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1. INTRODUCTION

UNIFIED treatment of a rather wide class of
problems in statistical mechanics in terms of a

generalized problem, which we call the association
problem, is presented in this paper. This embraces the
classical order-disorder problems, a variety of statistical
problems concerned with the ordered (crystalline) state,
and also the fundamental problems arising in the "cell-
cluster" method applied to the disordered (fiuid) state.

The object of statistical mechanical theory applied
to these problems is to determine either the free energy
as a function of temperature and densities, or the pres-
sure as a function of temperature and activities. This
normally involves a summation, or integration, over all
the microscopic configurations of the system, a formi-
dable task except for very simple systems, and one
which usually cannot be carried out without some degree
of approximation. There is a technical advantage in re-
garding a macroscopic system in extension as com-
pounded of a large number of similar subsystems called
cells, comparable in number with the particles of the
system. In an ordered state, the number of particles of
a particular kind in a cell is small (usually one) and the
same for each cell. In a disordered state the number of
particles of a particular kind may Quctuate within
narrow limits. In any event the sum over all configura-
tions of the large system can be broken down into a sum
over configurations in each cell, and as the number of
configurations in a cell is relatively small there is no
di%culty in practice in performing the summation there.

The only difFiculty arises in taking account of the cor-
relation between configurations in diferent cells, and
even this problem usually can be broken down into the
computation of correlations in particular groups of
cells. One is then left with the problem of assigning the
correct statistical weight to each method of grouping
the cells. This purely statistical problem is then the
major task. It can be idealized to some extent by fixing
attention on the mean centers of the cells, which form
a space lattice, and picturing each group of cells as a
geometrical figure with vertices at the lattice points.
I ooked at in this way, the statistical problem reduces
to one of counting the number of ways in which a
variety of oriented geometrical figures can be distributed
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over a lattice, in such a way that each lattice point is
occupied by the vertex of one and only one figure. For
example, on a square lattice in two dimensions, one
has to determine the number of ways in which the
figures
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~ ~
!

~ ~ ~

~ ~

can be distributed so as to completely cover the lattice.
The distance a is the distance between neighboring
lattice points. The most convenient way of expressing
the answer is by stating the generating function
&(co,cr, c2, ,c„,cq, q, cq„q,cq„,c~ I,q,

.), constructed in
such a way that the coefFicients of products of various
powers of the c's are the number of ways of distributing
the corresponding numbers of the figures on the lattice.
We propose as the main problem to be solved in this
paper the evaluation of this generating function, when
only a subclass of the entire class of c's is diGerent
from zero.

We have called this problem the association problem
because it arises most naturally when we consider a
system of particles, situated in the neighborhood of the
lattice sites, and capable of forming associations by the
pairing of electrons or ions localized in the individual
particles. But the same problem has arisen in a variety
of other connections.

An important example is the cell-cluster method of
evaluating the partition function of a Quid. This
originated in the lattice and cell models of the liquid
state developed by Eyring and his associates' and
Lennard-Jones and Devonshire. ' The results were
originally rather inaccurate owing to the neglect of
multiple occupation of the cells and the neglect of cor-
relations between configurations in neighboring cells.
But, after Kirkwood' had shown the relation of the
lattice-cell model to the exact statistical mechanical
theory, a series of improvements were made by Mayer
and Careri, 4 Wentorf, Buehler, Hirschfelder, and Cur-

~ H. Eyring and J. Hirschfelder, J. Phys. Chem. 41, 249 (1937);
Hirschfelder, Stevenson, and Eyring, J.Chem. Phys. 5, 896 {1937).

2 J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc.
{London) A163, 53 (1937).

3 J. G. Kirkwood, J. Chem. Phys. 18, 380 (1950).
J. K. Mayer and G. Careri, J. Chem. Phys. 20, 1001 (1952).
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tiss, ~ de Boer, Barker, ~ and Green' which opened up the
possibility of arbitrarily close approximation to the
exact partition function. The only problem left un-
solved in principle in this connection is the statistical
one described above.

Another important example is the theory of solutions,
which has also been the subject of a long series of im-
provements since the quasi-chemical method was de-
vised independently by Bethe, ' and by Guggenheim and
his associates. ' An important advance was made by
Kikuchi "which has been followed up by de Boer and
his associates. "The degree of approximation which has
been achieved, however, could be improved consider-
ably by the exact solution of the combinatorial problem
with which we are concerned. Another important
application of the method is to order-disorder phe-
nomena, where even the simple-appearing Ising problem
in three dimensions awaits an exact solution. In two
dimensions, the problem has been solved by Onsager, "
and more expeditiously by Kaufman, " and Kac and
Ward. "

We do not oGer exact explicit solutions to all these
problems, but show how they are reduced to the funda-
mental statistical problem enunciated, and present a
unified formulation which we think is a useful step
towards its solution. We further show how the solution
can be reduced by the introduction of a matrix-spinor
technique to the determination of the principal eigen-
value of a certain matrix, and extract this eigenvalue
for various interesting special cases. We also solve ex-
plicitly and exactly by this method a two-dimensional
association problem which, we believe, is comparable in
difFiculty to the Ising problem and has not been solved
before. It is hoped that our general approach will lead
to the solution of a variety of other outstanding prob-
lems of statistical physics.

2. REDUCTION OF THE ASSOCIATION TO
A COMBINATORIAL PROBLEM

The reduction method described below is applicable
to any system of atoms or molecules in thermodynamic
equilibrium. We assume henceforth the validity of
classical mechanics, though we believe the method could
be adapted to take account of quantum mechanical
corrections.

In an ordered state of the system, let L be the space
lattice formed by the mean positions of the particles in

'Wentorf, Buehler, Hirschfelder, and Curtiss, J. Chem. Phys.
18, 1484 (1950).

~ J. de Boer, Proc. Roy. Soc. (London) A215, 4 (1952).
~ J. A. Barker, Proc. Roy. Soc. (London) A230, 390 (1955).

H. S. Green, J. Chem. Phys. 24, 732 (1956).
'-'H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).' E. A. Guggenheim, Proc. Roy. Soc. (London) A135, 118

(1932).
1' R. Kikuchi, Phys. Rev. 81, 988 (1951)."J.Hijmans and J. de Boer, Physica 21, 471, 485, 499 (1955)."L.Onsager, Phys. Rev. 65, 117 (1944).' B. Kaufman, Phys. Rev. 76, 1232 (1949).
"M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).

question. Each lattice point is then also the mean
center of a cell which can be constructed in such a way
that each particle of the system is contained within
exactly one cell.

In a disordered state of the system, the volume
occupied by the system can be divided into cells such
that the mean centers of the cells form a space lattice L
and such that the volume of each cell is either equal to,
or an integer multiple of, the mean particle (atomic or
molecular) volume.

