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determined the 2s orbital for Li using the Lit 1s orbital.
Indeed, a numerical table we obtained for our best
Lit orbital confirmed this. For Be, our orbitals differed
from Hartree’s® by a few units in the last figure he gave.

Generally speaking, we are confident that our SCF
orbitals are equivalent to the solutions of the integro-
differential Hartree-Fock equations to four decimal
places. This is confirmed by the behavior of the fifth
figure in the 1s orbitals; their tails cross the 7 axis,
decrease to —1X1075 and then die out as they should.
Further confirmation of this accuracy will be obtained
when a program for the computation and tabulation of
F¢;—eqp; and F¢,/ep;, now under construction, is
completed. The accuracy of our orbital energies should
be at least 4 figures, our total energies 7-8 figures.

9 D. R. Hartree, Proc. Roy. Soc. (London) A150, 9 (1935).
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APPENDIX

We put in Eq. (22) ¢?=—(d/dv)e~® and perform a
partial integration with respect to v; the result is

Cas()=Ca p1(i)— (@Bt f du- B3
0

where the term C,_1(f) is absent if 3=0. Next, we
multiply Eq. (22) by ¢, put the fe~*'=—(d/du)e *,
and perform a partial integration with respect to #;
the result is .

1C.a3(8) = 1C a5 1)+ (el 1) e f d- -0,
0

where the term {C,_1,4(¢) is absent if «=0. Addition of
these two equations and division by 14-7 yields Eq. (23).
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INTRODUCTION

OR the ground state of atoms, molecules, and solids,
the explicit solution of the Schrédinger equation to
obtain an accurate wave function is virtually a hopeless
task. Instead, one usually chooses a convenient func-
tion with adjustable parameters, and determines the
best wave function within this class by minimizing the
expectation value of the energy, computed from that
wave function, with respect to these parameters. The
form of the function chosen represents a certain re-
striction, and it is essential to use physical arguments in
choosing such a form; in doing so, we essentially choose
a model. The success of such a wave function can, to a
certain extent, be judged by comparing the calculated
energy with the experimental total energy.

One of the most successful models is the Hartree-
Fock approximation,”™* in which there occur, in-
stead of adjustable parameters, wholly adjustable
undetermined one-electron functions or orbitals. The

* Work assisted by a grant from the National Science Founda-
tion and by Wright Air Development Center, under contract with
the University of Chicago.

1D. R. Hartree, Repts. Progr. Phys. 11, 113 (1948).

2D. R. Hartree, The Calculation of Atomic Structures (John
Wiley & Sons, New York, 1957).

3C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).

4C. C. J. Roothaan, Revs. Modern Phys. 32, 179 (1960), this
issue.

condition for minimizing the energy leads to nonli-
near integro-differential equations for the orbitals,
which can be solved by the iterative self-consistent
field procedure.’* The total energies obtained by this
method are rather good, namely, about 999, of the
experimental values or better; also, the lower ionization
potentials and electron densities are calculated rather
reliably. However, many other physical properties,
calculated by the Hartree-Fock function, do not agree
nearly as well with experimental data, notably dissocia-
tion (or cohesive) energies.

It is well known that the shortcomings of the Hartree-
Fock method are due to neglect of the details of the
electronic repulsions; the wave function for each
individual electron is determined by the potential of the
nuclei and that due to the probability density of the
other electrons (we ignore the exchange potential,
which does not alter this picture materially). On the
whole, this allows electrons to come close together
more often than is actually the case. The energy cor-
rection which would result if this effect is properly
taken into account is commonly called the correlation
energy.® The correlation energy is especially large be-

§ More precisely, the correlation energy is defined as the dif-
ference between the expectation value of the energy of the Har-
tree-Fock approximation and the correct eigenvalue of the non-
relativistic spin-independent infinite nuclear mass Hamiltonian.
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tween two electrons in the same spatial orbital with
opposite spins; therefore, a logical next step after the
Hartree-Fock approximation is to construct a wave
function in which the paired electrons avoid each other
more strongly. Obviously the helium atom and its iso-
electronic series is the simplest testing ground for such
a model. The purpose of this paper is %ot to construct
wave functions for heliumlike systems better than have
been obtained to date,® ! but to determine the validity
and limitations of a new form of wave function which
has a conceptual simplicity comparable to the Hartree-
Fock method and which perhaps can be extended to
many-electron cases.

CORRELATED WAVE FUNCTIONS FOR
HELIUMLIKE SYSTEMS

We investigated two types of wave functions,
namely,

o= o(r1) o(r2)x (r12), 1)
Bo=[o(r)¥(r:)+¢(r) o(r) Ix(r12); (2)

&¢ and Po are not required to be normalized.

We call ®¢ the correlated closed shell and ®o the
correlated open shell. The functions ¢ and ¢ we call
orbitals, and x the correlation function. In ®o, we
make 7o assumption about orthogonality between ¢
and ¥ ; obviously then, the correlated closed shell is a
special case of the correlated open shell in which the
two orbitals are identical.

In the past, a number of correlated closed-shell
calculations have been carried out for He with various
analytical choices for the orbital and correlation func-
tion. The first one was by Hylleraas,”> who took ¢(7)
=exp(—¢{7), x(r12)=exp(yr1), with { and v as varia-
tional parameters. Hartree and Ingman® rejected
Hylleraas’ choice for the correlation function as physi-
cally unreasonable. They argued that x(ri2) should
approach a constant value for 712 — o, expressing the
separability of the wave function when the electrons
are far apart, and should decrease to a smaller value
for r12— 0, keeping the electrons apart. They specifi-
cally showed that the correlation function should reduce
to a finite value for r1,=0. This fact, together with their
assumption for 71— o, led them to choose x(r12)
=1—c-exp(—nri2); for the orbital they kept o(7)
=exp(—{7).

Hartree and Ingman realized that their assumption
about the asymptotic behavior of the correlation func-
tion is not strictly correct. However, the actual asymp-

(1;555.) Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050

7T. Kinoshita, Phys. Rev. 105, 1490 (1957).

8 J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).

9 E. A. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958).

10 C, L. Pekeris, Phys. Rev. 112, 1649 (1958).

1 W. Kolos, C. C. J. Roothaan, and R. A. Sack, Revs. Modern
Phys 32 178 (1960), this issue.

A. Hylleraas, Z. Physik 54 347 (1929).

13D R. Hartree and A. L. Ingman, Mem. Proc. Manchester

Lit. & Phil. Soc. 77, 79 (1933).
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totic behavior has very little influence on the total
energy, and their assumption still might be a permis-
sible and useful one. Our investigation was partially
directed toward clarifying this point; our final con-
clusions are contained in the section Discussion of
Results.

If complete flexibility is allowed for the orbital and
correlation function, the condition of minimim energy
leads, just as in the derivation of the Hartree-Fock
equations, to coupled integro-differential equations for
¢ and x. These equations were derived by Baber and
Hassé," who also attempted to solve them by numerical
integration. This, however, led into difficulties for the
equation for x for 71, large. They then adopted x(712)
=1+cr1s, and solved the differential equation for ¢
numerically for various values of ¢. In the process they
also determined the best ¢ and ¢ for o(r)=exp(—{7),
x (r12)=14cr1s, which had also been done before by
Hylleraas.”? The final energy for their best orbital is
certainly in error, however. The calculation was re-
cently repeated and corrected by Green et als The
latter authors also carried out the determination of the
best variational x(ri2) if the orbital is assumed in
simple analytical form ¢(r)=-exp(—¢7).

