
SYSTEMS OF THREE PARTI CLES

TABLE I. Ground-state energies Z& and expectation values of several symmetric three-particle systems.

System

M1 =M2
MB

e1=e2

e3
O'13=~23

12I
gb
gb

(from other
sources)

(~13)'
(g 132)e

('tt'12)

(lt'122) e

He

1

—1
2
1.9
0.22

60
2.9037237
2 903724376a

0.929472
'1.193477
1.422069
2.516430

He

1
7296.19—1

2
1.9
0.22

50
2.9033037
2.90330464d

0.929604
1.19380
1.42224
2.51700

e+e e

1
1—1
1
0.3737
0

50
0.2619956

5.506
48.75
8.580

93.94

PIJtP

1836.12
206.8

1—1
0.738
0

32
2778 ev
2771 ev'

dye

3671.42
206.8

1—1
0.855
0

32
2981 ev
2986 ev'

H2+

1836.12
1
1—1
0.798
0.228

32
0.58305
0.59715~

a Number of terms in the wave function.
b In atomic units (1 a.u. =27.21 ev), except for Pljtp and dtttd.
& In Bohr radii (1 a.u. =0.529 A).
~ See reference 3.
& See reference 7,
& See reference 5.

small zero-point vibration the wave function as function
of r12 has a sharp peak which can be well approximated
by (2) only with a large number of terms. An alter-
native scheme, which can accommodate longer ex-

pansions with little increase in the rounding off errors,
is being developed.
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1. REVIEW OF THE CLOSED-SHELL THEORY
" 'T is well known that the Hartree-Fock equation for a closed-shell ground state of an electronic system can

- be derived from the variational principle. ' ' The wave function is put forward as an antisymmetrized product
of one-electron functions or orbitals q;, each orbital being doubly occupied:

C'= (to«) (~1P)" (to.~) (to4)
=L(2u) lj1("-)"(.std)' (.=) = (..0) -'

(to«)' (~N)' " (to-~)'
(tO«)' (2 1P)' (~-~)'

(v t3)'
(~4)'

=L(2.) lj-'
~ ~ ~

(+ &)sn,—1 (+g)2a—1 . . . (+ &)2o—1 (+ P)2o—1

(1 «)'" (~N)'" " (2 -~)'" (~4)'"
*Work assisted by a grant from the National Science Foundation and by Wright Field Air Development Center, under contract

with the University of Chicago.
'D. R. Hartree, Repts. Progr. Phys. 11, 113 (1948); The Catcttlatiort of Atomic Strlctares (John Wiley tL Sons, Inc. , New

York, 1957).
2 C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951). The notation and terminology introduced in that paper are adhered to

to in the present paper.
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The orbitals are conveniently collected in a row vector,
namely,

P= (P1 P2 ' V'n)~

The Hartree-Fock equation is obtained by requiring
that the orbitals minimize the expectation value of the

(2) energy. Those orbitals satisfy

and may be assumed, without loss of generality, to form
an orthonormal set

where the Hartree-Foe& Hamiltoeiae F is given by
(3)

F=H+Q(2J, —E,),

(12)

(13)
Diferent orbital sets can yield essentially the same

total wave function, namely, if a set q' is obtained
from q by a unitary transformation

rp' = q U, U*U = E,

the total wave function transforms according to

C'=C Det (U),

so that 4' represents the same physical situation as C.
In Eq. (1) the factor L(2e)!]l is chosen so that the

orthonormality condition for the orbitals (3) implies that
the total wave function C is normalized:

and a is a Hermitian matrix of Lagrangian multipliers,
which are introduced by the orthonormality constraints
(3). The operator P, which is defined in terms of the
orbital set q, is easily shown to be invariant when p is
subjected to the transformation (4). Accordingly, the
set rp' satisfies

Efp =JR)
where

s'= U*sU.

We may therefore single out that set of orbitals for
which a becomes diagonal, so that all the orbitals satisfyf

(C IC)= ' ~o', y' gy'+=1 (6) ~pi = &i%i~ (14)

where the total Hamiltonian SC is given by

X,=P Hv+ ', P (1/r )v-
E=P(H,+e,).

