
TRANS I TIONS IN POLYMERS 10i

mechanical studies is more powerful than either one
alone in providing detailed information about the nature
of transitions in polymers. However, there are still many
unresolved questions. These include the proper assign-
ment of the low-temperature loss peak in poly(vinyl
chloride), polypropylene, and polybutene as well as the
detailed mechanism of the high-temperature loss peak
in polytetraQuorethylene. The very low temperature
transitions (below 80'K) also need much more study
both by the techniques discussed in this article and other
physical methods. The fact that the experimental second
moment at 80'K of many of the polymers still has not
reached the theoretical rigid-lattice value indicates that
low-temperature research should prove quite fruitful in

uncovering new transitions and in obtaining definite
assignments for those already reported.

(10) It would be helpful to our understanding of the
low-temperature transitions in polymers to use the com-
bined power of NMR and mechanical techniques to
explore other types of polymers than the ones discussed
here. Of particular interest are polymers in which side
chain motion is known to influence the low-temperature
loss spectra. It would also be helpful to have studies
made by the two techniques of controlled copolymers,
graft copolymers, and polymers, such as polypropylene,
in which the compositions are kept constant but the
crystalline-amorphous ratio varied over the widest
possible limits.
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I. INTRODUCTION

HE problem of estimating nuclear cross sections
has been discussed by many authors. ' In spite of

much excellent work on the theory of nuclear reactions, 2

there still exists no completely satisfactory method for
accurately predicting nuclear cross sections. A rigorous

approach to the description of nuclear reactions has

been given by signers and his collaborators, ' and has

recently been reviewed by Lane and Thomas. 4 The
generality of this R-matrix theory by its very nature
requires a formalism, the practical application of which

is somewhat formidable. There are, however, more sim-

pli6ed (and thus more restricted) methods which can
be adopted to estimate the magnitude and energy
dependence of nuclear cross sections. The development

presented in the present review is based upon the
compound nucleus model, a concept Grst proposed by

' V. F. Weisskopf and D. H. Ewing, Phys. Rev. 57, 472 (1939);
Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947);
H. Feshbach and V. F. Weisskopf, Phys. Rev. 76, 1559 (1949);
Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954);
W. Hauser and H. Feshbach, Phys. Rev. 87, 366 {1952); B.
Margolis, Phys. Rev. 88, 327 (1952); B. Margolis, Phys. Rev. 93,
204 (1954).

~ C. Block, Nuclear Phys. 4, 503 (1957); H. Feshbach, Ann.
Phys. 5, 357 (1958); Brueckner, Eden, and Francis, Phys. Rev.
100, 891 (1958); K. A. Brueckner, Phys. Rev. 103, 172 {1956);.
P. L. Kapur and R. E. Peierls, Proc. Roy. Soc. (London) A166,
277 (1938).' E. P. Wigner, Phys. Rev. 70, 15, 606 {1946);73, 1002 (1948);
E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947); Lane,
Thomas, and Wigner, Phys. Rev. 98, 693 (1955).

4 A. M. Lane and R. G, Thomas, Revs; Modern Phys. N, 257
(1958).

Bohr. s A survey of the compound nucleus picture and
the points at which the picture should be revised have
been given by Brown. ' Except for qualitative mention,
scattering cross sections are not discussed herein. These
are discussed in the review article by Brown. 6 The
purpose of the present review is to provide a systematic
and concise summary of compound nucleus processes
from which one can estimate nuclear reaction cross
sections.

II. FORMATION OF THE COMPOUND NUCLEUS

In discussing the formation of the compound nucleus,
one must concern himself not only with the direct-
interaction process, but with the possibility of prefer-
ential spin-state formation, i.e., the unequal statistical
formation of the compound nucleus in the I+s' and
I——', states. Sailor' has analyzed the statistical weight
factor g for /=0 neutron resonances. According to
these data, it appears that the compound nucleus is
formed preferentially in the I+,'spin state. He e—m-

phasizes that his study includes no measurements for
weak resonances. His results certainly indicate that
predominant resonances within a particular nucleus are
preferentially g+. It is believed that this eGect would
not affect the results of total (as opposed to differential)

~ N. Bohr, Nature 137, 344 (1936); Science 86, 161 (1937).
'G. E. Brown, Revs. Modern Phys. 31, 893 (1959); K. B.

Mather and P. Swan, Nuclear Scotterirlg (Cambridge University
Press, New York, 1958).