A particular configuration of the whole system can
then be specihed, in either case, by stating the cell con-
figurations, that is, the kind, position, and orientation
of each particle in each cell. In either case, we call L
the association lattice of the system.

If C denotes the total configuration, let C; denote the
cell configuration in the ith cell. The energy of the par-
ticles in the ith cell is a function, say E(C;), of C;.
Similarly, let E(C,,C;) denote the mutual energy of
interaction between the particles in the ith and jth
cells. The three-body energies between cells i, j, k

might be denoted by E(c,,c,,c&). The energy of the
whole system in the configuration C, denoted by E(C),
is given by

E(C) =Q E(c~)+2+ E(C;,C;)+-

There is no di%.culty in principle in taking account of
three-body or many-body interactions, but for simplicity
these are omitted, as they are usually negligible.

If s&,ci is the activity of the qth particle in the con-
figuration Ci of the ith cell, let

g(c,)=II «,o,.

be the product of the activities of all particles in the
con6guration C, of the ith cell. The theory of the grand
partition function then gives the probability P(c) of
the condguration C as, in thermodynamic equilibrium,

P(C) =exp( —PPU)II g(C)

where p is pressure, T absolute temperature, U volume,
and P= 1/kT. Thus

P =e p(PPU)=XII~ (C')ll& (C',C), (4)

where

A~(c,)=Q(c;) expL —PE(c~)],
B&(c;,C;)=expL —PE(C;,C;)j. (5)

As is well known, the pressure, as a function of tem-
perature and activities, determines all other thermo-
dynamic functions of the system.
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In practice it is often easier to compute, instead of
F&, the function

Em=exp'(PI -Z E',;)],

where E;,; is the mean of the interaction energies
E(C,,C;) over all con6gurations C. For this purpose, it
is helpful to introduce a number of auxiliary quantities,
denoted by E;(C,), A2(C;), Bi(C;, C,). As the notation
suggests, E;(C;) is the mean of the interaction energies
E(C,,C;) over all con6gurations C;. Let

A (C,)=Q(C;) expL —P(E(C;)+P E;(C;))],
(&)

Bg (C;,C;)=expL —P(E(C,,C,)—E;(C;)—E,(C;)+E;,;)],
and note that P2 can now be expressed as

E.=Z II A.(C;) rr B.(C;,C,).
c i

The same formal methods obviously can be applied to
the evaluation of either (4) or (8).

If S is any set of cell numbers or lattice points, let Cs
denote the configurations in these cells. Given any sym-
metric function B(C,,C,) of pairs of cell configurations,
we define, with Ursell, "functions U(Cs) as follows: if
T is any set of cell numbers, Dz the set of all partitions
p of T into disjoint sets of cell numbers, then

II B(C;,c;)= g II U(c,).

The importance of the U(Cs) stems from the follow-
ing: if S can be partitioned into subsets Si, S2 belonging
to sets of cells separated by a large distance, then
U(Cs) is close to zero. (A chain of adjacent cells, how-
ever long, cannot be so partitioned. ) Thus, approxima-
tions to F can be conveniently constructed by setting
U(Cs) =0 for a set of appropriately chosen S.

The reduction of the expression

E=Z II A(C;) II B(C;,C;)
c i i&j

=ZIIA(«) Z II U(C)
C i yeDJ Sey

to the generating function of a combinatorial problem
depends on certain invariance properties of the A(C;)
and B(C;,C;). Suppose that C,, C; are con6gurations of
the ith and jth cells, and v is a translation, which sends i
into r(i) and j into r(j) and also sends configurations
C; and C; into identical con6gurations C, ~;~&'& and
C,o)('), respectively, of cells r(i) and 7(j) We sa.y
that A and 8 are translation-invariant if

A(C;)=A(C, (,&") and

B(C;,C,) =B(C,(,)", C, (,)") (14)

for each translation, within the lattice. If 8 is transla-
tion-invariant, it follows from Kq. (14) that U(Cs) is
translation-invariant in the sense that

gq jeT
i&j

QeDT U(C.(s)")= U(Cs)

We make the convention that U(Cs)=1 whenever S
is empty or contains just one cell number. If T is
allowed to range over all sets of two or more cell num-

bers, then the functions U(Cs) are completely deter-
mined by the above equation. In a less condensed nota-
tion, we write

U(Cs) = U(C'i, C(2, C~) when S= fii, i2, i ). (10)

Then the foregoing equations become

B(C,,C,) = U(C~) U(C~)+ U(C;,C;),
B(C,,C,)B(C;,Cg)B (C;,C)) = U(C;) U(C;) U(C()

+U(C,)U(C, ,Cg)+ U(C;) U(C;,C()
+U(C)) U(C, ,C;)+U(C;,C;,Ci), etc. (11)

We might call U(Cs) the association coeff&cient for
the cell cluster S, determined by. the cell pair function
B(C;,C,). The association coefficients U(Cs) can be
defined directly in terms of the B(C;,C;) by

U(Cs) = Z (—1)"'" '
peD8

&&(N(v) —1) l E II B(C',C)), (12)
Te'y 1,jeT

i&j

where C,(s)(') is the configuration of the cells r(S)
obtained by translation of the condguration Cs of
cells S.

Because the energies E(C;), E(C;,C;), and activities
Q(C;) are translation-invariant in the above sense, it is
clear that Ai(C,), A2(C;), Bi(C;C;), and B2(C;,C;) are
also translation-invariant.

If A(C;) and B(C;,C;) are translation-invariant, the
evaluation of the quantity P can be given a combina-
torial interpretation. If L~ and L2 are sets of lattice
points such that L2 r(L&) for some tran—s—lation r of
L~ within the lattice, we call Lj and L2 translation-
equivalent; similarly, sets of cell numbers Si and S2
are called translation-equivalent if they correspond to
translation-equivalent sets of lattice points. The re-

sulting equivalence classes, obtained by identifying

equiyalent sets, can be regarded as oriented geometric
figures capable of being attached to the lattice in a
certain set of positions. If E is one of these oriented
geometric objects, let L~ be the equivalence class of
sets of cell numbers corresponding to E. Let
=(XO,K), ) be the set of such objects. For non-

empty sets S, define coefFicients bs by

where N(y) is the number of sets in the partition y.
"H. D. Ursell, Proc. Camb. Phil. Soc. 23, 685 (1927).

bs=Q U(Cs) II A(C;).
jeS

(16)



H. S. GREEN AND R. LEIPNIK

More explicitly, if S=(i&, i ), then

bs ——P P U(C;g C~)A(C;)). A(C~).
Ci1

Clearly, b8&=bs2 whenever S&, S2eLz, so we can write
bg=bz whenever SeLz. We then have the identity
(de Boer)