The expectation value of the energy of the wave
Equation (14) is a pseudo-eigenvalue problem, inas-
much as the operator P is dehned in terms of the solu-
tions of (14). Ordinarily, Eq. (14) is called the Hartree-

(c I ~Ic)=~I . . .
~I c ~cdy&. . .dy» (p) Fock equation, although that term is sometimes used

for Eq. (12).
The total energy can be expressed in terms of the

orbital energies ei and the one-electron integrals II;,
namely,

HI' is the nuclear Geld plus kinetic energy operator for
the pth electron, and r&" the distance between the pth
and the vth electron. By using (8) in (7), the expectation
value becomes a sum of integrals over the orbitals,
namely,

The orbital energies also have a direct physical inter-
pretation, namely, —~i is approximately equal to the
ionization potential for removal of an electron occu-
pying p;.

2. OPEN-SHELL THEORY

where

~p "v "(1!&"")dl'"e'

(16)q=(qo, qo),

We consider open-shell wave functions of the fol-
lowing specifications:

(1) The total wave function is, in general, a sum of
(1O) several antisymmetrized products, each of which

contains a (doubly occupied) closed-shell core go, and
a partially occupied open shell chosen from a set q 0,
the diGerent antisymmetrized products containing dif-
ferent subsets of go, The combined set of orbitals q

(11)
is defined by

J; and K; are commonly called the Coulomb and
exchange operators, respectively, associated with the
orbital p, ; they are defined in Eqs. (11) by how they
operate on an arbitrary one-electron function q.

and is assumed to be orthonormal, so that the two sets
rpz and po are orthonormal and mutually orthogonal.
In referring to the individual orbitals, we use the
indices k, l for the closed-shell orbitals, m, rI, for the
open-shell orbitals, and i, j for orbitals of either set.

(2) The expectation value of the energy is given by
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8=2+ Hi++ (2Jpi —Kii)

+f(2 + H +fP(2aJ „bK—„)

+2 p (2',„—KI,„)], (17)

where a, b, and f are numerical constants depending on
the specific case. The first two sums in Eq. (17) repre-
sent the closed-shell energy, the next two sums the
open-shell energy, and the last sum the interaction
energy of the closed and open shell. The number f is,
in general, the fractional occupation of the open shell,
that is, it is equal to the number of occupied open-shell

spin orbitals divided by the number of available open-
shell spin orbitals; obviously 0(f(1.The numbers a
and b differ for diGerent states of the same configuration.
In Sec. 5 we examine which states of atoms and mole-
cules satisfy the restrictions just stated.

Before applying the variational principle to Eq. (17)
to derive the equations for the orbitals, we define the
Coulomb operators Jq and Jo associated with the
closed and open shells, respectively, the total Coulomb
operator Jz, and similar exchange operators Eg, E0,
Ez by

Jc=g A,
k

Jo fQ Jm) JT Jc+Jot
(18)

Kp f Q IC, Kr=——Kc+Kp.

I'~=&~. l Jol v)~'+&v, l v)Joe;,
M'~=&v'IKol v»v'+&~. l v»Kov, ,

(19)

and corresponding closed-shell, open-shell, and total
Coulomb and exchange coupling operators by

We also introduce the following (Hermitian) Coulomb

and exchange coupling operators associated with the
orbital y,'.

summing the index on L or M over the closed or open
shells; this yields

(Lc Jo) pa=Z pi&&pil Jol pi)
l

(Mc K—o)q~=Z v i(~ilKol v~),
l

Lcq.=g pi(yil Jol y.),
l

Mcv. =Z v i(v il Kol ~.),
I.op~= fZ y.(q. I Jol y~),

Moo. =f2 p-&v-IKol va),

(J-o fJo)—-=f2 ~ (~ IJoI~-)
e

(Mo fKo)—y =f2 & (& IKol w ).

