CORRELATED ORIBTALS FOR He

the correlation function xx then achieves that the total
wave function @y given by Eq. (1) or (2) is normalized

in the usual sense:
f aVdyi=1.
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INTRODUCTION

OR the ground state of the helium atom and its
isoelectronic series, wave functions constructed
from a conventional orbital product, times a correlation
function depending on the interelectronic distance only,
have been relatively successful.! The best correlated
closed shell, using the same orbital for both electrons,
yields energies within 0.15 ev of experiment; the best
correlated open shell, using a symmetrized product of
two different orbitals, comes within 0.015 ev.
In this paper we give the results of similar calcula-
tions on the hydrogen molecule. The correlated closed
shell for Hy is represented by

Pe=0(1) 0(2)x (r12), (1)

where ¢ is a one-electron function or orbital, and x(r12)
is the correlation function. The orbital ¢ must be of
species g,; expressing ¢ in terms of the usual elliptic
coordinates,? this means that

e(&m=e(§ —n). (2)

For the correlated open shell there are two different
possibilities. They both have in common that the total
wave function is given by

* This work was assisted by a grant from the National Science
Foundation and by a contract with Wright Air Development
Center, U. S. Air Force.

t Permanent address: Institute of Physics, Polish Academy of
Sciences, 69 Hoza, Warsaw, Poland.

L C. C. J. Roothaan and A. W. Weiss, Revs. Modern Phys. 32,
194 (1960), this issue.

2If @ and b refer to the two nuclei, and R is the internuclear
distance, £= (#o-+75)/R, n= (ra—7)/R.

&=L o(LY(2)+¢¥ (1) ¢(2)Ix (712)- ©)

The difference between the two open shells is in the
orbitals. One type, which we call the in-out correlated
open shell, is built from a ¢ and ¢ which both have o,
symmetry and satisfy Eq. (2). For the other type, called
the left-right correlated open shell, the orbitals ¢ and ¢
have only cylindrical, or ¢, symmetry, and they are
each other’s mirror image with respect to the center of
the molecule. ‘

The first correlated closed-shell calculation was done
by Frost and Braunstein.? They used a simple LCAO
for the orbital ¢=1s5,41s5, and a two-term correlation
function x(r12)=1-cr1; the effective nuclear charge
of the 1s orbitals and the constant ¢ were the adjustable
parameters. Their calculation yielded a binding energy
which was still in error by 0.6 ev. Since we expect (from
analogy with the helium series) only about 0.15 ev or
less for well-adjusted orbital(s) and correlation function,
Frost and Braunstein’s choice for these was clearly too
inflexible. We adopted the expressions

50(5777) = Zz:o aiui(s:")y
rﬁ(fm)=é bu(pm), @

n
X (712) = Z Culp (7'12) 3
p=0

3 A. A. Frost and J. Braunstein, J. Chem. Phys. 19, 1133 (1951).
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R
Fic. 1. Coordinate system.

the basis functions #; and v, are given by

ui(Em) = Vu(r12) =712%, ®)

where p;, ¢; are two integers, which are functions of ¢,
and g¢; is even. Hence we deal only with the correlated
closed shell and the in-out correlated open shell. The
reason for this restriction was that these two cases are
formally identical with the helium series calculations!
once the supermatrix elements have been constructed;
hence the only new computer programs needed were
those for calculating the primitive integrals and sub-
sequently the supermatrix elements. The left-right
correlated open shell is also an interesting wave function
form and should perhaps be investigated at some future
date.

EPindie aE

SINGULARITIES IN THE WAVE FUNCTION
AND THE HAMILTONIAN

For a four-particle system, the ground-state wave
function depends on the six interparticle distances only,
which may be taken as the independent coordinates.
The total Hamiltonian is, in general*

1,1 1 ? 2 9 ZZj
w2 5Gt) o) o)
i<i 2\m; m; 61’,']2 755 0735 7ij
62
— > —cos(tijtin) , (6)
127, k; 1<k m; rq;jaf,;k

where m; and Z; are the mass and charge of the ith
particle.