F=P II A(C') II B(C'C)
c

1V(wo, my, )bKo obKq ~ ~ ~ (1g)
ffbP~mI ~

~ ~ ~

where 1V(neo, m&, . ) is the number of ways of attaching
mp copies of Ep, m& copies of E~, to the lattice L
in such a way that each lattice point of L is occupied
by one and only one vertex of a geometric object. (If
u is the number of lattice points of L, and u(E) the
number of vertices in E, we have the constraint
P,m, u (E~) =nin t, he foregoing summation. ) This
identity can be proved by induction on e with the
help of the obvious relation

Z P II A(C,) II B(C,,C,)
CI." C&+y i=1

= Z Z rr A(C') IIB(C',C;)
cj, ~ ~ cg i=1 i&j

X Q A(C~i) II B(Co,C~g), (19)
cn+ j

which determines F in a lattice L of m+1 points, ob-
tained from a lattice L of n points by adjoining to L
the result of applying a fundamental vector of the
lattice L to one of its boundary points.

Thus we can approximate P by taking bz=0 for a
suitable class of geometric objects. In certain cases,
hz=0 is rigorously true for a class of geometric objects
due to physical reasons. For example, in the Ising
problem and other problems with only nearest neighbor
interactions, bz=0 for all objects not corresponding to
chains of adjacent lattice points.

3. GENERATING FUNCTIONS FOR A
COMBINATORIAL PROBLEM

Let L be a given one-, two-, or three-dimensional
lattice. An oriented geometric object E consisting of
linked vertices is said to be compatible with L if E can
be attached to L, without reorientation, so that every
vertex of E covers a lattice point of L. Two compatible
objects E&, E2 are called vertex-equivalent if they can
cover the same set of lattice points, regardless of the
nature of the links in E~, Eo. Let z= (Eo E ) be a
given set of compatible objects. Let 1V(mo, m&, rmo)

be the number of ways of attaching mp copies of Ep, mi
copies of E;, . to the lattice L so that every lattice
point of L is covered by one and. only one vertex of a

geometric object. The combinatorial problem is to
calculate 1V(mo, nz&, ). The generating function for
this combinatorial problem is

F(b) = P 1V(neo, mz, )bKo"obK,~i . .. (20)
m0, 75] ~ ~ ~

where bo is given for each Eoz, b= (bKo, bKg, ).
For statistical mechanical applications, it is F(b)

rather than 1V(mo, m~, . ) itself that is wanted. How-
ever, the relation of F(b) to 1V(@so,m~, ) makes
possible the deduction of a generating function for
F(b). We assume that bK~ ——bKo whenever E~ and E,
are vertex-equivalent. I.et the lattice points of L be
denoted by x&, x2, x„and let Lz be the set of
ordered sets of subscripts of lattice points of L simul-
taneously covered by E. If Ej and E2 are vertex-
equivalent, Lz&= Lz2.

The simplest generating function for F(b) is now
written down. I.et

«,b)=II II «+b-II*;). (21)
ZeK A&I~ ieA

Then F(b) is the coefficient of

II x,=x& x.
i=1

in the multinomial expansion of V(x, b) in powers of
x~, x2, x„.To prove this, fix mp, m„and consider
the coeS.cient of bKp & ~ bJ'„& x& x in the expan-
sion of U(x, b) in powers of bKo ' bK„and x'~. x .
This term can arise only from a product of mp factors
of the form (1+bKog, ,gx,) for AoLKo, ouq factors of
the form (1+bK~II;,~x,) for BoLK~, etc., where A, B,
form a disjoint covering of the lattice L. Since each
covering contributes one to the coefficient in question,
we see after summation that

1V(eo' ' '$&)bko o' ' 'bk& &xy' ' 'x =F(b)x], ' ' 'x„
Nip ~ ~ ~my

is the term containing x~ x„ in the expansion of
V(x, b) in powers. of x~, xo, . x„.

More useful for our purposes is the exponential gen-
erating function

where
W(x, b) =expH(x, b),

~(,b)=Z r. II;.
ICea AeL~ ieA

(22)

To prove that F(b) is the coefficient of xq x„ in the
expansion of W(x, b), note that since exp(bu) =1+bu
+[(bu)'/21+, the terms in exp(bII, ,gx,) in which no
subscripts are repeated come already from 1+bII;,&x,.
In the calculation of the coe%cient of x~ x„repeated
subscripts may be disregarded so the coefficient of
&y' ' 'xn ln

(1+bK II x,)= V(x, b)
Zea AeL~
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is equal to the coeS.cient of xl x in

exp(b g x;)=W(x, b).
K&K AeLK ieA

so that F„(c)=F(c)and

Fr(xr+i& ' ' 'xny c) YrFr i(xry —' ' 'xn~ c)~ (27)

In the next section, a recurrence is derived from W(x, b)
for calculating F(b).

4. REDUCTION TO A LINEAR
RECURRENCE RELATION

The notational difhculties in deriving the desired re-
currence relation are decreased by numbering the lattice
points of I. '"systematically. " Let vl, , v„be the
fundamental vectors of the lattice, so that every lattice
point can be represented by a vector of the form
rivi+ .+e„v„,where gati

. ie, are integers. Not all the
combinations itivi+ +n„v„repre esnt lattice points,
in general, since 1. is a finite lattice. I.et xl, , x
denote the lattice points. We say the Iattice is num-
bered systematically if the result v&(x;) of translation
of any interior point xj of the lattice by the fundamental
vector ve is the lattice point x,+«e), where t(k) depends
only on k. Thus the eGect of any translation on a set of
lattice points is to translate the subscripts by a certain
integer, provided the translates still lie in I.. Hence-
forth, systematic numbering is assumed. As in Sec. 3,
let I,~ be the set of ordered sets of lattice point numbers
simultaneously covered by E, and let SK——[ii(E),
~ ip+i(E) j be the member of I.K whose initial number
ii(E) is the smallest. Clearly, E is specified up to
vertex-equivalence, and therefore bz is specihed fully
when S~ is given. Ep denotes the figure consisting of a
single vertex.

Let Mz be the set of P such that (ii(K)+P,
i,+i(K)+P)elz Note that .MK fixes the possible

locations of E in J. The figure E is actually deter-
mined by the differences 8i(K) =i&(E) ii(E)—. 5,(K)

ip+] (K)—ii (E). It is convenient to define bp (K)=0.
If ENEp, we write bK = cB](K) ~ ~ Bq(K), and we write
llxp= Cpr C= (Cp, ' ').

