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determined the 2s orbital for Li using the Li+ 1s orbital.
Indeed, a numerical table we obtained for our best
Li+ orbital confirmed this. For Be, our orbitals differed
from Hartree's' by a few units in the last figure he gave.

Generally speaking, we are confident that our SCF
orbitals are equivalent to the solutions of the integro-
difterential Hartree-Fock equations to four decimal
places. This is confirmed by the behavior of the fifth
figure in the 1s orbitals; their tails cross the r axis,
decrease to —1)&10 ', and then die out as they should.
Further confirmation of this accuracy will be obtained
when a program for the computation and tabulation of
Frb; s;rb, —and PP,/s. re;, now under construction, is

completed. The accuracy of our orbital energies should

be at least 4 figures, our total energies 7—8 figures.

' D. R. Hartree, Proc. Roy. Soc. (London) A150, 9 (1935).

APPENDIX

We put in Eq. (22) e "=—(d/ds)e ' and perform a
partial integration with respect to v; the result is

C.p(t) =C. p r(t) —(cr!P!)
—'t +' " du u+.Pe &'+-'& "+8ps,

0

where the term C,p r(t) is absent if P=O. Next, we

multiply Eq. (22) by t, put the te "'=—(d/du)e "',
and perform a partial integration with respect to I;
the result is

tC p(t)=tC, r,p(t)+(n!P!) 't +' —t du u +Pe ~'+'&—"

where the term tC r, p(t) is absent if rr=0. Addition of
these two equations and division by 1+tyields Eq. (23).
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INTRODUCTION

~~OR the ground, state of atoms, molecules, and solids,
the explicit solution of the Schrodinger equation to

obtain an accurate wave function is virtually a hopeless
task. Instead, one usually chooses a convenient func-

tion with adjustable parameters, and determines the
best wave function within this class by minimizing the
expectation value of the energy, computed from that
wave function, with respect to these parameters. The
form of the function chosen represents a certain re-
striction, and it is essential to use physical arguments in
choosing such a form; in doing so, we essentially choose
a model. The success of such a wave function can, to a
certain extent, be judged by comparing the calculated
energy with the experimental total energy.

One of the most successful models is the Hartree-
Fock approximation, '—' in which there occur, in-

stead of adjustable parameters, wholly adjustable

undetermined one-electron functions or orbitals. The

* Work assisted by a grant from the National Science Founda-
tion and by Wright Air Development Center, under contract with
the University of Chicago.

' D. R. Hartree, Repts. Progr. Phys. 11, 113 (1948).
'D. R. Hartree, The Calculation, of Atomic Structures (John

Wiley 8z Sons, New York, 1957).' C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).' C. C. J. Roothaan, Revs. Modern Phys. 32, 1t9 (1960), this
issue.

condition for minimizing the energy leads to nonli-
near integro-differential equations for the orbitals,
which can be solved by the iterative self-consistent
field procedure. ' 4 The total energies obtained by this
method are rather good, namely, about 99% of the
experimental values or better; also, the lower ionization
potentials and electron densities are calculated rather
reliably. However, many other physical properties,
calculated by the Hartree-Fock function, do not agree
nearly as well with experimental data, notably dissocia-
tion (or cohesive) energies.

It is well known that the shortcomings of the Hartree-
Fock method are due to neglect of the details of the
electronic repulsions; the wave function for each
individual electron is determined by the potential of the
nuclei and that due to the probability density of the
other electrons (we ignore the exchange potential,
which does not alter this picture materially). On the
whole, this allows electrons to come close together

more often than is actually the case. The energy cor-

rection which would result if this effect is properly

taken into account is commonly called the correlation

energy. ' The correlation energy is especially large be-

' More precisely, the correlation energy is de6ned as the dif-
ference between the expectation value of the energy of the Har-
tree-Fock approximation and the correct eigenvalue of the non-
relativistic spin-independent infinite nuclear mass Hamiltonian.
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tween two electrons in the same spatial orbital with
opposite spins; therefore, a logical next step after the
Hartree-Fock approximation is to construct a wave
function in which the paired electrons avoid each other
more strongly. Obviously the helium atom and its iso-
electronic series is the simplest testing ground for such
a model. The purpose of this paper is sot to construct
wave functions for heliumlike systems better than have
been obtained to date, ' "but to determine the validity
and limitations of a new form of wave function which
has a conceptual simplicity comparable to the Hartree-
Fock method and which perhaps can be extended to
many-electron cases.

CORRELATED WAVE FUNCTIONS FOR
HELIUMLIKE SYSTEMS

We investigated two types of wave functions,
namely,

Co= 9 (rr) 9 (rs)X(r»), (1)

L9'(r&)it'(rs)+4 (&r) V (rs)]X(r») (2)

C g and Co are not required to be normalized.
We call Cq the correlated closed shell' and Co the

correlated oPee shell The fu.nctions &p and f we call
orbitals, and y the correlation function. In 40, we
make rlo assumption about orthogonality between q

and P; obviously then, the correlated closed shell is a
special case of the correlated open shell in which the
two orbitals are identical.

In the past, a number of correlated closed-shell
calculations have been carried out for He with various
analytical choices for the orbital and correlation func-
tion. The erst one was by Hylleraas, " who took rp(r)
=exp( —f'r), x(rrs) = exp(burrs), with 1' and y as varia-
tional parameters. Hartree and Ingman" rejected
Hylleraas' choice for the correlation function as physi-
cally unreasonable. They argued that x(rrs) should

approach a constant value for r~2 —+ , expressing the
separability of the wave function when the electrons
are far apart, and should decrease to a smaller value
for r»~0, keeping the electrons apart. They specifi-
cally showed that the correlation function should reduce
to afrite value for rrs ——0. This fact, together with their
assumption for r»~ ~, led them to choose x(rrs)
=1—c exp( —rir»); for the orbital they kept q(r)
=exp( —

1 r).
Hartree and Ingman realized that their assumption

about the asymptotic behavior of the correlation func-
tion is not strictly correct. However, the actual asymp-

S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955).

~ T. Kinoshita, Phys. Rev. 105, 1490 (1957).
s J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).' E. A. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958)."C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
"W. Kolos, C. C. J. Roothaan, and R. A. Sack, Revs. Modern

Phys. 32, 178 (1960), this issue."E.A. Hylleraas, Z. Physik 54, 347 (1929).
"D. R. Hartree and A. L. Ingman, Mem. Proc. Manchester

Lit. R Phil. Soc. 77, 79 {1933).

totic behavior has very little inQuence on the total
energy, and their assumption still might be a permis-
sible and useful one. Our investigation was partially
directed toward clarifying this point; our final con-
clusions are contained in the section Discussion of
Results.

If complete fIexibility is allowed for the orbital and
correlation function, the condition of minimim energy
leads, just as in the derivation of the Hartree-Fock
equations, to coupled integro-differential equations for

y and p. These equations were derived by Saber and
Hasse, "who also attempted to solve them by numerical
integration. This, however, led into difFiculties for the
equation for x for r» large. They then adopted z(r»)
=1+crrs, and solved the differential equation for y
numerically for various values of c. In the process they
also determined the best t and c for q(r) =exp( —fr),
x(r»)=1+or», which had also been done before by
Hylleraas. " The final energy for their best orbital is
certainly in error, however. The calculation was re-
cently repeated and corrected by Green et al." The
latter authors also carried out the determination of the
best variational x(rrs) if the orbital is assumed in

simple analytical form q (r) =exp( —f'r).
Correlated open-shell calculations have been carried

out for H by Chandrasekhar, "and for He and Li+ by
Green et al."In these calculations, the best t, |', and c
were determined for y(r)=exp( —fr), P(r)=exp( —f'r),
and x(r») = 1+cere.

