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We have shown that (1) a very general type of prob-
lem in statistical mechanics can be reduced to an
associative combinatorial problem, and (2) this problem
can again be reduced to the determination of the set of
eigenvalues of a certain matrix.

A variety of problems already known to be soluble
are easily handled by the automatic application of this
technique, and at least one problem is removed from
the unsolved category. Ke believe that the systematic
exploitation of this method will provide many interest-
ing mew results.
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nance Test Station, China I ake, California for coopera-
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I. Hydrodynamic Treatment
INTRODUCTION

ASICALLY there are two ways of dealing with
plasma problems: a microscopic gas-kinetic treat-

ment using the Boltzmann equation together with
Maxwell's equations of electrodynamics; or a macro-
scopic, hydrodynamic treatment using Euler's equation
of motion together with the Maxwell equations. For
various mathematical reasons it seems to be impossible
to investigate the diferent general modes of oscillation
using gas-kinetic methods without serious physical
restrictions. To avoid excessively complicated mathe-
matics in using the kinetic approach, it is necessary to
make assumptions of such kind that it is more reason-
able to use the hydrodynamic equations. For this
reason we deal here only with the hydrodynamic
equations together with Maxwell's equations. Questions
concerning the range of validity of our treatment are
deferred to Sec. II. The hydrodynamic treatment is

always justi6ed when there is a stationary distribution
of velocities in the plasma which is not disturbed
"essentially" by the collective oscillations.

Although one succeeds in this way in simplifying the
procedure a great deal, the treatment of the unabridged
hydrodynamic equations [except in a few cases such as
the work of R. W. Larenz (1955)f1 is further simplified.
For this purpose, one supposes the plasma to be uniform
and of in6nite extent, and the oscillations to be small
sinusoidal perturbations. These concepts are not very
close to reality, and are unable to explain complicated
processes such as the origin of cosmic radio-frequency
radiation. Still, the linearized theory succeeds well in
explaining the ionospheric observations, so one may
hope that at least some idea is obtained of how and
where to begin a later nonlinear approach.

All investigations of the linearized theory, until now,
dealt with special cases—Langmuir oscillations, iono-
spheric theory, Alfven's magnetohydrodynamics, etc.—

~ Supported by the QfEce of Naval Research. f References are given in alphabetical order in Bibliography.



L. OSTER

hence, it would be interesting to describe the whole
field of applications by using a uniform treatment.

We start by deriving the basic equations as com-
pletely as possible, and then try to clear up the relation
between difFerent approaches previously published.
Then we discuss the possible basic modes of plasma
oscillations; the inhuence of translatory motions, i.e.,
the influence of a moving reference frame (here we
find some serious errors in the literature); and the case
of a nonzero constant magnetic Geld. We then obtain a
connection with Alfven's magnetohydrodynamics.

1. Basic Equations

The basic equations may be written in such a general
form that all special cases to be dealt with later are
included; however, we do not include gravitational
forces, macroscopic electrical fields, and macroscopic
gradients of density or temperature. The plasma is
assumed to be of infinite extent and macroscopically
neutral. It consists, on the average, of No electrons per
cm', and of the same number of singly ionized ions. There
are to be no neutral particles; their influence upon the
plasma characteristics is discussed elsewhere, e.g. , A.
Schlueter (1951).

All equations are referred to a coordinate system in
which the plasma, as a whole, may have a constant but
otherwise unrestricted velocity. In this system the
electrons and the ions in a given volume element have
the actual velocities V, and V;, respectively; V, and V,
therefore may include constant average velocities
which, in general, are supposed to have the same
direction and absolute value for both constituents. Ke
assume the validity of the Galilean transformation for
all coordinate transformations; relativistic efFects are
considered only when specially noted.

For completeness we introduce a damping term in
our basic equations which is proportional to the velocity
itself. In general we do not consider dissipative efFects,
but try to estimate their importance in Sec. I.9; in
that section we also discuss different alternative formu-
lations. The constant of proportionality o in the
damping term contains the scattering cross section for
electron-ion and electron-electron collisions which can
be calculated only by kinetic theory; for this reason
we do not consider the derivation of this constant.

In general, we allow for compressibility and specialize
only at times (e.g., in the case of magnetohydrody-
namics) to an incompressible gas, but we deal always
with a scalar pressure. We do not de6ne immediately
the connection between the partial pressures I', and I';
of electrons and ions and the actual electron density
iV, and ion density Ã;; therefore, the parameters T,
and T, which are identified later with electron and ion
temperatures may be any function of X, and N;.

I et E be the alternating electrical field, and II the
magnetic field; the latter may include a time-inde-
pendent term. The universal constants are the ele-

mentary charge (electron charge: —e); the electron
and ion masses m, and m;; the Boltzmann constant E;
and the velocity of light c.

The hydrodynamic equations of motion for the
electrons and ions are

8 e—V,+(V, v) V,= ——E+-(V.xH)
Bt mg c

N;
VP, —o.—(V,—V,), (1)

N,m.

These equations include a damping term proportional
to the velocity differences; the expression N, , ,n/m. .. is
the mean collision frequency. We take

P,=N,ET, (N„N;),

P,=N,ET;(N„N,).
The equations of continuity are

(3)

(4)

8
V' (N, V.)+—N. =O,

Bt
(5)

8
V (N, V,)+ N;=O. —

at
(6)

Yhe Maxwell equations become

8
cV'g K= ——H,

Bt
(7)

8
cvxH=4~j+ —E,

Bt
(8)

j =e(N~V, —N, V,),

V E=kre(N, —N,).

(9)

(10)

Equation (10) is identical with one component of the
Maxwell equations but is easier to handle.

E. P. Gross (1951) has used, instead of the Maxwell
equations, the equation

1 O'E 4n- Bj
~X~X~=——

c'BP c Bt

Here the magnetic field is eliminated. The use of Eq.
(11) instead of Eqs. (7) and (8) makes no difference in
the results.

8 8—V;+(V; v) V;=+—E+-(V;XH)
Bt m; c

N,
7'P;+ a(V,—V,). (2)

m;N;
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In the case that
VXE=0, (12)

we obtain
V'P', =m,u, 'V'n„V'P;= m;u, 'V'n;. (22)

we may use a scalar potential which is introduced by
the condition

(13)

and write, instead of Eq. (10), the Poisson equation

VQ = 4me(—N, . N,)—. (14)

This too makes no difference; J. R. Pierce (1948) has
used this equation.

Finally, Larenz (1955) introduced, for the electro-
magnetic fields K and II, the well-known expression for
a vector potential which seems to be more convenient
for his type of calculations.

with

~N, q
&-'

E N) (N i
(23)

Under the assumption of isothermal sound waves,
the energy in the wave would be dissipated in distances
less than a wavelength. A gas with many degrees of
freedom, e.g., polyatomic organic compounds, most
closely satis6es this condition. This means that our
treatment is certainly only a first approach to the
actual conditions in a plasma.

(b) Another obvious assumption would be that of
separate adiabatic conditions for both plasma con-
stituents:

2. Linearization Tp= const (24)

We now divide the variables V„V;, E„S;,and I
into a constant average value and a smul/ perturbation.
As assumed previously I does not have a constant part:

N, =Np+n„N;=Np+n; (15)

V,= v,'+v„V;=vP+ v, (16)

H=H'+h. (17)

8 e 1—v,+ (v,' V) v,+—E+—( (v,'XH')
BI, m, c

1
+(vPXh)+(v, XHP)} + VP,

m,Sp

By introducing these expressions into Eqs. (1) and

(2), and neglecting products of perturbation terms,
which determine the linearization, the equations of
motion become

denoting the temperature. We then obtain

ETp n, q
VP, = V(No+n, )~=KToNoVi 1+

N, ~' E N.)

n~ )
=KTpNpV( 1+~ I=~KToVn, (25)

N, )

VP, =yETpV'n;. (26)

For this assumption to be valid it is necessary that
the interaction between the diGerent plasma con-
stituents be negligible.

(c) Finally, one may assume that both constituents
combined behave adiabatically, at least as long as the
plasma is completely ionized; otherwise, one would
have to take into account the Saha equation.

We then obtain, in the case of y=5/3,

+—(N, (vg —v,o)+No(v, —v;) }=0, (18)
me

8 e 1—v;+ (v,' V) v;——E+—( (v,'XH )
8$ m; c

+(vPXh)+(v, 'XH')} + VP'
m;Sp

——{N,(vP —v,')+No(v, —v;) }=0. (19)
mv,

and

(N.+N;):
Te Ti Tp

(2Np)
*

(¹+N,y &

P,=KT,N, i

2No

2Xp

(2Np+n. +n;) **

=KTo(No+n ) I )

(27)

Special consideration is needed for Eqs. (3) and (4)
which determine the connection between pressure and
density. This requires that we give a physical meaning
to the parameters T, and T;.

(a) The most obvious way is to assume isothermal
conditions

VP, = ', KTpVn, + ,'KTpVn;, — —

P = x~XTpV'n +—,XTpV'

(29)

(30)

2 n.+n, i
=KTo(No+n8)

I 1+—
~, (28)

3 2No i

T,=T;=T= const.

With Newton's sound velocities,

u o=KT/m, u,o=KT/m,

(2o)

(21)

Thus, the various assumptions do not make much
difI'erence as long as one considers a linearized theory,
even when neglect of the ionic oscillations compared
with the electronic ones is not allowed. The differences
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XOV v,+(vo Vn.)+—e,=O,
Bt

(31)

8
XOV' v;+(vo V'ng)+ I„—=O,

Bt
(32)

a
cV'g K= ——h,

at
' (33)

in the results using any of the foregoing assumptions is
merely a number of the magnitude one. In Sec. I.8 we
show that this statement still is valid in the case of the
two-term expressions (29) and (30). In the following,
the actual numerical coeKcient is absorbed by using an
appropriate sound velocity.

Finally, we obtain from the remaining equations (5)
to (10), as a consequence of linearization,

(c) We neglect the pressure gradient in the equations
of motion as compared with the effect of the alternating
electric field, i.e., we assume a constant density. This
means that the equation of continuity becomes

V' v, =O (38)

(condition of incompressibility), and, at least for all
)ongitudAzul oscillations, k=O. Thus, the plasma oscil-
lates —longitudinally —as a whole over the infinite

space; for the sake of avoiding di%culties with surface
charges at infinity, we may consider the plasma in the
shape of an infinite torus.

(d) The plasma does not absorb: n=0.
(e) The oscillations of the ions are neglected when

compared with the electronic ones: mi= ~.
Kith these assumptions we retain as fundamental

equations (we drop the subscript e whenever doing so
cannot cause confusion),

a
cV)&h=4irj+ —E,

Bt
(34) 8 e—v+—E=O,

Bt 7s
(39)

j=eXo(v —v,)+e(v, e,—v, e)+eXO(vo —v, ), (35)

7 E=4n.e(N;-I,).

3. Derivation of a Disyersion Equation

(36)

The next step consists in inserting for thedisturbances
v„v;,, e„e;, K, and I, an expression of the form

8
cVym= ——h,

Bt

8
cVXh=4 jy—E,

Bt

j= —eXpv.

(40)

(41)

(42)

8 8
eicos

t+ikm with — (j
Bp Bs

(37)

into the Eqs. (18), (19), (22), and (31) to (36). In
general, the result is a homogeneous linear system of
equations. The condition of solubility —the vanishing
of the determinant —yields the dispersion equation as
an a,dditional connection between the frequency and
the wave number k.

However, we do not deal with the system (31)—(36)
in its most general form, but make successive simplifi-

cations and calculate the dispersion equation for each
one. In this way we obtain a notion of the fundamental

types of plasma, oscillations and understand how they
are connected with each other under different. sets of
physical conditions. We thereby hope to obtain a,

complete picture in this somewhat less complicated
manner.

PLASMAS WITHOUT CONSTANT MAGNETIC FIELD

4. Electron Waves. Plasma at Rest in the
Coordinate System. Constant Density

For the most primitive model of a plasma we assume:
(a) The plasma as a whole is at rest, i.e., the observer

does not move through the plasma as a whole: v,'= v,'
=0.

(b) There is no constant magnetic field: H'=0.

With the expression (37) for plane harmonic waves

propagating along the x axis, the system (39)—(42)
degenerates into three separate groups.

The first group contains the variables v„E,h, (with
h. =0), i.e., it describes a longitudinal wave of the
"acoustic" type which, under condition (c) however,
does not propagate. The "dispersion equation" is

4n.e'
0) = Ep=co~ex

and additionally
k=O, (44.)

oP —o)P—k'c'= 0. (45)

In deriving Eq. (45) we did not use the assumption of

corresponding to Eq. (38).
This special case of "restricted plasma oscillations"

which we discuss in more detail in Sec. I.6 has been
described by Langmuir, Tonks, and others; an extensive
review of the older literature is given by R. Rompe and
M. Steenbeck (1939).