The exponent H(x, b) =H(x, c) can be rewritten as

To obtain a useful relation between F„and F„ 1, we
study the effect of applying Y, (or 8/Bx, ) to H(0, 0,x„x„,c). Consider a typical term

Q x'i(z)+P (K)+p
jM

For E=Ep, the typical term is x~1 and the eGect is

Let x, be the set of Ee~ such that r ii(K) eMK—. From
the above we have Y,H(0 ~ O, x, x,c) equals

Cbi (Z) ~ ~ ~ Pe(K)Xei (K) +r ~ ~ XPp(Z) +r+ Cp

EPQX 5Kr

=G„(x„+„x.+„,c), (28)
where

p„=max', (E').
XOKr

Here G„ is linear in each x;. In particular, for r=1,

YiH(xi x„,c)=Gi(xp . xi+,i, c).
Hence

(29)

Fi(xp x„,c)= Yi expH(x, c)

=expH(0, xp x„,c) Gi(xp xi+,i, c). (30)

for EAKp, PeMK. If ii(K)+P&r, then the result is
zero, since at least one of the x, 's in the product has
been set to zero. If ii(E)+p)r, the product is inde-
pendent of x„so differentiation yields zero. If p=r

ii(E—)eMZ', the result is

H(x, c)=P cpi(z)" p, (z) P g x~i(z)+p;(z)+i
@&MAL j=p

=cp p x~+ p cpi(K) ~ ~ pe(z) g g xii(K)gp&'(K)+y.
i=1 Kpre-'X e K yeMK j=p

Suppose now that for some r~ 2,

F„ i(x„x„,c) = expH(0 O,x, x„,c)
~ R„ i(x„.. .n., i, c), (31)

Define the operator I'j, j=1, - e by

Y,f(x) = (8/e)x;) f(x) i*;=p.

In this notation, we have

(23) where Er i is a polynomial in the x;.
Then

(24) F i (x, x„,c)= expH—(0 O, x, x„,c)
Bx„

Now let

F(b) =F(c)=g Y,[expH(x, c)j.
j=l

r

F,(x,+1 ' . .x, c)=iI Y,[expH(x, c)j
j=1

(25)

(26)

8
X R„ i(x„x)„ i, c) H(0 . .O,x„.x„,c)

Bxr

+ R, i(x, .xi, i, c), (32)
BXr
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and so

F,(x,~l. x„,c)
= F',F, 1(x, x„,c)= expH(0 O,x,+1 x„,c)
X$Rr—1(0&Xr—1' ' 'Xlr 1&—C)Gr(Xr+1' ' ' Xr+»r)

+F',R„ 1(x„~ xl„ l, c)]=expH(0 O,x,+1 x„,c)
XR,(x,+1 xl„c), (33)

where

recursion

Rr(X&& t+r—+1&X&& t+r—+2&
' ' 'X&&&Xl»' ' ' )

Gr(X&& t+r+—1&' 'X&&&Xl»' C)

XRr—1(0&X»—t+r+1& ' ' X»&Xi» C)

+F» t+rRr —1(x» —t+r& —' ' 'x»&xi»' ' ' c)&

and for r= 3+1 rt the recursion

(39)

R,(x,+1. . x) „c)
—Rr—1(0&Xr+1' ' 'Xlr l&C) —'Gr(Xr+1' ' Xr+»r)

+V,R, 1(x, xl, l, c) (34)

is a polynomial in the x;, and X,=max()&„ l,r+)t„).
Thus by induction we have the recurrence (34) for
2~re tt. On comparison of (30) with (31), we have

Ri(x2 ' xll&c) Gi(x2' ' 'xi+»1& c)& (35)

so that )&1
——)11+1, and thus )(,=max(&&tl+1, F2+2,

~ Il,+r) in the recurrence (34). For r=rt, we have

F(c)=F„(c)= expH(0 .0, c)R„(c)=R„(c). (36)

Thus we can calculate F(c) entirely from the recurrence
(34) with the initial condition (35), where the co-
eKcients G, are given by (28).

These results can be given a more agreeable form by
shifting the arguments. In the definition of Gr, make the
shift Sr+1~ ], , &r+I r ~ &I r to obtain

G„(xl. . x,„,c)

=cp+ P et&(K) ~ ~ ~ pp(z)xpl(K) ~ ~ xtp(K). (37)
Xp/K ear

For some purposes, it is useful to write S„ for the set
of subscripts of the form 8 (E) for ttt=1, 2, , I7,

and Eea,. Thus, only the x; for jeS„actually enter
G,(xl x&r&c). Thus S=S1~52 MS„ is the set of all
subscripts j of variables x, entering the shifted for-
mulation. We let n denote the number of such "essen-
tial" variables.

In the recurrence (34), we make the shift x, —+ x.,
Xr+1 ~ Xl& Xr+2 ~ X2&

' ' '
&

Xlr ~ Xl, —r and let pr= X, r-
=max(pl+1 —r,)t2+2 —r, p,). We then obtain, if
g)p

R,(xl, x&2„,c)

=G, (xl .x,„,c)R, 1(0,xl, xtt, 1—i, c)
+Y,R, 1(x„xl, x&2, l-l, c),

Rl(xl x,l, c)=Gl(xl x,l, c). (38)

This is permissible since the bound variable x, on the
right-hand side is diferent from the free variables
+1 ' '+~r—1 1.

Another expression for F„(c)is obtained by applying
a fixed cyclic shift to each of the G„(x„+1 xr+&„,c),
r=1 tt rather than a variable shift. In (34), replace
x& by x„&+1,x&+1 by x1, x&+2 by x2, x„by x„&for
r=i e, where t is fixed. We find for r=2 .t—j the

Rr(Xr t+l&Xr-t+2»' '—' C)

= Gr(Xr tel&Xr—t+2»' —' ' C)Rr 1(0&Xr—t+l&Xr —p&2»' ' —' C)

+y r tR& 1(x—r t x—r t+1—' ' ' —c) ~ (40)

Clearly, E1=G1, and if t&1,

Rt(xl, xp, , c)=Gt(xl, xp, ,c)R& 1(0,xl,x2, , c)
+I'„Rt 1(x„,xl,xp, ,c). (41)

As before, the result R„(c) of the recursion is equal to
F„(c).

The dependence of G, (xl x,„,c) on r is due to the
"corner" and "edge" sects limiting the possible loca-
tions of the geometric objects. It may be advantageous
to neglect these sects, replacing the various G, by a
suitably chosen G. On the other hand, as will be seen
from a later paper, the edge sects may supply an enter-
ing wedge for a recursive simplification of the problem
(by diagonalization of certain corresponding matrices).
Hence it may also be advantageous to consider the
exact problem including edge sects, or even to intro-
duce artificial edge sects, in order to attain a solution.