(22)

+2aJo bKo)q. Pq, 8;—)
'—

+2 & (be~i f(H+2Jc Kc—
+2aJo bKo) p——P p,8;)=0. (23)

We turn now to the variational problem. Ke have
to minimize the energy (17) with respect to the orbitals,
subject to the constraints (3). We put the variation of
the energy equal to zero, and add to it the variations of
the constraints (3), each one multiplied with a Lagran-
gian multiplier. If we designate the Lagrangian multi-
plier for the ij th constraint (3) with —28;,, the resulting
equation becomes, after some manipulation,

2 P (&pi
I
(H+2Jc Kc+2Jo —Ko) p~ Z—&8~~)—

+2 P (byk I
(H+2Jc Kc+2JO —Ko) gt Z—g,8k;)—

+2K (bp I
f(H+2Jc Kc—

Lc=Z L~, J-o=f 2 L, I-r=l.c+J-o,

Mc=Q Mp, Mo=f Q M„, Mr ——Mc+Mo.
(20) Equation (23) now should hold for any variations 8&p;

with suitable values for the Lagrangian multipliers;
hence,

All the operators (18) and (20) are invariant under
the transformation

(H+2Jc Kc+2Jo Ko—) vi =Q v,—8,a=+ q,8i,,

q c'= q cUc, q o'= q oUo, (21) f(H+2Jc Ec+2aJo bEo) ym (24)

where Uc and Uo are unitary matrices of the appro-
priate dimensions. The closed-shell transformation of
(21) does not alter the total wave funrtion(s), except
for a possible phase factor; the open-shell transformation
of (21), in general, transforms degenerate total wave
functions among each other.

The effect of the closed- and open-shell coupling
operators, when they operate on the occupied orbitals,
is of particular interest. These results are easily obtained
from Eqs. (19) by specifying q = pi or p = q „, and

=2 v,8-=Z v 8-

We conclude that the Lagrangian multipliers form a
Hermitian matrix, 8,;=8;,, and rewrite Eqs. (24) in the
form

(H+2Jc Kc+2Jo Ko) yi, — —

=2 qi8ia+2 v.8 a, (2»
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f(H+2Jc K—c+2aJo b—Ko) p

=P 9 &0& +P 9 „8„„. (25b)
l A

since 8 1,=01, ,

0 a= f(q—~2~Jo pK—o~ q 1),
where

(27)

In the closed-shell case, the orbitals can always be
subjected to a unitary transformation (4), which
brings the matrix of Lagrangian multipliers into diag-
onal form; when this has been done, the orbitals all
satisfy the pseuclo-eigenvalue equation (14). In the
open-shell case, however, we have available only the
trs, nsformation (21) which transforms the open and
closed shells within themselves. Such a transformation
can eliminate only the oG-diagonal multipliers 8&A,. and
0, but not the multipliers 8„A, and 8~ which couple the
closed and open shells. There is one exception to this,
namely, when the closed- and open-shell orbitals have
no common symmetry. In that case, 8„& and 8& vanish
automatically, and Eqs. (25) become equivalent. to two
pseudo-eigenvalue problems of the type (14), one for
the closed and one for the open shell; the two Hartree-
Fock Hamiltonians are diferent, and each one is defined
in terms of both the inner- and outer-shell orbitals. For
this case, our SCF formalism yields the same equations
which Hartree obtains by minimizing the total energy
expression for one component of the degenerate state,
and subsequently averaging the field over all direc-
tions. ' A recent molecular example of this case is the
LCAO-SCF calculations on 82 by Padgett and Griffing. '

At 6rst sight it seems that the general open-shell case
cannot be reduced to pseudo-eigenvalue problems, due
to the off-diagonal multipliers 0 ~ and 0~, Hartree, ' and
later. Nesbet, ' made further approximations in the
SCF equations so that they did obtain pseudo-eigen-
value problems. Recently, Lefebvre' formulated a
method by which the LCAO form of Eqs. (25) can be
solved directly, without attempting to obtain pseudo-
eigenvalue problems. An application of the method was

given by Brion et al. ' in a calculation on the NO
molecule.