Correlated open-shell calculations have been carried
out for H- by Chandrasekhar,'® and for He and Li* by
Green et al.l” In these calculations, the best ¢, ¢/, and ¢
were determined for o(r)=exp(—¢7), ¥ (r)=exp(—¢{'r),
and x (r12) = 1+cr1a.

The investigations reported here started from the
same question as Baber and Hassé’s original approach,
namely, the determination of the best orbital and cor-
relation function for the correlated closed shell. When
it was found that the energies thus obtained were still
inferior to those achieved with the extremely simple
functions of Chandrasekhar and Green et al. for the
correlated open shell, we also determined the best
orbitals and correlation function for the open shell.

In order to circumvent the difficulty encountered by
Baber and Hassé using the numerical integration proc-
ess, we put forth the following finite analytical expres-
sions for ¢, ¢, and x:

o(r) =§: aani(r),

=0

V(=3 bau(y), 3)

=0
n
x(r12) =2 cuvu(r12);
p=0

1T, D. H. Baber and H. R. Hassé, Proc. Cambridge Phil. Soc.
33, 253 (1937).

15 1,. C. Green, C. Stephens, E. K. Kolchin, C. C. Chen, P. R.
Rush, and C. W. Ufford, J. Chem. Phys. 30, 1061 (1959).

16 S. Chandrasekhar, Astrophys. J. 100, 176 (1944).

17 L. C. Green, M. N, Lewis, M. M. Mulder, C. W. Wyeth, and
J. W. Woll, Jr., Phys. Rev. 93, 273 (1954).



196 c. C. J.
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for the basis function #; and v,, we took

ui(r)= ({r)iesT,
v, (r12) = ($712) "

The coefficients a;, b;, ¢, and the orbital exponent ¢
are the variational parameters of our problem. The ex-
pansions (3) become equivalent to completely flexible
functions ¢, ¥, and x if m — ©, #— . The results of
our computations show that for a determination of the
energy to about 10~% a.u., or 0.0003 ev, this equivalence
is achieved in practice with m=n=4.

4)

SINGULARITIES IN THE WAVE FUNCTION
AND THE HAMILTONIAN

For wave functions which depend only on 7y, 73, 712,
and not on the spatial orientation of the triangle deter-
mined by the nucleus and the two electrons, the Hamil-
tonian is (see Fig. 1)

JC=5C1+-3C24-3C12+3C12, (5)
where
170 29 Z
3= —--—(———{—— — )= =12,
2\09r2 r;0ri] 1
0? 2 9
3Cie=— ( +—— )+, (6)
Or1? 7113 0712

1 d a l¢]
301’ = ——(cos01—+cosz72— —.
2 61’1 67'2 6712

The operators 3C; and 3Cy2 have a singularity for 7;=0
and r12=0, respectively. But 3C;2’ also has a singularity,
namely, for r1=r,=71,=0, since the values of cosf; and
cosfs; depend on kow the triangle of Fig. 1 is contracted
to a point.

For the exact wave function, 3¢®/®=E has a con-
stant value. The singularities of 3C; and 3C;» permit

this only if
109 1 0d
1), D o
(I:'ah 71=0 (1331’2 rg=0
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1 0P
(:=) -1 ®
P (91’12 r19=0

With a conventional orbital product wave function,
the condition (7) can be satisfied, but (8) is always
violated. However, the wave functions (1) and (2)
satisfy both conditions (7) and (8) if

1de 13y
C5) () —n o
odr/ — \Y 0/ o

(E %) =1
2-
x 07/ r—o

Hence, viewed in Cartesian three-dimensional space,
the functions ¢, ¥, and x have cusps for r — 0. Each
cusp refers to a pair of Coulombic particles; the sign of
the cusp is positive for a repulsion, negative for an
attraction, and the magnitude is equal to the product
of the two charges and the reduced mass of the two
particles.

Unfortunately, the wave functions (1) and (2) lead
to a singularity in 30®/® due to 3C;.’. We expect this
to be much less harmful to the wave function than the
singularities due to 3C; and 3Cys, if those are present, for
two reasons. First, the latter lead to infinities in 3¢d/®,
whereas the former leads to a bounded singularity.
Secondly, the domains in which the latter occur are
surfaces in the three-dimensional space framed by
71, 73, 712, Whereas the former occurs only at the single
point r1=7r;=r12=0.

One can interpret this last fact by saying that the
wave function forms (1) and (2) permit a correct
account of two-body correlation but not of three-body
correlation.

The importance of the correct cusp values was
stressed by Pluvinage,'® who carried out a correlated
closed-shell calculation using a perturbation method.
For the zeroth approximation he neglected 3Ci, so
that the problem becomes strictly separable. The equa-
tion for ¢ is obviously the Het equation, yielding
¢=-exp(—2r). The equation for x is also hydrogenic,
but with a repulsive Coulomb potential, which has a
continuous spectrum of eigenfunctions x(e,r12), where
¢ is continuous. The best value of e was deter-
mined by Pluvinage by minimizing the energy calcu-
lated with the full Hamiltonian. The resulting x be-
comes exponentially large for 715 — oo ; this is offset by
the stronger exponential decrease of ¢ (7). Obviously,
the wave function thus constructed satisfies both cusp
conditions (8) and (9). However, first neglecting 3C;o’
altogether leads to a rather bad zeroth approximation,
and hence to a bad energy.

18 P, Pluvinage, Ann. Phys. 5, 145 (1950).

19 Qur choice of basis set for x, Eq. (4), also makes x blow up
for 712 — 0, although not exponentially. Baber and Hassé,!* and

Green et al.’® showed that the correct asymptotic bahavior of x
is indeed exponential.

(10)
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ITERATIVE EQUATIONS FOR THE
EXPANSION COEFFICIENTS

In order to apply the variational principle to the
wave functions (1) or (2) constructed from the orbi-
tal(s) and correlation function given by Egs. (4) and
(5), we first need a manageable expression for the ex-
pectation value of the total energy. For the present,
we consider { as fixed so that for the correlated closed
shell @; and ¢, and for the correlated open shell a;, b;,
and c,, are the adjustable parameters.

The total Hamiltonian is

Je=—3(Art20)—ZL(1/r)+ (1/r) 1+ (1/r12);  (11)

for the functions ®¢ and ®o given by Egs. (1) and (2),
we obtain

@ol5e|®c)= f f AVidVs

X{[Vie(1) PLe(2)x(12) F
—Le(1)(2) Fx(12)A10x (12) ]}

+ f f AVAaVa{—ZL(1/r)+(1/r)]

+(1/r)}Le(Me(2)x(12)F, (12)

@clq’c}:fdelde[sO(l)<P(2)X(12)]2,

(®o|3e|Bo)= f f dV,dV,

XALVie(D¥(2)+ V(1) o(2) P[x (12) ]
=LY (2)+¢(1) 0(2) Px(12)A12x (12)}

+fde1dV2

X{=ZL(1/r)+(1/r2) 1+ (1/r1)}
XL (2)+¥ (1) e(2) FIx(12) P,

(@o|Po)= f f av.dv,

XLeMY(2)+¢ (1) e(2) PIx (12) T,

where we have replaced the arguments 7y, 7s, 712 of
@, ¥, x by the subscripts 1, 2, 12. It is to be noted that
in Egs. (12) and (13) the kinetic-energy terms contain
no cross terms involving gradients of ¢ (or ¢) and x.
We show in the following how these terms were trans-
formed in the case of ®¢®; the corresponding trans-
formation for & is similar.