5. DIRECT SOLUTION OF THE RECURRENCE

In simple cases, the recurrence may be solved by
direct methods. Cases so solved may have an intrinsic
physical interest and also suggest the more general
methods developed in the next section. We now discuss
three examples of increasing difhculty, the linear
lattice with nearest neighbor association, the linear
lattice with nearest and next-nearest neighbor associa-
tion, and the rectangular lattice with nearest neighbor
association.

(a) Linear Lattice, Nearest Neighbors

The geometric figures are K= {E'p,E1},where Ep=
El —.. Clearly, Kl= ' ' ——'=K ]=K K ={Ep}for the
linear lattice

1 2 n—1 n

Thus Gp(xl&c)=c&&+clxl& k=1 n —1, G„(xl&c)=cp.
The recurrence is

R„(xl,c)=R, 1(0,c)G,(xl, c)+R, 1'(O, c)
= (cp+clxl)R„1(O,c)+R„ 1'(0, c), r= 2. tt 1, —

R„(c)=R„,(O,c) cp+R„ 1'(O, c). (42)

Since each R, is linear in xl, we can write R, (xl, c)
=dp&")+dl'"'xl, so the recurrence becomes dp&' = cpdp&" ')

+dl&" '), dl&") =cldp&" '). Elimination of dl&") yields the
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Rn(c) cp(&21&&l +&22X2 )+cl(&21l&1 +(22&&2 )
=

(&&
1"+'—X2"+')/(ll —X2). (43)

second-order difference equation (&&0(")= cp(fp(" '&+cidp(" " and
whose solution is do' =&pili"+n2X2', wh«e Xi, X2, are
the roots of &&'=cp&&+ci. Hence R,(xi, c) =&2&Xi'+&22X2"

+clxl(&21&&1 +(22l&2 '), where &21&&1+&22&&2 cp &21+&22 1 R (xl x2) =
r=1 ~ ~ e—1. Thus, finally

cp+cixi+ cpx2

1
0 1(-»

cpxi+clxi +c2xix2
$$- (i,x„xip,xp, xix2)M(cp, ci,c2) d&'-'&

= (i,xi,xip, xp,xi,x2) d'"&, (46)
A more elegant approach is obtained by writing

(&fp(r) )
((f (r))

so that R,(xi,c)= (1,xi) d(r). The recurrence becomes
d&"'=Md& '& where

where

Hence

0 1
ci 0

M(cp, ci,cp) = 0 0
c2 0
.0 0

0 0 0
0 cp 0
0 cg 0.
0 0 0
0 c2 0

(47)

with the result that

R"(c)= (cp,o)M" '( i+(0,1)M" 'ipip &

iq

&0)
'

&0)

(1) (ip
I
= (1,0)M-I

(0) (0)

To recover the previous solution, it is sufhcient to
note that the characteristic equation of M is X2= COL+el.

(b) Linear Lattice, Nearest and Next-
Nearest Neighbors

N&&w K=(+0 Ri lf2}, wh««2 ' ' ' so Kl K —2

=KrKp 1= (RprE1}r —K~= (EO}. TlluS Ek(X1&X2 C) =rCp

+clxi+c2xi2) %=i' ' 'll 2) Ge—1(xi)c)=co+clxiip Gn(c)
= cp. The recurrence is

R„(xi,x2) =R„ i(o,xi) (co+cixi+C2x2)

8
+ R„ 1(x,,xi) t *2=o. (45)

BS2

Obviously, R„(xi,x2) is linear in x2. If we assume

R, 1(xi,xp) is quadratic in xi,

then
R,(xi,x2) = (i,xi,xi', x2)xixp) d&'&,

R, 1(o,xi) = (1,0,0,xi,o) b&'-'&,

R„ 1(xp,xi) ~
up =0= (0,1,0,0,xi) d &

8/2

(Cpl
d&"&=M 'd&'&=M" ') i=M") ), r=1 22—1.

&c,) ),0)
Thus

R,(xi, c)= (1,xi)M"
~ ~, r= 1 22—1,
EO

1
0

d&"&= [M(cp, cic2)]"-'d&"= [M(cQ cicp)'] 0
0
0

for r=1 e—2. From the last two steps of the recur-
rence for r=22 —1, we find d&" ')=M(cprclyo)d(" "
d&"&=M(cp,o,o)d&" '&, and. thus

R„(c)= (1 0 0 0 0)
1
0

~ [M(cp,o,o)M(cQ cio)M(cp, ci,c2)" '] 0
0
0

which can be simplihed to

0
(1 0 0 0 0)[M(cp,ci,c2)"] 0 .

0
0

If the third row and column are deleted from the
foregoing vectors and matrix, the resulting expression

cp 1 0 0" 1

(1 0 0 0)
ci 0 cp 1 0
c~ 0 0 0 0
.0 0 c2 0. .0.

is also equal to R„(c).The characteristic equation of
the last matrix is i&4=CO&&'+ci&&2+cpcpX+c22. If U is the
diagonalizing matrix and A the diagonalized matrix so
that M (cp,ci,cp) = UAU ', then

'1

R„(c)= (1 0 0 0) UA."U-'
0

'

.0.

(c) Rectangular Lattice, Nearest Neighbors

Consider a P by q rectangular lattice, in which the
lattice point in the ith row and jth column is denoted

by x(; &),+,. A unit horizontal translation shifts the
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subscript by 1, a unit vertical translation by q. The
figures Ep=. E~= -—.E2——~, and so

G, ,=G(, »q+; c——p+clxl+c, x„q&p, j &(I,

Gq, l=G(1»q+l=cp+c»1 J&(I
G; q

——G,,=cp+c,x„q&p,
Gp, q=opq= cp.

(49)

For r=1, .
q
—1, this is the same problem as (b),

with c&, x2 replaced by c„xq. If

property of direct product, used here is that (A1Aq)
X (8182)= (A1XB1)(AqXBz).Also, tr(A XB)=trA trB
for square matrices.

We now introduce a trio of singular matrices. I et

0 0 0 1 1 0
( )0. ' 0 0' 0 0'

and check that X'=D'=0, Z'=Z, DX=Z, XD=I—Z,
ZD=D, DZ=O, XZ=X, ZX=O.

Now define the direct products

cp

cg 0
N(Cp, C1,Cq) =

c, 0.0 0

0 0
Cp 1
0 0 '

c, 0.
(50)

X„=AX. .XI~i.XX„XI~&X Xl~
Op=AX . XJ~&XDyXI~&X Xl~
Z„=I1X . .XIl, ,XZ„XI~1X. XI

(53)

we thus have

+r (xlpxq) = (1,xlpxq) xlxq) N (cp)cl)cq) , 0

.0.

