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In these formulas, e; is the number of vertices of the
object IC, and
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'N a recent paper Green and Leipnik' have indicated
~ ~ how the evaluation of the grand partition function
of a classical system of interacting particles can be
reduced by the cell-cluster method to a lattice com-
binatorial problem which they call the association
problem. They discuss the general problem mathe-
matically and claim to solve exactly a particular two-
dimensional association problem which is "comparable
in diS.culty to the Ising problem. "This note points out
that the claimed solution of this problem PGL(51)
and GL, p. 140j is manifestly incorrect. The reason for
the error is shown to be a fallacious assumption made
when applying the general mathematical theory. The
solutions quoted by Green and Leipnik for various one-
dimensional association problems are correct, but these
problems can be solved more readily by an elementary,
direct argument.

As formulated by Green and Leipnik, the association
problem for a lattice L„ofn vertices requires the evalu-
ation of the generating function

F))(cp)c2)c2) ' ' ')

(t24p)2'])2242, ' )Cp OC] )C2 2, (1)
mp ) f51 ) ~ ~ ~

where E„(222O,2242, 2222, ) is the number of ways of
attaching mp copies of an oriented geometric object Ep
consisting of linked vertices (not necessarily adjoining),
m& copies of an object E&, m2 copies of an object IC2,
to the lattice L, so that every lattice point of L„ is
covered by one and only one vertex of an object E';.
The object Ep is conventionally taken as the single
unlinked vertex

Ep ——( X),

where 3E (222&,2222, ) is delned in the same way as
Ar (222O, 222, ,2222, ) except that the restriction that epery
lattice point of L„must be covered is relaxed.

Green and Leipnik consider (GL, p. 135$ a particular
two-dimensional association problem which corresponds
to distributing bonds or "dimers" over a plane p by q
quadratic lattice' (Pq=22). The geometric objects in
this case are the nearest neighbor horizontal and vertical
bonds

I'x l
X&——(x x) and E'2=~

l, x j

PGL denote the latter as E„see also the followingf.
Green and Leipnik claim to express the solution of this
problem in terms of powers of the matrix fGL(50)j

cp 1 0 0
cg 0 cp

N(cp c2 cp) 0 0 0C2

0 0 C2 0

(5)

For a large lattice in which edge effects are negligible,
their solution [GL(51)j amounts to

hm —logA„= logX (d2) d2))

where P is the largest root of the equation

X4= Xp+d2X2+d2X+d22, (7)

which is (essentially) the characteristic equation of (5).
)The existence of the limit (6) follows from general
principles and merely reQects the extensive properties
of the lattice. ] It is immediately apparent that (5) and
(7) are not symmetric under ex)change of c& and cp

(or of d& and dp) whereas such symmetry is clearly
essential in (6). (Although for a f424ite recta24g24lar lattice
symmetry would not be expected. ) This at once casts
doubt on the validity of (5) and (7) (and in fact led us
to investigate the matter). That these results are indeed
erroneous may be demonstrated explicitly by expanding
logX as a power series in d& and d2. From the charac-
teristic equation (7), we obtain (for the largest root)

logX(d2)d2) =d2+dp ——,'(dr'+d2') —4d2dp

+ (10/3) (drp+d22)+15d22d2+16drd22

+0(d'), (g)
so that we may rewrite (1) as

F))(co)c1)c2)' ' ') =. co A))(dl)d2) ' ' ' ))

which shows that the expected lack of symmetry enters
(2) only in the third-order terms d22d2 and d&d22.
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z,=(

Icp (g ~ ——x )

t the dot indicates an unoccupied lattice point7. This
matrix yields the correct solution of the one-dimensional
problem (see the following) and will count configura-
tions on the quadratic lattice correctly just as far as a
one-one correspondence between the two sets of con-
figurations can be set up. Examination shows that the
first configuration on the quadratic lattice for which
the correspondence breaks down is

(x x ~

!~C

x x )

where the comma indicates that the vertical bond can
be anywhere in the plane not overlapping the two hori-
zontal bonds. On the one-dimensional lattice, this cor-
responds to the forbidden configuration

(x , x ~ x, )

which has a doubly occupied vertex. The resultant
difference accounts precisely for the change of the
coefhcients of dPd2 from 16 to 15.