The Hamiltonian (6) suggests that the wave function
be put forward as a product of the interparticle dis-
tances. However, in a molecular case it is more cus-
tomary to start with the Born-Oppenheimer approxi-
mation, which is obtained by giving the nuclei infinite
masses and fixed positions, and considering the elec-
tronic wave function for the fixed nuclear framework.
We transform the Hamiltonian (6) accordingly. We
change the subscripts 3 and 4 into ¢ and b, referring

4 This form of the Hamiltonian was recently introduced by A. A.
Frost (private communication).
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to the nuclei in more conventional notation. We further
put m1—7n2—1 Ma= Mp= 0 —Zl=°—Z2=Za,=Zb=1,
rap=R, and introduce the elhptic coordinates ¢ and 7;
the Hamiltonian then becomes

30= 501+ 3Cy+ JCiat 3Crs, @
where (see Fig. 1)

92 9?
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+ (cosPaa+ C050b21)_£
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79
+ (COS&am— COSZ?bzl)-—]—.

37]2 61’12

We note that (£2—1)/(£2—n2) =3%(14 cosdy),
(1—93)/(E2—n2)=%(1—cosh;) (see Fig. 1). If & is an
approximate wave function, the expression 30®/® has,
in general, infinite singularities for 7;,=0 due to the
last two terms of 3Cjs, and for &=1, ;=241 (which
corresponds to 75;=0 and 7, =0, respectively) due to
the last three terms of 3C;; furthermore, bounded singu-
larities can occur due to the first two terms of 3C;, and
all the terms of 3C;2’. The conditions that the infinite
singularities cancel are

eenyen], o
ti=1,9i==1

102 1
B
L) 37’12 2 712 =0

The correlated closed- and open-shell wave functions
(1) and (3) satisfy the conditions (9) if the orbital(s)
and correlation function satisfy the cusp conditions

=_[¢

LA/x)(0x/97) Jrm0=13;

©

[ do Odo

d a
_'l/__'l/)] =1, (10)
0t I/ Jmint
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for our explicit expansions (4), (5), this becomes

%[a'“§ (pi—qi)ai/ Z, a:]

1
=E[a—2 (pi—q)bs/2 b:]=1, (11)

(61/ co)= %

ITERATIVE EQUATIONS FOR EXPANSION
COEFFICIENTS AND EVALUATION OF
SUPERMATRIX ELEMENTS

The formalism for determining the best coefficients
for the orbital(s) and correlation function is almost
identical with that developed for the helium series. In
particular, we can take over Egs. (12)-(21) from foot-
note reference 1 if we replace the potential energy
operator —Z(1/n+1/r))+1/rie by —1/ra—1/ru
—1/rs0—1/r39+1/r15. The derivation of the super-
matrix elements in terms of primitive integrals is a
somewhat lengthy but straightforward and well-known
process: the results are

Hijryw=2R" 2[0!2(Kz>+2 38"+ K 2,300
=K pe53*t"— K pand"t” )_a?(KzH-l P Tl .
—K p1,05""") — 0D (K 511,30 — K 51, 308" )
+ (piti— 99D K pepa* T+ (prpr— qkql)Kﬁ avd" "
“Pi?:Kpﬂ q""+”_Pk?le’>—2 qpq
+4i0iK p.o-2,57" "+ 1K 5, 72,04
=3[+ ) +r(r+1) J(K pra,0p2*™ 2
—K ?,9+2, ﬁq"'H_Z)
—4R (K p+1,457" 7"+ K p11,204"™)

+ Kpt2.057 7" = Kp o, 52, (12)
Siintw=Kpi2,053"" — K p,at2,57"" (13)
where

p=ptpi, P=prtdy, ¢=¢tq I=qtq
and the primitive integrals K ,,53* are given by
= [ [aviavacee—ney
X g 2atrtho) £ oy £ B, Ty o6 (14)
note that
K p12,057" = Kp.at2,57"= Kpi2,30a" — K. 742.08*  (15)

EVALUATION OF THE PRIMITIVE INTEGRALS

The integrals K ,453" are evaluated using the methods
developed by James and Coolidge,® Kotani et al.,’ and