Proceeding as in case (b), we find

&q(xl, xq) = (1,xl,xq, xlxq)N(cp, c1,0)N(cp, clcq) q 1, , 0

.0.
thus completing the first row. By similar methods, we
find for the end-of-row results

+(i—1)q(xlqxq) (1qxl~xq&xlxq)

~ [N(CP, O,cq)N(CP, clcq)q '7' '
0

q—1 i—1

.0.
for i&p. Completing the last row, we find

R~q(c) = (1 0 0 0)[N(cp,0,0)N(cp, c1,0)' '7
1

~ [N(cp, O,cq)N(cp, cl,c )q 7" '
0 . (51)

.0.

Once the form of matrix N(cp, cl,c,) without edge
effects is known, the expression R„q(c) evidently can
be written down by a simple prescription. The justi6-
cation of such a prescription for solution in the general
case is taken up in the next section.

In case (b), an extraneous dimension was originally
present. In more complicated problems, the number of
extraneous dimensions rises sharply. A desirable feature
of a general solution method is the automatic omission
of all extraneous dimensions.

where the subscripts on the right merely locate the
factors, and I denotes the unit matrix. Clearly,
X„,D„, Z~ are 2" by 2" matrices satisfying, for each

p, the commutation rules for X, D, Z. Any matrix
function of X~, D„, Z„comniutes with any matrix
function of X„D„Z,for pWg.

IfII(xl x„) isanypolynomial in xl x„, then the
replacement in II(xl .x„) of any nonempty subset of
{xl x„) by the corresponding subset of {X, X„)
produces a well-defined 2" by 2" matrix. The exponent
of a matrix is defined in the usual way and is nonsingu-
lar. It is convenient to write H=H(X1 X„) and
(T,Hx, ) for II(X1 .X, l,x, ,X;+1.. X„),etc.

We now establish the matrix identities

t'
Z;D;expH=~ D,+Z, ~T;expH(x;)

c)x;)

Z; expH=Z;T; expH(x;) ~*;=o

X;expH= X;T;expH(x;) ~*;=o.

Let II(xl x )=P,=p"a,x,', where ap az are Poly-
nomials in xi x; g) x,+i x„.Thus

8
T;(exp Hx;)

8$j sj p

=A~ expAp

8= D,T;expH(0)+Z, T; expH(x;)
BXj. *j=p

and T; exp H(0) = expAp, where A,=a, (X1 X;
X;+1 .X„). On the other hand, since Xlq=0, we
have H=Ap+A, X;, expH=expAp+A1X& expAp, and
therefore

Z; D, exp H = D; expAp+Z;Al expAp

8 p=
~

D;+Z,
~
T; expH(xg)

ax, J

6. SOLUTION BY A MATRIX-SPINOR METHOD

We first recall the definition of the direct, or
Kronecker, product of matrices. If A and 8 are matrices,
then AXB is the matrix formed by replacing each
element b, l, of 8 by the matrix Ab;I, .The most important X, expH=X;expAp=X, T, expH(x;) ~x; p.

xj' p



Hence
m

(IIz'») -pH=II
I »+z—

I
j~1 'ax;)

If M=M1& XM where M1 M are 2 by 2
Inatrlcesq then

~ expB(xl x ) *I=" =~„-o. (55)

We now prove that

=II (4 «"~4'«')
j=l

slIlce the direct product of scRlars ls R scRlRr. Hence

8p— exp'(xl x )
&$1 '8$ $1~ ' ~ —s~ —0

8 $e«)'III D+Z
ax;i

First write

tr(II Z;D; expH).
j=1

III D,+Z,
ax;& But iP(')'DP(')=0 iP("'Zf") =1 so that

jeA, gg&

—g (@(0)~gr (A)y. . .Xgr (A)y(0)}II
jeA g~y

8 pZ(II D')III, Z
P(0)Ipl. (A)P(0)—

1, A=A

0, A~0

where 0={1,2 n) and A ranges over all subsets of O.
But

( II D')IIZ)=~I(")&. .X& '"',
i'-A: jeA.

fore

n

+""II
I »t» I+")=II

i=) ~ Bx~J i=IBx~' (59)

D, icQ—A

Z, i'
111 vlcw of thc deflllltlon of D&, »., all(i tlm main pl'op-
erty of direct products. Thus

& =4'(0)'II Z;D; expH+(0).

Since P(')'ZD=f&')', it follows that

(60)

fb 1, A=0
tr( II D;IIZ;)=II trW;(")=

j eQ Ajar-x i=1 I Oq A WQ

since tra=o, trZ=1. Ke see that

m t' . () p n

trII I »+Z. I=II
ax & ~=I ax.

a
tr II Z; D; exp H =II exp&

$1= ~ ~ ~ =Crt, =0

More convenient for our purposes is another expression
for Ii„.Let

0&')'II Z;D;=4 &')'

Rnd P„=+{."&' expH%'&@.

%e are now prepared to derive a general recurrence
formula for F„(c).So far in this section, B has been an
arbitrary polynomial. Ke specialize to the problem of
llltcl'cst bg tak)ng 8 (xI ~ x„)=8 (xl .x„,c), 'tile polp-
DomlRl for the coIQblllatorlal problem of Secs. 2 Rnd 3.

Let G„(c)be defined as the result G„(X„+I X.y„„,c)
of lcplaclllg xl bg Xl' ' xr+pg bp Xr+yf 111

G,(x,+I x+„,c) of (28), and let

F„(c)=II (Z;Dj) expH, r= 1 n.
( )

F,(c)=ZID, expH=
I

D,+Z,
ax, P

+&0)=PI(0)X" XP.(0)

be the direct product of e copies of f('),

+(I)=P (I))(.. .gP (I)

be the direct product of e copies of P(I). (57)

Tl exPH(xl)

8= DIZI expH+Zl TI expH(xI)
iPX1 $1'
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Ti expH(xi) =expH(xi) Gi(c)
BSl xi =0 xi =0

and thus Fi(c)= (Di+GiZi)Zi expH.
Now assume that

F, i(c)= R, iZi Z, i expH (62)

for some r~ 2, some matrix R„ l commuting with
X„X„, D„D, Z, Z„, and hence with
G, G. Then

F,(c)

=Z D Rg iZi Z„ i expH

=Z„R, iZi Z„ iZ, D„expH

(Z.-ij D.+Z. IT. -pH(*.)
&&Sp &r=o

=Z, R„ iZi Z„ i(D,+G,)Z„expH

=(D,+G,Z„)R, iZi Z, expH

= R„Zi Z„exp H,

where

(63)

However, from (30) and the definition of TiH(xi) we
find

v(j)=A(', )x "xy (t ). (68)

Thus the 2™sets of choices of ii i from the set {0,1)
give the 2" columns V(1) V(2").

For i~ j~m, let

X;=I,X "XX;X"XI. (69)

Thus X;= X,X(I~iX XI„) for 1&j&m. The
subscript nz signifies the reduction of the dimensionality
of the direct product to that necessary to accomodate
m independent nilpotents.