We present here an alternative to Lefebvre's method
which does reduce to pseudo-eigenvalue problems. This
is achieved by re-expressing the closed-open shell

coupling terms in Eqs. (25), with the aid of the coupling
operators (20), in such a way that those terms can be
absorbed into the left-hand sides of Eqs. (25).

We multiply Eqs. (25a, b) by p and p1„respectively,
and integrate; the results are

(p ~H+2Jc Kc+2Jp Kp—
~
yp)=0 k,

—(26a)

f(px(H+2Jc Kc+2aJo &Ko—
~ p )=&I, ~

—(26b)

By multiplying Eq. (26a) by f/(1 f), the —comple—x
conjugate of (26b) by 1/(1—f), and adding, we obtain,

' A. A. Padgett and V. Grifhng, J. Chem. Phys. 30, 1286 {1959).
4 R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).
' R. Lefebvre, J. chim. phys. 54, 168 {1957).' H. Brion, C. Moser, and M. Yamazaki, J. Chem. Phys. 30, 673

{1959).

rr= (1—a)/(1 —f), p= (1—b)/(1 —f). (28)

By using the third through the sixth Eqs. (22) and Eq.
(27), one easily establishes

(2 Lo PMo—) p = —P (p„e„,,
e

f(2~Le PM—c)v = Zv—~t)i .
l

(29)

Equations (29) now allow us to re-express the coupling
terms between the closed and open shells in Fqs. (25)
in the desired manner; the orbitals satisfy

where

~cpc= gcgc&

~opo= q ohio&

(30a)

(30b)

Fc=H+2Jc Kc+2J—o Ko+2aL—o PMo, —
(31)Fo=H+2Jc Kc+2aJ—o bICo+2a—Lc pMc, —

and qc, g o are Hermitian matrices with elements 0~~ and
8„ /f, respectively. We still have available arbitrary
unitary transformations for the closed and open shells
separately; these can be chosen so that the matrices gc
and rto become diagonal. Hence, there is (at least) one
set of orbitals which satisfies

I'cq a=gI q I, I"oq~=gmpm (32)

The total energy also can be expressed, in this case, in
terms of the orbital energies g; and the one-electron
integrals IJ;, namely,

Ii=2(H~+n~)+f Z(H-+~-), (33)

which can easily be veriled by using Eqs. (10), (17),
(22), (31), and (32).

The analogy with the closed-shell case would be
complete if —

pA, and —
p were approximately equal to

the ionization potentials for removal of an (the)
electron from q ~ or p, respectively. This is not true in
general, however; we take up this matter in a sub-
sequent paper.

When solving the SCF equations (32), care has to be
exercised'in picking the correct solutions. Let us assume
that we have a set of trial closed- and open-shell
orbitals which are reasonably close to the SCF solution.
We construct the operators Fc and Ii o and determine
their eigenfunctions. The eigenfunctions of Ii c are
usually those belonging to the lowest eigenvalues, say,

P in number. Since Fc and Fo are physically little dif-
ferent, the eigenfunctions of Fo belonging to its p
lowest eigenvalues are expected to resemble closely the
closed-shell orbitals and obviously must be rejected as
open-shell orbitals; instead, we must take for the latter
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those eigenfunctions belonging to the p+1 eigenvalue
and up.

Clearly, a formulation of the SCF problem in which
the closed- and open-shell orbitals are solutions of the
same eigenvalue equation would be desirable. This is in-
deed possible. From the 6rst two and the last two Eqs.
(22) we find

$2pi(LO Jp)—P(M—C Zp)—]q o qo(——o, (34a)

It2~(Lo fj—,) P(—MO fE—. O) j+o= s o&o, (34b)

where

f i&=(pa~2~&o P&o—
l «), (35R)

f' .=f(q t2n&o P&o—
~ q ) (35b)

By adding Eqs. {34a) and (34b) to Eqs. (30a) and
(30b), respectively, we obtain two equations of the
same form as (30), with new operators on the left-hand
sides and new matrices on the right-hand sides. The
two operators are identical and equal to