(13)

20 We are indebted to Dr. W. Kolos for pointing out this trans-
formation.
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The kinetic energy contributions from A; and A, are
equal, so that the total kinetic energy part is

—fdeldVgtbcA1<1>C=fdeldVg(V@c)z

_ f VLo f AV i[Vie(DX(12)]

=de2[¢(2)]2de1

X{[V1e(1) PLx (12) P4+-Lo(1) [ Vix (12)
+20(1)x(12)[Vie(1)]-[Vix (12) 1}

=de2[<p(2):|2de1

X{LVie() PIx(12) PH+Le (D) FLVix (12) I
+x(12)[Vix(12)]- Vil o(1) I}

- f VLT f v,

X{[Vie() PIx(12) P—Le(1) Px(12)A1x (12)};
this is just the kinetic-energy part of Eq. (12) since
Ax(12)=A1sx (12).

We now substitute the expansions for the orbitals
and correlation function, Egs. (3), into the expressions
(12) and (13); the results are

(®cldC|®c)= X Hijkius@i@iartiCucy,

1kluy (14)
(Bo|Pey= X Sijktur@i@iar@1CuCy,
igkluy
(@03 |®oy=X Hijhiu@:a;bibicucy,
idkipo (15)

(Bo|Po)y= 2 Sijklyvaiajbkblcncv,
15kluy ,

where

Ho=} [ [[aV:a7 (907 Lo i 2)(2)
LV ()] [V s00(1) (252 Yo (12)0,(12)
—3 f f VAV 05Dt (Do (2)202(2)
X [oa(12) A1ty (12)+0,(12) Az, (12)]
+ [ [aviavi=zra/m+/mi+a/m
(Dot (11 2o (o (12)0,(12),

Sijl‘;l"y=fdeldeui(l)uj(l)

X (2)1(2)v,(12)v,(12),
T iittwr=2H sjrvwrHinjiustH itkjus,y
Sisntur=2S ijuturtSikjturtSithjur-

(16)

an
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The supermatrices H,S,H,S defined by Egs. (16)
and (17) are all symmetrical in each of the three index
pairs 7, kl, uv, and also symmetrical for the exchange
ij — kl. As a matter of fact, the symmetrical definition
of these quantities was chosen to facilitate the efficient
use of storage in the machine computations.

The condition of minimum energy, 6E=0, where
E=(®|3¢|®)/(®|®), readily leads to the following
pseudo-eigenvalue equations for the correlated closed
shell:

Hea=ES¢a,
Hee=EScc,

where a and c are the column vectors of the coefficients
a; and c,, respectively, and the matrices He, etc. are
obtained by contractions of the supermatrices (16)
with the vectors a and ¢, namely,

(18)

Hi*= 3" Hijriu@riCuCr,
klpy

Sii®= 2. Siiklur@rGICuCr,
klpy (19)
H,'=" Hijriun0iaiora,
ikl

Suw= 20 Sijktua:a;0101.
ikl

Hence a and ¢ are eigenvectors of two simultaneous
pseudo-eigenvalue problems, with the same eigenvalue.
The solution of the problem is achieved in a manner
analogous to the self-consistent field method. A set of
vectors a, ¢ is assumed, the matrices H¢, etc. are com-
puted from these by Egs. (19), and the eigenvalue
problems (18) are solved to give new vectors a, c.
The whole process is then repeated until assumed and
calculated vectors agree. When that has been accom-
plished, the eigenvalues of the two Egs. (18) are auto-
matically equal.

For the correlated open shell the procedure is analo-
gous. The pseudo-eigenvalue equations are now

Hea=ESea,
Hbb= ES®b, (20)
Hee=EScc,
where
“u= Z ijkluvbkble.Cy,
kluv
55%= 2. Seiktusbrbdicucy,
kluv
ijb: Z ikluy@k@ICuCy,
klpy (21)
ub= Z SijkluvakalCﬂCv,
kluv
Hpvcz H{jkl,‘yai(ljbkbz,

Su’= 2 Sijktur@:;bidi.

15kl
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_TaBLE IL.* Total energies and expectation values of 724722 for
?1fferent expansion lengths for the He correlated closed-shell wave
unction.

7
mN 0 1 2 3 4
0 —2.84765 —2.890112 —2.89112 —2.89123 —2.89125
2.10700 2.15310 2.15230 2.15888 2.15830
(¢=1.6875) (t=1.85) (r=1.848) (¢=1.848) (¢=1.848)
2 —2.86159 —2.89805 —2.90034 —2.90034 —2.90036
2.36076 2.36086 2.36332 2.36322 2.36406
(6=1.921) (¢=1.935) (¢=1.8335) (¢=1.83) (r=1.826)
4 —2.86168 —2.89806 —2.90037 —2.90037 —2.90039
2.36954 2.36294 2.36776 2.36762 2.36824
(=197) (t=1.80) (=1.64) (¢=1.64) (¢=1.65)

® For some reason, as yet not fully understood, the best results for m =1
and m =3 are identical with those for m =0 and m =2, respectively.

EVALUATION OF THE SUPERMATRIX ELEMENTS

In order to evaluate explicitly the supermatrix ele-
ments Hjruy and Siryw, we have to substitute into
the right-hand sides of Egs. (14) and (15) the specific ex-
pressions for the basis functions, Eqgs. (4). This im-
mediately yields the general supermatrix elements in
terms of one family of primitive integrals, namely,

D R 18 (/) (IR RICRRIRS ) FIF IR AR e e
(5 o)) (Y RNTIRUNSISE Y (2 ) FETRR AR
F2Lip i1kttt — [ (ut+D+r(r+1) ]
XLipisrervrt, w1y = Z§ L i g ki tr 1, ug0t1
R IR IRRNREREIRY L ot ¢ FITRR IR TR RAIN

NS iirtuy= L ip i1, bt 141, wtrt1, (22)
with
Iaﬁa,=)\fde1dVge—2f(’1+’2)

X (§r) o2 (§ra)P1(Sri)rt; (23)

A is an arbitrary numerical factor which we pick to our
convenience.

The double-volume integration can be carried out
over the three internal coordinates 7y, 72, 712 and the
three Eulerian angles which define the spatial orienta-
tion of the triangle of Fig. 1.2 Since the integrand does
not depend on the latter, those integrations can be
carried out immediately; introducing scaled coordi-
nates p;={r;, p12={r12, and choosing A={3/87% we
obtain

p1-+p2
] 0
Iaﬁ'y:f dplf dP2 f dp12€_2(p1+"2)p1apgﬂp127. (24)
0 0 o1 —p2|

Equation (24) shows that .gy is a pure number de-
pending on the integers a, 3, v only.

21 The method of integration used here was introduced by
E. Hylleraas.?
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TaBLE II. Total energies and expectation values of 7,247 for
different expansion lengths for the He correlated open-shell wave
function.