The investigations reported here started from the
same question as Saber and Hasse's original approach,
namely, the determination of the best orbital and cor-
relation function for the correlated closed shell. When

it was found that the energies thus obtained were still

inferior to those achieved with the extremely simple

functions of Chandrasekhar and Green et al. for the
correlated open shell, we also determined the best
orbitals and correlation function for the open shell.

In order to circumvent the difFiculty encountered by
Baber and Hasse using the numerical integration proc-

ess, we put forth the following flite analytical expres-
sions for y, f, and g:

"T.D. H. Saber and H. R. Hasse, Proc. Cambridge Phil. Soc.
33, 253 (1937)."I.C. Green, C. Stephens, E. K. Kolchin, C. C. Chen, P. R.
Rush, and C. W. UBord, J. Chem. Phys. N, 1061 (1959)."S.Chandrasekhar, Astrophys. J. 100, 176 (1944)."I.C. Green, M. N. I evris, M. M. Mulder, C. W. Wyeth, and
J. W. Well, Jr., Phys. Rev. 93, 273 (1954).
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electron (1BC)
(4 Bf12) ~12 =o

(8)

cb on

With a conventional orbital product wave function,
the condition (7) can be satisfied, but (8) is aheays
violated. However, the wave functions (1) and (2)
satisfy both conditions (7) and (8) if

nucleus

Fio. 1. Coordinate system.

(1 d~l (1BP = —z
(p dr) p Rip Br),=o

(1Bx)
&x Br) „,

(9)

(10)

for the basis function u; and v„, we took

The coeflicients a;, b, , c„, and the orbital exponent i'

are the variational parameters of our problem. The ex-
pansions (3) become equivalent to completely ftexibte
functions y, iP, and x if m —+ ao, n —+ ~. The results of
our computations show that for a determination of the
energy to about 10 ' a.u. , or 0.0003 ev, this equivalence
is achieved in practice with m= m=4.

where
+1++2++12+~121

1(B' 2 B~ Z
X,= —-~ +——

(
——, i=1, 2,

2 L.Br,2 r, Br,) r,

(B2 2 Bx„=-i +— )+.„-,
(Br,2' r„Br„)

(6)

1( B Bp B
aei2' ———-~ cosa&—+cosB2—

I

2 ( Br1 Br2) Br12

The operators 3C; and X» have a singularity for r;=0
and r»=0, respectively. But X»' also has a singularity,
namely, for r1= r2= r12=0, since the values of cos01 and
cos82 depend on how the triangle of Fig. 1 is contracted
to a point.

For the exact wave function, KC/4 =8 has a con-
stant value. The singularities of X; and X12 permit
this only if

(1 BC') (1 B4)

EC Bri) ri=o LC Br2) r2=o
(7)

SINGULARITIES IN THE WAVE FUNCTION
AND THE HAMILTONIAN

For wave functions which depend only on r1, r2, r»,
and not on the spatial orientation of the triangle deter-
mined by the nucleus and the two electrons, the Hamil-
tonian is (see Fig. 1)

Hence, viewed in Cartesian three-dimensional space,
the functions &p, ip, and x have clsps for r ~ 0. Each
cusp refers to a pair of Coulombic particles; the sign of
the cusp is positive for a repulsion, negative for an
attraction, and the magnitude is equal to the product
of the two charges and the reduced mass of the two
particles.

Unfortunately, the wave functions (1) and (2) lead
to a singularity in KC/4 due to K»'. We expect this
to be much less harmful to the wave function than the
singularities due to X; and X12, if those are present, for
two reasons. First, the latter lead to in6nities in RC'/4,
whereas the former leads to a bounded singularity.
Secondly, the domains in which the latter occur are
surfaces in the three-dimensional space framed by
r1, r2, r12, whereas the former occurs only at the single
point r1=r2=r12=0.

One can interpret this last fact by saying that the
wave function forms (1) and (2) permit a correct
account of two-body correlation but not of three-body
correlation.

The importance of the correct cusp values was
stressed by Pluvinage, "who carried out a correlated
closed-shell calculation using a perturbation method.
For the zeroth approximation he neglected X12', so
that the problem becomes strictly separable. The equa-
tion for p is obviously the He+ equation, yielding
y=exp( —2r). The equation for x is also hydrogenic,
but with a repulsive Coulomb potential, which has a
continuous spectrum of eigenfunctions x(e,ri~), where

is continuous. The best value of e was deter-
mined by Pluvinage by minimizing the energy calcu-
lated with the full Hamiltonian. The resulting x be-
comes exponentially large for r» ~ ~; this is offset by
the stronger exponential decrease of p(r). '9 Obviously,
the wave function thus constructed satisfies both cusp
conditions (8) and (9). However, first neglecting Ri~'
altogether leads to a rather bad zeroth approximation,
and hence to a bad energy.

' P. Pluvinage, Ann. Phys. 5, 145 (1950).
"Our choice of basis set for y, Kq. (4), also makes x blow up

for r» ~ ~, although not exponentially. Baber and Hassd, '4 and
Green et al. '~ showed that the correct asymptotic bahavior of g
is indeed exponential.
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ITERATIVE EQUATIONS FOR THE
EXPANSION COEFFICIENTS

In order to apply the variational principle to the
wave functions (1) or (2) constructed from the orbi-
tal(s) and correlation function given by Eqs. (4) and

(5), we first need a manageable expression for the ex-
pectation value of the total energy. For the present,
we consider f' as fixed so that for the correlated closed
shell ai and c„, and for the correlated open shell a;, b;,
and c„, are the adjustable parameters.

The total Hamiltonian is

K= ——,'(6k+62) —Z[(1/r1)+ (1/r2)]+ (1/r12); (11)
for the functions Cc and 4o given by Eqs. (1) and (2),
we obtain

(e.IxIe.)= «dv, dv,

X ( [Vlcc (1)]'[k (2)x(12)]'

[v'(1) q'(2) ]2x(12)A12x (12)]}

The kinetic energy contributions from h~ and A2 are
equal, so that the total kinetic energy part is

JtJ
dv1dv2C'CA14C=

J J dvldV2(V1C'C)

d V2[k (2)]'J d V1[Vkk (1)x(12)]'

d V2[y(2)]' d V1

X ( [Vlcc (I)]'[x(12)]'+[k(I)]'[Vkx(12)]'

+2&j&(1)x(12)[Vkk2(1)] [Vkx(12)]}

d V2[tj (2)]'

X([V 9 (I)]'[x(12)]'+[~(1)]'[Vx(12)]'
+x(12)[V x(12)].Vk[k (I)]'}

= J~d V2[k&(2)]' d V,

(CclC'c) J Jrdvkdv2[~(1)k (2)x(12)]2,

d Vld Vk (—Z[(1/rl)+ (1/r2)] X ([Vkk& (1)]'[x(12)]'—[k2 (I)]'x(12)A kx (12)};
this is just the kinetic-energy part of Eq. (12) since