8 H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).
¢ M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimura, Tables
of Molecular Integrals (Maruzen Company, Tokyo, 1955).
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Ruedenberg.” For even u they are expressible as linear
combinations of products of one-electron integrals; for
odd p they can all be reduced to K, and they
require the Neumann expansion for 73! in elliptic
coordinates. In our calculations the highest power .of
712 in the correlation function was taken to be 2. This
seems somewhat low in view of the results for the
helium series!; taking higher powers, however, would
have materially increased the complexity of the cal-
culations. Hence we have to evaluate K,.g* for
u=-—1,0,1, 2, 3, 4. Since we deal only with the corre-
lated closed shell and the in-out correlated open shell,
it is easily seen that only integrals K p,53* with even ¢
and ¢ are needed. However, the integrals with odd ¢
and ¢ are useful in calculations with slightly different
types of wave function, and we shall give the formulas
for the general case.
We later make use of the relation

2Emtame—2
—1)([A—92) ]t
Xcos(p1—

r1f= 1R2{512+"712+522+112
—2[(51 - 1) (1"7112) (52

(pz)}. (16)

We define the charge distributions

Z1pg=€244EPyT, )
and
2= (E4+7*—1)Zy,
Zy= (F+1"—1)2y,
Zy=nZy,
Zy= 2,
Ze=En(8+n*—1)Z,,
Zr=(£-1) (-7’2,
M=[(£&-1)(1—7)) ]} cospZy,
M= (&4+n*— 1),
IIs= &nlly,

A= (8—1)(1—79? cos2¢21;

(18)

in Egs. (18) we suppressed the indices p and ¢, hence
Zipq= EnZ1pq, etc. Similarly, we define a set of additional
charge distributions by

= (52—772)217

and similarly, Z*, Z5*, etc.

By using Egs. (14), (16) and the definitions (17)-
(19), we can now express the primitive integrals in
terms of integrals over the charge distributions. After

19)

7K. Ruedenberg, J. Chem. Phys. 19, 1459 (1951).
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TABLE I. Closed shell, no correlation function (SCF).

a 0.75 0.85 0.90 0.95 1.00
Eei(a.uu.)  —1.84745 —1.84775 —1.84782 —1.84786 —1.84785
Etot(a.u.) —1.13317 —1.13347 —1.13354 —1.13357 —1.13356
D(ev, 3.6235 3.6316 3.6335 3.6344 3.6341

£ 9

0 0 1.00000 1.00000 1.00000 1.00000 1,00000
1 0 —0.13123 —0.06305 —0.03191 —0.00626 0.01106
2 0 0.01283 0.01561 0.02083 0.02980 0.04338
0 2 0.27427 0.28636 0.28869 0.28781 0.28322
1 2 —0.03790 —0.02685 —0,01816  —0.00724 0.00588
Cusp —0.929 —0.948 —0.955 —0.961 —0.966

some manipulations, this becomes, symbolically,
K'=(Z,|Z*),
4R7PK?= (2o 21%) (21| 20%)— 2(24 | 24%),
16RK = (23| 2)+ (21| 55)+2(Z2 | Z5%)
—4(Z6|Z4*)— 4(Z4| Z6*)
+4(Z5| 25+ 2(Z1 | Z*),  (20)
K=[24]2:%],
AR2K'=[Z,| 2/ *]+[21|2:¥]
—2[24| 2440 | 10,4,
16R™K3=[Z3| Z/* 21| 25¥ ]+ 2[22] 22*]
— 4[| 2] — 4[24 Z6*]HA[Z5] 26%]
+2[=Z| Z7*]— 8[| II;*]—8[I1; | I[,*]
4 16[ 11| IT5* ]4-4[ A1 | Ar*].
In Egs. (20) we have suppressed the indices p, ¢, P, §;
the first Eq. (20) written out in full would read

K po5g’= (21%'2155* s

and the others are analogous. Finally, the symbols
(¥|Q*) and [¥|Q*] are defined by

(\I/]SZ*)=fdeﬂle(Elz—m?)"l(522‘“’722)—1
X¥(1)2*(2),
(21)
[v|2*]= f f AV AV a(Ei—nD (E— D
X (1)Q*(2)r127,
where Q,¥ stand for any of the symbols 2, Z,,- - - A;.

