133604
1.133629

3.6344
3.6345
3.6346
3.6353
3.6360

—0.96067
—0.96192
—0.96380
—0.97725
—0.99989

TABLE XII. Convergence of the SCF energy and orbital cusp
for H2 (a=0.95, R=1.4).

TAsLE XIII. SCF energies (negative values) for the ground state of H2 computed with 9-term orbitals.

0.55 0.75 0.95 1.15 1.55 1.95
Interpolated values

—E(a.u.) D(ev)

0.4
0.6
0.8
1.0
1.2
1.3
1.375
1.400
1.425
1.45
1.5
1.6
1.8
2.0
2.4
2.8
3.2

0.078693
0.729990
0.980742
1.085110

0.061186
0.729544
0.980734
1.085138
1.125022
1.132015
1.133625
1.133610
1.133355
1.132880
1.131336
1 ~ 126285
1.110810
1.091319

1.085117
1.125025
1.132024
1.133641
1.133629
1.133377
1.132906
1.131370
1.126342
1.110939
1.091572
1.049143

1.124987
1.132011
1.133635
1.133625
1.133375
1.132904
1.131371
1.126348
1.110957
1.091612
1.049286
1.008214
0.971095

1.126239
1.110927
1.091611
1.049331
1.008357
0.971443

1.049282
1.008361
0.971443

1.085138
1.125029
1.132024
1.133642
1.133630
1.133379
1.132908
1.1313'?5
1.126352
1.110967
1.091648
1.049331
1.008376
0.971512

2.3166
3.4020
3.5923
3.6364
3.6360
3.6292
3.6164
3.5747
3.4380
3.0194
2.4937
1.3423
0.2279

—0.7751

0.7656
0.8629
0.9319
0.9989
1.0162
1.0300
1.0412
1.0560
1.0701
1.2826
1.3476
1.5432
1.7597
1.8265
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D(ev)TABLE XIV SCF enerenergies (negative values for
t d ith9-wi -term orbitals.

ae

Rgn 1.55 1.95
Interpolated values

—E(a.u.) —D(ev) n
0

0.8
1.0
1.2
1.3
1.332
1.364
1.6
1.8
2.0

3.309953
3.545087
3.609087
3.611170
3.609330
3.606548
3.567517
3.523379

3.309683
3.545052
3.609083
3.611179
3.609344
3.606569
3.567627
3.523675
3.479477

3.544913
3.609047
3.611160
3.609330
3.606558
3.567665
3.523811
3.479812

3.545088 12.378
3.609089 10.637
3.611180 10.580
3,609344 10.630
3.606569 10.705
3.567665 11.764
3.523821 12.957

1.583
1.628
1.725
1.750
1.788
1.955
2.020
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ACCURATE WAVE FUNCTIONS FOR H2

opp(O LL)

O.IO-

00S-

0.08-

0.04 = ====

I.2-
IIIIt

IIII

0.02-

Fxo. 6. Correlation energy curves for H2 and He2++.

operators which do not explicitly involve the inter-
electronic distances, in particular, charge distributions
and electric moments, may perhaps be rather reliably

Correlarion energy

H2 He2++

(r') for Hr
9-term

28 terms SCF

(Bs'—r') for Hr
9-term

28 terms SCF

0.00
0.60
0.80
1.00
1.1Q
1.20
1.30
1.35
1.40
1.45
1.50
1.60
1.70
1.80
2.00
2.40
2.60
2.80
3.20

0.04204 0.04426
0.0396
0.0393
0.03938

0.04081

0.04219 0.0465

0.04401
0.04635 0.05388
O.Q5275 0.06288

0.06867
0.06175
0.07331 0.09173

2.0488
2.1710
2.2941
2.4180
2.4802
2.5430
2.6067
2.6713
2.8031
2.9380
3.0756

2.3120
2.4412

2.5736

2.7095
2.8484

0,2285
0.2921
0.3629
0.4370
0.4754
0.5157
0.5587
0.6050
0.7081
0.8256
0.9577

03456
0.4127

0.4867

0.5691
0.6598

TAar, E XV. Correlation energies for H2 and He2++ from 40-term
functions and 9-term SCF functions; comparison of (r') and
(3s'—r') for H2, computed with 28-term functions and 9-term
SCF functions.

l,2
I r

I.S I.s R (aig

Flo. 1. Expectation values of (Bs'—r') computed with the SCF
function, a 5-term expansion by James and Coolidge, and our
28-term expansion.

predicted from the SCF function. In the present case
the molecular quadrupole moment and the Larmor
terms in the diamagnetic susceptibility are the quan-
tities of interest. In the second and third column of
Table XV and in Fig. 6, the correlation energies of H2
and He2++ are compared. Since the SCF wave function
cannot dissociate properly, it becomes a poor wave
function for large R, and the correlation energy in-
creases considerably. The correlation energy curves for
H2 and He2++ are very similar only if we plot them
against ZE rather than E.In the remaining four columns
of Table XV we compare the expectation values (r')
and (3s'—r') for Hs as'computed with our best 28-term
function and the 9-term SCF function. Our results for
(3s —r )) together with a curve conlpll ted b)r Jalllcs and
Coolidge' with a 5-term wave function, are plotted in

TAmz XVI. Energies and some expectation values for the ground state of H2, X=1.4, computed with various wave functions.