+(1/r12)}[&j&(1)ij&(2)x(12)], (12) Akx(12) =A12x(12).
We now substitute the expansions for the orbitals

and correlation function, Eqs. (3), into the expressions
(12) and (13); the results are

(C'c I~Ice) 2 +ijkl»vaiajakalc»cv&

(colxIco)= "dV,dV,

X f [Vlqr(1)f(2)+Vlf(1) k2(2)]'[x(12)]'

—[k2(1)$(2)+&&I(1)k2(2)]2x(12)A12x(12)}

I dVldV2 where

ijklijjv

(C'C
I
C C) E &-»jkl»vaiajakalC»Cv&

ijklfj v

(eoIXI@o)= Q H;, ki„,a,ajbkblc„c„,
ijklpv

(C'0
I
C'0) = P Rjkl»vaiajbkblc»cv&

ijklpv

(14)

X f —Z[(1/r1)+ (1/r2)]+ (1/r12) }
X[k2(1)f(2)+f(1)k2(2)]'[x(12)]', (13)

(4'o
I
C&o) = d Vld V2

X [&j (1)p(2)+f(1)k2(2)]'[x(12)]',

where we have replaced the arguments r~, r2, r~2 of
s, P, x by the subscripts 1, 2, 12. It is to be noted that
in Eqs. (12) and (13) the kinetic-energy terms contain
no cross terms involving gradients of &&2 (or f) and X.
We show in the following how these terms were trans-
formed in the case of Cg",' the corresponding trans-
formation for C 0 is similar.

H,;k(„v 2J~J dvkdv2([V121,——(1—)] [V12lj(1.)]0k(2)gi(2)

+[V12ik(1)] [V1211(1)]N;(2)2lj(2)}2&„(12)2&„(12)

——',Jt J
d Vld V2N;(1)2l&(1)2ik(2)211(2)

X [2&„(12)&122&v(12)+2&v(12)6122&„(12)]

+
~

d vkd V2( —Z[(1/r1)+ (1/r2)]+ (I/r12) }

XI;(1)I;(1)Nk (2)Nl (2)2&„(12)2&„(12),

S,&kl»
——JI Jt dvkdv221;(1)gj(1)

Xilk(2)iji(2)2&„(12)2&„(12), (16)
~ij kl»v 2Kjkl»v+ K7cjl»v+ Klkj»v&

"We are indebted to Dr. W. Kolos for pointing out this trans-
formation. ~ijkl»v 2~ijkl»v+~1k jl»v+~ilkj&&v
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The stifterrttatrices II, S,8, S defined by Eqs. (16)
and (17) are all symmetrical in each of the three index
pairs ij, kl, p, v, and also symmetrical for the exchange
ij—+ k/, As a matter of fact, the symmetrical definition
of these quantities was chosen to facilitate the efhcient
use of storage in the machine computations.

The condition of minimum energy, 88=0, where
E= (C'

~
X

~
4)/(C ~C), readily leads to the following

pseudo-eigenvalue equations for the correlated closed
shell:

H'a=ES a,

H'c=ES'c, (18)

S)j 2 S))kt))vakatc))cv)
kl pv

II))v'= Q IIijkt))vaiaj akat)
ijkl

S))v P Sijktv vai aj aka t
i jkl

(19)

Hence a and c are eigenvectors of two simultaneous
pseudo-eigenvalue problems, with the same eigenvalue.
The solution of the problem is achieved in a manner
analogous to the self-consistent held method. A set of
vectors a, c is assumed, the matrices II, etc. are com-
puted from these by Eqs. (19), and the eigenvalue
problems (18) are solved to give new vectors a, c.
The whole process is then repeated until assumed and
calculated vectors agree. When that has been accom-
plished, the eigenvalues of the two Eqs. (18) are auto-
matically equal.

For the correlated open shell the procedure is analo-

gous. The pseudo-eigenvalue equations are now

H.a=ZS.a,
H'b=ES'b (20)

H'c= ES'c,
where

Kj Z IIi)'kt))vbkbtCVCv)
k litt v

St)' 2 Si)'ktvvbkbtc))cv)
klan, v

where a and c are the column vectors of the coeKcients
a; and c„, respectively, and the matrices H', etc. are
obtained by contractions of the supermatrices (16)
with the vectors a and c, namely,

II))'= 2 IIij kt))vakatc))cv)
klp, v

TABLE I. Total energies and expectation values of r& +rP for
different expansion lengths for the He correlated closed-shell wave
function.

2 —2.86159
2.36076

(g=1.921)

—2.89805 —2.90034 —2.90034 —2.90036
2.36086 2.36332 2.36322 2.36406

(g= 1.935) (g= 1.8335) (f= 1.83) ((=1.826)

4. —2.86168 —2.89806 —2.90037 —2.90037 —2.90039
2.36954 2.36294 2.36776 2.36762 2.36824

(1'=1.97) (/=1.80) (1'=1.64) (t =1 64) . (1'=1 65).

a For some reason, as yet not fully understood, the best results for m =1
and m =3 are identical with those for m =0 and m =2, respectively.

EVALUATION OF THE SUPERMATRIX ELEMENTS

In order to evaluate explicitly the supermatrix ele-
ments Il,,kl„„and S;;kl„„we have to substitute into
the right-hand sides of Eqs. (14) and (15) the specific ex-
pressions for the basis functions, Eqs. (4). This im-
mediately yields the general supermatrix elements in
terms of one family of primitive integrals, namely,

))II)jkt))v oi ftJIi+j t, k+t+1, v+v+—1+fttIi+j+1,k+t t, ))+v+1-
(S+j )I)+)',k+t+t, v+vyt (0+l)I;+)yt, ~t, )vt. v+t

+2I + +l,k+t+t, + '~t'L)M(tt+ 1)+ (Pt)+1)j
XI)+j+t,k+t+t, )v+v—t) +PI Ii+j,k+t+1, ))+v+t

+Ii+j+t,kit, v+v+\]+1 Ii+j+t, k+i+1, )v+v)

~~ij kl pv ~i+j+1,k+i+1, Itt+ v+1'

with

(22)

f

dP dP' e or(v)+v))—

P is an arbitrary numerical factor which we pick to our
convenience.

The double-volume integration can be carried out
over the three internal coordinates r1, r2, r12 and the
three Eulerian angles which define the spatial orienta-
tion of the triangle of Fig. 1."Since the integrand does
not depend on the latter, those integrations can be
carried out immediately; introducing scaled coordi-
nates p, =fr, , p»=fr», and choosing X=1'/8n', we
obtain

g)t
mg

0 —2.84765 —2.89112 —2.89112 —2.89123 —2.89125
2.10700 2.15310 2.15230 2.15888 2.15830

( 1= 1.6 87 5) (f= 1.85) (1 = 1.848) (1'=1.848) (1'=1.848)

»ij ~ &&ijklpv&kalCpCvy
KT. .

klfttv

~ij ~ ~ijklpvGkGlCIICvq
C', J ~ C', ,

klpv

II))v 2 II)jktvvaiajbkbt)
i jkl

S„„'=Q S;;kt„,a;a;bkbt.
ijkl

P1+P2
00 ~00

(21) I))e&= dpt dpo ~ dp»e &v)+»t pt polyp»~ (24).
o 4o

)P1 —PS j

Equation (24) shows that I e~ is a pure number de-
pending on the integers n, P, p only.