We now turn to the final quadratures. We write for
the charge distributions in general

Zepa= g2t Z anngp+rnq+a,

78

HKqu g2t Z ersE”“L”)qJ”[(EL' 1) (1—7’2):1% CoS o, (22)
Alpq= g2 Z 51rs£p+r,7q+s(z§-2_ 1) (1 _,,72) cos2 o,

where axrs, Turs, 0175 are the coefficients of the small poly-
nomials in Egs. (18).

The integrals (Z,|Z)*) which occur for K* with even
u can be evaluated in elementary fashion since the
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integrand factors completely. The result is
<2qu l g )= %"VZRGQMMQ)\W*’

where in general

23)

00

1
dfe‘“%"'”f dmets.  (24)
1

prq=% Z ‘7xr8f
78 1

The second integral in Eq. (24) vanishes for ¢-+s odd,
and is equal to 2(g+s+1)7* for ¢+s even. Inspection of

~ Egs. (18) shows that 2, and 2 are even in ¢g+s if ¢ is

odd, and 2y, 2y, Zs, 25, 2y are even if ¢ is even. Hence
we obtain

Q“pq:"z ers((ﬂ's'l‘ 1)_1A P+7‘(2a) (25)

for k=4, 6 and ¢ odd, and for k=1, 2, 3, 5, 7, and ¢
even; otherwise Qyp, vanishes. The function A,(x) is
given by

A,,(x)=f die=*tr=nlx—1e= Y x*/kl.  (26)
1 k=0

The integrals [Z,|Z\*], etc., which occur for K* with
odd p are more complicated. We follow closely Rueden-
berg’s treatment of the exchange integrals.” We sub-
stitute the Neumann expansion for 757 into the
integrands and carry out the integrations over 1, 72,
1, @2; the results are

EZKPQIE)‘ia*:l:%W?Rs Z Z Z OkrsONFE"

L r7 §§

X By By s @ r, 547" (2a),

[:prq| Hkiﬁ*]=%7"2R5 Z Z Z TrsTAFS

L r7 s§
(21)
X Bq+leB §+§1L‘i’p+r. z')+FlL (205),
—1 %
[A1pg] A1pg*]=37"R5 3_ 3 2 d1rs0175
L 7 s§
p)
X Byt "B g™ ® pir, pr7 " (200,
TastE II. Open shell, no correlation function.

@ 0.75 0.85 0.90 0.95 1.00
Ee(au.)  —1.85542 —1.85597 —1.85607 —1.85611 —1.85608
Eiwt(an.) —1.14114 —1.14168 —1.14178 —1.14182 —1.14179
D(ev) 3.8403 3.8551 3.8579 3.8589 3.8582

£ n

0 0 1.00000 1.00000 1.00000 1.00000 1.00000
10 —0.31768  —0.28665 —0.26420 —0.23710  —0.20560
2 0 0.02997 0.02832 0.02675 0.02484 0.02280
0 2 0.15183 0.15569 0.15768 0.15928 0.16038
12 —0.02816  —0.02559  —0.02325 —0.01996  —0.01559
Cusp —0.991 —1.030 —1.043 —1.053 —1.060
00 1.00000 1.00000 1.00000 1.00000 1.00000
10 0.09346 1.73166 1.98733 1.95636 1.62369
2 0 —0.00773  —0.06323 0.00585 0.12519 0.26870
0 2 0.09657 1.33218 1.43283 1.39648 1.22629
12 —0.00835  —0.01612 0.05432 0.13715 0.20952
Cusp —0.814 —0.794 —0.775 —0.791 —0.796
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TasLE III. Closed shell, two-term correlation function.
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TABLE V. Closed Shell, three-term correlation function.