”n
m 0 1 2 3 4

0 —2.84765 —2.80112 —2.80112 —2.89123 —2.89125
210700  2.15310  2.15230  2.15888  2.15830
(£=1.6875) (t=1.85) (¢=1848) (r=1.848) (r=1.848)

1 —2.86049 —2.80450 —2.80465 —2.89520 —2.89531
212156 2.16674  2.18116  2.20322  2.20224
(=1713) (¢=1.84) (r=1848) (¢=1.844) (r=1.844)

2 —287752 —290193 —2.90289 —290305 —2.90306
241156  2.37980  2.38054  2.38316  2.38272
(=1.899) (¢=1.94) (¢=1.86) (r=1.914) (r=1.915)
3 —287774 —290205 —2.90297 —2.90312 —2.90315
240378  2.37624  2.37854  2.38126  2.38000
(¢=2.01) (¢=2.065) (r=1.935) (¢=2.017) (r=1.999)

4 —287798 —290213 —2.90304 —2.90316 —2.90319
241606  2.38150  2.38402  2.38432  2.38424
(c=2082) (r=2.13) (¢=1.948) (r=2.04) (r=1.916)

In order to derive recurrence relations between the
I,gy, we introduce the transformation x=pi+po,
Y=p1— p2, 2= p12, yielding

Iaﬁ‘7=fwdxfxdzfzdye—2zFaﬂ(x’y)277 (25)
where ’ ’ °
Fas(xy) =35+ 3 x—9)]1
+E @+ P E—y)1).  (26)

In Eq. (25) we write ¢2*=—21(d/dx)e 2%, and per-
form a partial integration with respect to x; the result is

Ia37=%(alq—l.ﬂv+ﬂla.ﬂ—1.‘r+2Jaﬂ7)7 (27)
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x(c)
arcfanz'f
—— e I‘w
Fic. 2. Correlation function, schematic.
where
Japy= f dx f dye27F 45(%,y)x7; (28)
0 0
applying the same process to Eq. (28), we obtain
Japy=1(J a1,8yBT a,p-1,9F 27T ap,y-1)
+270 7500 (B+7) 80 (atv) 1] (29)

The recurrence relations (27) and (29) allow us to
calculate Japy and I.g,. No serious loss of significant
figures can occur in this process, since all quantities are
positive and additive.

RESULTS AND DISCUSSION

A digital computer program was written for the
Remington Rand Univac Scientific 1103 at Wright-
Patterson Air Force Base. Input data are the nuclear
charge Z, the expansion lengths m and # (limited to
<4, due to the size of the memory), the orbital exponent
¢, and a tag, 0 or 1, which distinguishes between closed

TasLe III. Various wave functions of correlated closed-shell type for He.

Energy Orbital Corr.
Wave function Comments Energy discrepancy cusp cusp Reference
g§(rrkra) Best ¢ —2.84766 —0.05606 —1.6875 S b
o(r)e(rs) Best ¢, Hartree-Fock —2.86168 —0.04204 —2.000 .. °
€20ty (r19) x from repulsive hydrogenic —2.878 —0.026 —2.000 0.500 d
differential equation

e $(rtraerrz Best ¢ and v —2.8896 —0.0141 —1.860 0.260 4

eS8t (14-cr15) Best {and ¢ —2.89112 —0.01260 —1.8497 0.364 e fe

€5 (rrtra) (1 — cemmz) Best §, 1, and ¢ —2.89115 —0.01257 —1.8395 0.379 h

8ty (ry5) Best §; x by numerical —2.891262 —0.01246 —1.849 0.50 g
integration

o)) (14-cri2) Best ¢; ¢ by numerical —2.898062 —0.00566 —1.999 0.35 f. g
integration

o(r)ere)x (r12) Best ¢ and x, expanded —2.90039 —0.00333 —2.021 0.465 i
in basis set

Exact wave function Neglecting relativistic, etc. —2.90372 ce. Ce. e i

effects, infinite nuclear mass

a In agreement with our expansion results, Table I, m =0, n =4, and m =4, n =1, respectively.

b See any textbook.
¢ See reference 25.

d See reference 18.

e See reference 12.

f See reference 14.

& See reference 15.

h See reference 13.

i See this paper.

i See references 6-11.
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TaBLE IV. Wave functions and energies for the
. correlated open shell.

Correlation Refer-
Atom Orbitals function E ence
¢ 04787 e 107 14031217, —0.52592 =@
H-  ¢@) ¥(r) x(712) —0.52718 b
Exact wave function —0.52780 ¢
¢~1.436r 2208 14029247, —2.90142 d
He o(r) v(r) x(r12) —290320 P
Exact wave function —2.90372 e
¢2:362r 329 140.2770r, —7.27718 4
Lt o(r) v(r) x(712) —7.27939 b
Exact wave function —7.27991 ¢

a See reference 16.

b See this paper.

o See reference 10.

d See reference 17.

e See references 6-11.

and open shell. After the program has been executed,
the total energy and the expansion coefficients are
printed out. A maximal run, m=mn=4, requires about
two minutes per iteration for the open-shell case and
somewhat less for the closed-shell case. Closed-shell

ROOTHAAN AND A. W. WEISS

runs converge in about 10 iterations or less, starting
from p=exp(—¢{7), x=1 as the initial approximation.
The open-shell runs converge very slowly, requiring up
to 60 iterations when starting from ¢=y=exp(—¢{7),
x=1. In all cases, { was varied until a minimum had
been obtained. For open-shell runs the results obtained
with one ¢ were used as input for a neighboring ¢ to
speed up the convergence.

In addition to the total energies, we computed the
diamagnetic susceptibilities for various wave functions.
For any atomic system this quantity is given by?

x=Nata@| S 72| ®), (30)

where x is the molar susceptibility, N is Avogadro’s
number, « the fine structure constant, and ¢ the Bohr
radius. The most recent values for the elementary con-
stants® yield, for the proportionality factor §Na2a?, the
numerical value 0.74336X 1076, The evaluation of the
integral (®|r2+72|®) in terms of the primitive inte-
grals I.s, defined by Eq. (24) is analogous to the

TaBirE V. Energies and expectation values of 7,2+72* as a function of Z.?

Energies (®|r2+r2|®)
Atom or Correlated Correlated Eigenvalue Correlated Correlated
ion Hartree-Fock closed shell open shell (Pekeris) closed shell open shell
H- —0.48793 —0.52190 —0.52718 —0.52775 19.40 23.46
(0.03982) (0.00585) (0.00057)
He —2.86168 —2.90039 —2.90319 —2.90372 2.368 2.384
(0.04204) (0.00333) (0.00053)
Lit+ —17.23641 —17.27692 —17.27939 —7.27991 0.8903 0.8922
(0.04350) (0.00299) (0.00052)
Be?* —13.61130 —13.65271 —13.65505 —13.65557 0.4636 0.4640
(0.04427) (0.00286) (0.00052)
B+ —21.98623 —22.03097
(0.04474) )
Ce+ —32.36119 —32.40351 —32.40574 —32.40625 0.1914 0.1915
(0.04506) (0.00274) (0.00051)
N&+ —44.73616 —44.78145
(0.04529)
Oft —59.11114 —59.15392 —59.15609 —59.15660 0.1039 0.1039
(0.04546) (0.00268) (0.00051) .
Fr+ —75.48613 —75.53171
(0.04558)
Ned+ —93.86111 —93.90416 —93.90630 —93.90681 0.0651 0.0651
(0.04570) (0.00265) (0.00051)
a The numbers in parentheses are the deviations of the approximate energies from the exact eigenvalues.
TaBLE VI. Closed-shell orbital functions.
VA 1 2 3 4 6 8 10
¢ 0.70 1.65 2.55 3.45 5.20 7.00 10.80
Cusp —1.020 —2.021 —3.021 —4.022 —6.022 —8.022 —10.023
N, 1.7464 5.2203 9.8416 15.355 28.601 44.336 62.212
ao 1.0 1.0 1.0 1.0 1.0 1.0 1.0
a —0.45659 —0.22457 —0.18476 —0.16572 —0.15805 —0.14606 0.07198
az 0.16372 0.06344 0.04412 0.03462 0.02693 0.02161 0.00846
as —0.02559 —0.00703 —0.00469 —0.00359 —0.00274 —0.00290 0.00045
a4 0.00218 0.00041 0.00023 0.00017 0.00012 0.00009 0.00000

2 J, H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, New York, 1932).
2 E. Richard Cohen and Jesse W. M. DuMond, Handbuch der Physik (Springer-Verlag, Berlin, 1957), Vol. XXXV.
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TaBLE VII. Closed-shell correlation functions.