2'The method of integration used here was introduced by
E. Hylleraas. ~
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TABLE II. Total energies and expectation values of r12+y22 for
di6'erent expansion lengths for the He correlated open-shell wave
function.

2 —2.87752
2.41156

g =1.899)

—2.90193 —2.90289 —2.90305
2.37980 2.38054 2.38316

(t =1.94) (0= 1.86) (K= 1.914)

3 —2.87774 —2.90205 —2.90297 —2.90312
2.40378 2.37624 2.37854 2.38126

(1'=2.01) (1' 2 0=65) . (1 = 1.935) (1 =2.017)

—2.90306
2.38272

(t-=1.915)

—2,90315 wh

2.38000
(1'= 1.999)

0 1

0 —2.84765 —2.89112 —2.89112 —2.89123 —2.89125
2.10700 2.15310 2.15230 2.15888 2.15830

()=1.6875) (f= 1.85) (&=1.848) (t =1.848) (&=1.848)

1 —2.86049 —2.89450 —2.89465 —2.89529 —2.89531
2.12156 2.16674 2.18116 2.20322 2.20224

(1'=1.713) ($= 1.84) (f= 1 848.) (t = 1 844). ($=1 844.) = FN
I

FIG. 2. Correlation function, schematic.

00 ps, g

J,p~= ~ dx dye '*P p(x,y)x~;
& 0

(2g)

4 —2.87798 —2.90213 —2.90304 —2.90316 —2.90319
2.41606 2,38150 2 38402 2.38432 2,38424 app]ying the same process to Fq (2g) we obtain

(1'=2.082) (1'=2.13) (1 =1 948) . (t =2 04) . (1'=1.916)

In order to derive recurrence relations between the
I p~, we introduce the transformation x=p~+p2,
y= p1—p2, s= p12, yielding

where

I p, =, dx dz, dye'I' p(x,y)z&, (25)

~-p(x, y) = l (Lz (x+y)j Ll(x—y)j'
+I3(x+y) JP[k(x—y)l ) (2~)

In Eq. (25) we write e '*=—z(d/Cx)e ", and per-
form a partial integration with respect to x; the result is

I-ps=~(~l--~pe+&I-p, ~ v+2J, -pv. ) (27)

& p =g(~& i,pv+PA, p i, +2v~ p. i)

+2 ' " '9-o(&+7) l+8po(~+&) lj (29)

The recurrence relations (27) and (29) allow us to
calculate J p~ and I p~. No serious loss of significant
figures can occur in this process, since all quantities are
positive and additive.

RESULTS AND DISCUSSION

A digital computer program was written for the
Remington Rand Univac Scientific 1103 at Wright-
Patterson Air Force Base. Input data are the nuclear
charge Z, the expansion lengths m and e (limited to
~& 4, due to the size of the memory), the orbital exponent

i, and a tag, 0 or 1, which distinguishes between closed

TABLE III. Various wave functions of correlated closed-shell. type for He.

Wave function

g
—L' (r1+r2)

~(~~) ~(~~)
pM(rl+&2)x(f12)

g-i (r1+r2)g Yr12

t (rl+r2) (1+Cy12)
g
—t'«1+r» (1—cg

—«»)
g-0&r1+ 2)x (y12)

~(y )~(» )(1+cy )

~(yi) V (y2)X(y»)

Exact wave function

Comments

Best f
Best y, Hartree-Fock
x from repulsive hydrogenic
differential equation
Best f and y
Best f and c
Best f, g, and c
Best p; p by numerical
integration
Best c; p by numerical
integration
Best y and x, expanded
in basis set
Neglecting relativistic, etc.
effects, in6nite nuclear mass

Energy

—2.84766—2.86168
—2.878

—2.8896—2.89112—2.89115—2.89126'

—2.89806'

—2.90039

—2.90372

Energy
discrepancy

—0.05606—0.04204
—0.026

—0.0141
—0.01260
—0.01257—0.01246

—0.00566

—0.00333

Orbital
cusp

—1.6875—2.000
—2.000

—1.860—1.8497—1.8395—1.849

—1.999

—2.021

Corr.
Cusp

0.500

0.260
0.364
0.379
0.50

0.35

0.465

Reference

e, f, g
h

f, g

a In agreement with our expansion results, Table I, m =0, n =4, and m =4, n 1, respectively.
b See any textbook.
e See reference 25.
d See reference 18.
e See reference 12.
& See reference 14.
g See reference 15."See reference 13.
I See this paper.
j See references 6-11.
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Atom

H

He

Li+

Orbitals
Correlation

function

e0.478r

~(r)
Exact wave
e
—1.436r

~(r)
Exact wave
e
—2.362r

~(r)
Exact wave

e
—1.075r

4 (r)
function

e
—2.208r

~()
function

e
—3.299r

~(.)
function

1+0.3121r12
X(r»)

1+0.2924r12
X(r»)

1+0.2770r 12

X(r»)

—0.52592—0.52718—0.52780
—2.90142—2.90320—2.90372
—7.27718—7.27939—7.27991

TABLE IV. Wave functions and energies for the
. correlated open shell.

Refer-
ence

runs converge in about 10 iterations or less, starting
from p=exp( —lr), X=1 as the initial approximation.
The open-shell runs converge very slowly, requiring up
to 60 iterations when starting from y=1t =exp( —|r),
X=1. In all cases, f was varied until a minimum had
been obtained. For open-shell runs the results obtained
with one f' were used as input for a neighboring i to
speed up the convergence.

In addition to the total energies, we computed the
diamagnetic susceptibilities for various wave functions.
For any atomic system this quantity is given by"

x =-'x~2~3(c
~ P r '~ c), (30)

a See reference 16.
b See this paper.
& See reference 10.
d See reference 17.
& See references 6-11.

and open shell. After the program has been executed,
the total energy and the expansion coefficients are
printed out. A maximal run, m=m=4, requires about
two minutes per iteration for the open-shell case and
somewhat less for the closed-shell case. Closed-shell

where p is the molar susceptibility, E is Avogadro's
number, n the Qne structure constant, and a the Bohr
radius. The most recent values for the elementary con-
stants" yield, for the proportionality factor 6''u', the
numerical value 0.74336)&10 '. The evaluation of the
integral (C ~rP+r22lC) in terms of the primitive inte-

grals I s~ de6ned by Eq. (24) is analogous to the

TABLE V. EnergieS and expeCtatiOn ValueS Of rp+r2 aS a funCtiOn Of Z.'

Atom or
ion

H

He

Li'+

Qe2+

C4+

O6+

F7+

Ne'+

Hartree-Fock

—0.48793
(0.03982)—2.86168
(0.04204)—7.23641
(0.04350)—13.61130
(0.04427)—21.98623
(0,04474)—32,36119
(o'.o4so6)—44.73616
(0.04529)—59.11114
(0.04546)

—75.48613
(o.o4558)—93.86111
(0.04570)

Energies

—32.40351
(0.00274)

—59.15392
(0.00268)

—93.90416
(0.00265)

Correlated
closed shell

—0.52190
(o.oos8s)—2.90039
(0.00333)—7.27692
(o.oo299)—13.65271
(o.oo286)

Correlated
open shell

—0.52718
(o.oooS7)—2.90319
(o.ooos3)—7.27939
(0.00052)—13.65505
(0.00052)

—32.40574
(0.00051)

—59.15609
(0.00051) .

