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the correlation function x~ then achieves that the total
wave function C» given by Zq. (1) or (2) is normalized
in the usual sense:

dVC jy = 1.
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INTRODUCTION

q'OR the ground state of the helium atom and its
isoelectronic series, wave functions constructed

from a conventional orbital product, times a correlation
function depending on the interelectronic distance only,
have been relatively successful. ' The best correlated
closed shell, using the same orbital for both electrons,
yields energies within 0.15 ev of experiment; the best
correlated open shell, using a symmetrized product of
two diferent orbitals, comes within 0.015 ev.

In this paper we give the results of similar calcula-
tions on the hydrogen molecule. The correlated closed
shell for H2 is represented by

C'a= v (1)~(2)x(r») (1)
where p is a one-electron function or orbital, and g(r»)
is the correlation function. The orbital p must be of
species o;, expressing y in terms of the usual elliptic
coordinates, ' this means that

v (3,n) = ~(f, n)—(2)

For the correlated open shell there are two di6erent
possibilities. They both have in common that the total
wave function is given by

*This work was assisted by a grant from the National Science
Foundation and by a contract with Wright Air Development
Center, V. S. Air Force.

t' Permanent address: Institute of Physics, Polish Academy of
Sciences, 69 Hoza, Warsaw, Poland.' C. C. J. Roothaan and A. W. Weiss, Revs. Modern Phys. 32,
194 (1960), this issue.

~ If u and b refer to the two nuclei, and R is the internuclear
distance, g= (r +rb)/R, g= (r —rb,)/R.

C =0)y(1)P(2)+P(1)p(2)]x(rq2). (3)

The difference between the two open shells is in the
orbitals. One type, which we call the ie-ogt correlated
open shel/, is built from a p and P which both have o,
symmetry and satisfy Eq. (2). For the other type, called
the left right correl-ated oPen shell, the orbitals it and tP

have only cylindrical, or 0, symmetry, and they are
each other's mirror image with respect to the center of
the molecule.

The erst correlated closed-shell calculation was done
by Frost and Braunstein. ' They used a simple LCAO
for the orbital p= 1s,+isb, and a two-term correlation
function y(r»)=1+cr~2, the effective nuclear charge
of the 1s orbitals and the constant c were the adjustable
parameters. Their calculation yielded a binding energy
which was still in error by 0.6 ev. Since we expect (from
analogy with the helium series) only about 0.15 ev or
less for well-adjusted orbital(s) and correlation function,
Frost and Braunstein's-choice for. these was clearly too
inQexible. We adopted the expressions

O(&,~)=2 b, '(~,~),
iM

3 A. A. Frost and J.Braunstein, J. Chem. Phys. 19, 1133 (1951).
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to the nuclei in moror
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FIG. 1. Coordinate system.

the basis functions u and v arv„are given by

N, (),rt) = ]"'rt'*e &, v„(r12) = r12", (5)

where
and; is eve

;, q; are two integers, which are f t'are unctions o z,

q; is even. Hence we deal only with the 1i e corre ated
e an the in-out correlated open shell. The

reason for this restriction was th t th
formally identical with the h 1'
reason a ese two cases are

e e ium series calculations'

ence the onl n
p

'
elements have been constru t donce t e su ermatrix ce

nly new computer programs d d
r ca culating the primitive integral d b-

q y he supermatrix elements. The left-ri
,.„,l,t.d ..",'.,h,ll;, 1

~

s e is also an interesting wave functi
f per aps be investigated at some future

SINGULARITIES IN THE WAVE FUNCTION
AND THE HAMILTONIAN

For a four-particle system, the ground-state wave

e total Hamiltonian is, in general, 4

1(1 1i B 2 B ) ZZ
X=Z —

I

—+—
ll +—

2 (222, 222;) LBr;22 r,; Br') r;;

1 8—cos(r, ;,r;2), (6)
i&j,k; j&k fg arf'j f Ir,

where ns; and Z.
particle.