Green and Leipriik's erroneous result can be traced
to a false step in the application of a differential re-
currence relation which they derived for an auxiliary
generating function E„(x,,xp, ' ' ' '

cp,ci cp, ' ' ') which is
simply related to the desired function (2). Their re-
currence relation PGL(38)1 is quite correct, although
as we will indicate, it is not particularly useful. The
diQiculty is that for two-dimensional problems E„ is a
polynomial in a large elnsber of the variables x; and is,
a priori, of unknown degree.

The problem on a general lattice may be restricted
essentially to that on a one-dimensional lattice by
using a suitable numbering system for the lattice points

Now the exact expansion for logX is easily calculated
by direct enumeration of configurations on the lattice
(regarded as wrapped on a torus). Thus,

M„(1,0) =M (0,1) =u,
M (2,0)=M„(0,2) = ipu(u —3),
M„(1,1)= u(N —4), (9)
M (3,0) =M (0,3) =-p, n(u —4) (n —5),
M„(2,1)=M„(1,2) =-,'n(rP —11n+32).

These relations confirm all terms of (8) except for
15diPdp which, in the exact expansion, is 16diPdp. (The
coefficients in (8) are, in the standard way, the coef-
ficients of n in (9).$

The matrix (5) is the same as that derived in
GL(45)—(48) for the one-dimensional problem of nearest
and next-nearest neighbors for which

(see GL, p. 133). It then follows as observed in GL,
that the number of variables x; entering E„ is Ot most
equal to the number of (horizontal) bonds separating
the most distant vertices of the "longest" object under
consideration. For a two-dimensional lattice of width q,
an object which has any vertical extent will have a
"length" which is near a multip/e of q and hence (in the
physically interesting limit q ~ ~) is indefinitely great.
Thus, a nearest-neighbor vertical bond is equivalent to
the "g bond"

&x
~( 0 1 2 . ..

-x &', ', , ).

The configurations of I.„described by the generating
function F„(cp,ci) must either terminate in a single
vertex

or in a bond

Xp=( X)

&i=(x x)
and these correspond to factors co and c&, respectively.
Consequently, w'e have the simple recurrence relation

P„=co~ &+cP (10)

Consequently, for this case E,(xi,xp, , cp, c&, )
might u priori depend on the q variables xi, xp, , x„
although it is easily verified that E& depends only on
xj and xq. In their applications, Green and Leipnik
(p. 136) have proceeded on the assupnptiou that the
same will be true for E2, E3, . . ., E„. Unless q=2,
however, this is fallacious since it is readily verified by
actual substitution in the recurrence relation (GL(38)j
that E2 depends explicitly on x&, x„and xq &, E3 on x&,

+q~ +q—$~ and +q—2~
' ' '

p
and +q on +1~ +2~ ' '+q—$y +q.

The fact that for a two-dimensional problem E„will
depend eppplicitly on an inde6nitely large number of
variables x; seems to remove the essential basis for a
successful approach along the lines Green and Leipnik
propose. (Thus, their n t GL, p. 138) is of order u&-+~).
Even for one-dimensional problems the GL method is
dificult to apply due to the unknown degree of the
polyriomial E,(x;) which leads to many "extraneous
dimensions" t GL, pp. 135—136j. For example, for the
problem with next-next-nearest neighbors (q=3), the
fundamental characteristic equation is of degree eight
(and is easily obtained by a method explained in the
following) whereas with the GL approach, it seems
essential to consider a 17)&17 matrix.