F=V+2Jr—Zr+2a(Lr —Jo)—P (Mr —Eo), (36)

which follows easily from Eqs. (18), (20), and (28).
Hence, the orbitals satisfy

~go= pe~c& ~go= po~o& (3"/)

where co and co are the new matrices go+(o and
go+go, respectively. Now Eqs. (37) call bc dlagon-
alized by a transformation of the type {21),so that the
orbitals can be chosen to satisfy

( )

The set q; which satisfies Eq. (38) is equivalent to,
but not identical with, the set qj„y satisfying Eqs.
(32): the two sets are connected by a transformation of
thc type (21). Also, tile c1gcllvalllcs of Eq. (38) Rlc ilot,
identical with the eigenvalues of Eqs. (32); as a matter
of fact, the two sets are not even approximately the
same. If, we attempt to express the total energy in
terms of e; and H;, analogous to Eq. (33), we find that
we need some additional terms:

~p~= &ig~ ~

3. SYMMETRY CONSIDERATIONS

The open-shell treatment developed in the preceding
section is constructed so that the SCF equations permit
symmetry orbztals as solutions, that is, the orbitals can
be grouped in sets, each set transforming under sym-
metry operations according to an irreducible represen-
tation of the symmetry group. This state of affairs is
assured by the expression for the total energy, Eq. (17).
%e assume that the orbitals do belong in sets to irre-
ducible representations, and include in the summations
in Eq. (17) only comp/cia degenerate sets. This is

obvious for the closed-shell contribution; for the open-
shell contribution the partial occupation of a degenerate
set is taken into account by summing over all the
members of that set and introducing the fractional
occupation number f Th. is is tantamount to writing
down the total energy as the aerage expectation value
for all the degenerate total wave functions of the state
under consideration. Obviously, our variational pro-
cedure for determining the orbitals asks for the best
orbitals to represent a set of degenerate total wave
functions, in contrast to the customary procedure
which asks for the best orbitals to represent a s~rlgle
component of a set of degenerate total wave functions.

Having assumed that the orbitals belong in sets to
irreducible representations, it is easily seen that the
Coulomb and exchange operators {18), the Coulomb
and exchange coupling operators (20), and conse-
quently the Hartree-Pock Hamiltonian operators (31)
and (36), are totally symmetrical. As a result, thc
orbitals which are the solutions of the eigenvalue
problems (32) and (38) are symmetry orbitals. We
therefore see that our assumption about the symmetry
properties of the orbitals is a consi.stent one, and we can
say with confidence that the SCF equations have sym-
metry orbitals as a solution; that such a solution corre-
sponds to an absolute minimum, not just a stationary
value, of the total energy is a plausible assumption,
although this is dificult to prove in general. %e proceed
from this assumption.

The requirement that the SCF orbitals are sym-
metry orbitals has usually been felt as necessary. "
However, in the past, this was not rigorously possible
with the customary method where the best orbitals
were determined for just ore component of the open-
shell total wave functions; in order to satisfy this
requirement, additional approximations had to be made
once the SCF equations had been obtained. In the
present treatment, no such additional approximations
are called for.

To make the best possible use of the symmetry
properties of the orbitals, we introduce the notation
q l inlieuof y;. Ingeneral, li (oru, 1 ) refers to the
irreducible representation, or symmetry species; n (or P,

) refers to the subspecies, that is, it labels the
individual members of the degenerate set that trans-
forms according to the representation X; and i (or j,
k, f, m, I) is a numbering index which labels orbitals
which cannot be distinguished by symmetry any more.
As before, we use k, l for closed-shell orbitals, m, e for
open-shell orbitals, and i, j for orbitals of either closed
or open shell. The notation ice is analogous to the
familiar elm in atomic spectra.