The remaining equations form the second and third
groups containing the variables e„, E„,h, and v„E„h„.
These are purely transverse oscillations which both
lead —due to the assumption of sero magnetic field—
to the dispersion equation
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incompressibility, and in consequence, Eq. (45) is valid
for RU transverse oscillations with k/0 or =0. FinaHy,
the superposition of the two kinds of oscillations which
correspond to Eq. (45) determine the type of polar-
ization which is, in general, elliptical.

From Eq. (45) we have for phase velocity,

)
2 —~2/k2 —c2~2/(~2 ~ 2) (46)

and for the gmup velocity (which is the velocity of the
energy flow),

g'=(d /~k)2= 2L& —( '/ ')7= 2(c2/e. h'). (4/)

k'= (&/c')
I
~'—~'I, ( )

Rnd—of course —a group velocity &c.
The energy Aow is derived from the Poynting vector

Equation (4/) makes sense only if the range of fre-
quencies and phase velocities is not too large.

We seek for the physical meaning of Eq. (45). This
dlscusslon ls of bRslc 1ntelest. Rnd 1s—mutatis mutandls—the model for several similar cases.

co=or, means k=o, i.e., a synchronous oscillation of
the 6eld vectors over the whole space with frequency
or, . The phase velocity is infinite, the group velocity 0;
there is no energy transport.

coPco, yields

5 ~sinut cosa/ (53)

The negative sign in the exponent of Eq. (52) is
excluded, as in the- case of total reflection, by the
principle of conservation of energy (considering dis-
turbances propagating in the negative x direction). The
reverse case, with a positive sign in the exponent of
Eq. (52), describes an exponentially decreasing wave
amplitude as we go in the negative x direction; this
means reQection with no loss of energy. A full descrip-
tion of this situation, in analogy. to the optical case of
total reQection, is impossible in the frame of our
equations because we have not allowed for a macro-
scopic gradient which would be the essential feature for
calculating the intensity of rejected waves.

Since me are dealing here with only self-excited
oseillations, the rapid extinction of these fields for rg &co,
(with reasonable values of co,) means that they cannot
be observed.

Finally, we may not call the evanescent wave (52)
a "damped" one because there Rre no dissipative terms
at all in the fundamental equations (39)—(42).

5. Allowance for Ionic Motion

nonzero component only in the direction of wave
propagation. The nonzero component disappears when
averaged over the time because

S= (c/4~) (RXh).

By using Eq. (40), we have

h„= (kc/ca) E„h,= —(kc/~) E„. (50)

Before discussing in detail the electronic oscillations,
me mant to make sure that our previous conclusions
are not to be altered significantly by taking into account
the ion oscillations. For this purpose we have to use,
instead. of Kq. (39), the expressions,

The x component of energy Rom becomes

C kt,'
5,= $E„h, E,h—„7= —[E„2+E,27

8—v.'+—K=0
8$ pl,

(54)

g
)E '+E.'7. —(51)

4n.
and, instead of Eq. (42),

(55)

The y and s components of the Poynting vector are
zero because the space dependence of each product
term (say, E, and h,) is different and . gives a vanishing
space average. %e obtain, in general, an energy current
in the direction of wave propagation —the negative x
axis for the sign in Eq. (3/)—which disappears in the
resonance ease a =~, and g=o.

When cv(~„e„h, g, and k become (purely) imaginary
and the mave is now evanescent, well known from
optics:

e+~"~*e*"' lk l'=co'/l ephl'. (52)

Because k is imaginary, the wave includes only a
periodicity in time and oscillates synchronously over
the volume in question. The imaginary group velocity
mathematically has absolute values even larger than c,
while the corresponding Poynting vector still has a

j= eE2(v. v;)— — (56)

(&
aP =42re2%2l —+—

l
=~,2+

&222. 222;&
(57)

The second and third gmups —(2t,)„, (e;)„, E„, h, and
(e.)„(s;)„E., h„, respectively —yield the same disper-
sion equation for transverse waves: '

o&2—((o.2+(o;2) —k'c'= 0. (5g)

By comparing Eqs. (43) and (45) with (5'/) and (5g),
we understand that there are no new wave types, and

The whole system consists again of three groups. The
6rst one describes, with (v,)„(s;)„and E„, the longi-
tudinal osclllations:
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that only the critical frequency is somewhat higher; and {55)—
therefore, vre have to multiply ~, with

L1+ (a;2/co. 2) j&= L1+ (m./m;) ]&.

This changes the plasma frequency in the case of
hydrogen ions by about 3&10 '.

I9 e—v+(v'V)v, +—E=O,
Bt m,

8 e—v,+(v;0 V)v;——E=O,
BI rfl,;

(60)

6. Longitudinal "Restricted Plasma Waves"

We now discuss tlie longitudinal osclllatlons described
by Eqs. (39)-(42) and determined by the dispersion
equation (43). They have considerable practical interest
and are the so-called "plasma waves. " We call them
"restricted plasma waves" to make clear that they
correspond to' only a very small range of possible
oscillations in a plasma.

Physically speaking, they are high-frequency alter-
nating currents with the plasma frequen'cy ~,. By
neglecting the pressure gradients compared with the
electric fields, vre should have k=0. Thus, vrhen using
our equations for the more general case of k/0, this
procedure is only an approximation. We must be sure
that all changes in space are going on so slowly that we
are allowed to neglect the accompanying pressure
gradients as compared with the alternating electric
fields. f This approximation is closely connected to the
work of Pierce (1948) and A. V. Haeff (1948), who
attempt to explain the operation of electron vrave
tubes. Besides the objection, vrhich is discussed in Sec.
I.6(a), their implicit use of a Maxwellian distribution
is open to grave doubt; for further details, see Sec. II.

We must take into account the inhuence of motion
of the reference frame on the observed wave form, i.e.,
the infiuence of a motion of the plasma as a whole. VVe

expect that in the case k~0 vre shall 6nd some sort of
Doppler effect.

(g) 3Aving Coordinate System

All our considerations, until now, took into account
only a coordinate system which was at rest in the gas
as a whole, or plasmas with components having no

cjty in the coordjnate system y 0 y,o —0
-We now drop this restriction but still allow only for
motions in the direction of propagation (g axis). The
case of motions transverse to the wave propagation is
somewhat more complicated and is discussed in Sec.
I.13. The reason for this separation is explained there.
Also in Sec. I.13, a discussion is given of the inhuence
of motions As the direction of wave propagation upon
the transverse oscillations. Here we con6ne ourselves
to the longitudinal oscillations.

For treating ions and electrons separately, vre have
to take into account the ionic oscillations. We start
with two equations of motion —analogous to Eqs. (54)

f. In Sec. I.7, it is shovrn that this approximation, general1y, is
a poor OIle.

and, instead of Kq. (56), we write

j=o&0 (v; v—.)+e(v,on; v—,on,)
The tvro equations of continuity are

8
iV0%' v.+ (v.o Vn.)+—n, =0,

{62)

XoV'v;+(v;0 Vn,)+—e;=0.
Bt

(64)

8
cv)& H =4irj+—R,

R
(67)

there exists a macroscopic magnetic Geld II* due to the
constant convection current (66). A constant macro-
scopic displacement current BR/N could arise only in the

. case of a plasma of finite extent in the x direction,
resulting in a charge separation increasing linearly
with time. By using an in6nite torus-shaped plasma as
a model, we avoid this difhculty. However, this type of
treatment is not possible in the case of the magnetic
field H* vrhich then should appear in the equation of
motion through the force components

(v.XH")+ (v.'XH*) WO. (68)

We believe that a correct treatment of this problem
should start from a plasma model with 6nite extent in
the direction perpendicular to the electric current.
Only then is it possible to determine the shape in space
of 8* which, according to the vrell-known results of
electrodynamics, increases in the interior of a conductor,
assumed of circular shape, linearly with the distance o-
the axis, but decreases ontssde the conductor proporf
tionally to the distance. It is quite obvious that vre

For longitudinal oscillations, vre need not use the
. complete Maxwell equations but only the one relation,

V R—4.(n —n)=0.
As a matter of fact, the preceding equations are

incomplete. There is a gross convection term,

jo ——+ ego (v —v, '),

to be added to Kq. (62); compare Eq. (35). This term
LKq. (66)j is 6nite in the case of dirrercnt constant
velocities of ions and electrons and Inay even determine
completely the numerical results. Moreover, as a
consequence of Maxwell's equation
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may not use a harmonic expression for the space-time
periodicity of a variable in such a structure. This means
that one cannot consider the treatment of a plasma in
which the electrons as a whole are moving with respect
to the ions.

Pierce (1948) has discussed this case: in his coordinate
system the ions are at rest, but the electrons have a
mean velocity uo. In his terminology the periodic part
of the velocity component in the direction of wave
propagation is written v,—uo. His equations are almost
the same as ours, but Pierce uses the Poisson equation
instead of the Maxwell equations and Eq. (63). In
this set of equations the current (66) never appears,
and Pierce neglects completely the expression (68) in
the equation of motion.

Haeff (1949), in dealing with a similar situation of
electron plasmas streaming across each other, makes
the same error. The mistake in this case is not so
obvious because he connects current and density
through the principle of conservation of charge. Arising
from the continuity equations, the convection current
(66) cancels out by differentiation with respect to x.
There is an additional objection against the procedure
because use is made, essentially, of the electric space-
charge density while the corresponding mass density
and pressure gradients are neglected in the equations
of motion.

We conclude that this manner of treatment of
streaming plasmas is not correct.

J. H. Piddington (1956) criticized the interpretation
of the derived dispersion equation by Pierce and Haeff
for a quite diikrent reason. $ In the following resume
we restrict ourselves to the situation Pierce (1948)
has considered, but remark that the considerations are
valid as well for the calculations of Haeff (1949).

Pierce derived from his incomplete equations the
dispersion relation

QF=(d ' +
L1+ (vo/v, h) j'

(69)

$ In an answer Pierce and Walker (j,956) merely pointed out
that there are oscillations observed in experiment; we think that
this alone does not prove the correctness of the theoretical
analysis.

(He used for the phase velocity vvh=~/k and the con-
stant velocity vo the symbols cu/ jl' and No, respectively. )

Starting from here, Pierce remarks that for fre-
quencies ~&~;, the phase velocity and thus the wave
number k (in his notation jp with j=g—1) becomes
imaginary. The wave then is the evanescent type
discussed in Sec. I.4.

From here we immediately see the error: Pierce
considers the exponentially increasing wave, assuming
that this type of wave is observed in electron-wave
tubes, without discussing the impossibility of an energy
supply. The criticism of Piddington is directed against
this point of view.

Furthermore, as pointed out at the beginning of this
section, strictly speaking the wave number k must be
zero everywhere as a result of the neglect of the pressure
gradients in the equation of motion.

while waves
(ru+ vok)' —(o,'—&o.2= 0, (70)

(71)

are omitted; Eq. (71) describes periodical disturbances
which are 6xed in the gas as a whole and do not propa-
gate. They always appear mathematically when use is
made of a moving coordinate system, as pointed out by
Piddington (1956) in connection with a paper by V. A.
Bailey (1948).

The transition to a moving coordinate system does
not change the physical properties of the gas. As a new
feature, only Eq. (70) contains a Doppler effect; we
therefore learn that a moving observer measures a
frequency which depends on the wave number.

The situation becomes clear when use is made of the
phase velocity,

v, h ———
vo a L ((o,2+a&,2)/k'1&. (72)

In the moving frame the phase velocity is the sum of a
part due to the constant translation (—vo, in the
direction of the negative x axis) and the value of the
phase velocity in the frame at rest, since there

~2—~ 2+~,2 (73)

The group velocity has the value of the translatory
velocity.

As a result of the preceding, we conclude that: (1)
the moving observer measures the whole frequency
range between 0 and as a consequence of the diGerent
wave numbers; (2) instead of the whole frequency
range, an observer at rest would measure only the
plasma frequency; and (3) we find nothing like the
phenomena discussed in Sec. I.4 for the case of trans-
verse oscillations, since, as can be seen at once from
Eq. (71), there is no complex or imaginary k which
corresponds to a real value of ~.

7. Effect of the Pressure Gradients

The next step towards the generalization of our
equations is to take into account the variation of
pressure accompanying the longitudinal waves. Ke
consider the ions and electrons separately, but make use
of a reference frame at rest.

Instead of Eqs. (54) and (55), one uses [see Eqs.

(b) Joint Motiorts of E/ectrorts oned Iols

When we do Not have different constant velocities for
electrons and ions, i.e., when v, = vo, our Eqs.
(60)—(64) are complete.