Green and Leipnik solved by their general methods
a number of one-dimensional problems for which, more
or less fortuitously, their generally fallacious assump-
tion was in fact correct. These problems, however, yield
readily to elementary methods. Consider the simplest
example (GL, p. 134j of a linear lattice L„of n points
with nearest-neighbor bonds

E,=(x x).
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whose solution is

F =AXg"+Bing",
(x x x x x x),

where Xj and X2 are roots of the characteristic equation

XS=COX+CS.

(x x x x x x x x),

(x x x x x x x x x,x), ~ ~ ~ .
Imposition of the initial conditions Iio= i and F&=cp
determines the arbitrary constants A and B and con-
firms GL(43).

Consider now Green and Leipnik's second problem
fGL, p. 135j which involves also next-nearest neighbors
(v=2)

ES=( x ~ x ).

This yields the recurrence relation

F«= COPs 1+C1P—n 2+ (Cp —+Cl)C2Ps 4—
+coc3 Po—3+co Ps 3—

+Cp C3 EFS 6+CSP» 3+CO Fs 10+ ' ' ']—)

whence the characteristic equation is

(14)

Simple possible end configurations are

x x x

with factor c22 which must not be overlooked. These
four alternatives exhaust the possibilities so the re-
currence relation can be written down directly. The
characteristic equation is clearly

X = co~ +cia +cpcSX+c2, (13)

which is in agreement with GL(48) Lcompare also with
(7) herein j.

The linear lattice with the next-neighbor interactions
EGL, p. 139]

(x), (x x), and (x x x),
with corresponding factors co, c~ and coc2, but there is
also the "overlapping" configuration

X = coX + (ci+cs)X —cocsX +co cd +coc39.
+CS (CS—Ci)X —COC39 —CS . (15)

This result can also be obtained from the GL approach
if their assumption is corrected (i.e., if E„ is allowed to
be a function of 2:1, 2:3, assd g2). The labor involved,
however, is considerable and leads in the first place to
a 17X17 matrix, since E, appears to be cubic in x~ and
quadratic in x2, and most cross terms such as x&'x2xa

must be allowed for.
The full two-dimensional case, however, does not

yield to either of these approaches and still represents
a challenging problem whose solution would be of
interest for many applications of statistical mechanics.

'H. S. Green and R. Leipnik, Revs. Modern Phys. 32, 129
(1960). Equations in this paper will be denoted GL(1), etc.

2 Some aspects of this problem have been considered by A. J.
%akefield, D. Phil. thesis, Oxford, 1951.

K(1)= ( X )) E 12)
= (

is especially simple since there can be no overlapping
con6gurations at the end of the chain. Green and
Leipnik s characteristic equation LGL, p. 14P$ follows
immediately.

Finally, to illustrate the complications encountered
in more dificult problems, - consider the problem with
next-next-nearest neighbors

SHIGETOSHI KATSURA AND SAKARI INAWASHIRO

Depurtment of AppLied Science, Tohoke University, Sendui, Jupun

ECENTLY Green and Leipnik' contributed a
paper, "Exact Solution of the Association Problem

by a Matrix-Spinor Method with Application to Sta-
tistical Mechanics, "in which they described the method
of obtaining the partition function of the association
problem in one-, two-, and three-dimensional lattices.
Unfortunately, their method is not effective and their
solution is not correct in the problem of two and three
dimensions. The exact solution still remained unsolved
in explicit form.

According to their result, the two-dimensional asso-
ciation problem of the rectangular lattice with nearest-
neighbor interaction is solved with a matrix

Zs=( x ~ x)
in place of next-nearest neighbors. This is the equivalent
to a nearest-neighbor two-dimensional problem for a
lattice of width q=3 with opposite edges joined to
form a spiral. The list of possible end configurationsis

(x), (x x), ( x x x x),
(x x x~x), (x x x x x),

Qn Green and LeipnikSs Method for Solution
4 of the Association Problem

(x x x x x v),

and then an infinite series of overlapping configurations

'cp i 0 0
ci 0 co i

N(CO)C1&CS) =
p ptg.0 0 c, 0.