A straightforward direct-product induction argument
shows that

„X&i X&„(„0&'&) =„V(P 2'i-'+1) for

of R„=R„%'('~, which we will discuss in a later paper.
The third is simply the combination of the first and
second. In the remainder of this section we carry out
the details of a matrix rendition of the shift technique.
The first version reduces the problem to the product of
e matrices, each 2 by 2, of reasonably similar or even
identical form, where n is the maximum number of dis-
tinct x's needed in the G,.

If 1&m&n, let „4&"=pi&"X . X&P~&'& and let
V(j) be the 2 element column with 1 in the jth row

and zero elsewhere. It is easy to verify that if j—1
=t'i+i' 2+ +i„2" ', then

R„=(D,, +G,Z,)R, i. (64)
kiA . . Wk„, 1&ki k„&m, 1&p&m. (70)Note that R, commutes with X,+l ~ X„, D,+l ~ D„,

Z,+i Z . By induction we have for r = 2, 3 n,

Ri——Di+ GiZi
R„=(D„+G,Z,) R, i.

Let J;,~ denote the result of interchanging the
2' '+1 and 2~ '+1 columns of the 2"by 2"unit matrix.

(65) From (64) it follows that

By definition,

F„(c)=R„Zi Z expH
= R„Z, "Z„T," r„expH~. ,=. . .=.„=o

=R Z, Z„=R„(zx xz).
Hence

m J&ii~2 m X~1 mX~2 ' ' ' mX~ p m+

=mXllmXr2 „XIpm%' ',
Jul, a2 Xa2 Xa3 Xa„+(')

Xii„X«3 .~&~ 4&»,

m Jlc].1~2 mX~3' ' 'mXIcp m+ mXIc3' ' 'm+~p m+

(71)

F„(c)=iI &'&'F„(c)% &'& =4"&'R„(ZiX XZ„)%'&"
=e«&'R„(z,|p,«&x" xz„p„&»)=e«&'R„e«&. (66)

Thus, it su%.ces to determine

R„=(D„+G„Z„)(D„,+G iZ„ i) . (D,+ GiZi)
or R„=R„%'&». (67)

This formula has the important drawback of involving
the calculation of the 3N matrices D;, G;, Z;, j=1 n,
the n matrices D;+G,Z;, j=1 e, and finally their
product, each of which is 2" by 2". However, there are
three methods of simplification of (62). The first is
application of the shift technique which produced the
convenient recursion (38) from the less convenient
(34). The second is recursive diagonalization of the
partial products obtained in the calculation of R„or

G„(Xi X„,c) (72)

of replacing xi by Xi, x,„by Xi, in G, (xi x„,c).

for ki/k2 ~ ~ Wk„, 1 &ki ~ k~&m, 1&p&m. Thus
mJ~l, &2 has the eGect of interchanging Xtl and mXI2,
after app1ieati&&e to 4'&0&. The matrix Jxi,&2 does not
quite interchange „Xal and Xa2 themselves.

We now "cut down" the dimensionality of the prob-
lem from 2" to 2" by considering the matrices Xl,
X2 X only. In the remainder of this section, we

omit the subscript n when it denotes the reduced
matrices, columns, etc., (i.e., when a precedes the
matrix, column, etc., to which it is a subscript).

Ke are now ready to derive the "shifted" form of the
matrix equation matrix. Let G t be the result
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Now define recursively
Ca Ja, l ~a, 2

' '~a, a—l.

A little manipulation shows that C = (e;q), where

e;& h(j, ———,'k+-', ), k odd,

e;),=8(j, 2 '+2k), k even. By the argument used to derive (66-67), modified in
accordance with the form of (38), wherein the argu-
ments in G„are shifted through r, we find that

I'or example,
'1 0 0 0
0 0 1 0
0 1 0 0 '

.0 0 0 1,
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0 '

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

F„(c)=+(0)'R„%(')=0'")'(Dt+G„tZ t)

(D t+G„ itz t) . ~ (D t+GltZ t)i/&0)
(78)

1 0
Ci ——

0

(Note that D %(')=0.)
In formula (78) there are no extraneous dimensions!
If edge e6'ects are absent or can be neglected, then

6 t, 6 t, . 6 ~ can be replaced by a single matrix
Gt(X'l, Xi., c), and so

1 0
0 0
0 0
0 0

C,= 0 1
0 0
0 0
0 0

F„(c)=+("'(D t+GtZ t)"+&').

Hence, the problem reduces to that of diagonalizing
D.t+GtZ. t.

The matrix analogs of the fixed cyclic shift formulas
(39)-(41) are less useful than (78), but in several ex-
amples are adaptable to recursive diagonalization. To
save notational difFiculties, we write down the matrix
results for the shift through t= 1 only. Let G,".& be the
result of replacing x; by X;, j= i r+)l„1, in—
G, (x„,x,+i, xr+„„ l, c), and recursively define

Note that the matrix C can be partitioned for 0.~ 2
into an upper matrix U and a lower matrix I. , each
of which is 2 ' by 2 . These can be further partitioned
into 2 ' (2 by 4) blocks, the off-diagonal blocks being
zero blocks. The 2 by 4 diagonal blocks consist of

0 0 1 0
=(1 0)XI in U

(73)
R,t= (D.+G,tZ.)C.R, ,t

=(D t+G„tZ )R, ,t, (77)

(74)
R,t= (D.+G, tZ.)C.= D.t+G, tZ. t.

and
0 1 0 0 = (0 1)XI in L .
0 0 0 1

R„&'&= (D,+G„&'&Z„)R„ l&'& r=2 r)

R &'& = (D +G &'&Z )
(80)

Then F„(c)=@(')'R„(')4'").
In general, we see that diagonalization of the product

R„t= (D t+G tZ. t) (D.t+GltZ t)

R„=(D„+G„Z„) (Dl+GlZl)

R„&'&= (D +G &'&Z„) (Dl+Gi&'&Zl)

or of

(0 I(a—1) l (1(a—1) or

&0 0 ) '
&0 0)

Henceforth let I( &) denote the 2 ' by 2 ' unit matrix.
We see that U =(1 0)XI( l&, L=(0 1)XI(».

For later purposes we want to know D C and Z C .
Since D =I( I~XD, Z =I( ~))&Z, we find

But
is sufFicient to solve the problem.

so that

D. = D.c.=l —l=l
(L t (0 1 0 01 (I(, l))
E 0 ) EO 0 0 1) E 0

Ixl

t'1 l= (0 1)XI( —l) X
l

&0)
'

(Ua) (1 0 0 0) (I(a 2)q

'7. APPLICATIONS

In this section we brieQy discuss a variety of applica-
tions of the foregoing method.