In this reference frame the dispersion equation for
longitudinal oscillations is
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(18) and (19)]

e I,'—v,+—E+ V22, =0,
R flan g Eo

8 e I;2—v;——E+ V'I;=0,
Bt m; Xo

(75)

shifted axis. Figure 1 shows only those parts of the
curves which lie in the first quadrant: $&0, q) 0.

The upper branch corresponds to the positive sign
and represents essentially ionic waves; we come back
to this point later. All frequencies between 0 and ao

are possible. The phase velocities have values between

22~'=I'(~= ~) and 2,i,*=0'2N;(ra=0) (82)

where we have used the sound velocities u, and I; as
noted in the discussions following Eq. (30).As expected,
the transverse oscillations are not a6ected because the
pressure gradient has a component only in the direction
of the x axis.

The dispersion equation for the longitudinal oscil-
lations becomes

(cu2 —a,2—k2N.2) (co2—co,2—N,2k2) —~ 2a&,2=0. (76)

Equation (76) is quadratic in k' and describes two
coupled wave pairs, one of them excited by the ions,
the other by the electrons. Hence, by taking into
account the pressure variations together with the ion
motions, we find two wave types instead of one, as
previously [see Eqs. (43) and (57)j.

For a discussion of the physical conditions underlying
Eq. (76), we introduce new dimensionless variables

The lower branch corresponds to the negative sign
and represents the electronic waves. Here, only fre-
quencies

Cd +My (83)

are possible, because for ~&|d, the phase velocity
becomes imaginary. The phase velocity itself varies
between

s~h'=N, (&u= ~) aild 'p~s'= ~ (Oi=ro, ), (84)

and therefore is always higher than the corresponding
sound. velocity.

The properties of the electron waves are essentially
unchanged by the presence of the ions. To see this it is
sufhcient to set the quantities referring to ions in Eq.
(76), i.e., &0; and I;, equal to zero. Then we find the
simple dispersion equation for electron waves,

5= (~'/~') &0 n= (I'/2. h') &0

and use for the mass ratio the symbol

m,/m. =M»1.
We then find

ld~ =Mlles', ~ Ne =MQs .
In this notation the dispersion relation becomes

(77)

(78)

GP Goy k Qg =0.
The discussion of the longitudinal-wave dispersion

equation, Eq. (85), is the same. as the one in Sec. I.4
for the transverse waves, substituting the sound
velocity I, for the velocity of light c. We again obtain
the frequency condition Eq. (83) [see Eq. (48)j, but
now strictly, while in deriving Eq. (83) we neglected
quantities of the order of magnitude M 2 against
quantities M '. For the phase velocity we find, corre-
sponding to Eq. (84),

with solutions (neglecting terms of the order 3E—')

&+2+(1/—2') ~[P+l (1/2~)3' —(81).

2 h2 —I 2[~2/(~2 ~ 2)j)2i 2

and. for the group velocity,

g'= .'( 2/V, h')(u. '.

(86)

(87)

Q5

0
0 "- '~is

=Orat QJ &0

Fxo. i. The dispersion of longitudinal oscillations from Eq. (76),
Sec. I. The ordinate and abscissa scales are arbitrary.

The solutions (81) are illustrated, in Fig. 1, schemati-

cally an.d on an arbitrary scale.
Equation (81) represents a pair of hyperbolas with

Sg
&ph

&o

Sg
&ph

Xo
(88)

For the frequency range ~&~„we again use the remarks
from Sec. I.4. From Eqs. (86) and (87), we see that for
almost the whole frequency range, the value of k'I, ' is
not negligible with respect of ~,'; therefore, the neglect
of pressure gradients, which leads to neglecting 4'I,',
is col, allomable.

In the preceding discussion we called, without further
proof, the two wave types, corresponding to the nega-
tive and positive sign in front of the root in Eq. (81),
the "electronic" and "ionic" ones. This distinction can
be made evident by a consideration of the amplitudes
in both cases.

I'rom the fundamental equations the connections
between velocities and densities are obtained,



n, . (90)
i

To dram a qualitative picture of the different ampli-
tudes, we take, for example, e~h=N, as the phase
velocities, which is strictly correct only for frequencies
co))co„and corresponds to the "electron waves. " One
Gnds for the vector components, in terms of the electric
field,

1

e 1 tÃge*-—s—E——
t5g (0 IPSE

(92)

eE
u, = —i%0—(m,KT)—

»,

Q)

eE
u;= i$0—(ut~T)-» —.

CO 1gs

In the case of the "ionic waves" with a~I, =N;, which
is correct for almost the entire frequency range, : one
finds

(95)

(96)

and the electric Geld and the densities are connected by

E= (4s e/ik) (n;—u,). (89)

Furthermore, one Gnds, with the help of the dispersion
relation, the two densities,

Hy taking into account a constant translatory motion
with velocity vo of ions and electrons together, we get,
instead of Eq. (76), an equation of the fourth degree
in ~ instead of the quadratic equation'in oP:

[(a)+vok)' —a P—k'uP][((o+wok)' —cvP —k'uP]
—o)P(aP= 0. (99)

The change is obvious: The constant velocities split
off the wave pairs, distinguished from each other by
their direction of propagation, into four separate waves,
which for a stationary observer show diGerent fre-
quencies.

8. Isothermal and Adiabatic Treatment

In Sec. I.2 we supposed that in a linearized theory
the isothermal expression difI'ers from the adiabatic
one only by m. unimportant factor of the order of
magnitude unity. This is clear for the case of "separate
adiabaticity" of electrons and ions [see Eqs. (21) and
(25)]. We now show that this is also true for the
two-term expressions Eqs. (29) and (30) by starting
from the discussion of the longitudinal waves in the
last section; the transverse oscillations are unafkcted.
It is evident that we have to take into account the
motions of the ions for this purpose.

Instead of Eqs. (74) and (75), in which we used the
isothermal condition Eq. (21), we now use as equations
of motion [see Eq. (30)],

8 e (y+1y u,' t'y —1~ up—v,+—E+ i i «.+ ]
—

i «,=0, (100)
a~ ~, &2)X,

(v+1' uP t'v —. 1
& uP—v' ——E+( ( «'+I I

'
Vu, =O, (101)

tg, ». 2 ) $0 I 2 ) Ã0

and obtain, instead of Eq, (76), the dispersion relation
eE

u, ='X, (~,ZT) »—,
-

eE
n, = —~%0—(m;E'T) '.

(97)

(98)

(&g' —(g,m —yk'u, ') (aP —o)P—yk'uP) —co,'(oP

I'7-11
=y(y —1)k'u 'u'

~

—

I (u '+u')k'aP (102)
2 )

From Eqs. (91)—(94) we 6rst conclude that the ious
practically do not take part in the yscillations of the
electronic type, because both densities and velocities
are smaller than the corresponding quantities of the
electrons by a factor m, /nz, =1/1800.

On the other hand, densities and velocities in the
second case [Kqs. (95)—(98)] are about equal for
electrons and ions but considerably smalle& than before.

Finally, all quantities have opposite signs, in the two
cases, and furthermore, the signs once again are opposite
for quantities referring to electrons and ions, thus
giving a net. current Eon, in the case of electronic
waves and zero (in 6rst order) in the case of ionic
%'RVCS.

The distinctive differences between Kqs. (76) and
(102) are the factors y in front of the sound velocities
e, and I; and the terms on the right-hand side. These
too have only the character of a small correction as
may be shown by multiplying the brackets on the left
side and adding the right-side terms: for example, for
y=5/3, the factor 25/9 in front of k4upup (on the left)
becomes 15/9=5/3, while the factor 5/3 in front of
k'u 'co' and k'u'co' {on the left) becomes 4/3.

9. In6uence of Damping Terms in the
Equation of Motion

: We now try to understand what happens in general
hci1 dRn1ping tcin1s Rlc intI'oduccd li1 thc equations
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e
v+ —Eov+—E=O-,

Bt m m
(103)

81V E[
Ã0V' v——

Bt %re &

(104)

The dispersion equation is

of motion. Instead of becoming involved in the intri-
cacies of a completely general case, we consider a
damping force proportional to the product of the
electron and ion densities and the relative velocity,
corresponding to our statement in Sec. I.1. Other
treatments are discussed briefly at the end of this
section.

By starting with the longitudinal oscillations and
neglecting ion oscillations and pressure terms in the
equations of motion, we get

8 e m,—v;——E+—v'(v; —v,)=0,
Bt m; m;

and we obtain, instead of (105),

t' me)
1+—lco

—(co '+co') =0
m, &

For the transverse waves the damping effects are of
greater interest. We combine the y and s components
of Eqs. (109) and (110) with Maxwell's equations,
and obtain, as the dispersion relation,

me0
coo iv—

~
1+—~coo—(co '+co'+k' c) co

m, )
me)

+ivc) 1+—~uoco=o (112)
m, &

A'

~2—i—Epee —co,2= 0.
m

or, neglecting the ion oscillations, the somewhat less

(105) complicated relation

co i v'uP (co—+IPc—)co+i v'Pc =0 (].13)
Solving for co, we find

CL

co = i Eo~-p—co.' co (1Vo'n—'/m')]&
2m

(106)

This dispersion equation is of the third degree in u.
This does rot mean the appearance of a third type of
wave. By solving for the phase velocity or the complex
index of refraction, we obtain

t'Eon) '
p 2

& m
(107)

the wave would be almost completely damped over a
time corresponding to one whole oscillation; this result
is well known from mechanics.

By taking into account the pressure gradient we do

not find important differences. Instead of Eq. (105),
we obtain a somewhat more general expression, but
with the same structure,

oP—iv'co —co '—k'I'= 0 (108)

which could have been derived directly from Eqs. (106)
and (85).

On the other hand, taking into account the ion
oscillations results in two equations of motion,

8 e—v,+—E+v'(v. —v,)=0,
Bt m,

(109)

From this equation we can understand the two main
consequences of our damping terms: all waves are
damped in time with a damping proportional to the
electron density, and all frequencies are shifted, but
this shift has no signihcance. |A'e can understand this
statement even without a knowledge of the numerical
values of the damping constant n. For the case in which
the mean collision frequency is equal to the plasma
frequency,

CO Me P

v h' R'+ vco

COe

co coo+ v'o
(114)

Here the real part again contains a frequency shift and
is not of special interest. The value of the damping
constant is the same as for the case of longitudinal
oscillations according to Eqs. (106) and (111).

The derivation of Eq. (114) is well known from
optics. One generally handles the problem of line
broadening in spectroscopy in this manner. )For further
details see, e.g. , A. Unsoeld, (1955), Sec. 68, p. 269.)
One has only to note that there is no eigenfrequency
(coo in Unsoeld's book) for the free electrons in a plasma.
The same expression is used in the treatments of free-
free-radiation in the radio-frequency range, as, e.g. , by
I . Oster (1959).

One should not go into more detail here concerning
the questions of dhmping because of the "first approxi-
mation" character of our equations. A somewhat
diGerent kind of treatment was given by H. C. van de
Hulst (1951).For the damping term, he assumes a form
similar to that used in the Navier-Stokes equations,

V'(V v)+Pv, (115)

while we started from a direct proportionality to the
velocity. Thus, van de Hulst gets an expression 42'*
with k as wave number instead of our n. This is the
reason for the additional type of wave ("viscosity
wave") which he finds.
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H'= (Hr, ,Hr, 0). (116)

PLASMAS WITH CONSTANT MAGNETIC FIELDS

10. Basic Equations for the General Case

Interest was first aroused in this 6eld by problems
occurring in ionospheric physics. The basic phenomena
were explained around 1930 by E. V. Appleton and

others; there is an extensive review of the older liter-
ature by R. Rompe and M. Steenbeck (1939).A more

modern description of this field has been published by
K. Rawer (1953). Piddington (1955) has dealt with

some astrophysically interesting problems considering

the oscillations in a plasma with nonzero magnetic
fields and neglecting the ionic motions.

The essential difference between a plasma with zero

magnetic 6eld and a plasma with nonzero magnetic
field is the anisotropy in the propagation of waves.
This is the reason for the many analogous features in

plasma physics and crystal optics: in the plasma the

axis de6ned by the magnetic 6eld corresponds to one

of the principal axes of the dielectric constant. We do

not go into more detail concerning this analogy because

these things are well known and often discussed in

connection with ionospheric physics; instead, we

emphasize the connection with the Zeeman eGect.

Here one must have in mind the fact that the normal

Zeeman effect deals with the splitting of spectral lines

in the magnetic fields, rather than with the continuous

radiation we are here considering.
We start with a plasma with zero mean velocities

(we come back to this question in Sec. I.13) but allow

for ion motions and pressure gradients. We choose the

axes in such a way that the magnetic field lies in the

xy plane. Thus,

We have the basic equations

8 e e I,'—v,+—E+ v, XH2+ V22, =0, (117)
Bt ns. m.c

e Q'
v, XH'+ V22;=0,

m;c So

8
EoV v,+—. e,=0,

Bt
(119)

8¹Vv,+—22, =0,
8t

(120)

8
c V&(E= ——h,

Bt
(121)

8
c VXh=42re¹(v;—v,)+—E.