VA 1 2 3 4 6 8 10

¢ 0.70 1.65 2.55 3.45 5.20 7.00 10.80
Cusp 0.458 0.465 0.464 0.464 0.463 0.462 0.460
N, 2.3874 2.8916 3.2167 3.3814 3.6501 3.7083 2.0249
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0

a 0.65391 0.28162 0.18211 0.13437 0.08895 0.06598 0.04262
123 0.11445 —0.01422 —0.01742 —0.01547 —0.01194 —0.00939 —0.00504
173 —0.03016 —0.00238 0.00004 0.00056 0.00071 0.00064 0.00029
4 0.00139 0.00015 0.00002 —0.00002 —0.00003 —0.00003 —0.00001

TaBLE VIII. Open-shell orbital functions.

V4 1 2 3 4 6 8 10

¢ 0.692 1.916 3.08 4.30 6.5995 8.70 10.80
Cusp —1.011 —1.990 —2.963 —3.935 —5.906 —17.896 —9.894
N, 2.0810 6.1233 11.262 17.286 31.558 48.330 67.295
@ 1.0 1.0 1.0 1.0 1.0 1.0 1.0

a@ —0.46064 —0.03888 0.03790 0.08486 0.10514 0.09239 0.08388
a; 0.08518 —0.05692 —0.06222 —0.05832 —0.05087 —0.04733 —0.04399
a3 —0.00626 0.01473 0.01418 0.01239 0.01075 0.01026 0.00966
a4 0.00016 —0.00087 —0.00078 —0.00061 —0.00052 —0.00053 —0.00052
Cusp —0.989 —2.078 —-3.114 —4.146 —6.176 —8.185 —10.185
Ny 0.98844 4.0350 8.1334 13.119 25.297 39.944 56.709

bo 1.0 1.0 1.0 1.0 1.0 1.0 1.0

by —0.42869 —0.08430 —0.01088 0.03575 0.06413 0.05925 0.05694
b2 0.38470 0.18957 0.14529 0.12165 0.09719 0.08328 0.07360
b3 —0.07899 —0.02827 —0.02045 —0.01530 —0.01216 —0.01177 —0.01113
by 0.00789 0.00192 0.00127 0.00091 0.00069 0.00066 0.00062

TasLE IX. Open-shell correlation functions.

VA 1 2 3 4 6 8 10

¢ 0.692 1.916 3.08 4.30 6.5995 8.70 10.80
Cusp 0.523 0.487 0.476 0.471 0.467 0.465 0.464

N. 1.4046 1.2512 1.2616 1.2159 1.2508 1.3566 1.4240

o 1.0 1.0 1.0 1.0 1.0 1.0 1.0

¢ 0.75625 0.25399 0.15456 0.10958 0.07070 0.05343 0.04293

2 —0.06688 —0.03670 —0.02393 —0.01724 —0.01147 —0.00903 —0.00744

3 0.00280 0.00424 0.00279 0.00198 0.00133 0.00107 0.00090

4 —0.00001 —0.00020 —0.00013 —0.00009 —0.00006 —0.00005 —0.00004

evaluation of the total energy but simpler; we omit the

details. For He, our best correlated closed- and open-

shell wave functions yielded for x 1.876X10~% and
1.889X 1078, which are in excellent agreement with the
experimental value** 1.88X10-%, The Hartree-Fock
value is also in essentially complete agreement with
experiment, namely, 1.877X 1075,

In order to investigate the effect of the finite expan-
sion lengths for the orbital(s) and correlation function,
calculations were carried out for different values of m
and » for Z=2; the results are shown in Tables I and
II. As mentioned previously, it appears that m=n=4
is equivalent to a full variational treatment to an
accuracy of about 107% a.u. in the energy. The accom-
panying relative accuracy in the wave function is about
the square root of the accuracy in the energy, or about

2 A, P. Wills and L. G. Hector, Phys. Rev. 23, 209 (1924);
24, 418 (1924).

10~2—1073 in the present case. This is confirmed by the
cusp values obtained from our calculations; apparently
our best finite expansion wave functions differ by about
10~2 from wave functions which would have the proper
behavior at 7;=0, 7,=0, and 7;,=0.

It is instructive to compare our best energies and
wave functions with others of similar types'>~'7; this is
shown in Tables IIT and IV. At this point we call
attention to an earlier attempt to expand the correla-
tion function for the closed shell, namely,

1
x(riz)=c—e 112 3 ex(§r12), 31)
=0

which is an obvious generalization of Hartree and Ing-
man’s form for the correlation function. Such a form
would make sense if for optimum 7 and increasing / the
correlation function would settle down to something
like Fig. 2. In particular, we would expect a ratio
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TaBLE X. Numerical closed-shell orbital functions.