Z; are the mass and charge of th
'

ho ezt

The Hamiltonian (6) suggests that the wave function
be put forward as a product of the in
ances. owever, in a molecular case it isi is more cus-

y o s art with the Born-Oppenheimer er approxi-

, which is obtained by giving the nuclei infinite
masses and fixed positions d, an considering the elec-

We
tronic wave function for the fix d 1e nuc ear framework.

e transform the Hamiltonian ~~6j~ac
ange e subscripts 3 and 4 into a and b, referring

4 This form of the Hamiltonianonian was recently introduced by A. A.
M ~

X Xi+ X2+ X12+X12

where (see Fig. 1)

2 a2

X,= — (],2—1) + (1—2t,2)

R2(),2—rt,2) Bg;2 B2t,2

8 8
+2), —22t, +2R), ,

B2ti

(8' 2 8 1
X = —

]
+-

4 Br12' r12 Br12 r12)

X12 (COSPgl2+COS8512)
Bpi

8
+ (COS'Pa12 COSB212)'

Bgi

1 ( BC' BC')
/+Rt,

C' B(; B 1, ps=&1
=0

184 1
=0

rely =0

The correlated closed- and open-sh 11 f
( ) an (3) satisfy the conditions (9) if the orbital(s)
and correlation function satisfy th e cus con itions

1 1 (Bip rB)p

R (p (B) B2t &

1 1 (8$ 8$)
=R jiaP B i~

C(1/x) (Bx/Br) j -o=-'

+ (COSPg21+ COSPP21)
B$2

8
+ (COSPg21 —COSB221)

We note that ($,2 —1)/ (f' —q') = -'(1+ COSH.

(1—rt,2)/($, 2—2t,2) =-', (1—COSH, ) (see Fi . 1). If
pp

'
wave function, the expression XC/C has,

in general, i22fi22ite singularities f =0 d
ast two terms of X12, and for $,=1 = 1

pd o r&, =0 and r 1
——0, respectively) due to

the last three terms of X";; furthermore, bounded singu-so;, an
rms o~ %12. The conditions that the infinite

singularities cancel are
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for our explicit expansions (4), (5), this becomes

—I:~—Z(p' —v') ~'/2 «3
R

(C1/Cs) 2 ~

S 7) v
—E~2 --"+"—E +2 --~+"

where

(12)

(13)

P P~+Pri 77 Ps+P4 0 &+Pi —II &+8~

and the primitive integrals Eyqyq are given by

&nsne"= &I'~dI's(6' —ni') '

ye «h+e2&g—p&&q]&n&sar& n (14)

note that

ITERATIVE EQUATIONS FOR EXPANSION
COEFFICIENTS AND EVALUATION OF

SUPERMATRIX ELEMENTS

The formalism for determining the best coefEcients
for the orbital(s) and correlation function is almost
identical with that developed for the helium series. In
particular, we can take over Eqs. (12)-(21) from foot-
note reference 1 if we replace the potential energy
operator Z(1/r~+ 1—/rs)+ 1/r&s by —1/r, &

—1/red
—1/r, s 1/r—M+1/r~ sThe derivation of the super-
matrix elements in terms of primitive integrals is a
somewhat lengthy but straightforward and mell-known

prot;ess: the results are

+'ie ~"=2R 'L~'(E n+s, sn e"+"+&n+s, ens"+"
u+1 E — V+I E &*(E~& -V+I

nquq Ãqnq i g i n+& qnq

I:n ~,ene"—+") II (&~~,—ens"+" &~~.ens"—+")

+ (O'P W~)&-..—"'"+(PsP~ --use)&re-"—'"

+&PiJfn, s s.ne +&&Ifn. e—sns-
—lLl (~+I)+ (+1)J(&,--e"+ '

Ruedenberg. ' For even p, they are expressible as linear
combinations of products of one-electron integrals; for
odd p, they can all be reduced to E„,„-; ', and they
require the Neumann expansion for r» ' in elliptic
coordinates. In our calculations the highest power. of
r» in the correlation function was taken to be 2. This
seems somewhat low in view of the results for the
helium series', taking higher powers, however, would
have materially increased the complexity of the cal-
culations. Hence we have to evaluate E„q„-;I' for
p= —1, 0, 1, 2, 3, 4. Since we deal only with the corre-
lated closed shell and the in-out correlated open shell,

it is easily seen that only integrals E„q„-;I'with even q
and q are needed. However, the integrals with odd q
and g are useful in calculations with slightly diferent
types of wave function, and we shall give the formulas

for the general case.
We later make use of the relation

We de6ne the charge distributions

= e s&epr—is

and

Zs= (P+gs —1)Zy,

Zs= (8+v' —1)'Z»