Bt
(122)

The basic equations treated in ionospheric physics
are included in our system, Eqs. (117) to (122), except
for the formulation of damping e6'ects: we obtain them

at once by neglecting the motion of ions and the
pressure gradients for the electrons in the equation of

motion, i.e., considering the case of an incompressible

plasma. This does not affect the situation for transverse

oscij.lations.
The derivation of a dispersion relation in the most

general case is quite lengthy and the resulting equation

too complicated to give any idea of the' physical
features. The best way to represent it is as a determi-

nant:

i ((o2—k'c')

0
COI,

N2 N 2 k2c2 2 (N2 k2c2)

GO

0)L,
i ((a2—k'c') '—(o,2—k'c'

~2 ~ .2 $2N .2 0
Mp

i (aP——k'c')
0)

(123)

0 0 2—PC2
COL,

(M2 k2c2)

0
aoL,

'
(~2 k2c2) ~2 ~ .2 k2c2

CO
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I—(d1 (dL

Vm &
Ue
0

MLy& CUo Q)L, QJ&

Vm

Ue&
Oi

Besides the notations previously used, we have for the
gyrofrequencies

oir r,' eHr r,/rn c cop r——,'=eHr z/nt c. (124)

We understand that the determinant (123) is com-
posed of four clearly distinct groups of elements:
the upper left group obviously deals with only the
electrons; the lower right with only the ions; the
remaining two groups provide the coupling between the
electronic and ionic motions.

The 6rst mentioned groups are the physically inter-
esting ones. They contain two wave pairs corresponding
to the longitudinal type from Sec. I.7 [Rq. (85)j,

co'—~o., ,2—N.„.mk', (125)
and two pairs

corresponding to the usual transverse type of oscillation
)Sec. I.4, Eq. (45)j. This division does not determine
immediately the physical type of oscillation, i.e., the
oscillations of diferent components of field vectors,
but the mathematical form of the dispersion equation.
We want to emphasize that this should not be confused,
at least a priori, as has been done frequently in previous
work.

The coupling of the two. types of oscillations (longi-
tudinal and transverse) is effected by the magnetic

Ue
0

0
Fio. 2. The dispersion of a plasma in the case of a purely

longitudinal magnetic 6eld. The phase velocity (in an arbitrary
scale) is plotted against the frequency. The three sets of curves
correspond to diBerent'strengths of the magnetic 6eld (~~1,) at
a given density ( ce,).The soHd lines correspond to the transverse
oscillations, and the broken line to the longitudinal oscillation,
independent of the magnetic Beld.

field represented by the off-diagonal terms, a conse-
quence of our special choice of the coordinate system
in terms of the direction of the magnetic 6eld which
causes many of the off-diagonal terms to go to zero.
Thus, the characteristic phase velocities and frequencies
of both wave types are coupled together; this is the
main consequence of a constant magnetic field. The
second consequence is the splitting of the two transverse
waves, which are discussed later in more detail. The
coupling terms have the form of "light waves, "mathe-
matically represented by the well-known expression

oP—k'c'=0.

Summing up our discussion of Eq. (123), we find that
in the presence of a nonzero magnetic field there are
four wave pairs. At a 6xed frequency there may be
diferent phase velocities corresponding to the number
of (real) solutions of the dispersion equation in question.
The two transverse oscillations appear separately, thus
correspon. ding to the ordinary and the extraordinary
ray in crystal optics.

We do not use Eq. (123) in all detail to describe the
behavior of a plasma in the presence of a constant
magnetic field. For this purpose we specialize, following
Piddington (1955), to the case of immobile ions. We
then try to survey the essential physical properties,
emphasizing especially the points not taken into
account in previous work.

j.j.. Electronic Oscillations in a Constant
Magnetic Fie1d

Neglecting the motions of the ions, we have to
consider in Eq. (123) only the upper left square. By
again dropping the index e wherever it is not necessary,
we get the following dispersion relation:

( '—,'—k'N. 2)P((v' —oiP —k'c')' —(re '/r0') (cu' —k'c')'j
—(aP—k'c')cur'(sP —~o,,

2—k'c') =0. (128)

Equation (128) is of the third degree in k'. In the case
of zero magnetic field (oir, =&or=0), the longitudinal
and transverse waves are no longer coupled. This
means that there is one dispersion relation for the
longitudinal waves (which involve E and i ), and one
common dispersion equation for both the transverse
oscillations.

Instead of discussing Eq. (128) we specialize once
more and consider the limiting cases of a purely longi-
tudinal magnetic field (~or ——0) and a purely transverse
magnetic 6eld (~r, =0). The case of an arbitrary
direction for the magnetic 6eld is mathematically very
complicated, and probably will not give rise to new
Iesults.

(a) Longitudinal Magnetic Field: cur 0——
In a longitudinal magnetic 6eld there is no coupling

between the longitudinal oscillations (F. ,e ), which are
not affected by the magnetic 6eM, and the two trans-
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verse oscillations (v„,E„,k, and s„E„k„), which are
coupled together by the magnetic Geld. Thus the
dispersion equation for the longitudinal oscillations,

oP—co,2—k2u, 2=0) (129)

C2

(131)
'Vp g

called the "ordinary ray" in ionospheric theory in
analogy to crystal optics, and

G0g GOg

=1——
Oi 07+O2r,

Na 2

12b
2

Vph
2

G)2,=1— (132)

the "extraordinary ray" of ionospheric theory.
On the other hand, both solutions are formed like

the corresponding ones in the case of the Zeeman eGect
in spectral lines; there is no wave which is not influenced
by the magnetic field, and the solutions are somewhat
symmetrical to the (nonexistent) unshifted component

222 —c2/o 2 —1 (N 2/N2) (133)

For zero magnetic field o~i, —+0 the expressions (131)
and (132) converge to Eq. (133).

Propagation of waves is possible only when the
square of the refractive index is &0, i.e., when the
frequency of the ordinary ray,

~) (~z/2)+ [(~~'/4)+~'j'—=~., (134)

is identical with our former relation (85).
The two transverse oscillations are described by

o22(o22 oi '——k'c')' —(co2—k'c')2+1.2 ——0 (130)

showing no pressure dependence and thus bei'ng identi-
cal with the well-known expressions in the ionospheric
theory. We briefly note the main features in order to
make possible a comparison with the case of the trans-
verse magnetic field, where the dispersion relations
dier essentially from the one derived in ionspheric
theory.

Equation (130) yields two roots; by solving for the
phase velocity or the refractive index, we obtain

k„= (kc/oi) E

k, = —(kc//oi) E2.

(139)

(140)

On the other hand, the electric field components are
related to the velocity components:

e Mg—Eg= —2 V~~

1S Go

(141)

This feature is well known from ionospheric physics.
With increasing magnetic Geld strength, the range

~i&~& (~z/2)+ [(~c'/4)+~. 'j' (13&)

becomes smaller and ends, for col)&~„ in a "prohibited
line" at ~l„but there is no way to get a continuous
frequency range of propagation. In the case of zero
magnetic Geld the forbidden region of (127) cancels
out, in accordance with the results of Sec. I.4.

Discussing now the values of the phase velocities,
Eqs. (131) and (132) show that m~h)c for the ranges
(134) and (135), again in accordance with the results
of Sec. I.4.

On the other hand, the phase velocity in the range
(136) of frequencies is always &c and goes to zero at
the borders of the transmission range co=0 and co=coL„
for oi= cur/2 there is a maximum for the phase velocity.
Its value v is obtained from the relation

, 2= c2„,2/(„,2+4„2) (138)

A schematic picture of the situation is drawn in Fig.
2. For each case we have to choose the ratio of co, to ~L,.
We take col.=0.jco„orl,=0.9'„and col.=5.0co, as
samples. The limiting case of zero magnetic field is seen
easily from this sequence. Finally, ~1,2 must always be
less than mb2.

We now consider the different vector components of
the velocity v, the electrical field E, and the alternating
magnetic Geld h. Between each pair of these quantities,
there exist two homogeneous equations which must be
identical for all solutions compatible with the dispersion
equation. We write down only the mathematically
simpler form.

There are two relations between the alternating
magnetic field components and the electric ones:

and of the extraordinary ray,

oi)+ (o)r./2)+ [(coi,2/4)+o2, 2]&—=sr2. (135)
e CO~ N—E = —2 Vy)
tS m2 —jPC2

(142)

CO& GOL, . (136)

The negative square root is excluded in both cases.
The magnetic field causes a shift of the lowest frequency
able to propagate through the plasma as compared
with the unshifted case (123).

In the case of the extraordinary ray (132) there is a
second range of frequencies for which wave propagation
is allowed. Since the refractive index becomes positive
again for co=col„propagation is possible for all fre-
quencies

e
Vg.

fS GP k C

(143)

There is just one relation (141) for the to22gitldi22al

components v, and E,whether or not there is a magnetic
field. This does not hold for the transverse components
E„and v„, and E, and s., according to Eqs. (142) and
(143); these relations contain the wave number and
thus the refractive index or the phase velocity.
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Thus in the preceding case of purely longitudinal
magnetic field, there exist two diferent connections
between the amplitudes of E„(or h,) and v„, and E'„
(or h„) and v, . We obtain them by introducing our
dispersion relations (131) and (132) into the equations
for the components (142) and (143). The two oscilla-
tions then correspond to the ordinary and extraordinary
ray, but are, as previously stated, not allowable for all
frequencies.

~2 ~ 2 k2G2 —0 (144)

(0) Transverse Magnetic Field: cur, =0

In the other limiting case, when the magnetic field
is purely transverse, one of the transverse waves
separates out and is called the ordinary ray in iono-
spheric theory:

Also,

G 1
(id 2+&T2 Cd2)I

(&aP ) ' id''
lft'»I -1 I+

0 cd' J id'

(151)

(152)

always holds. Hence, on expanding the square root,
this leads to

(~ 2

y=--, f~~-;a~a -]
E co

2 ~T2
(153)

one (v„E„tt„);hence, these two solutions of the dis-
persion relation are identical for both types of oscilla-
tions.

It is evident that N,2((G2; thus the second term in
the expression for 8 is always small compared with
the first:

If we solve Eq. (144) for the phase velocity, we obtain

h2 G2~2 ~2 ~ 2
By considering first the oscillation corresponding to

(145) the rtegative sign in front of the root, we get

There is no dependence on the pressure as was the case
for both transverse waves for purely longitudinal mag-
netic field. Our solution (145) corresponds to the
unshifted component in the transverse Zeeman eject.
This case is discussed in Sec. I.4.

The relations between the vector components are

G 1
y ———'—(coq +Mr —oi )I, e2

or, by solving for the phase velocity,

(154)

(155)'Vph =Qq2= 2

~2 ~ 2 T21 m
tt, = ——((d' —~d,2) &E„=+i—(cd' —id,m) &v„, (146)

CO e
and

e—E = —Zco8 .
m

The second part of the dispersion equation yields
(156)id2) id 2+id'=id02

The value of the phase velocity, Eq. (155), corresponds
closely to the phase velocity for longitudinal oscillations

(147) for zero magnetic field; here, however, this velocity
applies to both waves. The waves propagate for all
frequencies

(M2 K 2 $2tt 2) (M2 M
2 $2c2) M 2(M2 $2c2) =0 (148)

In the case of a transverse magnetic field, the fre-
quencies and phase velocities of the longitudinal (v,E )
and one of the transverse waves (v„E„h„)are coupled
together. This is the reason for the specu1ation con-
cerning the possibility of energy transfer between the
longitudinal and the transverse oscillations as may be
the case in some astrophysically-interesting situations;
for example, between shock waves and the observed
radio-frequency radiation of the sun.

If we introduce the new variable into Eq. (148), we
obtain

y2 —c2N 2/v 2

and then
(Cd 6

y= ——'8& —'8' —
I
E 0P

(150)

g =I [1—(1/cd2) (id 2+cdv~)]t(N (157)

i.e., the velocity associated with the energy Bow is
smaller than the velocity of sound.

In the case of the solution of Eq. (150) with the
positive sign in front of the root, the first two terms in

Kq. (153) compensate each other and we obtain for
the phase velocity

Comparison with analogous results in Sec. I.7 reveals
that the magnetic field increases the critical frequency
which corresponds to the zero refractive index. For
coz —+ 0, the field free case of Sec. I.7 results, while at
the same time, the coupling between longitudinal and
transverse vector components vanishes.