—93.90630
(0.00051)

Eigenvalue
(Pekeris)

—0.52775

—2.90372

—7.27991

—13.65557

—22.03097

—32.40625

—44.78145

—59.15660

—75.53171

—93.90681

2.368

0.8903

0.4636

2.384

0.8922

0.4640

0.1914 0.1915

0.1039 0.1039

0.0651 0.0651

&elrPyrPIC&
Correlated Correlated
closed shell open shell

19.40 23.46

a The numbers in parentheses are the deviations of the approximate energies from the exact eigenvalues.

TABLE VI. Closed-shell orbital functions.

Cusp

80

82
C3

84

0.70—1.020
1.7464
1.0—0.45659
0.16372

—0.02559
0.00218

1.65—2.021
5.2203
1.0—0.22457
0.06344—0.00703
0.00041

2.55—3.021
9.8416
1.0—0.18476
0.04412—0.00469
0.00023

3.45—4.022
15.355
1.0—0.16572
0.03462—0.00359
0.00017

5.20—6.022
28.601
1.0—0.15805
0.02693—0.00274
0.00012

7.00—8.022
44.336
1.0—0.14606
0.02161

—0.00290
0.00009

10

10.80—10.023
62.212
1.0
0.07198
0.00846
0.00045
0.00000

22 J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, New York, 1932).
2' E. Richard Cohen and Jesse W. M. DuMond, Hundbuch der I'hysik (Springer-Verlag, Berlin, 1957), Vol. XXXV.
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TABLE VII. Closed-shell correlation functions.

Cusp
N,
Cp

Ci

C2

C3

C4

0.70
0.458
2.3874
1.0
0.65391
0.11445—0.03016
0.00139

1.65
0.465
2.8916
1.0
0.28162

—0.01422
—0.00238

0.00015

2.55
0.464
3.2167
1.0
0.18211—0.01742
0.00004
0.00002

3.45
0.464
3.3814
1.0
0.13437

—0.01547
0.00056—0.00002

5.20
0.463
3.6501
1.0
0.08895—0.01194
0.00071—0.00003

7.00
0.462
3.7083
1.0
0.06598—0.00939
0.00064—0.00003

10

10.80
0.460
2.0249
1.0
0.04262—0.00504
0.00029

—0.00001

TABLE VIII. Open-shell orbital functions.

Cusp
N~
Cp

Gg

C3
C4

Cusp
Ng
bp

b2
bo

b4

0.692—1.011
2.0810
1.0—0.46064
0.08518—0.00626
0.00016

—0.989
0.98844
1.0—0.42869
0.38470—0.07899
0.00789

1.916—1;990
6.1233
1.0—0.03888—0.05692
0.01473—0.00087

—2.078
4.0350
1.0—0.08430
0.18957—0.02827
0.00192

3.08—2.963
11.262
1.0
0.03790—0.06222
0.01418—0.00078

—3.114
8.1334
1.0—0.01088
0.14529—0.02045
0.00127

4.30—3.935
17.286
1.0
0.08486—0.05832
0.01239—0.00061

—4.146
13.119
1.0
0.03575
0.12165—0.01530
0.00091

6.5995—5.906
31.558
1.0
0.10514

—0.05087
0.01075—0.00052

—6.176
25.297
1.0
0.06413
0.09719—0.01216
0.00069

8.70—7.896
48.330
1.0
0.09239

—0.04733
0.01026—0.00053

—8.185
39.944
1.0
0.05925
0.08328—0.01177
0.00066

10

10.80—9.894
67.295
1.0
0.08388—0.04399
0.00966

—0.00052

—10.185
56.709
1.0
0.05694
0.07360—0.01113
0.00062

TABLE IX. Open-shell correlation functions.

Cusp
N,
Cp

Ci

C2

C3

C4

0.692
0.523
1.4046
1.0
0.75625—0.06688
0.00280—0.00001

1.916
0.487
1.2512
1.0
0.25399—0.03670
0.00424—0.00020

3.08
0.476
1.2616
1.0
0.15456—0.02393
0.00279—0.00013

4.30
0.471
1.2159
1.0
0.10958—0.01724
0.00198—0.00009

6.5995
0.467
1.2508
1.0
0.07070—0.01147
0.00133—0.00006

8.70
0.465
1.3566
1.0
0.05343—0.00903
0.00107—0.00005

10

10.80
0.464
1.4240
1.0
0.04293—0.00744
0.00090—0.00004

evaluation of the total energy but simpler; we omit the
details. For He, our best correlated closed- and open-
shell wave functions yielded for x 1.876X10 ' and
1.889)&10, which are in excellent agreement with the
experimental value" 1.88)& 10 '. The Hartree-Pock
value is also in essentially complete agreement with
experiment, namely) 1 877)&10 '.

In order to investigate the e6'ect of the finite expan-
sion lengths for the orbital(s) and correlation function,
calculations were carried out for different values of m

and e for Z=2; the results are shown in Tables I and
II. As mentioned. previously, it appears that m=m=4
is equivalent to a full variational treatment to an
accuracy of about 10 ' a.u. in the energy. The accom-
panying relative accuracy in the wave function is about
the square root of the accuracy in the energy, or about

'4A. P. Wills and L. G. Hector, Phys. Rev. 23, 209 (1924);
24, 418 (1924).

l

X(f'&2) =C e "" Q Cl, (t f12) (31)

which is an obvious generalization of Hartree and Ing-
man's form for the correlation function. Such a form
would make sense if for optimum g and increasing l the
correlation function would settle down to something
like Fig. 2. In particular, we would expect a ratio

10 '—10 ' in the present case. This is con6rmed by the
cusp values obtained from our calculations; apparently
our best finite expansion wave functions differ by about
10 ' from wave functions which would have the proper
behavior at r~=0, r2=0, and r~2=0.

It is instructive to compare our best energies and
wave functions with others of similar types" "; this is
shown in Tables III and IV. At this point we call
attention to an earlier attempt to expand the correla-
tion function for the closed shell, namely,
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TAax, E X. Numerical closed-shell orbital functions.

Zy

0.
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
74
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
94
9.6
9.8

10.0

H

1.00000
0.81652
0,66845
0.54882
0.45204
0.37361
0.30993
0.25810
0.21583
0.18124
0.15285
0.12947
0.11016
0.09413
0.08079
0.06963
0.06026
0.05235
0.04566
0.03997
0.03511
0.03094
0.02736
0.02426
0.02158
0.01925
0.01721
0.01543
0.01387
0.01250
0.01129.
0.01021
0.00926
0.00842
0.00767
0.00700
0.00639
0.00585
0.00537
0.00493
0.00454
0.00418
0.00385
0.00356
0.00329
0.00304
0.00281
0.00261
0.00242
0.00224
0.00208

He

1.00000
0.81791
0.67044
0.55078
0.45353
0.37432
0.30969
0.25682
0.21350
0.17790
0.14859
0.12439
0.10437
0.08776
0.07394
0.06243
0.05282
0.04476
0.03800
0.03232
0.02753
0.02348
0.02006
0.01716
0.01470
0.01260
0.01082
0.00930
0.00800
0.00689
0.00594
0.00513
0.00443
0.00383
0.00332
0.00287
0.00249
0.00216
0.00188
0.00163
0.00142
0.00124
0.00108
0.00094
0.00082
0.00072
0.00063
0.00055
0.00049
0.00043
0.00037