Z4= $qZ»

Zs= PrPZ»

Zs= &a(P+n' 1)Z»—

»= (P—1)(1—n')Z~

II~=I(es—1)(1—ns) j c~i Z»

II,= (P+gs —1)Ir,

IIs =bill»

Llx= (P—1)(1—gs) cos2enZi, .

(17)

in Eqs. (18) we suppressed the indices p and g, hence

Z4„,——PgZ~n„etc Similarly. , we define a set of additional
charge distributions by

rls s+ ($1 +$1 +(2 +'gs 2)leltsgs

—2L($P —1) (1—qP) (ass —1)(1—ass) j&

Xcos(e,—e,)). (16)

E~s " E+s --n=En-+-s —- " E- -+s " (15)— Zg*= (P—gs)Z» (19)

' H. M. James and A. S. Coolidge, J. Chem. Phys. I, 825 (1933).
6 M. Kotani, A. Amemiya, E. Ishiguro, and Y. Kimura, Tables

of M'olecNLur Integrates {Maruzen Company, Tokyo, 1955). ~ K. Ruedenberg, J. Chem. Phys. 19, 1459 {1951).

EVALUATION OF THE PRIMITIVE INTEGRALS
and similarly, Z2*, Zs*, etc.

The integrals En, n e" are evaluated using the methods IIy using Eqs. (14), (16) and the definitions (17)-
develoPed by James and Coolidge, ' Kotani et al. ,

' and (19) we can now express the primitive integrals in
terms of integrals over the charge distributions. After
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0.75 0.85 0.90 0.95 1.00

TABLE I. Closed shell, no correlation function (SCF). integrand factors completely. The result is

&z...jz.;—,*)=!-'~'e.„e.;;*, (23)
E 1(a.u.)
Stot (a.u.)
D(zv)

—1.84745
1.13317
3.6235

—1.84775—1.13347
3.6316

—1.84782 —1.84786 —1.84785
13357 ' 356 where &n general3.6335 3,6344 3,6341

0 0
1 0
2 0
0 2
1 2
Cusp

1.00000—0.13123
0.01283
0.27427—0.03790-0.929

1.00000—0.06305
0.01561
0.28636—0.02685—0.948

1.00000—0.03191
0.02083
0.28869—0.01816—0.955

1.00000—0.00626
0.02980
0.28781-0.00724-0.961

1.00000
0.01106
0.04338
0.28322
0.00588—0.966

(+Ifl*)=)")"dl'id''q(h' —~i') '(h '~q') '

xe(1)n*(2),
(21)

some manipulations, this becomes, symbolically,

zq=(z, Iz,*),
4z-qzq= (z,

I
z,*)+(z,

I
z,+)—2(z,

I
z,+),

16~ 4rt4=&z Izl*)+(z Iz *)+2&z Iz *)
—4(z,

I
z,*)—4(z, Izp)

+4(zqIz&*)+2(zq
I
zq*), (20)z-'= [z,

I
z,*],

4z- z = [z, Iz,*]+[z,Iz,*]
—2[z,

I
z,*]—4[rr,

I
rr, *],

16'-'E = [z, I
z,*]+[z,

I
z,*]+2[z,

I
z,*)

—4[z,
I
z,*]—4[z,

I
z,*]+4[z,

I
z,*]

+2[z,
I
z,*]—8[rr,

I
rr,*]—8[rr,

I
rr, *]

+16[11,
I rip]+4[A, I

A,*].
In Eqs. (20) we have suppressed the indices p, q, p, q;
the first Eq. (20) written out in full would read

z „,„-,q= (z„,I
z,„-;*),

and the others are analogous. Finally, the symbols
(+Ifl') and 5'In*] are defined by

00 I

Q,„,=-', P .„ t d$e ' P+" ~ dqrl'+'. (24)