For the discussion of Eq. (155) we refer to Sec. I.4,
substituting I, for G and coo' for or,'. The group velocity
comes out in a manner analogous to Eq. (87):

OP c0 Co Co

2= —G2

~ 2 ~2 2 ~)2~)~2
(158)

The dispersion relation, Kq. (148), is valid for the
longitudinal oscillations (v„E,) as well as the transverse It is convenient to consider the numerator and denomi-
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nator separately, putting

Sph = —C —. (159)

Transmission is possible only when

sngZ= —sgnÃ.

The numerator for the frequency

MO =C04; +M&
is zero, with

(160)

(161)

SgI1Z=+1 Cd (Cdp
when, , (162)

sgnZ = —1 GO )Q)0 .
The denominator equals zero for two values of the

frequency, again analogous to the transverse Zeeman
case with two shifted components. The denominator
vanishes for the frequencies

Ue
0

OJ& hl ~

1k

I

I

Vph

C
I

I

I

I

Ue
p I

CU~(Uo ~
2 I

e

OJ, QJ, QJ, td,
I

I

I

I
'III

I

2—
Cd 2+ CdT2~(Cd 2CdT2+ CdT4)* ~

It is easy to see that

O) ((Oo ((O1

Because the denominator is negative for co02,

(163)

(164)
Ue
0

0

Q)p o QJe

we have
sgnX=+1

when

(G02

GO

E(Cd )= CdT Cd (0 (165)

(166)

Fro. 3. The dispersion of a plasma in the case of a purely
transverse magnetic 6eld. The values of coy/co, are chosen as in
Fig. 2. The solid lines correspond to the oscillations dependent
on the magnetic 6eld (v,E;e„E„Q);the broken line corresponds
to the transverse oscillation independent of the magnetic 6eld.

sgnX= —1 ~2(~2 (12

YVe find from Kqs. (162) and (166) the transmission
behavior of the plasma: propagation of waves is possible
in the frequency ranges n,

and P,
M2 (G) (070

M )601 .

(167)

(168)

~»=c for (169)

In the range p the phase velocity varies from ~ (cd = cdi)
to c (cd —& ~).

By brieQy reviewing the relations between the vector
components, we again find the relation (141) for the
longitudinal quantities e, and E, ; thus, the amplitude
relations are identical for both solutions (155) and
(158).

On the other hand, these solutions yield diferent
relations between ~„E„and h„; as stated at the

By letting co& —+0 the critical frequency becomes co,2

as expected.
Finally, we have to determine the values of the

phase velocity, illustrated in Fig. 3. e» is plotted on an
arbitrary scale es the frequency for the three cases
mentioned in connection with Fig. 2: cop= 0.1'„
~p=0.9~„and ~z =5.0~,.

In the transmission range n there are all phase
velocities between ~ (cd=cd2) and 0 (cd=cdp), with

Q)
2 Q)2 e

'V z jVZ)

Cd Cd +CdT Cd 2N

(170)

i Cd T2(Cd2 —Cd,
2—

Cd T2) C2 e
'V —+1 E.. —

(Cdp Cd 2)2 Cd2CdT2 N2 222

(171)

The expressions for the amplitude relations are as
involved as the ones for the phase velocities and depend
as well on three parameters: mean density (cd.),
temperature (N,), and magnetic field strength (cdT).
A detailed discussion is out of the scope of this article.
However, one easily sees that the solutions (155) and
(171) are physically as important as the usually quoted
solutions, (158) and (170). Thus, there are transverse
waves in the plasma traveling with nearly the sound
velocity, their amplitudes being not at all negligible.
It seems to be of major interest to check whether or
not these waves may continue into a field-free region;
such an investigation, which must include macroscopic
density and field gradients, cannot be undertaken in
the frame of our equations.

beginning of this section, v„, E.„, and h, are not affected
by the magnetic field. A rough calculation shows that
we have to consider terms up to the order N,2/c2 and
thus the unabridged solution (150) (the root, however,
may be expanded) instead of Eqs. (155) and (158).

After some calculation we find for the two solutions,
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Finally, we 6nd for vanishing magnetic field (cur ~ 0)
that both solutions (170) and (171) converge to the
relation for ordinary transverse waves.

szzv~+ ssgvg
V=-

m;+m,
(172)

and the "diffusion velocity"

8= v~ —v~. (173)
~ ~ In recent work, this restriction sometimes has been removed;

cf. the reviews by L. Spitzer (1956) and G. H. A. Cole (1956).

12. Alfven's Magnetohydrodynamics

Another special case of the treatment of plasmas with
nonzero magnetic fields is known as "magnetohydro-
dynamics, " which was initiated by the work of H.
Alfven and his collaborators.

Alfven's treatment is still closer to the concept of a
continuum than is the case for the system of hydro-
dynamic equations used in the last sections. He reduces
electrons and ions to a uiiiformcon, tinuum which he
describes by the phenomenological (constant) quantities
p (density), o. (electrical conductivity), and p, (magnetic
permeability). This model of the plasma again is

electrically neutral, but now, for each volume element
no charge separation at all is possible. Finally, he
assumes incompressibility~ ~ for the whole plasma, thus
obtaining only transverse and no longitudinal waves.
We considered the incompressible case for a pure
electron plasma in Sec. I.4. At present it is not possible
to decide if Alfven's model is well suited for handling
the gaseous plasmas occurring in nature in stellar
matter.

There are many papers dealing with magnetohydro-
dynamic problems. We do not review them here but
try to clarify the common points between our treatment
and the usual magnetohydrodynamic one. We cite,
besides the original papers of Alfven and his collabo-
rators Lcf. Alfven (1950)], the books by Spitzer (1956)
and T. G. Cowling (1957). A somewhat specialized
choice, but with more details and a large list of papers,
is given in. the review by Cole (1956).

The whole Alfven theory is included in our dispersion
determinant (123) as long as one is not interested in

damping processes, and we could develop this theory
by first making I,'=I,'=0 according to the concept of
complete incompressibility. The usual magnetohydro-
dynamic formulas then result from further simplifi-
cations, e.g., neglect of the displacement current as
compared with the conduction current.

Instead of proceeding along these lines, we use the
fundamental equations given by Spitzer (1956), which
seem to be more convenient in many cases, and obtain
the connection between this treatment and the one
used hitherto.

For this purpose we introduce with A. Schlueter
(1950) the so-called "mass velocity"

This mass velocity V corresponds exactly to the
velocity of the uniform plasma used in magnetohydro-
dynamics.

With the assumption of incompressibility, we use

E,=E,=Xp ——const.

The electric current is then defined by

j= eEpd.

(174)

(175)

By neglecting the electronic mass compared with the
mass of the ions, which always may be done, we obtain
for the density

P=XpnZ;. (176)

By letting the permeability p, =i, which again is no
restriction, we obtain, by summing and subtracting
the equations of motion for electrons and ions,

8V 1
p =-(jXH')

Bt c
(177)

m. Bj 1.—= E+—(VXH') — (jXH') ——j. (178)
%pe' Bt c ecXp . 0-

m, Bj—=0, — -jXHP
lope' Bt ecXp

(179)

By comparing the resulting dispersion relation so
derived with the general one, we find that the assump-
tions (179) correspond to the neglect of terms of the
order

(co'/a)li'(aIi') and (co/coH*) (180)

as previously stated by Spitzer (1956).
This means that for Alfven's basic equations to be

valid, the frequency co must be small compared with the
gyrofrequency of the ions coII'. In the last section we

saw that this kind of wave is transmitted through a
plasma only under certain conditions. It seems neces-

The term proportional to j results from the consider-
ation of damping effects in the equations of motion and
yields a connection between the damping constant
(some kind of mean collision frequency) and the
conductivity 0. Equation (178) reduces to the normal
Ohm's law by putting the change in time of the electric
current and the magnetic field equal to zero.

As usually is done in the Alfven theory, we took into
account only a scalar conductivity. Piddington L(a)
(1955)] has investigated the influence of the magnetic
Beld upon the electric conductivity.

By using Eqs. (177) and (178) together with Max-
well's equations, the same dispersion relation is obtained
as would be by using the determinant (123) together
with the approximations just mentioned and assuming
in6nite conductivity, i.e., neglecting damping.

The usually quoted magnetohydrodynamic equations
follow from Eqs. (177) and (1'l8); by using 0.= ~,
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sary to investigate this point further in the usual
magnetohydrodynamic theory.

Finally, the displacement current in Maxwell's
equations usually is neglected, and so we obtain the
well-known relation

s2 —~g 2/4o. p v2(oo~i2/oo, 2) (181)

Vo)( H (182)

in the equations of motion, which make the equations
inhomogeneous. In Sec. I.6 we showed that such a case
can loot be handled by the methods used in this investi-
gation. Furthermore, it is well known that a plasma
moving as a whole across a magnetic field changes the
field itself. As a matter of fact, for infinite conductivity
(o = oo ) the field lines are frozen in the plasma.

Consider a reference frame E' in which one observes
the phenomena described in Sec. I.7, i.e., the observer
measures an electric 6eld

velocities
Z.'~0, Z„'=Z,'=0,

e,'&0, e„'=vI, '= 0,

(183)

(184)

and, besides the mean density Xo, density variations

13. Constant Motions across the Propagation
Direction of Waves

In Sec. I.6 we discussed the influence of the choice
of the reference frame upon the results for longitudinal
waves. - We restricted our considerations to the case of
translations parallel to the direction of wave propa-
gation. We delayed the discussion of motions across the
direction of propagation because, in this case, we have
to use the formulas for the electrodynamics of moving
matter, which are to be derived from the special theory
of relativity. While until now the formulas of the
Galilean transformation were enough for our purposes,
we have to consider in the following —directly or
indirectly —the full Lorentz transformation, in spite of
the fact that we neglect all strictly relativistic efI'ects,
i.e., terms of the order v'/c'. Following the discussion
of motions perpendicular to the propagation direction
of longitudinal waves, we consider the case of transverse
waves and motions parallel and perpendicular to their
direction of propagation.

We again start from the usual model of an infinite
plasma and a longitudinal density wave, taking into
account the variation of pressure in the equations of
motion. Throughout this section we neglect the motions
of ions and assume that there is no constant magnetic
field; otherwise, we would have to use terms of the form

assumption of a harmonic shape of the traveling waves
(except the general restrictions upon the use of hydro-
dynamic methods for the description of nonequilibrium
features such as harmonic waves); therefore, they are
valid whenever there is a stationary situation with a
uniform and constant phase velocity. In general, we
still use harmonic waves, but want to make this point
clear in connection with the paper by Larenz (1955)
discussed later in this section.

Furthermore, we still assume that there are no
gradients besides the one in a direction defining the x
axis:

8 8 —=0
Bp Bs

(187)

With the usual meaning of

po —v 2/cp

we obtain for the x and y components

(189)

and

, (1-~')'
v, =v, ' =v, '(1—P')l=v, ',

1+(vpv, '/c')

(1-~'):
'V.

fI
= 8y

I =0
1+(vov. '/c')

(190)

(191)

From Eq. (188) it follows that no accelerations are.
possible in the direction of constant motion (s axis), a
result which is obvious from a physical point of view.

The transformation formulas for the electric and
magnetic quantities —cf. A. Sommerfeld (1949), whose
equations we transformed from the mks to the
Gaussian system of units —are (~~ corresponds to the
s direction, J to the x and y direction)

We now go over to a reference frame E. The plasma
is supposed to move in E with the constant velocity vo

in the direction of the positive i axis. The velocities
measured in E' are to be calculated from the values
measured in E' by means of the Lorentz transformation,
for which we still can use the Galilean transformation
in the case e(&c to be treated here. For uniformity of
treatment —as stated previously, we have to use the
formulas of the special theory of relativity for the
calculation of the electric and magnetic field compo-
nents —we use the unabridged formulas of the Lorentz
transformation.

From Eq. (184) we obtain

&~ +&0 =so= const.
1+(vpv, '/c')

n, /0.
There are no magnetic fields

(185)
&~ ~'=LE+(1/&) oXh]~~,

E,'(1—P')'= LE+ (1/c) vpXhi„
(192)

h'=0. (186)

Equations (183)—(186) have nothing to do with the

&~ ~'= Lh —(1/&)voX Eg~[,

Io,'(1—PP) t= Lh —(1/c) voX R],.
(193)



L. OS TF. R

By using the relation

p*= —ee (194)

for the variable electric charge density (the mean elec-
tric charge density is zero), we obtain for the electric
current density

Lorentz transformation,

1 I 1x x s
(1-P)~

(—1/c') v os

(211)
(1-P')'

that a plane wave propagating in the x' direction

(1 P')—j'ii'=j ii+ricso, j'=j' (195)
g'bra) 5 +zjcx (212)

By using Eqs. (183) and (186) we find

E,=O,

h, =O,

E,—(i o/c) h„= (1—P') lE.'

h„—(vo/c)E, =0,

E„+(vo/c)h, =0,

(196)

(197)

(198)

(199)

(200)

becomes a wave for which the planes of equal phase
are no longer perpendicular to the x= x' axis:

&o

(213)

Thus, the moving observer Ands a plane wave having
a propagation vector with a component in the s direc-
tion:

h,+ (vo/c)E„= 0.