« 0.75 0.85 0.90 0.95 1.00 a 0.75 0.85 0.90 0.95 1.00
Eel(au)  —1.88549 —1.88630 —1.88639 —1.88642 —1.88642 Fel(a.u)  —1.88597 —1.88673 —1.88682 —1.88685 —1.88684
Eot(a.u.) —1.17120 ~1.17201 —-1.17211 —1.17214 —1.17214 Etot (a.u.) —1.17168 —1.17244 —1.17254 —1.17257 —1.17255
D(ev) 4.6584 4.6805 4.6830 4.6838 4.6838 D(ev) 4.6715 4.6921 4.6947 4.6955 4.6952
£ n £ 9
0 0 1.00000  1.00000  1.00000  1.00000  1.00000 0 0 1.00000  1.00000  1.00000  1.00000  1.00000
10 —0120991 —0.15172 —0.11642 —0.07919  —0.04227 10 —021072 —0.15402 —0.12103 —0.08703 —0.05395
2 0 001584 001263 001161 001186  0.01420 2 0 001726 001490 001473 001604  0.01957
0 2 0.21493 0.22466 0.22828 0.23038 0.23041 0 2 0.21762 0.22567 0.22821 0.22907 0.22785
12 —0,03131 —0.02514 —0.01965 —0.01226 —0.00279 12 —0.03088 —0.02359 —0.01751 —0.00955  0.00039
Cusp  —0.963 —0.978 —0.992 —0.992 —0.995 Cusp  —0.953 —~0.978 —0.986 —0.992 —0.996
712 712
0 1.00000  1.00000  1.00000  1.00000  1.00000 0 1.00000  1.00000  1.00000  1.00000  1.00000
1 041751 043270 043463 043518  0.43536 1 052184 052885  0.53026  0.52980  0.52782
2 —0.03203 —0.03025 —0.03012 —0.02972  —0.02903
where .
the recurrence relation
2 (L+Mhyt 2%q!
(L+M)
2L+1) (L—M) (¢+L+M+1)! B ML=, gy Ml P M L1
(2L+1)
1
oL G+L+Mm)]
BML= P ——" (L—M+1)
L(g—L+m) ]! ———————3,;M I (31)
N (28) (2L+1)
for g— L+M 20 and even, was used.
L0 otherwise;

By (x) = f E(E— 1) [, (5 0) [ (E), (29

£
£ (52) =[P (9T f diP M () (p— 1)1

Xeetir,  (30)
Note that the condition that By™Z be finite, expressed
in Eq. (28), guarantees that the sums over L in Egs.
(27) remain finite. For details of the derivation of Egs.
(27)-(30) the reader is referred to Ruedenberg’s paper.’

For M=0 the ®,;” were evaluated by numerical
integration using Egs. (29) and (30). A 50-point inte-
gration gave 6-7 significant figures. Checks were made
against values tabulated by Kotani et al.® For M>1

TaBLE IV. Open shell, two-term correlation function.

a 0.75 0.85 0.90 0.95 1.00
Eel(a.u.) —1.88614 —1.88687 —1.88694 —1.88696 —1.88696
Etot(a.u.) —~1.17186 —1.17258 —1.17266 —1.17268 —1.17268
D(ev) 4.6762 4.6959 4.6980 4.6986 4.6986

£ 7

00 1.00000 1.00000 1.00000 1.00000 1.00000
10 —0.28817 —0.24364 —0.20992 —0.16727 —0.11649
20 0.02371 0.01913 0.01538 0.01036 0.00464
0 2 0.18445 0.19481 0.19903 0.20022 0.20368
1 2 —0.03152 —0.02886 —0.02554 —0.01979 —0.01316
Cusp —1.001 —1.036 —1.045 —1.045 —1.038
00 1.00000 1.00000 1.00000 1.00000 1.00000
10 —0.05691 0.03913 0.08186 0.10685 0.11217
2 0 0.00055 0.00109 0.00318 0.01392 0.03154
0 2 0.27888 0.29235 0.29584 0.29873 0.29006
12 —0.03216  —0.01908  —0.00909 0.00164 0.01621
Cusp —0.885 —0.895 —0.900 —0.911 —0.922

712

0 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.39050 0.40319 0.40488 0.40574 0.40618

RESULTS AND DISCUSSION

The computations were carried out on the Remington
Rand Univac Scientific 1103 computer at Wright-
Patterson Air Force Base. As mentioned before, the
expansion length for the correlation function was
restricted to three terms (=0, 1, 2). The orbitals were
restricted to 5 terms (m=2). The latter restriction was
necessary due to the size of the memory. Since Coulson?®
obtained good results for the SCF function of H, with
these 5 terms, this restriction should not be serious for
the closed-shell calculations. For the open-shell cal-
culations these 5 terms probably are not sufficient to
allow the two orbitals to be optimized; indeed, the
improvement of the open shell over the closed shell is
in this case not as large as for the helium series.! The