Q.-=E ~-.(q+~+1) '~ p+.(2~) (25)

for ~=4, 6 and q odd, and for m=1, 2, 3, 5, 7, and q
even; otherwise Q„„,vanishes. The function A„(x) is
given by

QP n

A„(x)= ' d/e *'t"=q4!x " 'e Qx"—/k—!. (26)
k=0

The integrals [z„Izi*],etc. , which occur for E& with
odd p are more complicated. We follow closely Rueden-
berg's treatment of the exchange integrals. ' We sub-
stitute the Neumann expansion for r12 ' into the
integrands and carry out the integrations over p&, p2,

q1, q2, the results are

I ZspqlZ)pq ]= qr ~42 P 2 Srsrsrri rs
E rF ss

X+qrs +q+s @p+r, p+r (2&)s

[1Ispq I rrgpq ]= sql' R P P P ql', qrxp-
L rF ss

(2i)
x&,+."&;+;"c'~., ~;"(2~),

The second integral in Eq. (24) vanishes for q+s odd,
and is equal to 2 (q+s+1) ' for q+s even. Inspection of
Eqs. (18) shows that Z4 and Zq are even in q+s if q is
odd, and Z1, Z2, Z3, Z5, Z7 are even if q is even. Hence
we obtain

I dyidrr'q(( q
7f q)

—i($ q —r—
/ q)

—iJJ
X%'(1)A*(2)rsq '

where 0,+ stand for any of the symbols Z1, Z2,
We now turn to the final quadratures. We write for

the charge distributions in general

[Ai-I Aipq*]=k+&' 2 2 2 ~i-~i--*

0.75 0.85 0.90 0.95

x&q+."&q+-"@~,~-"(2&)

TABLE II. Open shell, no correlation function.

1.00

z„„,=s-'-t P ~„„p+~ +,

Ir.„=s"Z ~ 5~"nq+'[(8 —1)(1—n')]'cos~, (22)

A&p, e'~t Q 84 p——+rsiq+s(p —1)(1—rp) cos2q,

where 0;„,m„„b&„are the coeKcients of the small poly-
noinials in Eqs. (18).

The integrals (Z„IZi*) which occur for E"with even

p can be evaluated in elementary fashion since the

Eel(a.u.)
Btot (a.u.)
D(ev)

0 0
1 0
2 0
0 2
1 2
Cusp

0 0
1 0
2 0
0 2
1 2
Cusp

—1.85542—1.14114
3,8403

1.00000—0.31768
0.02997
0.15183—0.02816—0,991

1.00000
0.09346—0.00773
0.09657—0.00835—0.814

—1.85597—1.14168
3.8551

1.00000-0.28665
0.02832
0.15569—0.02559—1.030

1.00000
1.73166—0.06323
1.33218—0.01612—0.794

—1.85607—1.14178
3.8579

1.00000—0.26420
0.02675
0.15768—0.02325—1.043

1.00000
1.98733
0.00585
1.43283
0.05432—0.775

—1.85611—1.14182
3.8589

1.00000—0.23710
0.02484
0.15928—0.01996—1.053

1.00000
1.95636
0.12519
1.39648
0,13715—0.791

—1.85608—1.14179
3.8582

1,00000—0.20560
0.02280
0.16038—0.01559—1.060

1.00000
1.62369
0.26870
1.22629
0.20952—0.796
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TABLE III. Closed shell, two-term correlation function. TABLE V. Closed Shell, three-term correlation function.

B l(a.u.)
Btot(a.u.)
D(ev)

0 0
1 0
2 0
0 2
1 2
Cusp

r12
0
1

0.'75

—1.88549—1.17120
4.6584

1.00000-0.20991
0.01584
0.21493-0.03131—0.963

1.00000
0.41751

0.85

—1.88630—1.17201
4.6805

1.00000-0.15172
0.01263
0.22466-0.02514—0.978

1.00000
0.43270

0.90

-1.88639—1.17211
4.6830

1.00000—0.11642
0,01161
0.22828—0.01965—0.992

1.00000
0.43463

0.95

—1.88642—1.17214
4.6838

1.00000-0.07919
0.01186
0.23038-0.01226—0.992

1.00000
0.43518

1.00

-1.88642—1.17214
4.6838

1.00000-0.04227
0.01420
0.23041

-0,00279—0.995

1.00000
0.43536

Bel(a.u.)
Etot (a.u.)
D(ev)