From Eqs. (200) and (201) it follows that

Ey ——h =0,

(201)

(202)
since

1—
(w %') = 1—P'~0 (203)

Furthermore, from Eqs. (198) and (199), we obtain

=E '/(] P&)k (204)

This means that an observer moving across the gas
measures the same electric field in the longitudinal
oscillations as the observer at rest, except for a relativ-
istic correction. On the other hand, the moving observer
finds, according to Eq. (199), a magnetic field compo-
nent

h. = [P/(1 0')'3E '— (205)

j,= —cero.

Finally, we still have in the moving system

(208)

B—=0
By

(209)

(210)

This result is not unexpected. It is nothing else than
the well-known aberration of light. By using the
concept of harmonic oscillations, we And, from the

while the observer at rest finds eo magnetic field.
The equations for the electric current, according to

(195), are
(206)

(207)

and taking into account j,'= 0,

Sp Vp Vphk= k, 0, —i =k 1,0, —— . (214)
c'(1—P')' c c(1—P')&

This "shift of the plane of equal phases" is an eGect of
the first order, i.e., vo/c, as is well known from the
theory of aberration.

I rom these considerations we have obtained a fairly
complete answer concerning the behavior of longitudinal
waves as seen by a moving observer.

These conclusions do not agree with those obtained
by Larenz [(c) (1955)]. By starting from phenomena
for an observer in the system E' at rest in the gas
(Sec. 1), he goes over to the system K without explicitly
transforming the electrical and mechanical quantities.

Larenz at once writes down the fundamental equa-
tions in the system K (Sec. 2), introducing an acceler-
ation in the direction of the constant translation 8
[Larenz: dv, /dt/0, Eq. (8), p. 903j; furthermore, the
s component of the electric field vector is 6nite. The
shift of the phase planes, cf. our Eq. (210), is not
considered.

Interpreting his fundamental equations correctly
leads, according to Eqs. (188) and (196), to transverse
waves as well as longitudinal waves even in the reference
frame at rest in the plasma. tt

Consequently, it seems rather unnecessary to carry
on the already quite complicated calculations (as
mentioned in the introduction, Larenz does not linearize
and uses an adiabatic connection between density and
pressure which again complicates the equations a great
deal) in a coordinate system moving through the gas.

As we have seen, the equations used by Larenz do
not hold for the reference frame he has in mind since
he neglects our condition (210). We now wish to obtain
from his results as much information as possible
concerning the eGect of his nonlinear terms. It is
possible to transform the equations [Larenz: Eqs.
(7)—(11),p. 903$ back into a reference frame at rest by

$ I am indebted to Dr. Larenz and Dr. Burckhardt, Hannover,
Germany, for helpful criticisms of this point of view.
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setting his 8=0. The equations then are complete and
without contradiction. However, this method fails later,
because he introduces new variables

and (173) that in the moving system too, there are
only two field components. Between the old and the
new quantities, the following conditions hold:

I —1

const
(215)

(1—PP) ~E,=E,'—(p,/c)I „',

(1—P') &h„=Ii„'—(pp/c)E, '. (218)

for

e=———+ 0. (216)

By using his numerical results without further discus-
sion for the case e —+ 0, we are inclined to assume that
even in the nonlinear case treated by Larenz and
interpreted along our lines, there is no coupling between
longitudinal and transverse waves. This would indicate
that there is no possibility of an energy transfer from
longitudinal waves (e.g., shock waves) to transverse
waves (e.g. , electromagnetic waves) without a nonzero
constant magnetic field. For a final decision concerning
this most important question, more exact calculations
are urgently needed. D. A. Tidman and E. N. Parker
(1959) have come to the same conclusion; they showed
that macroscopic temperature or density gradients are
needed for the generation of electromagnetic radiation
by longitudinal plasma waves.

In discussing Larenz's paper, there is still a second
possibility in interpreting his fundamental equations:
By starting from our .concept and taking into account
the aberration (210), we can define the axes in such a
way that the direction of propagation coincides with
the x axis. Then the electric field vector as well as the
velocity vector has a "transverse" component in s
direction. Again, as a consequence of Kq. (210), the
condition

Sp8&h

E, p, c'(1—P') &

(217)

holds. Thus, in the limiting case pp-+ 0 (in Larenz s
notation e~ 0), i.e., in the frame at rest, we should
expect a purely longitudinal wave. This does not hold
because Larenz neglects condition (217) (he obtains a
transverse wave even for p —+ 0), and thus this second
interpretation is not possible.

We now briefly sketch the sects of motions on the
behavior of transverse waves. We do not go into much
detail, because for a complete investigation one would
have to write down the equation of motion in a relativ-
istically invariant form. We do not think that the
results are worth this labor because new physical
phenomena are not to be expected. We write, for the
sake of completeness, the field components measured
by a moving observer.

By starting with a constant motion parallel to the
direction of propagation (again chosen as the x axis)
and determining the transverse wave by its field
components E,' and h„', we conclude from Eqs. (172)

In the case of a motion perpendicular to the direction
of propagation we find a slightly diGerent result. Let
the motion take place along the s axis. We first split
oG the transverse oscillation into the linearly polarized
components, the first one determined in the frame at
rest by the quantities E,' and fi„'. From Eqs. (192)
and (193) we now obtain, in the moving frame,

E.=E,', (1—P')~h =7i ' (1—P')~E~= (&o/c)h„', (219)

and for the second wave (with E„' and h, ' in the frame
at rest) we obtain

h.=h, ', (1—P')iE =E ' (1—P')'7i = —(po/c)E„'. (220)

This means that the moving observer measures
components E and h, while the observer at rest does
not; this again is the eftect of aberration. The additional
field components make the moving observer find a
somewhat di6erent direction for the source of the
radiation than does the observer at rest. The situation
is exactly the one well known in astronomy, optics,
etc., since in deriving Eqs. (218)—(220) we have not
made use of the special plasma character of the medium.
Finally, the plane of equal phases is inclined, as we
already have shown in the beginning of Sec. I.13, the
amount being of the order po/c. These considerations
complete our investigation concerning the situation
found by a moving observer.

24. Conclusion

Some points which seem to be of importance to later,
especially nonlinear, investigations require emphasis.
We tried to show that the normally accepted theory of
electron wave tubes is not correct for various reasons
and should be reconsidered. We think that for this
purpose it is necessary to take as a model a foamite

plasma and the proper boundary conditions for the
problem at hand.

For an investigation of a plasma with nonzero
magnetic Geld, progress towards a decision of whether
or not there is radiation excited by primarily longi-
tudinal waves seems to be possible only by nonlinear
methods. On the other hand, there still may be some
problems to be solved by linearized treatments such as
the transmissivity of a plasma for Alfven waves.

Finally, there seems to be no reason to take into
account constant velocities of the plasma as a whole,
which complicate the mathematical treatment a great
deal but apparently without new physical results. The
same may be inferred from our discussions of the
statement that an adiabatic formulation is necessary
and has to replace the usual isothermal one.
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II. Kinetic Theory Treatment

INTRODUCTION

In Sec. I the longitudinal and transverse oscillations
of a plasma were investigated by using a linearized
hydrodynamic treatment, and the existence of a certain
number of different wave types and their mutual
interaction was discussed.

It is well known that the fundamental equations of
hydrodynamics can be obtained from the Boltzmann
equation. To a certain extent, the basic hydrodynamic
equations are an approach to the correct kinetic treat-
ment. This exact treatment using the kinetic equations
is at present too comphcated for mathematical reasons
to be used in the description of the general behavior of
a plasma undergoing all types of wave motions. Thus,
until now, the kinetic treatment has been used only in
more or less narrow fields of plasma physics, especially
in those instances in which the hydrodynamic treatment
fails for intrinsic reasons. This is the case for all ques-
tions involving a more than phenomenological approach
to damping efFects caused by collisions of the plasma
particles and for problems in which the velocity distri-
bution function is specifically involved. The first of
these problems is closely connected with the calculation
of the scattering cross sections of charged particles and
thus with the electric and thermal conductivity, etc.
A survey of these problems has been given by Oster
(1957). Some aspects of the effects of collisions on
plasma oscillations have been treated recently by
Bhatnagar, Gross, and Krook (1954) and Gross and
Krook (1956).We discuss them brieRy in Sec. II.6.

We are interested rather in showing what restrictions
on the shape of the velocity distribution of electrons are
necessary for the hydrodynamic treatment to be valid.
In a recent paper N. G. van Kampen (1957) has
discussed this question but from a somewhat diferent
point of view. Finally, we explain why Gross (1951)
came to the conclusion that the hydrodynamic treat-
ment conceals the essential features of a plasma.

1. Boltzmann Equation

The kinetic approach must begin with the Boltzmann
transport equation. We write the Boltzmann equation
for the electrons only, assuming as we usually did in
Sec. I that the ions as a whole are at rest compared
with the electrons as an assembly. We thus neglect
the oscillations of the ions. In the kinetic picture this
means that an undisturbed Maxwell distribution always
holds for the ions.

We take the Boltzmann equation in the form

Bf 1 /Bf)
+(v V)f+ (F—V,)f-

at fg ( Qjf p ..]1
where f is the velocity distribution of the electrons and
is a function of time, space, and the velocities them-

selves. V„f is a vector with the components Bf/Bv„
(v„are the velocity components in the directions n= 1,
2, 3), and (Bf/Bt)„&& is the change in the velocity
distribution due to collisions with other particles. F/et
is the external force per unit mass, which is identified
later with the electric field set up by the oscillations.

The essential feature of Eq. (1) is the collision term
on the right side. We are interested in knowing under
what conditions this term vanishes, i.e., when the
collision do not destroy an initial velocity distribution.
This obviously happens when there are no collision at
all, e.g., when the density is extremely small. As van
Kampen (1957) pointed out, most of the previously
published papers deal with this case.

For the purpose of a comparison with hydrodynamic
treatments we have to deal with conditions in which
the right side vanishes for another reason, i.e., when a
stationary state is reached. This takes place when
collisions reproduce a given velocity distribution.

We cannot expect from the beginning that this is
true for all types of plasma oscillations, because they
correspond to an ordered motion of many particles, and
collisions usually try to establish a disordered state of
motion. We therefore erst determine the exact condi-
tions under which there are no eGects of collisions on
the oscillations, and then use this knowledge to work
out an approximation method for the general case.

m
f0=&o( I exp

E2 ET)
m

(v'+v. '+v'), (3)
2ET

where Eo is the density, te the mass, E the Boltzmann
constant, and T the temperature.

Equation (2) is derived under the assumption [A.
Sommerfeld (1952)] that the "collisions" are under-

stood as two-body elastic collisions of identical
particles. This means, in our case, collisions of electrons
with themselves. The statement that collisions restore
the distribution function (2) therefore refers only
to this type of collision. Besides that, there is still

the interaction of the electrons with heavy ions which

is neglected in the derivation of Eq. (2) and which

gives rise to an additional damping of all types of

2. Locally Maxvrellian Distribution

It is a known result of the kinetic theory of gases
that a steady state [right side of Eq. (1) equals zero)
is exactly possible only in the case of a "locally Max-
wellian" distribution of velocities, i.e., in the case of a
distribution function

f(v) =a exp[ —r(v —g)'], (2)

where a, I', and ( are parameters depending on the
space coordinates and the time but not on the velocity
components v„. The physical interpretation of these
parameters becomes clear by comparison with a normal
Maxwellian distribution
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oscillations, even of those compatible with condition
(2). We take that into account in Sec. II.6 and derive
an appropriate expression for the resulting attenuation
of the oscillations.

The dependence of the distribution function (2) on
the space and time coordinates is not arbitrary, but is
restricted by the left-hand side of Eq. (1). We first
consider the case of a velocity independent force F,
i.e., we exclude the presence of magnetic fields which is
considered in Sec. II.5.

By introducing expression (2) for the distribution
function f into Eq. (1), we obtain

Ba 1 cji' 8$———(v —5)' +21' (v —
&)

—+(v «)/o
Bt a Bt Bt

and (9) we then have, for the longitudinal oscillations,

Bu,/Ox=0, u„=u.=O.