No. of
terms

21
27
40

5
15
24

Types of terms
even g odd g cos{pg—p2) fyo fy2 D(ev)

3.8981
4.3789
4.6924

4.6697
4.7371
4.7435

(r')

2.6160
2.5723

0.6368
0.6077

0.5938
0.5876
0.5873

2.0709
2.1337

2.1694
2.1703

2.2338
2.2197

2.1917
2.2114
2.2128

12
20
28
40

5-term SCF
9-term SCF

4.7397
4.7431
4.7443
4.7465

3.6344
3.6360

2.5347
2.5408
2.5430

2.5736

0.5227
0.5201
0.5157

0.4867

0.5074

0.6586 2.0394

2.2127

2.2222



R. KOLOS AND C. C. J. ROOTHAAN

Fig. 7; the horizontal line indicates the classical vibra-
tional "sweep" of the zero-point vibration.

We also explored to some extent the possibilities of
superposition of conhgurations using wave functions
defined by Eqs. (1)—(3) with ted=0 and also introduced
m,x,' and x„~ ' terms as discussed previously. Virtually
the same calculation was carried out by Hagstrom";
his results are in excellent agreement with ours. In
Table XVI we compare some of the more important
results of these computations with those obtained with

"S. Hagstrom (unpublished).

the SCF function and with the wave functions which
contain r» explicitly.
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GLOSSARY OF GENERAL TERMS AND SYMBOLS'

Orbital: An adjective used as a noun and introduced
as a brief term meaning "one-electron orbital wave
function, " that is, either an eigenfunction of a one-
electron Schrodinger equation or an approximation
thereto. ' It is the nearest quantum mechanical coun-
terpart to the electron orbit of Bohr theory. The
practice of referring to "one-electron orbitals, " in
other words, "one-electron one-electron orbital wave
functions" should be discouraged. Could one have a
two-electron one-electron orbital wave functions

Spinorbital: This was introduced as a brief term' mean-
ing "one-electron wave function including spin. "
The frequent practice of referring to it as two words
"spin orbital" is confusing, suggesting di.Gerent
meanings from that intended. To better indicate the
pronunciation, the spelling could perhaps be changed
to "spinnorbital. "

AO: Central field atomic orbital Lcf. Eq. (1)) or, in
molecular contexts, sometimes a linear combination
(hybrid) of these.

MO: Molecular orbital.
SCF: Self-consistent field.
SCF AO or MO: Cf. Eqs. (1) and (2).
CI: Configuration interaction.
STO: Slater-type orbital Lcf. Eq. (3)].

*This work was assisted by a grant from the National Science
Foundation.

~ Tables I and II contain a proposed classification and termi-
nology for various spec@c types of LC—STO approximations to
SCF AO's and MO's.' R. S. Mulliken, J. Chem. Phys. 28, 2005 (1955},Sec. II.3(b).

i =orbital exponent: The variable parameter in any
STO Lcf. Eq. (3)].

LC—STO MO: Linear combination of STO's (not neces-
sarily all alike in t but all alike in m or X) to approxi-
mate an MO.

Free-atom MO, free-atom t' Terms used in describing
LCAO —MO's to indicate that the AO's or the AO f
values used are the AO's or the f's which are suitable
(Slater i's and AO's) or optimal (best simple AO's)
in describing the AO's of free atoms.

LCAO —MO's: MO's approximated by linear combina-
tions of free-atom or of modified AO's; since the latter
in turn are approximated by LC—STO forms, LCAO
MO's in general are most conveniently considered
as LC—STO forms.

INTRODUCTION: USES AND LIMITATIONS OF SELF-
CONSISTENT FIELD WAVE FUNCTIONS

~~VERY exact atomic or molecular wave function
~ must conform to one of the group-theoretical

species (taking into account both spin and orbital char-
acteristics) of the appropriate symmetry group. For
light atoms and molecules it is suQicient for many pur-
poses to use wave functions in which spin-orbit inter-
action is neglected, so that each wave function has a
de6nite spin quantum number and a definite orbital
species (I., S coupling case for atoms, and the analo-
gous case for molecules) .

An exact wave function even of the I,, 5 or I., S-like
type does rot correspond to a single-electron configura-
tion, and exact wave functions are perhaps most
convergently represented by linear combinations of