n
0 0
1 0
2 0
0 2
1 2
Cusp

&12
0
1
2

0.75

—1.88597—1.17168
4.6715

1.00000—0.21072
0.01726
0,21762—0.03088—0.953

1.00000
0.52184—0.03203

0.85

—1.88673—1.17244
4.6921

1.00000—0.15402
0.01490
0.22567—0.02359-0.978

1.00000
0.52885—0.03025

0.90

—1.88682—1.17254
4.6947

1.00000—0.12103
0.01473
0.22821—0.01751—0.986

1.00000
0.53026—0.03012

0.95

—1.88685—1.17257
4.6955

1.00000—0.08703
0.01604
0.22907—0,00955—0.992

1.00000
0.52980—0.02972

1.00

—1.88684—1.17255
4.6952

1.00000—0.05395
0.01957
0.22785
0.00039—0.996

1.00000
0.52782—0.02903

where

(L+M)! '* 2Lg
the recurrence relation

(2I+1) (L M)! —(q+L+M+1)!

[', (q+-L+M)]!
X )

Ls (q —L+M) 1'

for q
—I+M ~&0 and even,

.0 otherwise;

(28)
was used.

(I. M+1)—
„sr,l+1 (31)

(2L+1)

RESULTS AND DISCUSSION

(I.+M)
„M+1,L —@ ML M, L—1

(2L+1)

(29)

y ~&(~ x) =P' ~(~)]-' da', ~(i)(P—I)'*~

X& "&". (30)

Note that the condition that BOM be 6nite, expressed
in Eq. (28), guarantees that the sums over I. in Eqs.
(27) remain finite. For details of the derivation of Eqs.
(27)—(30) the reader is referred to Ruedenberg's paper. '

For M=O the C»ML were evaluated by numerical

integration using Eqs. (29) and (30). A 50-point inte-

gration gave 6—7 significant 6gures. Checks were made

against values tabulated by Kotani et al. ' For 3f&~1

The computations were carried out on the Remington
Rand Univac Scientific 1I03 computer at Wright-
Patterson Air Force Base. As mentioned before, the
expansion length for the correlation function was
restricted to three terms (rs=0, 1, 2). The orbitals were
restricted to 5 terms (rrs=2). The latter restriction was
necessary due to the size of the memory. Since Coulson'
obtained good results for the SCF function of H2 with
these 5 terms, this restriction should not be serious for
the closed-shell calculations. For the open-shell cal-
culations these 5 terms probably are not sufIj.cient to
allow the two orbitals to be optimized; indeed, the
improvement of the open shell over the closed shell is
in this case not as large as for the helium series. ' The

TABLE VI. Open shell, three-term correlation function.

0.75 0.85 0.90 0.95

TABLE IV. Open shell, two-term correlation function.

1.00

Be1(a.u.)
'

Bt 2(a.u.)
D(ev)

0.75

—1.88644-1.17215
4.6843

0.85

—1.88713-1.17285
4.7032

0.90

—1.88722-1.17293
4.7054

0.95

-1.88724-1.17296
4.7061

1.00

—1.88724-1.17295
4.7059

Bel(a.u.)
Bt t, (a.u.)
D(ev)