4. LCAO FORM OF THE OPEN-SHELL THEORY

The solution of the Hartree-Fock equations for
relatively simple problems, like small molecules,
presents formidable mathematical difhculties. The
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reason is that they are partial differential equations in
three dimensions, a very small class of which permits
solution in terms of standard functions, usually by
separation of variables. Actually, only for atoms, where
this separation is possible and leads to ordinary differ-
ential equations for the radial functions, have they
been solved. For molecules (molecular orbitals) and
solids (Bloch functions), it appears more profitable to
put forward an expansion of each orbital p, in terms
of a given set of suitable basis functioiis X„:

properties. Hence

ia'Q XyiaCiy~ ~Xaci~ j (43)

learly, Kq is the row vector collecting all the basis
functions of species X and subspecies e, and c),; is the
column vector with components Cq„;.

For the scheme that follows, it is convenient to
normalize the vectors ci; not to unity, but to half the
number of electrons they represent, namely,

p, =P X,C„,=Kc;;
p

(40) elk SA'Ai A~kl& eke Sicily

eim*Siexn= fA&mn)

obsiously, y is the row vector which collects all the
basis functions, and c; is the column vector with com-
ponents C„;.Since the occupied orbitals must form an
orthonormal set, the vectors c; must satisfy the
constraints

S„„=A-'P(x „.~x„,.). (45)

where dq is the dimension of the representation A, and
the matrix Si is de6ned by'

ci Sci=8~j,

where the overlup matrix S is given by

5„,=(x„)x,).

(4&)

(42)

In addition to the matrices Si we need the matrices Hi
of the bare nuclear Q.eld Hamiltonian, the elements of
which are, analogous to Kq. (45), given by'

The expansion in terms of basis functions leads to a
variational problem for the vectors c;, namely, the
determination of the best set q that can be constructed
from a given basis set g by minimizing the total energy.
This process was originally conceived for molecules to
construct somewhat crude molecular orbitals from the
atomic orbitals contributed by the individual atoms,
and accordingly called the LCAO (linear combination
of atomic orbitals) SCF method. It is, however, not
necessary to restrict the process to such relatively crude

applications; rather, we wish to use it as a practical
method to obtain the fully optimized Hartree-Fock
orbitals by making the basis set g suKciently large and
flexible. That this is possible without having to take
an impractically large basis set has been shown in a
number of recent calculations on atoms' and the H2

molecule. ' In fact, even for atoms this process is very
desirable inasmuch as it yields the Hartree-Fock
orbitals with considerably less labor than by numerical

integration of the diGerential equations.

To take full advantage of the symmetry properties,
we Grst reformulate Eqs. (40)—(42) by introducing

symmetry basis functions X„z, analogous to the p;i of
the previous section. Each occupied orbital of a given
species and subspecies is a linear combination of the
basis orbitals of the same species and subspecies only,
and the expansion coeKcients are independent of the
subspecies, in order to guarantee that a degenerate set
of occupied orbitals has the correct transformation

7 C. C. J. Roothaan, L. M. Sachs, A. W. Weiss, Revs. Modern
Phys. 32, 186 (1960), this issue; R. E. Watson, Tech. Rept. No.
12, Solid State and Molecular Theory Group, Massachusetts
Institute of Technology (1959).

W. Kolos and C. C. J. Roothaan, Revs. Modern Phys. 32, 219
(1960), this issue.

Kach matrix which enters the Hartree-Fock Hamil-
tonian has the same structure, splitting up in smaller
matrices, one for each species. In some instances we
need to consider such matrices as vectors, called super-
eectors; we construct the supervector corresponding to
a matrix by writing down all the components, say II»„
in dictionary order on Xpg, and denote this supervector
by the symbol H. Such a supervector can be operated
on by sgpermatrices, the rows and columns of which
are denoted by the components of H. In particular, we
need the Coulomb and exchange sepermatrices 3 and 0
dered by

gay', pr0
= (A&@)

~p J
x„i.x,„p (1/ri2)

Xxg),„'x,„p2d U'd V',
(47)

xi..,;=(A4) ' 2 „&.~.'x"s'(&/~i2)
~pa J

Xx,„p'xy, 'd V'd V';

they are symmetrical for the exchange of indices
),pq ~mrs, and Hermitian for the simultaneous exchange
p~g f'~$.