TaBLE VI. Open shell, three-term correlation function.

a 0.75 0.85 0.90 0.95 1.00
Eel(a.u.) ~ —1.88644 —1.88713 —1.88722 —1.88724 —1.88724
Eot(a.u.) —1.17215 —1.17285 —1.17293 —1.17296 —1.17295
D(ev) 4.6843 4.7032 4.7054 4.7061 4.7059

£ 9

0 0 1.00000 1.00000 1.00000 1.00000 1.00000
10 —0.27951 —0.22158 —0.17779 —0.12579 —0.06314
2 0 0.02293 0.01600 0.01033 0.00387 —0.00376
0 2 0.20474 0.21418 0.21952 0.22720 0.22989
1 2 —0.03571 —0.03150 —0.02697 —0.02234 —0.01363
Cusp —1.011 —1.036 —1.039 —1.041 —1.024
00 1.00000 1.00000 1.00000 1.00000 1.00000
10 —0.08591  —0.02855 —0.01546 —0.01229 —0.02490
20 0.00616 0.01101 0.01970 0.03264 0.05120
0 2 0.24432 0.25141 0.24912 0.23921 0.23212
12 —0.02391  —0.01179  —0.00354 0.00889 0.01960
Cusp —0.873 —0.898 —0.912 —0.923 —0.941

Y12

0 1.00000 1.00000 1.00000 1.00000 1.00000

1 0.47632 0.48526 0.48883 0.49012 0.48972

2 —0.02486  —0.02376  —0.02412  —0.02416  —0.02381

8 C. A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 (1938).
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£0,2)=|9 )1 + ¢,

F16. 2. Probability density of the second electron along the axis
for two fixed locations of the first electron.

calculations were carried out for R=1.4 a.u.; according
to the most recent values® for the fundamental constants
this is 0.74084 A, which is close enough for our purpose
to the experimental®® equilibrium distance

R,=0.74116 A.

The exponent a and the expansion length of the cor-
relation function were varied; the results of the com-
putations are summarized in Tables I-VI. It appears
that the optimum « is between 0.95 and 1.00 for all
cases, and E versus a is very shallow around the mini-
mum ; for ease of comparison, the energies and cusp
values for @=0.95 are collected in Table VII. The
closed-shell calculation with a single term for the cor-
relation function is identical with the SCF calculation;
our value is slightly lower than Coulson’s due to the
optimization of a. The cusp values obtained indicate
that the expansion lengths are not as satisfactory as in
the helium-series calculations.! In spite of this, however,
the best energies obtained are rather good: 4.6955 ev

9E. R. Cohen and J. W. DuMond, Handbuch der Physik
(Springer-Verlag, Berlin, 1957), Vol. 35, p. 82.
10 G, Herzberg and L. L. Howe, Can. J Phys 37, 636 (1959).
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TasLE VII. Energies and cusp values for «=0.95.

Corr.
m Form  Eel(au.) Etwt(au) D(ev) Orb. cusp cusp
0 Closed —1.84786 —1.13357 3.6344 —0.961
Open —1.85611 —1.14182 3.8589 —1.053, —0.791
1 Closed —1.88642 —1.17214 4.6838 —0.992 ©0.435
Open —1.88696 —1.17268 4.6986 —1.045, —0.911 0.406
2 Closed —1.88685 —1.17257 4.6955 —0.992 0.530
Open —1.88724 —1.17296 4.7061 —1.041, —0.923 0.490
Exptl. 4.7466

for the closed shell, 4.7061 ev for the open shell,
compared to the experimental value' 4.7466+0.0007 ev.
It is to be noted that the best closed-shell energy for H,
is closer to the experimental value than for helium; on
the other hand, our best open-shell energy is inferior
to that for helium, which is probably due to the short
expansions for the orbitals. Figure 2 illustrates how the
correlated orbital wave function helps the electrons to
avoid each other. For the case of the closed-shell
function and #=1, we plotted the probability density
of electron 2 along the molecular axis for two fixed
locations of electron 1: at the midpoint (dotted curve)
and on atom ¢ (full curve). The latter curve shows that
if one electron is on atom @, the other electron is most
likely to be found on atom &, as it should be.
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