1.00000
0.81822
0.67056
0.55044
0.45258
0.37274
0.30749
0.25408
0.21029
0.17433
0.14474
0.12036
0.10024
0.08360
0.06982
0.05839
0.04889
0.04099
0.03440
0.02891
0.02431
0.02047
0.01725
0.01455
0.01228
0.01037
0.00877
0.00742
0.00628
0.00532
0.00451
0.00383
0.00325
0.00276
0.00234
0.00199
0.00170
0.00144
0.00123
0.00105
0.00090
0.00077
0.00065
0.00056
0.00048
0.00041
0.00035
0.00030
0.00026
0.00022
0,00019

Q e2+

1.00000
0.81835
0.67054
0.55013
0.45192
0.37171
0.30612
0.25243
0.20841
0.17227
0.14257
0.11812
0.09798
0.08135
0.06763
0.05627
0.04686
0.03906
0.03259
0.02721
0.02274
0.01901
0.01591
0.01332
0.01116
0.00936
0.00785
0.00659
0.00553
0.00465
0.00391
0.00328
0.00276
0.00233
0.00196
0.00165
0.00139
0.00117
0.00099
0.00084
0.00071
0.00060
0.00050
0.00043
0.00036
0.00031
0.00026
0.00022
0.00019
0.00016
0.00014

1.00000
0.81849
0.67051
0.54977
0.45116
0.37056
0.30462
0.25062
0.206'37
0.17007
0.14026
0.11577
0.09562
0.07904
0.06538
0.05411
0.04482
0.03714
0.03080
0.02555
0.02121
0.01761
0.01463
0.01216
0.01011
0.00841
0.00700
0.00583
0.00485
0.00404
0.00337
0.00281
0.00234
0.00195
0.00163
0.00136
0.00113
0.00095
0.00079
0.00066
0.00055
0.00046
0.00039
0.00032
0.00027
0.00023
0.00019
0.00016
0.00014
0.00011
0.00010

O6+

1.00000
0.81855
0.67047
0,54954
0.45073
0.36993
0.30380
0.24966
0.20529
0.16891
0.13906
0.11455
0.09442
0.07786
0.06424
0.05303
0.04380
0.03619
0.02991
0.02473
0.02046
0.01693
0.01402
0.01161
0.00961
0.00797
0.00660
0.00547
0.00454
0.00376
0.00312
0.00259
0.00215
0.001.79
0.00148
0.00123
0.00102
0.00085
0.00071
0.00059
0.00049
0.00041
0.00034
0.00028
0.00024
0.00020
0.00016
0.00014
0.00011
0.00010
0.00008

Ne'+

1.00000
0.81858
0.67045
0.54941
0.45047
0.36954
0.30331
0.24907
0.20464
0.16821
0.13833
0.11381
0.09368
0.07715
0.06355
0.05238
0.04318
0.03562
0.02938
0.02425
0.02002
0.01653
0.01366
0.01128
0.00933
0.00771
0.00637
0.00527
0.00436
0.00361
0.00298
0.00247
0.00204
0.00169
0.00140
0.00116
0.00096
0.00079
0.00066
0.00054
0.00045
0.00037
0.00031
0.00026
0.00021
0.00018
0.00015
0.00012
0.00010
0.00008
0.00007

c/(c —cs) of order unity, and somewhat larger than one.
%e did find, however, upon varying g and optimizing
the coeKcients cz, a wildly varying ratio c/(c —cs)
while the energy hardly changed; in some cases this
ratio even became negative. Although we obtained a
rather good energy with it (—2.90036 for He), we

abandoned the expansion (31) in favor of that given

by Eqs. (3) and (4).
In Table V are listed, as a function of Z, the energies

obtained with the Hartree-Fock function, " the corre-
lated closed shell, the correlated open shell, the accurate
energies obtained by Pekeris, " and the diamagnetic
susceptibility integrals (C

~
r /+res

~

C'). Whereas the
Hartree-Pock energy deviates from the correct eigen-

ss C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Revs.
Modern Phys. 32, 186 (1960), this issue.

~ drr'pgP=1

40
drr'P~s 1. ——

values by about 1.2 ev (this is the correlation energy),
the deviation is only about 0.15 ev for the correlated
closed shell, and 0.015 for the correlated open shell.

In Tables VI—XIII are given the orbital exponents,
expansion coefficients, and normalization constants of
the various wave functions. The functions are all chosen
to be unity at the origin. If they are multiplied by the
normalization constants E„X~,X„we obtain the
orbitals q~ and iPsj, so that



CORRELATED ORB ITALS FOR He 203

TABLE XI. Numerical closed-shell correlation functions.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3

4.5
4.6
4.7
4 8e

4.9
5.0

1.00000
1.04632
1.09371
1.14209
1.19141
1.24162
1.29264
1.34443
1.39692
1.45006
1.50380
1.55808
1.61285
1.66805
1.72364
1.77955
1.83575
1.89217
1.94878
2.00552
2.06235
2.11921
2.17607
2.23288
2.28960
2.34617
2.40257
2.45874
2.51465
2.57026
2.62552
2.68040
2.73487
2.78887
2.84239
2.89537
2.94780
2.99963
3.05083
3.10136
3.15121
3.20033
3.24870
3.29629
3.34307
3.38902
3.43409
3.47828
3,52156
3.56390
3.60527

He

1.00000
1,04607
1.09130
1.13564
1.17902
1.22139
1.26269
1.30289
1.34192
1.37976
1.41634
1.45164
1.48562
1.51825
1.54948
1.57930
1.60768
1.63459
1.66002
1.68394
1.70634
1.72720
1.74652
1.76429
1.78050
1.79515
1.80824
1.81978
1.82976
1.83820
1.84510
1.85049
1.85436
1.85676
1.85768
1,85717
1.85524
1.85192
1.84725
1.84126
1.83398

1.00000
1.04531
1.08835
1.12915
1.16769
1.20401
1.23809
1.26997
1.29965
1.32716
1.35250
1.37569
1.39677
1.41574
1.43264
1.44750
1.46033
1.47116
1.48003
1.48698
1.49202
1.49520
1.49656
1.49613
1.49395
1.49006
1.48451
1.47734
1.46860
1.45834
1.44660

1.00000
1.04454
1.08553
1.12310
1.15738
1.18848
1.21652
1.24159-
1.26381
1.28327
1.30005
1.31424
1.32593
1.33517
1.34204
1.34661
1.34892
1.34903
1.34697
1.34280
1.33654

C4+

1.00000
1.04312
1.08036
1.11223
1.13920
1.16169
1.18005
1.19461
1.20562
1.21328
1.21774
1.21911
1.21742
1.21267
1.20480
1.19369

06+

1.00000
1,04180
1.07562
1.10254
1.12347
1.13914
1.15013
1.15685
1.15953
1.15826
1.15293

1.00000
1.04050
1.0/122
1.09383
1.10968
1.11978
1.12482
1.12517
1.12085
1.11158
1.09673

TABLE XII. Numerical open-shell orbital functions.