We now apply the variational principle to the total
energy in order to obtain the SCF equations for the
vectors c)„. This derivation closely parallels the deri-
vation of the SCF equations in Sec. 2. We restrict
ourselves here to writing down the results, and only for
the scheme which is formally the simplest, namely, the

9Actually, all the terms under the summation signs in Eqs.
~45) and (46) are equal.



scheme employing the combined Hartree-Fock Hamil-
tonian.

From the supermatrices 3 and Q we compute two
other supermatrices, namely,

@=2/—R, C =2~~—Pk. (48)

Next, from a set of trial vectors c&; which satisfy the
constraints (44), we compute the closed-shell, open-
shell, and total derley matrices

Dc&=+ cxscxa*, Dox=Z cx cz *,

Thol.z II. Coef6cients for the con6gurations p~ of atoms.

a 0
b 0

cx 6/5
p 6/5

9/20 0

33/40—g 39/20 6
0 9 2

—2 2 25

—,'6 69/80 —,
' 24/25

9/8 27/40 0 24/25

—,'6 33/80 —,
' 6/25—-' 39/40 3 6/25

p~ 'I' 'I' 'D '5 4S 2D 2E 'I' 'D '8 'I'

Dr), = Dn+ Dos.

These density matrices give rise to supervectors, as
explained previously; with the supermatrices (48), they
permit the evaluation of two contributions to the
Hartree-Fock Hamiltonian, namely,

P=QDr, Q=GDo. (50)

Considering the supervector Q now as a collection of
matrices Qq, we compute the last contribution to the
Hartree-Fock Hamiltonian from

»=4, '(S34~Q~+Qxnn, S)). (51)

The Hartree-Fock Hamiltonian is then given by

&),=K,+P~—Q~+», (52)

and the corresponding eigenvalue problem is

I') c);=~), 'S) c~' (53)

Equation (53) is then solved, yielding a new set of trial
vectors; the process is then repeated until the assumed
and calculated vectors agree to a prescribed limit of
accuracy.

Finally, the total energy may be calculated from
scalar products between supervectors, namely,

E= (I+F)tnr —Qt(Dc+ fDo), (54)

which is analogous to Eq. (39).

Than, z I. CoeKcients for the conagurations x~,
B~ of linear molecules.

5. APPLICABILITY OF THE PRESENT THEORY

Clearly, the open-shell scheme developed in the
previous sections is of practical value if and only if
the total energy can be represented by Eq. (17), with
certain values for a, b, and f. There are three important
classes of states which satisfy this limitation:

(1) The half-closed shell: the open shell consists of
singly occupied, complete degenerate sets of orbitals,
and all the spins are parallel. "This is the ground state
of this con6guration; the wave function is (at least for
the two components with all spin functions equal) a
single determinant, and f= ~, a=1, b=2, so that at=0,
P= —2, from Eqs. (28). Examples of atomic states in
this class are C 1s'2s2p', '5; Cr is'2s'2p'3s'3p'4s3d', 'S.
A general molecular example is the lowest excited
triplet of a molecule with a closed-shell ground state,
the excitation being from a nondegenerate 30 a non-

degenerate orbital.

(2) Al/ the state's arising from the configurations m~,

8~, . - -,1~&%~&3, of a linear molecule: Table I sum-

marizes the constants applicable to each such state.
(3) A/l the states arising from the con6gurations p~,

i~&E&~5, of an atom: Table II summarizes the con-
stants applicable to each state.

It is a relatively simple matter to extend the open-
shell theory just presented in such a way that other
important classes of atomic states can be accommo-
dated, as for instance, the d~ con6gurations for the

transition elements. We postpone such generalizations

for the present, and include whatever new treatments

may be necessary with the actual applications planned

for the future.
0—2

8/9
"This case has often been handled by allowing the orbitals for

opposite spins to be spatially different. See J. A. Pople and R. K.
4/9 Nesbet, J. Chem. Phys. 22, 571 (1954); G. %. Pratt, Jr., Phys.

Rev. 102, 1303 (1956). This method leads to a wave function
which is a mixture of different multiplets.