Instead of Eqs. (6) and (7) we obtain

(10)

and
F, e BN, 1 Ba

E,=—+
m m Bt 2ru Bx

(12)

Because "u" essentially describes the space and time
behavior of the density (the temperature which affects
"u" also has been assumed to be constant), harmonic
oscillations are compatable with Eq. (11) only if

-(.-g) (..Vi)+2rL'V(g )j-rL'V(P)3 I,=@0=const. (13)
—2rF (v —g)/m=0. (4)

Since a, I', and ( do not depend on the velocity, we may
separate Eq. (4) into terms of the zeroth, first, second,
and third degree in v and equate the coefFicients to
zero. One then obtains

vr=o,

Equation (10) is always fulfilled.
Equation (11) describes a density wave traveling

with constant velocity in front of an observer. On the
other hand, for an observer- moving with constant
velocity vo along the x axis, this means a standing
wave in the plasma. The electric field associated with
the density distribution is, from Eq. (12), given by

BS i Br—-=-(4 «)/o+I'B ~(P)j— 8, (6)
Bt a Bt

sz BQ

2era Bx
(14)

8$ Br
F/m= +«—/21'a ,'V (P—)+-g/r,

Bt Bt

This solution does not interest us because there is
really no traveling wave involved.

However, there is a second solution,

a= const,BN BNg Br 1
+ = —5;p, i k=123,

Bk Bi Bt r (8) compatible with the assumption of harmonic waves
and with Eq. (11):In this case the density would be
always and everywhere constant. We would be dealing
with an incompressible plasma which, from Eq. (10),
would be oscillating synchronously over the whole
space.

By introducing the notation

with 8;p= 1 for i =k, 8,„=0for iWk, and $= (u„u„,u, )
By comparing the distribution (3) with the Max-

wellian (2), we notice that the only variable quantity
in r is the temperature. Restricting our considerations
as in Sec. I to the case of an isothermal plasma, we
fu1611 condition (5) automatically. With

(16)
9

elocity component, according to Eq. (12) we
or the amplitude of the electrical 6eld,

r = const,

Ep= —zM—$p
e

(18)E =E q'"c

for the v
Eqs. (6)—(8) become somewhat less involved.

From Sec. I we know that the result of the adiabatic
treatment is the same as for the isothermal one, pro-
vided one uses the appropriate expression for the sound
velocity. We come back to this statement from the byusing
kinetic point of view in Sec. II.3(a).

(u) Case of Plaice Harmonica/ Wanes

We limit the discussion to the case of plane harmonic
waves. The first type of waves of interest to us is the
longitudinal type. We define the reference frame as in
Sec. I, assuming for all space variable quantities a
dependence on only the x coordinate. From Eqs. (8)

for the electric field.
We conclude, strictly speaking, that oscillations in a

plasma with a stationary velocity distribution for the
electrons are possible only in the case of synchronous
oscillations of the whole incompressible medium. Only
in this case is there a purely Maxwellian distribution
which is indeed variable in time.
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( m
f=N0I

I
exp—

&2 ZT)

m f e e'"') '
I

v,——z,
2XT & m i~ )

+v 2+v 2I

(b) Shape of the Velocity Distribgtport

The derived velocity distribution has the shape

(19)

for the phase velocity. We always assume the validity
of the restrictions discussed above on the frequency co

and the wave number k.
Instead of Eqs. (16) and (18), we now have

$
—

$ eikz+ g gilcx+
) (26)

while the connection between $0 and Ep has to be
calculated separately. This is done later in this section.

We start from a locally Maxwellian distribution of
the form

For the case of small amplitudes, in addition to a
factor of the dimension of a length, the ratio f m i' Np

1+
(20) E 20rXT)eEp/ET'

between the electric field energy and the thermal energy
is small. Thus we may expand the exponential function
and find an expression corresponding to the one derived
by Lorentz (1916):

Xexp — [(v —t)0+v 0+v Pj (27)
2ET

Since $ is supposed to be small compared to v„we can
expand the last factor in (27) in a Taylor series and
obtain

m
f=f0+fi=N0I I

exp—
&2~ET)

(v.'+v„'+vP)
2ET

m pt sp
8~0 8 f=N0I 1+ eiks"

X 1+ v . (21) (2v-KTJ Np
ET iso

The factor in front of the term in brackets describes the
undisturbed Maxwellian distribution fp. We note that

m
Xexp — (v,'+v„'+vP) I

2zT' " 'I
' f&dv, Jl exp( —const y')ydy=0 (22)

m
X 1+ vs/+

ET
(28)

(constant density), but which, on keeping only the lower-order terms and
introducing

J f ~"-j" p( —o t y')y'dy&0 (23)

(nonzero momentum transport).
may be written

1S
'+1 N0 v phkp)

ET
(29)

writing
X+Vpkt = X

ip/h = v&k

(24)

**Remember, however, that by collisions we understand only
the electron-electron interactions.

3. Distribution Function in the Case
of Longitudinal Oscillations

In the last section we saw that the assumption of a
steady-state distribution holds strictly only for synchro-
nous oscillations of an incompressible plasma. We now
take this model as an approximation for the general
case of longitudinal oscillations. The conditions justi-
fying such a procedure are clear: The wavelength of
the plasma oscillation has to be large compared with
the mean free path of the particles and, accordingly,
the period of the oscillation large compared with the
mean time between two collisions. **

In what follows, we link together the space and time
coordinates which always appear in the mutual relation

m q & ep Pki V,
1+ eikx++ e ikey

E2prET) Np Np vvk

Xexp — (v,'+v„'+v, ') . (30)
2ET

~fp &'fp
f= fp+c~(x, t) — +cp(x, t)

Bsg 8'v~
(31)

The term with the first-order derivative corresponds to
the distribution we derived in the incompressible case
(21), while the essential new feature of Kq. (27), the
density fluctuations independent of e„comes into the
picture by the term with the second-order derivative.

The quantities eo and ei are parameters of the dimen-
sion cm '.

By introducing the equilibrium distribution fp and
the derivatives with respect to v, we can write Eq.
(30) in the slightly di6'erent form which is well known
in kinetic theory [see, e.g., A. Sommerfeld (1952)):
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may be integrated, once directly (leading to the
continuity equation) and once multiplied by v, (leading
to the momentum equation). Multiplying by v,' and
integrating yields the energy sum which gives a third
relation compatible with previous relations only when
use is made of the adiabatic approximation; see sub-
section of Sec. II.3.

By the integration one replaces essentially the odd
powers of v, by their average of zero, while the even
powers of v are replaced by powers of the average
thermal velocity. This procedure may be justified by
the following argument: We have chosen a solution to
satisfy the right-hand side of the Boltzmann transport
equation. We then know from the last section that,
strictly speaking, our solution violates the left-hand
side. However, the difference can be minimized if we
determine the free parameters in such a way that the
conservation laws are fulfilled. This is done by the
integration process.

From the integrated equations, on dropping the
higher-order terms in e'~**, we obtain

and

I
Np+ Sf=0

Vph
2

ego No
eo+ni=i

m kl'

(33)

(34)

where we use, for Newton's sound velocity, the symbol

u= (ET/m)*.

For the parameters mp and n~ we find

e~o &o I'
so — z

ET k vpg —I
eEo Xo eph2

sg= +1
ET k vph2 —N2

(35)

(36)

(37)

The quantity mph I' is discussed later in this section.
We now return to our problem of comparing the

hydrodynamic and the kinetic treatment. If we are
correct in supposing that both treatments yield the
same results, we ought to obtain, on using the velocity
distribution derived previously, the dispersion equation
(85) from Sec. I.

t'tTo obtain the complete expressions in the adiabatic case,
however, we should include second-order derivatives with respect
to ez and v„' see Sec. II. 3 (a).

The latter includes a term proportional to e which is
of interest when adiabatic conditions are considered. tf

For the determination of ep and e~ the Boltzmann
equation, which is now written

Bf Bf eEp Bf—0
8$ Bx m 85

Ke find the dispersion relation from the x component
of Maxwell's equation

to be

+oo

—4ve ~' v,f(v„v„,v,)dvgv„dv, =0
Bt

'tcpEp 4r—e(N /v&h)m~
——0

(38)

(39)

or, using the value of n& from Eq. (37),

co2—o).2—O'I'= 0,
with

poco= 4re +o/~

(40)

(41)

and the velocity distribution

eEp 1
f= fp 1—ie'"" (kpp' —ppv )

ET GPg

(44)

The term proportional to v corresponds to a distri-
bution which is independent of the wave number k.
As expected, it is common to the compressible and
incompressible case. On the other hand, the term

as the plasma frequency.
At first sight it is very astonishing that all terms

with ep vanish on neglecting the terms of second order;
hence, they do not appear at all in the dispersion
equation (39).This suggests the possibility of neglecting
them completely in the distribution function.

This neglect of mp underlies the derivation of a
dispersion equation by van Kampen [(1957), p. 644].
It is of no importance that he is referring to the adia-
batic and not to the isothermal case. However, this is
not allowed, as one would conclude from the fact that
we (as does also van Kampen) allow for a wave number
k&0 and thus for space variable components. In this
case, consequently, one expects density variations ep.

There is also a direct argument that the term propor-
tional to ~zp is the essential feature for the correct
distribution function: By transforming to a moving
reference frame, one obtains an incorrect dispersion
equation from co=0.

Finally we have to verify that the space variable
quantities may be arbitrarily small according to our
basic assumptions. It follows from Eqs. (36) and (37)
that for this purpose we have to keep only the actual
alternating electrical field Ep below a certain limit. The
quantity mph 'I does not disturb this concept because,
according to Eq. (40), it is never zero.

To investigate the dependence on the wave number
k we first rewrite the parameters ep and e~, making
use of the dispersion relation (40),

ego No k2N2

Sp Z

ET k co,2

ego Eo ~'
Bi=+i

ET k co,2
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proportional to eo depends linearly on k; since this
distribution is derived on the basis of small deviations
from equilibrium, we see that the k value determines
the maximum charge separations (proportional to Ep)
and the maximum density fluctuations (proportional
to np). Going over to an incompressible plasma (k ~ 0)
finally, we again find the distribution function (21).

Loegitldieal Osci llati orls Umder Adi abati c CoeCh ti orIs

We want to prove the correctness of our previous
statement that in the case of adiabatic conditions the
only feature to change is a numerical factor close to
unity in the expression for the sound velocity. ff This
has been done already from the hydrodynamic point
of view in Sec. I.2. The analogous kinetic calculations
are as follows:

From Eq. (5) we know that the temperature must
be space independent to obtain an exact solution of the
Boltzmann transport equation with collision terms
canceling. Thus our treatment is, for one more reason,
an approximation. We start at once from a suitably
generalized expression for the velocity distribution
function analogous to Eq. (27).

The adiabatic concept means that the temperature
is composed of a constant average To and small fiuctu-
ation T~,

(45)T= Tp+ Ti, Tp»Ti,
with

g ~eikx*.

Therefore, the exponential function for the velocity
distribution is

m ( Ti)
exp —

)
1——

~
(e,'+p„'+e,')

2XT ( Tpj

= exp — (s,'+e„'+e,')

m ~l
X 1+ —(p,'+v„'+p, ')—. (47)

2ETO To

Introducing the bracket term into Eq. (28) and
canceling all terms of second and higher order in e'~"
yields

ff. Pote added As proof. —The differences between the adiabatic
and isothermal approach have been discussed recently with
kinetic methods by K. Rawer and K. Suchy, Ann. Physik 2, 313
(1959).

So rl,z

f f 1 + e iks"—+ e ikz~

¹ ¹ Spy

ep p,'+e„'+pg'
eik~* (48)

+0 &ph

in the parameter representation analogous to Eq. (30).

The novel feature is the term proportional to the square
of the velocity components. This term necessarily is
isotropic in the three dimensions.

Introducing the distribution function (48) and its
derivatives into the Boltzmann transport equation and
integrating over the velocity space (we now also have
to use the integration with the weight e,') together
with Maxwell's Eq. (38) yields the well-known dhs-

persion relation under adiabatic conditions

oP—(v,'—3k'N2= 0. (49)

The factor 3 in front of the sound velocities is a conse-
quence of the one-dimensional nature of the waves: In
the distribution function (48) there are no terms
proportional to e„or m, . In the case of three-dimensional
waves one expects a factor 5/3 instead of 3, as has been
discussed by van Kampen (1957).

With the derivation of Eq. (49), we proved by
kinetic means that the adiabatic results differ from the
isothermal ones only by a numerical factor close to one.
Hence one always can correct the isothermal calcula-
tions by using the correct sound velocities without
farther changes.

m tn
f=Np~ I

exp — (e,'+vP)
(2mET j .2KT

m
Xexp — —(e„—il)' . (50)2ET"

The direction of propagation of the waves again may
be the x axis. For g the expression is the same as above:

pl
=ape'"~'= (eEp/m) (e'""/i pp), (51)

with
(52)

From Maxwell's equation,

Pipi
—i(c'k'/pp)jEpe'"*'

4n e I vpf( v~q vp)pg)'degas'vp'deg= 0~ (53)

we obtain the dispersion relation

oP—or P—k'c'= 0,

which is the same result as Eq. (45), Sec. I.