Zr H- He Lit* Be*t C o+ Nett
0. 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.2 0.81652 0.81791 0.81822 0.81835 0.81849 0.81855 0.81858
0.4 0.66845 0.67044 0.67056 0.67054 0.67051 0.67047 0.67045
0.6 0.54882 0.55078 0.55044 0.55013 0.54977 0.54954 0.54941
0.8 0.45204 0.45353 0.45258 0.45192 0.45116 0.45073 0.45047
1.0 0.37361 0.37432 0.37274 0.37171 0.37056 0.36993 0.36954
1.2 0.30993 0.30969 0.30749 0.30612 0.30462 0.30380 0.30331
14 0.25810 - 0.25682 0.25408 0.25243 0.25062 0.24966 0.24907
1.6 0.21583 0.21350 0.21029 0.20841 0.20637 0.20529 0.20464
1.8 0.18124 0.17790 0.17433 0.17227 0.17007 0.16891 0.16821
2.0 0.15285 0.14859 0.14474 0.14257 0.14026 0.13906 0.13833
2.2 0.12947 0.12439 0.12036 0.11812 0.11577 0.11455 0.11381
24 0.11016 0.10437 0.10024 0.09798 0.09562 0.09442 0.09368
2.6 0.09413 0.08776 0.08360 0.08135 0.07904 0.07786 0.07715
2.8 0.08079 0.07394 0.06982 0.06763 0.06538 0.06424 0.06355
3.0 0.06963 0.06243 0.05839 0.05627 0.05411 0.05303 0.05238
3.2 0.06026 0.05282 0.04889 0.04686 0.04482 0.04380 0.04318
3.4 0.05235 0.04476 0.04099 0.03906 0.03714 0.03619 0.03562
3.6 0.04566 0.03800 0.03440 0.03259 0.03080 0.02991 0.02938
3.8 0.03997 0.03232 0.02891 0.02721 0.02555 0.02473 0.02425
4.0 0.03511 0.02753 0.02431 0.02274 0.02121 0.02046 0.02002
4.2 0.03094 0.02348 0.02047 0.01901 0.01761 0.01693 0.01653
44 0.02736 0.02006 0.01725 0.01591 0.01463 0.01402 0.01366
4.6 0.02426 0.01716 0.01455 0.01332 0.01216 0.01161 0.01128
4.8 0.02158 0.01470 0.01228 0.01116 0.01011 0.00961 0.00933
5.0 0.01925 0.01260 0.01037 0.00936 0.00841 0.00797 0.00771
5.2 0.01721 0.01082 0.00877 0.00785 0.00700 0.00660 0.00637
5.4 0.01543 0.00930 0.00742 0.00659 0.00583 0.00547 0.00527
5.6 0.01387 0.00800 0.00628 0.00553 0.00485 0.00454 0.00436
5.8 0.01250 0.00689 0.00532 0.00465 0.00404 0.00376 0.00361
6.0 0.01129. 0.00594 0.00451 0.00391 0.00337 0.00312 0.00298
6.2 0.01021 0.00513 0.00383 0.00328 0.00281 0.00259 0.00247
6.4 0.00926 0.00443 0.00325 0.00276 0.00234 0.00215 0.00204
6.6 0.00842 0.00383 0.00276 0.00233 0.00195 0.00179 0.00169
6.8 0.00767 0.00332 0.00234 0.00196 0.00163 0.00148 0.00140
7.0 0.00700 0.00287 0.00199 0.00165 0.00136 0.00123 0.00116
7.2 0.00639 0.00249 0.00170 0.00139 0.00113 0.00102 0.00096
74 0.00585 0.00216 0.00144 0.00117 0.00095 0.00085 0.00079
7.6 0.00537 0.00188 0.00123 0.00099 0.00079 0.00071 0.00066
7.8 0.00493 0.00163 0.00105 0.00084 0.00066 0.00059 0.00054
8.0 0.00454 0.00142 0.00090 0.00071 0.00055 0.00049 0.00045
8.2 0.00418 0.00124 0.00077 0.00060 0.00046 0.00041 0.00037
8.4 0.00385 0.00108 0.00065 0.00050 0.00039 0.00034 0.00031
8.6 0.00356 0.00094 0.00056 0.00043 0.00032 0.00028 0.00026
8.8 0.00329 0.00082 0.00048 0.00036 0.00027 0.00024 0.00021
9.0 0.00304 0.00072 0.00041 0.00031 0.00023 0.00020 0.00018
9.2 0.00281 0.00063 0.00035 0.00026 0.00019 0.00016 0.00015
9.4 0.00261 0.00055 0.00030 0.00022 0.00016 0.00014 0.00012
9.6 0.00242 0.00049 0.00026 0.00019 0.00014 0.00011 0.00010
9.8 0.00224 0.00043 0.00022 0.00016 0.00011 0.00010 0.00008
10.0 0.00208 0.00037 0.00019 0.00014 0.00010 0.00008 0.00007

¢/ (c—co) of order unity, and somewhat larger than one.
We did find, however, upon varying n and optimizing
the coefficients ¢\, a wildly varying ratio ¢/(c—co)
while the energy hardly changed; in some cases this
ratio even became negative. Although we obtained a
rather good energy with it (—2.90036 for He), we
abandoned the expansion (31) in favor of that given
by Egs. (3) and (4).

In Table V are listed, as a function of Z, the energies
obtained with the Hartree-Fock function,? the corre-
lated closed shell, the correlated open shell, the accurate
energies obtained by Pekeris,” and the diamagnetic
susceptibility integrals (®|ri?4r:*|®). Whereas the
Hartree-Fock energy deviates from the correct eigen-

2% C, C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Revs.
Modern Phys. 32, 186 (1960), this issue.

values by about 1.2 ev (this is the correlation energy),
the deviation is only about 0.15 ev for the correlated
closed shell, and 0.015 for the correlated open shell.

In Tables VI-XIII are given the orbital exponents,
expansion coefficients, and normalization constants of
the various wave functions. The functions are all chosen
to be unity at the origin. If they are multiplied by the
normalization constants N, Ny, N, we obtain the
orbitals ¢y and ¢, so that

drryn?=1;
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TaBLE XI. Numerical closed-shell correlation functions.

r H- He Lit+ Bert o os+ Nest
0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 1.04632 1.04607 1.04531 1.04454 1.04312 1.04180 1.04050
0.2 1.00371 1.09130 1.08835 1.08553 1.08036 1.07562 1.07122
0.3 1.14200 1.13564 1.12915 1.12310 1.11223 1.10254 1.09383
0.4 1.19141 1.17902 1.16769 1.15738 1.13920 1.12347 1.10968
0.5 1.24162 1.22139 1.20401 1.18848 1.16169 1.13914 1.11978
0.6 1.29264 1.26269 1.23809 1.21652 1.18005 1.15013 1.12482
0.7 1.34443 1.30289 1.26997 1.24159 1.19461 1.15685 1.12517
0.8 1.39692 1.34192 1.29965 1.26381 1.20562 1.15953 1.12085
0.9 1.45006 1.37976 1.32716 1.28327 1.21328 1.15826 1.11158
1.0 1.50380 1.41634 1.35250 1.30005 1.21774 1.15293 1.09673
1.1 1.55808 1.45164 1.37569 1.31424 1.21911
1.2 1.61285 1.48562 1.39677 1.32593 1.21742
13 1.66805 1.51825 1.41574 1.33517 1.21267
14 1.72364 1.54948 1.43264 1.34204 1.20480
1.5 1.77955 1.57930 1.44750 1.34661 1.19369
1.6 1.83575 1.60768 1.46033 1.34892
17 1.80217 1.63459 1.47116 1.34903
1.8 1.94878 1.66002 1.48003 1.34697
1.9 2.00552 1.68394 1.48698 1.34280
2.0 2.06235 1.70634 1.49202 1.33654
2.1 2.11921 1.72720 1.49520
2.2 2.17607 1.74652 1.49656
23 2.23288 1.76429 1.49613
2.4 2.28960 1.78050 1.49395
2.5 2.34617 1.79515 1.49006
2.6 2.40257 1.80824 1.48451
2.7 2.45874 1.81978 1.47734
2.8 2.51465 1.82976 1.46860
2.9 2.57026 1.83820 1.45834
3.0 262552 1.84510 1.44660
3.1 2.68040 1.85049
3.2 2.73487 1.85436
3.3 2.78887 1.85676
34 2.84239 1.85768
3.5 2.89537 1.85717
3.6 2.94780 1.85524
3.7 2.99963 1.85192
3.8 3.05083 1.84725
3.9 3.10136 1.84126
4.0 3.15121 1.83398

4.1 3.20033

4.2 3.24870
4.3 3.29629
44 3.34307
45 3.38902
4.6 3.43400
4.7 3.47828
48 3.52156
4.9 3.56390
5.0 3.60527

TaBLE XII. Numerical open-shell orbital functions.