H He 06+

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.8
2.0
2.2
2.4
2.6
2.8
3,0
3.2
3.4
3.6
3.8
4.0
4.2

1.00000
0.81644
0.66638
0.54334
0.44268
0.36041
0.29322
0.23840

0.15731
0.12769
0.10361
0.08405
0.06817
0.05530
0.04486
0.03641
0.02957
0.02403
0.01956
0.01594
0.01301

4.4 0.01065
4.6 0.00873
4.8 0.00718

1.00000
1.82532
0.68935
0.58290
0.49894
0.43209
0.37825
0.33432
0.29796
0.26740
0.24133
0.21876 .

0.19897
0.18141
0.16569
0,15149
0.13860
0,12685
0.11611
0.10626
0.09724
0.08896
0.08138
0.07443
0.06807

1.00000
0.81785
0.66638
0.54118
0.43824
0.35402
0.28539
0.22968
0.18461
0.14825
0.11900
0.09553
O,OV671
0.06166
0.04963
0.04002
0.03235
0.02622
0.02132
0.01739
0.01424
0.01171
0,00967
0.00802
0.00667

1.00000
0.81788
0.67757
0.56789
0.48079
0.41051
0.35288
0.30493
0.26451
0.23004
0.20039
0.17471
0'.15235
0.13281
0.11571
0.10072
0.087S8
0.07606
0.06599
0.05718
0.04949
0.04279
0.03695
0.03189
0.02VSO

1.00000
0.81868
0.66721
0.54169
0.43838
0.35383
0.28500
0.22918
0.18410
0.147V9
0.11862
0.09524
0.07652
0.06156
0.04960
0.04004
0.03240
0.02629
0.02139
0.01746
0.01429
0.01174
0.00968
0.00800
0.00663

1.00000
0.81740
0.67558
0.56377
0.47429
0.40163
0.34182
0.29201
0.25010
0.21455
0.18421
0.15819
0.13581
0.11653
0.09989
0.08554
0.07317
0.06250
O.OS333
0.04544
0.03868
0.03288
0.02793
0.02370
0.02009

1.00000
0.81918
0.66786
0.54233
0.43897
0.35437
0.28549
0.2296S
0.18453
0.14819
0.11898
0.09555
0.07678
0.06175
0.04973
0.04010
0.03240
0.02622
0.02127
0.01729
0.01408
0.01150
0,00940
0.00771
0.00633

1.00000
0.81716
0.67437
0.56124
0.47034
0.39632
0.33534
0.28459
0.24200
0.20603
0.17549
0.14947
0.12726
0.1082V

0.09203
O.OV 814
0.06627
0.05614
0,04750
0.04014
0.03388
0.02857
0.02406
0.02025
0.01702

1.00000
0.81921
0.66809
0.54284
0.43976
0.35542
0.28675
0.23105
0.18603
0.14973
0.12052
0.09705
0.07821
0.06310
0.05098
0.04125
0.03344
0.02716
0.02211
0.01803
0.01474
0.01207
0.00991
0.00815
0.00672

1.00000
0.81753
0.67370
0.55889
0.46617
0.39047
0.32810
0.27631
0.23302
0.19667
0.16603
0.14014
0.11823
0.09968
0.08396
0.07065
0.05938
0.04986
0.04182
0.03503
0.02932
0.02451
0.02047
0.01708
0.01424

1.00000
0,81898
0.66802
0.54308
0.44032
0.35625
0.28777
0.23219
0.18721
0.15090
0.12164
0.09809
0.07915
0.06393
0.05170
0.0418V

0.03396
0.02760
0.02246
0.01832
0.01497
0.01225
0.01005
0.00825
0.00679

1.00000
0.81797
0.67354
0.55770
0.46387
0.38718
0.32402
0.27167
0.2280S
0.19155
0.16092
0.13516
0.11348
0.09521
0.07981
0.06684
0.05592
0.04674
0.03902
0.03254
0.02711
0.02256
0.01876
0.01559
0.01294

1.00000
0.81876
0.66790
0.54319
0.44068
0.35683
0.28850
0.23302
0.18808
0.15177
0.12247
0.09887
0.07986
0.06456
0.05225
0.04235
0.03437
0.02793
0.02274
0.01855
0.01515
0.01240
0.01016
0.00834
0.00685

1.00000
0.81832
0.67353
0.55703
0,46249
0.38516
0.32149
0.26878
0.22494
0.18836
0.15774
0.13208
0.11054
0.09245
0,07726
0.06451
0.05381
0.04484
0.03733
0.03104
0.02579
0.02141
0.01775
0.01471
0.01218
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H He

ALE XII.—Cont~meed.

06+

5.0
5.2
5.4
5,6
5.8
6,0
6.2
6.4

6.8
7.0
7.2
7.4
7.6
7.8
S.Q
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8

10.0

0.00593
0.00491
0.00409
0.00341
0.00286
0.00242
0.00205
0.00174
0.00149
0.00128
0.00111
O.Q0096
0.00084
0.00073
0.00064
0.00056
0.00050
0.00044
0.00039-
0.00034
0.00031
0.00027
0.00024
0.00021
0.00019
0.0001V

0.06225
0.05694
0.05210
0.04768
0.04366
0.04000
0.03667
0.03364
0.03089
0.02838
0.02611
0.02404
0.02215
0.02043
0.01887
0.01744
O.Q1613
0.01494
0.01384
0.01284
0.01191
0.01106
0.01028
0.00956
0.00889
0.00827

0.00558
0.00468
0.00394
0.00333
0.00281
0.00239
0.00203
0.00173
0.00147
0.00125
0.00107
0.00091
O.'OOOVV

0.00066
0.00056
0.00047
0.00040
0.00034
0.00028
0.00024
0.00020
0.00016
0.00014
0.00011
0.00009
0.00007

0.02369
0.02040
0.01756
0.01511
0.01300
0.01118
0.00962
0.00828
0.00713
o'.oo6a4
0.00529
Q.00456
0.00393
0.00339
0.00293
0.00253
0.00219
0.00190
0.00164
0.00142
0.00124
0.00107
0,00093
D.00081
O,OQQ71
0.00062

0.00552
0.00460
0.00384
0.00322
0.00270
0.00226
O.Q0190
0.00160
o.ooa35
0.00113
0.00095
0.00080
0.00067
0.00056
0.00047
0.00039
0.00033
0.00027
0.00023
0.00019
O.OQ015
0.00013
0.00010
0.00008
0.00007
0.00005

0.01702
0.01441
O.Q1219
0.01031
O.OOS72
0,00737
0.00623
0.00527
0,00446
0.00377
0.00319
0.00270
0.00229
0.00194
0.00164
0.00139
0.00118
0.00101
0.00086
0.00073
0.00062
0.00053
0.00045
0.00039
0.00033
0.00028

0.00521
0.00429
0.00354
0.00292
0.00241
0.00199
0.00165
0.00136
0.00113
0.00093
0.00077
0.00063
0.00052
0.00043
0.00035
0,00029
0.00023
0.00019
0.00015
0.00012
0.00010
0.00008
0.00006
0.00005
0.00004
0.00003

0,01430
0.01201
Q.01008
0.00845
0.00708
0.00594
0.00498
0.00417
0.00349
0.00293
0.00245
0.00206
o.'ooav3
0.00145
0.00121
0.00102
0.00086
0.00072
0.00061
0.00051
0.00043
0.00036
0.00031
O.OOD26
0.00022
0.00018

l

0.00554
0.00458
0.00379
0.00314
0.00261
0.00216
0,00180
0.00149
0.00124
0.00103
0.00085
0,00071
0.00059
0.00049
0.00040
0.00033
0.00028
0.00023
0.00018
0.00015
0.00013
0.00010
0.00008
0,00007
0.00006
0.00005