e
0 0
1 0
2 0
0 2
1 2
Cusp

0 0
1 0
2 0
0 2
1 2
Cusp

2'l2
0
1

—1.88614-1.17186
4.6762

1.00000—0.28817
0.02371
0.18445-0.03152—1.001

1.00000—0.05691
0.00055
0.27888—0.03216—0.885

1.00000
0.39050

—1.88687-1.17258
4.6959

1.00000-0.24364
0.01913
0.19481—0.02886—1.036

1.00000
0.03913
0.00109
0.29235—0.01908—0.895

1.00000
0.40319

-1,88694—1.17266
4.6980

1.00000-0.20992
0.01538
0.19903—0.02554-1.045

1.00000
0.08186
0.00318
0.29584—0.00909—0.900

1.00000
0.40488

—1.88696-1.17268
4.6986

1.00000—0.16727
0.01036
0.20022-0.01979-1.045

1.00000
0.10685
0.01392
0.29873
0.00164—0.911

1.00000
0.40574

—1.88696-1.17268
4.6986

1.00000—0.11649
0.00464
0.20368—0.01316—1.038

1.00000
0.11217
0.03154
0.29006
0.01621—0.922

1.00000
0.40618

0 0
1 0
2 0
0 2
1 2
Cusp

0 0
1 0
2 0
0 2
1 2
Cusp

F12
0
1
2

1.00000-0.27951
0.02293
0.20474—0.03571-1.011

1.00000-0.08591
0.00616
0.24432—0.02391—0.873

1.00000
0.47632-0.02486

1.00000-0.22158
0.01600
0.21418-0.03150-1.036

1.00000-0.02855
0.01101
0.25141-0.01179—0.898

1.00000
0.48526—0.02376

1.00000-0.17779
0.01033
0.21952-0.02697-1.039

1.00000-0.01546
0.01970
0.24912—0.00354—0.912

1.00000
0.48883—0.02412

1.00000—0.12579
0.00387
0.22720-0.02234—1.041

1.00000-0.01229
0.03264
0.23921
0.00889—0.923

1.00000
0.49012—0.02416

1.00000-0.06314—0.00376
0.22989-0.01363—1.024

1.00000—0.02490
0.05120
0.23212
0.01960—0.941

1.00000
0.48972-0.02381

s C. A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 (1938).
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q, =o, r~,
TAm, E VII. Energies and cusp values for o.=0.95.

m FOrm Eel(a.u.) Stot(a.u.) D(eV) Orb. cusp
Corr.
cusp

l)(1,2)=l5)) I) gi(2)() + Cilil )I'

0 Closed —1.84786
Open —1.85611

1 Closed —1.88642
Open -1.88696

2 Closed —1.88685
Open —1.88724

Exptl.

—1.13357—1.14182

—1.17214-1.17268

—1.17257—1.17296

3.6344
3.8589

4,6838
4.6986

4.6955
4.7061

4.7466

—0.961—1.053, —0.791

-0.992-1.045, -0.911

—0.992—1.041, -0.923

0.435
0.406

0.530
0.490

Fxo. 2. Probability density of the second electron along the axis
for two 6xed locations of the 6rst electron.

calculations were carried out for 8=1.4 a.u. ; according
to the most recent values' for the fundamental constants
this is 0.74084 A, which is close enough for our purpose
to the experimental" equilibrium distance

E,=0.74116 A.

The exponent o, and the expansion length of the cor-
relation function were varied; the results of the com-

putations are summarized in Tables I—VI. It appears
that the optimum n is between 0.95 and 1.00 for all

cases, and E versus 0. is very shallow around the mini-

mum; for ease of comparison, the energies and cusp
values for 0,=0.95 are collected in Table VII. The
closed-shell calculation with a single term for the cor-
relation function is identical with the SCF calculation;
our value is slightly lower than Coulson's due to the
optimization of o,. The cusp values obtained indicate
that the expansion lengths are not as satisfactory as in
the helium-series calculations. In spite of this, however,

the best energies obtained are rather good: 4.6955 ev

9E. R. Cohen and J. W. DuMond, Handbmch der I'hysik
(Springer-Verlag, Berlin, 1957), Vol. 35, p. 82.

' G. Herzberg and L. L Howe, Can. J. Phys. 37, 636 (1959).

for the closed shell, 4.7061 ev for the open shell,
compared to the experimental value" 4.7466&0.0007 ev.
It is to be noted that the best closed-shell energy for H2
is closer to the experimental value than for helium; on
the other hand, our best open-shell energy is inferior
to that for helium, which is probably due to the short
expansions for the orbitals. Figure 2 illustrates how the
correlated orbital wave function helps the electrons to
avoid each other. For the case of the closed-shell
function and m=1, .we plotted the probability density
of electron 2 along the molecular axis for two 6xed
locations of electron 1:at the midpoint (dotted curve)
and on atom a (full curve). The latter curve shows that
if one electron is on atom a, the other electron is most
likely to be found on atom b, as it should be.
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