4. Velocity Distribution for Transverse
0scillations

We now can solve the corresponding problem for the
transverse waves without di%culty.

As seen in Sec. I, density variations do not aGect the
transverse oscillations. This has the consequence that
we can start at once with the density everywhere
constant, and thus, from a distribution function of the
forlTlq
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5. Oscillations with a Constant Magnetic Field function becomes

Ro
+ (e,—i)'] 1+ e"** (62)

EoF e' 1—= ——E+-vXH',
Sb S$. C

the term in the last bracket describing the density
variations in the longitudinal wave. For the velocity
components we assume, as before,having a velocity dependent term. $$

The general shape of the distribution function does
not change. Thus, starting with Eq. (2) we find only
an additional term,

g
—( eikx* ~ n

eikx" (63)eikz

corresponding to electric held components,

We now have to consider the case of oscillations with
a constant magnetic field present. To make sure that f=Xp~

~
exp

~

— [(&~ 'c—)2+(&. z—t)2
we can start again from distribution functions of the
types (29) and (40), we have to reconsider Eqs. (6)—(8)
for the case of the external force,

(56)

——[E+(XHp]

[2r/mc][(vXH') (v —g)],

which enters Eq. (4). It affects Eq. (7), resulting in

E=e*"'"(E,E2 Ez). (64)

The unknown quantities $, zt, f are found in terms of
the field components E; by introducing the distribution
function f into the Boltzmann equation,

dg 1 (di"=—+ « 2'7—(P)+
~

dt 2Fu 4 dt

but leaves Eq. (9) unchanged. The reason is that

v&8' v=o.

(57)

(58)

Bf e t' 1—+(v V)f——
~

E+—v&&H'
~

V„ f=0, (65)
at mE c

and integrating over the velocity space, neglecting
terms of second and higher order in e'~'*.

The first integration yields

cp (np/1Vp)+kpp ——0.
Equation (57) as well as Eq. (12) allows for plane

waves. As discussed in Sec. I, the magnetic field
couples the diferent wave types, represented here by
the components of the velocity g.

Multiplication with v, and integration gives

+~ go e
zip(p+ik + Ei 0, — ——

5S +0
(67)

(a) Longitzzdznal Magne zc Field

We start with the case of a longitudinal magnetic
field and expect from the discussion in Sec. I that the
longitudinal oscillations separate out undisturbed, leav-
ing us with the two transverse oscillations coupled
together by the constant magnetic 6eld.

We define the direction of propagation as before by

while by multiplication with v„or v, and integration,
gp and Np do not appear. Equations (66) and (67) are
identical with (33) and (34) and independent of the
magnetic field. This shows, as expected, that the
longitudinal waves separate out.

For the quantities ztp and f p we find the relationships

8 8—=——=0
Bp Bs

thus the magnetic field components are given by

(59)

e
zpiztp+ Ez+coil 2

—0)
m

e
zips p+ Ez zpi, 'g p

=—0~—
m

(68)

(69)

H'= (Hc Q 0)

ipi, ——eHz/mc

(60)
which, together with Maxwell's equationsThe symbol

(61) kzcz)
i

~

ip — ~E„42re)' e„f(v„e„,zi,)d—pgp„de, =0, (70)
zp )is used for the gyrofrequency of the electrons as in

Sec. I.
The generalized expression (27) for the distribution

~E.—«e e.f(v.,e,,z.)deAe, de. =tj, (71)
kc)

ip )
hnally yield the dispersion relation,

(72)2(ipz ip 2 k2c2)2 zp 2(ipz k2c2)2=0

ff There is no alteration in the collision behavior due to the
magnetic field which enforces a circular motion on electrons and
ions as long. as the gyrofrequency is small compared with the
collision frequency. This may restrict our considerations to the
case of moderate magnetic field strengths; For details see L. M.
Tannenwald, Phys. -Rev. 113, 1396 (1959).
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as derived in Sec. I, Eq. (130).

with

Ho= (O,Hp, 0),

co p = eH p/rmc

(73)

for the gyrofrequency.
The distribution function with which we start is the

same as in the longitudinal case. The direct integration
again yields

(vrto+ &&ogo=0. (75)

By multiplication with e and ~„respectively, we obtain,
with the use of Eq. (75),

e
go+ %+cop—go=0,

1S
(76)

(b) Transeerse Magrtetic Field

Here we expect one of the transverse waves to
separate out. We now cle6ne the direction of the
constant magnetic fieM by letting

discovered only by kinetic methods. In particular, he
found in the case of a nonzero magnetic field frequency
ranges without transmission ("gaps") at multiples of
the gyrofrequency.

Gross starts from equations which are on the same
level of approximation as ours: He assumes the right-
hand side of Boltzmann's equation to be zero and uses
complete linearization, i.e., he adds to the main distri-
bution of velocities a small disturbance. We have seen
that there are no differences between the hydrodynamic
and the kinetic results as long as use is made of the
same order of approximation, and therefore, Gross's
results are very confusing.

Gross starts from Boltzmann's equation without
collision terms, but with additional terms representing
the nonzero magnetic field:

~f ~ (+(v V—')f —
l

E+—-vXHo,
l

V„f=0 (81).
Bt m& c J

The magnetic field is directed along the s axis. We
designate the gyrofrequency by the notation

e
2Q)l. o+—Eo+M pfo =0,

tg
(77) ~p eHO/mc. (82)

while the multiplication with v„and integration again
yields the connection (57) between the y component

, of the velocity and the electric field, independent of the
magnetic field. This means the separation of one of the
transverse waves as expected.

Finally we have the two Maxwell equations,

Gross now linearizes, i.e., he assumes

f= fo+fi I foal« I fol (83)

for the velocity distribution, with fo as the average
distribution, in our case the Maxwellian equilibrium
distribution. ~ l l ~ The dependence on space and time of
the disturbance terms is assumed to be of the form

i(oE, 4jre)t e,f—(v„e„,o,)doge„de, =0, (78)

k'c')
lE. 4e~l .,f—{..;„;.)d.ge„do, =o, (79)

M

and obtain the dispersion relation,

((do co 2 $2co) (coo M 2 $2ot2) Rpo(coo $2c2) =0 (80)

as derived in Sec. I, Eq. (148).
This completes the investigation, showing in all

cases the same results as by the hydrodynamic treat-
ment.

(c) Preoiotts Treatraerlts

Recently, a number of papers have appeared dealing
with plasma oscillations in a static magnetic field and
using kinetic methods. We discuss one in detail, because
here the kinetic approach was used in attempt to
investigate the limitations of the hydrodynamic treat-
ment. Gross (1951) published an investigation dealing
with the distributions of electron velocities for plasma
waves in a nonzero constant magnetic field. He claimed
that the hydrodynamic treatment conceals a great deal
of the essential features of a plasma which can be

f ~ elks~ e~u I+ikx* $$

Gross calculates the disturbance fq completely inde-
pendent of the average distribution fo, and does not
consider the restrictions on f& by the collision terms on
the right-hand side of Boltzmann's transport equation
at all. His procedure therefore corresponds to the
complete neglect of all collision effects. ***As we tried
to show in the foregoing sections, this procedure is not
legitimate under conditions where hydrodynamic treat-
ments are used.

An additional remark concerning Gross's (collision
free) solution of Boltzmann's equation is this: To

ll ll The other cases treated by Gross (peaked velocity distri-
bution as average distribution) are of no interest here.

$$ Gross has chosen the sign in the exponential function of the
harmonic oscillations differently from us. For the sake of uni-
formity we write his equations in our system.

***This statement, if taken literally, is not correct. As E. A.
Desloge has pointed out privately, the electric field introduced
in the left-hand side of Boltzmann's equation takes care of a
certain portion of the electron-electron interaction. It describes
the collective force of the electrons in a wave front on an electron
in a neighboring region of lower or higher density but does not
describe the random short range interactions. The characteristic
distance of the former type of interaction is, by definition, large
compared with the Debye length, while the characteristic
distances of the collisions to which we referred in Sec. I.3 are
below this limit.
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Ii =E,—i', F„=F.,+iE„,
and 6nds from the diGerential equation

$(kp cosV)+M) fl

arrive at his solution, he introduces new variables

P =V~+V p, tanP)=VV/Vg, (85)

(86)

a (p)b(M —m Mr). (92)

However, when the frequency is equal to multiples
of Mr, the function A(p) is completely arbitrary, since
then the exponential function is always periodic in q
with mod2pr as may be seen from Eq. (88). To obtain
a complete solution therefore, we have to add to Eq.
(90) a sum of delta functions with arbitrary coefficients

o(p),

e dfp af,
+ (F.e'&+F„e '&)—M,—"=0

2m dp

There is no obvious physical argument as to why these
additional terms can be omitted.

The same objections as against the results of Gross
hold for the treatment of plasma oscillations by I. B.
Bernstein (1957), because he essentially uses the same
fundamental equations and procedures, although he
writes all equations in the form of the Fourier and
Laplace transforms: he determines the disturbance
distribution independent of the main distribution by
the same kind of diGerential equation which Gross
had used LBernstein (1957), Eq. (9), p. 11], and
applies the periodicity condition to the mathematical
solution. He too neglects the fact that for multiples of
the gyrofrequency the solution is already periodic, and
hence does not include an arbitrary function in his
Eq. (11).

the disturbance distribution

fi=A (p) exp —(kp sin(p+Mp))
Gap

z
+exp —(kp sin v)+M(p)

COp

exp ——(kp sinpp+M pp)

0 MP

&& (F„e'~+F„e '")dv. (88)
28$orp dp

A (p) is an arbitrary function of p, but is not a function
of y. The mathematical solution of the diGerential
equation is, however, restricted by the physical condi-
tion that the solution fl must be periodic in pp with
mod2pr. This condition may be used to determine A (p).
For this purpose Gross expands the exponential
function into Bessel functions,

+~ f k
V+(ip p/cur) sing —g J

~
~ ~&inrp )

Mr)
(89)

and obtains

e dfp y kp)
A(p) = Z ~.l

——
(

2mMr dpp ( MT i

p. p
(90)

i(1+pp —(M/Mr)] VT1 ri+ (M/Mr)]—X

and hence, finally the disturbance,

e dfp 1 t' kp)
fl= exp —kp sinpp P J„(

2mMr dp -Mr ( Mr J (~f/~/)- = (fo" f) (—95)

6. Inclusion of Dissipative Terms

In Sec. I we derived simple expressions for the
attenuation of both longitudinal and transverse waves,
introducing a damping term which corresponds to the
assumption of a constant frequency for the inelastic

. collisions.
We expect these to be electron-ion collisions, where

the oscillating electrons lose part of their momentum
to the (fixed) ions. The corresponding collision fre-
quency v may be quite diGerent from the elastic
electron-electron collision frequency introduced in Sec.
II.3. Our equations describe the plasma behavior
correctly if there are enough elastic collisions to main-
tain the Maxwellian form of our distribution function
but not too many inelastic ones, with the result that
wave attenuation is reached only after a sufFiciently
large number of oscillations.

Furthermore, we expect the kinetic expression corre-
sponding to the hydrodynamic treatment to be a linear
function of the distribution functions as well as of the
(constant) collision frequency v. In other words, we
expect a "relaxation term, "

P ~i(n+1) y F Vi(n, —1)v

X (91)
ir 1+I (M/Mr)] —iT1 pl+ (M/M—r)] l

There are singularities whenever the frequency co

approaches multiples of the gyrofrequency co&,' this
feature is the reason for the forbidden frequency
ranges discussed by Gross.

v)I (fp* f)dv=0, — (94)

to be introduced in the right-hand side of Boltzmann's
equation. f is the actual distribution function, while
fp* is determined by the condition that the integration
over the velocity space must yield the continuity
equation. This implies the condition
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and therefore

f 4 f $+ pike+

&o

A similar expression has been used by Shatnagar,
Gross, and Krook (1954). It can be easily justiaed,
since the collision integral vanishes in first order for
functions isotropic in m. The remaining term is propor-
tional to e and cancels out by integrating over the
velocity space. This result is in Eq. (95). LFor details,
see, e.g., H. Margenau (1958).j

With the help of Eqs. (94) and (95) one easily finds
the dispersion relation in the case of longitudinal
oscillations,

cv (a&
—~i )—a&.2—k'm'= 0 (96)

as in Sec. I.
Finally, we conclude from Eq. (95) that the attenu-

ation behavior for longitudinal and transverse waves is
the same because the collision term (94) is the same
for both cases.
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