0.01187
0.00988
0.00822
0.00684
0.00569
0.00473
0.00393
0.00326
0.00271
0,00225
0.00187
0.00156
0.00130
0.00108
0.00090
0.00075
0,00062
0.00052
0.00043
0.00036
O.OOQ30
0.00025
0.00021
0.00018
0.00015
O.OQ012

0,00559
0,00461
0.00381
0.00315
0.00261
0.00216
0,00179
0.00148
0.00122
0.00101
0.00084
0,00069
0.00057
0,00047
0.00039
O.OQ032
0.00026
0.00022
0,00018
0.00014
0,00012
0.00010
0.00008
0,00006
0.00005
0.00004

0.01073
0.00890
0.00737
0.00611
0.00506
0.00419
0.0034V

0.00287
0.00238
0.00197
0.00163
Q.00135
0.00112
0.00093
0.00077
0.00064
0.00053
0.00044
0.00037
0,00031
0.00026
0.00021
0.00018
0.00015
0.00013
0.00011

0.00564
0.00465
0.00383
0.00316
0.00261
0.00216
0.00178
0.00147
0.00122
0.00101.
0.00083
0.00068
0.00056
0.00046
0.00038
0.00031
0.00026
0.00021
0.00017
0.00014
0.00011
0.00009
0.00007
0.00006
0.00005
O.OOOQ4

0.01008
0.00833
0,00689
0.00569
0.00470
0.00388
0.00320
0.00264
0.00218
0.00180
0.00149
0.00123
0.00102
0.00084
0.00070
0,00058
O.OOQ48
0.00040
0.00033
0.00028
0,00023

,0.00019
0.00016
0.00013
0.00011
0.00009

TABLE XIII. Numerical open-shell correlation functions.

0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3,3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
44
4.5
4.6
47
48
4.9
5.0

H

1.00000
1.05201
1.10339
1.15414
1.20427
1.253/7
1.30267
1.35095
1.39864
1.44573
1.49223
1.53814
1.58348
1.62824
1.67243
1.71606
1.75913
1.80165
1.84362
1.88505
1.92595
1.96632
2.00616
2.04548
2.08429
2.12260
2.16040
2.19770
2.23451
2.27084
2.30668
2.34205
2.3/695
2.41139
2.44537
2.4/889
2.51197
2.54460
2.57680
2.60857
2.63991
2.67083
2.70133
2.73142
2.76112
2.'?9041
2.81930
2.84781
2.87594
2.90369
2.93107

He

1.00000
1.04735
1.09217
1.13465
1.17494
1.21320
1.24957
1.28421
1.31725
1.34881
1.37903
1.40802
1.43589
1.46274
1.48868
1.51379
1.53817
1.56188
1.58500
1.60761
1.62974
1.65147
1.67284
1.69387
1.71462
1.73511
1.75535
1.77536
1.79515
1.81472
1.83407
1.85318
1.87203
1.89060
1.9088/
1.92678
1.94430
1.96138
1.97795
1.99397
2.00935

1.00000
1.04542
1.08676
1.12449
1.15902
1 ~ 19073
1.22000
1.24715
1.27248
1.29629
1.31881
1.34026
1.36084
1.38071
1.40000
1.41883
1.43727
1.45538
1.47317
1.49063
1.50775
1.52444
1.54063
1.55618
1.57096
1.58479
1.59747
1.60875
1.61839
1.62609
1.63153
1.63437
1.63424
1.63073
1.62342
1.61183

1.00000
1.04409
1.082'?0
1.11668
1.14677
1.17367
1.19798
1.22024
1.24090
1.26035
1.27891
1.29680
1.31418
1.33114
134770
1.36377
1.37923
1.39386
1.40737
1.41940
1.42950
1.43717
1.44180
1.442/5
1.43927
1.43054

C4+

1.00000
1.04203
1.07619
1.10435
1.12809
1.14873
1.16/31,
1.18456
1.20098
1.21675
1.23180
1.245/6
1.25800
1.26759
1.27334
1.27377
1.26713
1.25140
1.22425
1.18309
1.12507

1.00000
1.04032
1.07081
1.09464
1.11432
1.13162
1.14765
1.16279
1.17675
1.18852
1.19639
1.19796
1.19014
1.16912
1.13041
1.06881

1.00000
1.03875
1.06612
1.08679
1.10401
1.11964
1.13411
1.14642
1.15417
1.15354
1.13928
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the correlation function x~ then achieves that the total
wave function C» given by Zq. (1) or (2) is normalized
in the usual sense:

dVC jy = 1.
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INTRODUCTION

q'OR the ground state of the helium atom and its
isoelectronic series, wave functions constructed

from a conventional orbital product, times a correlation
function depending on the interelectronic distance only,
have been relatively successful. ' The best correlated
closed shell, using the same orbital for both electrons,
yields energies within 0.15 ev of experiment; the best
correlated open shell, using a symmetrized product of
two diferent orbitals, comes within 0.015 ev.

In this paper we give the results of similar calcula-
tions on the hydrogen molecule. The correlated closed
shell for H2 is represented by

C'a= v (1)~(2)x(r») (1)
where p is a one-electron function or orbital, and g(r»)
is the correlation function. The orbital p must be of
species o;, expressing y in terms of the usual elliptic
coordinates, ' this means that

v (3,n) = ~(f, n)—(2)

For the correlated open shell there are two di6erent
possibilities. They both have in common that the total
wave function is given by

*This work was assisted by a grant from the National Science
Foundation and by a contract with Wright Air Development
Center, V. S. Air Force.

t' Permanent address: Institute of Physics, Polish Academy of
Sciences, 69 Hoza, Warsaw, Poland.' C. C. J. Roothaan and A. W. Weiss, Revs. Modern Phys. 32,
194 (1960), this issue.

~ If u and b refer to the two nuclei, and R is the internuclear
distance, g= (r +rb)/R, g= (r —rb,)/R.

C =0)y(1)P(2)+P(1)p(2)]x(rq2). (3)

The difference between the two open shells is in the
orbitals. One type, which we call the ie-ogt correlated
open shel/, is built from a p and P which both have o,
symmetry and satisfy Eq. (2). For the other type, called
the left right correl-ated oPen shell, the orbitals it and tP

have only cylindrical, or 0, symmetry, and they are
each other's mirror image with respect to the center of
the molecule.

The erst correlated closed-shell calculation was done
by Frost and Braunstein. ' They used a simple LCAO
for the orbital p= 1s,+isb, and a two-term correlation
function y(r»)=1+cr~2, the effective nuclear charge
of the 1s orbitals and the constant c were the adjustable
parameters. Their calculation yielded a binding energy
which was still in error by 0.6 ev. Since we expect (from
analogy with the helium series) only about 0.15 ev or
less for well-adjusted orbital(s) and correlation function,
Frost and Braunstein's-choice for. these was clearly too
inQexible. We adopted the expressions

O(&,~)=2 b, '(~,~),
iM

3 A. A. Frost and J.Braunstein, J. Chem. Phys. 19, 1133 (1951).