N

H- He Lit+ Be?t Cst O+ Nes+

BRBRBRRRNROINNNNNRRmeerO0000
oo aRvORORNORA RO AR

1.00000 1.00000  1.00000 1.00000  1.00000 1.00000  1.00000 1.00000  1.00000 1.00000  1.00000 1.00000  1.00000 1.00000
0.81644 1.82532 0.81785 0.81788 0.81868 0.81740 0.81918 0.81716 0.81921 0.81753 0.81898 0.81797 0.81876 0.81832
0.66638 0.68935  0.66638 0.67757 0.66721 0.67558 0.66786 0.67437 0.66809 0.67370 0.66802 0.67354  0.66790 0.67353
0.54334 0.58290 0.54118 0.56789  0.54169 0.56377  0.54233 0.56124  0.54284 0.55889  0.54308 0.55770 0.54319 0.55703
0.44268 0.49894  0.43824 0.48079 0.43838 0.47429 0.43897 0.47034 0.43976 0.46617 0.44032 0.46387 0.44068 0.46249
0.36041 0.43209 0.35402 0.41051  0.35383 0.40163  0.35437 0.39632 0.35542 0.39047 0.35625 0.38718 0.35683 0.38516
0.29322 0.37825  0.28539 0.35288 -0.28500 0.34182  0.28549 0.33534 0.28675 0.32810 0.28777 0.32402  0.28850 0.32149
0.23840 0.33432  0.22968 0.30493  0.22918 0.29201  0.22965 0.28459  0.23105 0.27631  0.23219 0.27167 0.23302 0.26878
0.19371  0.29796  0.18461 0.26451  0.18410 0.25010 0.18453 0.24200 0.18603 0.23302  0.18721 0.22805 0.18808 0.22494
0.15731 0.26740  0.14825 0.23004 0.14779 0.21455 0.14819 0.20603  0.14973 0.19667 0.15090 0.19155 0.15177 0.18836
0.12769 0.24133  0.11900 0.20039  0.11862 0.18421  0.11898 0.17549  0.12052 0.16603  0.12164 0.16092 0.12247 0.15774
0.10361 0.21876 = 0.09553 0.17471  0.09524 0.15819  0.09555 0.14947  0.09705 0.14014 0.09809 0.13516 0.09887 0.13208
0.08405 0.19897  0.07671 0.15235 0.07652 0.13581  0.07678 0.12726 0.07821 0.11823  0.07915 0.11348 0.07986 0.11054
0.06817 0.18141  0.06166 0.13281  0.06156 0.11653 0.06175 0.10827  0.06310 0.09968  0.06393 0.09521 0.06456 0.09245
0.05530 0.16569  0.04963 0.11571  0.04960 0.09989  0.04973 0.09203  0.05098 0.08396 0.05170 0.07981 0.05225 0.07726
0.04486 0.15149  0.04002 0.10072  0.04004 0.08554 0.04010 0.07814 0.04125 0.07065 0.04187 0.06684 0.04235 0.06451
0.03641 0.13860  0.03235 0.08758  0.03240 0.07317 0.03240 0.06627 0.03344 0.05938  0.03396 0.05592  0.03437 0.05381
0.02957 0.12685  0.02622 0.07606  0.02629 0.06250  0.02622 0.05614  0.02716 0.04986 0.02760 0.04674 0.02793 0.04484
0.02403 0.11611  0.02132 0.06599  0.02139 0.05333  0.02127 0.04750  0.02211 0.04182  0.02246 0.03902 0.02274 0.03733
0.01956 0.10626  0.01739 0.05718  0.01746 0.04544 0.01729 0.04014 0.01803 0.03503 0.01832 0.03254 0.01855 0.03104
0.01594 0.09724  0.01424 0.04949  0.01429 0.03868 0.01408 0.03388  0.01474 0.02932  0.01497 0.02711 0.01515 0.02579
0.01301 0.08896 0.01171 0.04279  0.01174 0.03288 0.01150 0.02857  0.01207 0.02451  0.01225 0.02256 0.01240 0.02141
0.01065 0.08138  0.00967 0.03695  0.00968 0.02793  0.00940 0.02406  0.00991 0.02047 0.01005 0.01876 0.01016 0.01775
0.00873 0.07443  0.00802 0.03189  0.00800 0.02370  0.00771 0.02025  0.00815 - 0.01708  0.00825 0.01559 0.00834 0.01471
0.00718 0.06807  0.00667 0.02750  0.00663 0.02009 0.00633 0.01702 0.00672 0.01424 0.00679 0.01294 0.00685 0.01218




204 C. C. J. ROOTHAAN AND A. W. WEISS
TaBLE XII.—Continued.
zr H- He Lir+ Bet+ Co+ o+ Nes+
5.0 0.00593 0.06225 0.00558 0.02369 0.00552 0.01702 0.00521 0.01430 0.00554 0.01187  0.00559 0.01073  0.00564 0.01008
5.2 0.00491 0.05694 0.00468 0.02040 - 0.00460 0,01441  0.00429 0.01201  0.00458 0.00988  0.00461 0.00890 0.00465 0.00833
5.4  0.00409 0.05210 0.00394 0.01756 0.00384 0.01219 0.00354 0.01008 0.00379 0.00822  0.00381 0.00737  0.00383 0.00689
5.6 0.00341 0.04768 0.00333 0.01511  0.00322 0.01031 0.00292 0.00845 0.00314 0.00684  0.00315 0.00611  0.00316 0.00569
5.8 0.00286 0.04366 0.00281 0.01300 0.00270 0.00872  0.00241 0.00708 0.00261 0.00569 0.00261 0.00506 0.00261 0.00470
6.0 0.00242 0.04000 0.00239 0.01118 0.00226 0.00737 0.00199 0.00594  0.00216 0.00473° 0.00216 0.00419  0.00216 0.00388
6.2 0.00205 0.03667 0.00203 0.00962 0.00190 0.00623 0.00165 0.00498 0.00180 0.00393 0.00179 0.00347 0.00178 0.00320
6.4 0.00174 0.03364 0.00173 0.00828 0.00160 0.00527 0.00136 0.00417  0.00149 0.00326  0.00148 0.00287  0.00147 0.00264
6.6 0.00149 0.03080 0.00147 0.00713 0.00135 0.00446 0.00113 0.00349  0.00124 0.00271  0.00122 0.00238  0.00122 0.00218
6.8 0.00128 0.02838 0.00125 0.00614 0.00113 0.00377 0.00093 0.00293 0.00103 0.00225 0.00101 0.00197  0.00101 0.00180
7.0 0.00111 0.02611 0.00107 0.00529  0.00095 0.00319  0.00077 0.00245 0.00085 0.00187  0.00084 0.00163 = 0.00083 0.00149
7.2 0.00096 0.02404 0.00091 0.00456 0.00080 0.00270 0.00063 0.00206 0.00071 0.00156  0.00069 0.00135  0.00068 0.00123
7.4 0.00084 0.02215 0.00077 0.00393 0.00067 0.00229 0.00052 0.00173  0.00059 0.00130  0.00057 0.00112  0.00056 0.00102
7.6 0.00073 0.02043  0.00066 0.00339 0.00056 0.00194 0.00043 0.00145 0.00040 0.00108  0.00047 0.00093  0.00046 0.00084
7.8 0.00064 0.01887 0.00056 0.00293  0.00047 0.00164 0.00035 0.00121 0.00040 0.00090  0.00039 0.00077  0.00038 0.00070
8.0  0.00056 0.01744 0.00047 0.00253 0.00039 0.00139  0.00029 0.00102 0.00033 0.00075 0.00032 0.00064 0.00031 0.00058
8.2  0.00050 0.01613  0.00040 0.00219  0.00033 0.00118 0.00023 0.00086 0.00028 0.00062 0.00026 0.00053 0.00026 0.00048
8.4 0.00044 0.01494 0.00034 0.00190 0.00027 0.00101  0.00019 0.00072  0.00023 0.00052  0.00022 0.00044 0.00021 0.00040
8.6 0.00039 0.01384 0.00028 0.00164 0.00023 0.00086 0.00015 0.00061 0.00018 0.00043 0.00018 0.00037  0.00017 0.00033
88 0.00034 001284 0.00024 0.00142 0.00019 0.00073 0.00012 0.00051  0.00015 0.00036  0.00014 0.00031  0.00014 0.00028
9.0 0.00031 0.01191  0.00020 0.00124 0.00015 0.00062 0.00010 0.00043 0.00013 0.00030 - 0.00012 0.00026  0.00011 0.00023
9.2 0.00027 001106 0.00016 0.00107 0.00013 0.00053 0.00008 0.00036 0.00010 0.00025 0.00010 0.00021  0.00009 .0.00019
9.4 0.00024 0.01028 0.00014 0.00093 0.00010 0.00045 0.00006 0.00031  0.00008 0.00021  0.00008 0.00018 0.00007 0.00016
9.6 0.00021 0.00956 0.00011 0.00081 0.00008 0.00039 0.00005 0.00026 0.00007 0.00018 0.00006 0.00015 0.00006 0.00013
9.8 0.00019 0.00889  0.00009 0.00071  0.00007 0.00033 0.00004 0.00022 0.00006 0.00015 0.00005 0.00013  0.00005 0.00011
10.0 0.00017 0.00827 0.00007 0.00062 0.00005 0.00028 0.00003 0.00018 0.00005 0.00012 0.00004 0.00011 0.00004 0.00009
TaBLE XIII. Numerical open-shell correlation functions.