(a) Linear Chain with Next-Neighbor Interactions

Here coWO, c~WO, c~2WO, cg23/0, Let c(0~=co,
c(„~——c~2...„, so that, neglecting end eGects,

X(2)' X(~)"
G =('(o)+c(l)X(i)1c(2) + +c(a)

2! e!

(1 0)XI, Xl l (76) where X& &=Xi+ +X . Inductively, we can show
(0) that R„depends on X&l), X(q)2, . X(„&"for each r.
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Since

n

R,(x),x2, x ) =P R, (x(g), ,x(,)),
r=I ~&(r)

have solved the two-dimensional Ising problem from
this viewpoint. Their determinantal equation can be
obtained directly from the matrix formulation in Sec. 6,
but as the reduction occupies some space we are obliged
to postpone the demonstration of this.

where x( )=x&+ .+x„, and

0 0 0 0

X ~0 0 1 0 1 0 0 0
1 1 0 P 1 P 0 0 P

.0 0 1 0.
8

R„+)(x) =—R„(x)+G(x)R,(0), R((x) =G(x),
8$

(c) Problems Discussed in Sec. 5

The most general problem there considered contains
we can write X(~)—— .——X(„)=X and the funda- two essential dimensions. Now
mental recurrence becomes, in scalar form,

where
C~n)X"

G(x) =cp+c())x+ +
e! X= P1X1P

'0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0,'

AsymPtotically, we assume R,+)(x)=XR,(x) and obtain so that for an, uter, or locat,
.
()n

R,(x)=R„(0)e~
~

1—
I e "*G(x)dx+ e ~*G(x)dx ~.)

Since R„(x) is, like G(x), a polynomial in x, we must
have

Cp

Get col+clX1+cqX2
Cq

0

'1 0 0 0
0 0 1 0
0 0 0 0 '

0 0 0 0.
and thus

0 0 0
cp 0 0
0 cp 0
Cq C& Cp

0 1 0 0
0 0 0 1
0 0 0 0 '

0 0 0 0.

f n C(m.)
e
—'*G(x)dx= P x"e "*dx=P c( )X " '.

o

Hence X is the (largest) root of c(„)+c(„))X+
+c(0)X"=X"+',a result already obtained (e.g. , de Boer")
by other methods.

(b) Ising Problem

Here there are two con6gurations per cell, with next-
neighbor interactions. B(C;,C;)=1 unless j =i+t(k),
where t(k) is a translation between neighboring par-
ticles. Furthermore, ifj i+t(k), the sum

P g(C,) P La(C;,C,)—1]
Ci

vanishes on suitable choice of the interaction energies.
Hence, c(r ~ vanishes unless (i) i ) forms a closed
polygon with sides of nearest-neighbor distance. For if
vertex i; is connected only to vertex i&, the Ursell func-
tion U(C(& C~) is of the form

U (Ca),C'; g, Ca,p(, C'), ),C(~), C(~) U(C(t, C(p),

and thus
Q Q(C'), ) U(C() C'„)=0.

The Ising problem then reduces to that of counting the
closed polygons on the lattice of interest. Kac and %ard

(d) Nearest Neighbors in Three Dimensions

Here we have

Xg ——

1

='1
X2——

0

1
X3——

0

0
0, 0

0 0

1.'.1

0 1

1. 0

p (1

1, 0

0
0. '.0

0 0
1

0

1.
0

0
0 '

so for an interior location

G„t=col+c,X)+c,Xg+
Cp

Cl

cq
0

c,X3

Cp

'c, 0
0
0
.0

0
0

Cp

co
0 0 cp

0 0 cg cp

cs o cq o cp

0 c, 0 cq cg col

cp 1 0 0

D t+Q tZ t=
cq 0 0 0'
.0 0 c, 0.

which is the matrix found in Sec. 5 for interior locations.
The modi6cations for edge effects are in Sec. 5.
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Also
1 0 0 0
0 0 1 0

1 0 0 0
0 0 1 0

Modifications for side, edge, and corner eGects can
be determined in the manner of Secs. 5 and 6. The
problem of obtaining the largest eigenvalue of matrices
with this type of structure is under study.

CONCLUSION

0 1 0 0
0 0 0 1 0100000

so that
r

Cp

C1

1 0 0
0 cp 1

0 0 0
0 c, 0
0 0 0
0 c, 0

cp 1 0 0
c1 0 cp 1

c, 0 0 0
0 0 c, 0.

Cq

D t+G„tZ t= 0
c,
0

We have shown that (1) a very general type of prob-
lem in statistical mechanics can be reduced to an
associative combinatorial problem, and (2) this problem
can again be reduced to the determination of the set of
eigenvalues of a certain matrix.

A variety of problems already known to be soluble
are easily handled by the automatic application of this
technique, and at least one problem is removed from
the unsolved category. Ke believe that the systematic
exploitation of this method will provide many interest-
ing mew results.
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I. Hydrodynamic Treatment
INTRODUCTION

ASICALLY there are two ways of dealing with
plasma problems: a microscopic gas-kinetic treat-

ment using the Boltzmann equation together with
Maxwell's equations of electrodynamics; or a macro-
scopic, hydrodynamic treatment using Euler's equation
of motion together with the Maxwell equations. For
various mathematical reasons it seems to be impossible
to investigate the diferent general modes of oscillation
using gas-kinetic methods without serious physical
restrictions. To avoid excessively complicated mathe-
matics in using the kinetic approach, it is necessary to
make assumptions of such kind that it is more reason-
able to use the hydrodynamic equations. For this
reason we deal here only with the hydrodynamic
equations together with Maxwell's equations. Questions
concerning the range of validity of our treatment are
deferred to Sec. II. The hydrodynamic treatment is

always justi6ed when there is a stationary distribution
of velocities in the plasma which is not disturbed
"essentially" by the collective oscillations.

Although one succeeds in this way in simplifying the
procedure a great deal, the treatment of the unabridged
hydrodynamic equations [except in a few cases such as
the work of R. W. Larenz (1955)f1 is further simplified.
For this purpose, one supposes the plasma to be uniform
and of in6nite extent, and the oscillations to be small
sinusoidal perturbations. These concepts are not very
close to reality, and are unable to explain complicated
processes such as the origin of cosmic radio-frequency
radiation. Still, the linearized theory succeeds well in
explaining the ionospheric observations, so one may
hope that at least some idea is obtained of how and
where to begin a later nonlinear approach.

All investigations of the linearized theory, until now,
dealt with special cases—Langmuir oscillations, iono-
spheric theory, Alfven's magnetohydrodynamics, etc.—

~ Supported by the QfEce of Naval Research. f References are given in alphabetical order in Bibliography.