7 H- He Lit+ Be?t C+* o+ Net+

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.1 1.05201 1.04735 1.04542 1.04409 1.04203 1.04032 1.03875

0.2 1.10339 1.09217 1.08676 1.08270 1.07619 1.07081 1.06612

0.3 1.15414 1.13465 1.12449 1.11668 1.10435 1.09464 1.08679

0.4 1.20427 1.17494 1.15902 1.14677 1.12809 1.11432 1.10401

0.5 1.25377 1.21320 1.19073 1.17367 1.14873 1.13162 1.11964

0.6 1.30267 1.24957 1.22000 1.19798 1.16731 1.14765 1.13411

0.7 1.35095 1.28421 1.24715 1.22024 1.18456 1.16279 1.14642

0.8 1.39864 1.31725 1.27248 1.24090 1.20098 1.17675 1.15417

0.9 1.44573 1.34881 1.29629 1.26035 1.21675 1.18852 1.15354

1.0 1.49223 1.37903 1.31881 1.27891 1.23180 1.19639 1.13928

1.1 1.53814 1.40802 1.34026 1.29680 1.24576 1.19796

1.2 1.58348 1.43589 1.36084 1.31418 1.25800 1.19014

1.3 1.62824 1.46274 1.38071 1.33114 1.26759 1.16912

14 1.67243 1.48868 1.40000 1.34770 1.27334 1.13041

1.5 1.71606 1.51379 1.41883 1.36377 1.27377 1.06881

1.6 1.75913 1.53817 1.43727 1.37923 1.26713

1.7 1.80165 1.56188 1.45538 1.39386 1.25140

1.8 1.84362 1.58500 1.47317 1.40737 1.22425

1.9 1.88505 1.60761 1.49063 1.41940 1.18309

2.0 1.92595 1.62974 1.50775 1.42950 1.12507

2.1 1.96632 1.65147 1.52444 1.43717

2.2 2.00616 1.67284 1.54063 1.44180

2.3 2.04548 1.69387 1.55618 1.44275

24 2.08429 1.71462 1.57096 1.43927

2.5 2.12260 1.73511 1.58479 1.43054

2.6 2.16040 1.75535 1.59747

2.7 2.19770 1.77536 1.60875

2.8 2.23451 1.79515 1.61839

29 2.27084 1.81472 1.62609

3.0 2.30668 1.83407 1.63153

3.1 2.34205 1.85318 1.63437

3.2 2.37695 1.87203 1.63424

3.3 2.41139 1.89060 1.63073

3.4 2.44537 1.90887 1.62342

3.5 2.47889 1.92678 1.61183

3.6 2.51197 1.94430

3.7 2.54460 1.96138

3.8 2.57680 1.97795

3.9 2.60857 1.99397

4.0 2.63991 2.00935

4.1 2.67083

4.2 2.70133

4.3 2.73142

44 2.76112

4.5 2.79041

4.6 2.81930

4.7 2.84781

4.8 2.87594

49 2.90369

5.0 2.93107




CORRELATED ORIBTALS FOR He

the correlation function xx then achieves that the total
wave function @y given by Eq. (1) or (2) is normalized

in the usual sense:
f aVdyi=1.
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Correlated Orbitals for the Ground State of the
Hydrogen Molecule®
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INTRODUCTION

OR the ground state of the helium atom and its
isoelectronic series, wave functions constructed
from a conventional orbital product, times a correlation
function depending on the interelectronic distance only,
have been relatively successful.! The best correlated
closed shell, using the same orbital for both electrons,
yields energies within 0.15 ev of experiment; the best
correlated open shell, using a symmetrized product of
two different orbitals, comes within 0.015 ev.
In this paper we give the results of similar calcula-
tions on the hydrogen molecule. The correlated closed
shell for Hy is represented by

Pe=0(1) 0(2)x (r12), (1)

where ¢ is a one-electron function or orbital, and x(r12)
is the correlation function. The orbital ¢ must be of
species g,; expressing ¢ in terms of the usual elliptic
coordinates,? this means that

e(&m=e(§ —n). (2)

For the correlated open shell there are two different
possibilities. They both have in common that the total
wave function is given by

* This work was assisted by a grant from the National Science
Foundation and by a contract with Wright Air Development
Center, U. S. Air Force.

t Permanent address: Institute of Physics, Polish Academy of
Sciences, 69 Hoza, Warsaw, Poland.

L C. C. J. Roothaan and A. W. Weiss, Revs. Modern Phys. 32,
194 (1960), this issue.

2If @ and b refer to the two nuclei, and R is the internuclear
distance, £= (#o-+75)/R, n= (ra—7)/R.

&=L o(LY(2)+¢¥ (1) ¢(2)Ix (712)- ©)

The difference between the two open shells is in the
orbitals. One type, which we call the in-out correlated
open shell, is built from a ¢ and ¢ which both have o,
symmetry and satisfy Eq. (2). For the other type, called
the left-right correlated open shell, the orbitals ¢ and ¢
have only cylindrical, or ¢, symmetry, and they are
each other’s mirror image with respect to the center of
the molecule. ‘

The first correlated closed-shell calculation was done
by Frost and Braunstein.? They used a simple LCAO
for the orbital ¢=1s5,41s5, and a two-term correlation
function x(r12)=1-cr1; the effective nuclear charge
of the 1s orbitals and the constant ¢ were the adjustable
parameters. Their calculation yielded a binding energy
which was still in error by 0.6 ev. Since we expect (from
analogy with the helium series) only about 0.15 ev or
less for well-adjusted orbital(s) and correlation function,
Frost and Braunstein’s choice for these was clearly too
inflexible. We adopted the expressions

50(5777) = Zz:o aiui(s:")y
rﬁ(fm)=é bu(pm), @

n
X (712) = Z Culp (7'12) 3
p=0

3 A. A. Frost and J. Braunstein, J. Chem. Phys. 19, 1133 (1951).