7 S.T. Butler, Phys. Rev. 106, 272 (1957);Austern, Butler, and
McManus, Phys. Rev. 92, 350 (1953).' V. L. Sailor, Phys. Rev. 104, 736 (1956).
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m/2~
y(E) =

(E—E )'+ (I'/2)'
(2c)

where D is the level spacing and F the total width
evaluated at a suitable energy. Hence the resonance
compound nucleus cross section for a particular l value
js

DI /2~
0 '=mV(2E+1)Ti

-(E-E.)'+(P/2)'
(2d)

9 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
&John Wiley Bt Sons, Inc. , ¹wYork, 1952).

'0 M. E. Rose, E/ementary Theory of Angular Momentum (John
Wiley R Sons, Inc. , New York, 1957).

neutron cross sections, though it would have an efII'ect

on angular distribution calculations.
To deduce expressions for the cross section for reac-

tions which proceed through the intermediary of a
compound state, we can write an expression for the
cross section for the reaction X(a,b)Y as

0.(a,b) =0,(a)G, (b), (1)

where 0(a,b) is the cross section for the (a,b) reaction,
0,(a) the cross section for the formation of a compound
system by particle a incident upon the target nucleus
X, and G, (b) the probability that the compound system
c, once formed, decays by emission of particle b, leaving
residual nucleus Y. G, (b) is a dimensionless quantity;
the compound system c must decay eventually in some
way. G, (b) is the probability for a particular mode of
decay. According to the Bohr assumption, " G, (b)
depends upon the excitation of a given compound
nucleus, and is therefore independent of the method of
formation of this compound system. The 0,(a) can be
expressed as a weighted sum over the partial wave
transmission coefFicients, '

~.(~)=~~ P,(@+1)r„ (2a)

where X is the wavelength in the incident channel, and
Tg is the 1th partial wave transmission coe%cient. In a
somewhat more general notation, the cross section for
the formation of the compound nucleus with total
angular momentum J with 2' component m by a particle
of orbital angular momentum l and energy E, combining
with a target nucleus level of spin i can be written

0(lj JmE)=Or. V(2l+1)Tgl (Ijm]m
l
Jm) l'y (2b)

where (ljm&m;l Jm) is the Clebsch-Gordan coeKcient. "
Equations (2a) and (2b) do not take into account any
resonance phenomena. They represent averages over an
energy interval sufFiciently large to contain many
resonances. In order to obtain the 0-, near resonance,
we seek a factor by which Eq. (2a) can be multiplied
in order to have a maximum (whose width corresponds
to the lifetime of the level formed) at the resonance
energy and whose energy average is unity. We choose
the following shape for this factor y(E)9:

By using a relationship between the transmission coef-
ficient, the level spacing, and the partial width fderived
later, Sec. III, Eq. (48)], we can also express Eq. (2d) as

I' F
a-, ' =m. K'(2l+ 1)

(E—E„)'y (r/2)'
(2e)

in which F, is the width for decay of the compound
nucleus into the incident channel, and F is the total
width.

A complete description of the average cross section
for compound nucleus formation can be obtained
provided one can obtain an adequate representation for
the transmission coeflicient T~, which represents the
fraction of particles incident from r=+ ~ which
penetrate into the region r&R. The Tg depend upon
several factors: (1) the real and imaginary parts of the
logarithmic derivative of the radial wave function; (2)
the shift factor4 "& and (3) the penetration factor. ' "
The exact manner in which these quantities enter into
an evaluation of Tg can be demonstrated in the following
way.

The cross section for the formation of the compound
nucleus can be written"

~.'(+) =~l~'(21+1) (1—

lail�

)' (3)

where yg is the relative amplitude of the outgoing wave
with angular momentum / Compa. rison of Eqs. (2) and
(3) shows that 1—lp&l' is equivalent to the quantity
T~, to arrive at an expression for Tg, we first determine
Q$e

We consider the logarithmic derivative f~, evaluated
at the nuclear surface, i.e.,

fCu~/dr )
u(

(4)

therefore
u)(r) =afu, &-& (r) —g,u, &+& (r)],

fu(' —&'(r) —y(u(&+~'(r)], R
=R

fu~& ~(r) —q~u~~+~(r)], g

(6)

where the primes denote differentiation with respect

"R.G. Thomas, Phys. Rev. 97, 224 (1955).
"Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954);

Ofhce of Naval Research, Tech. Rept. 62 (1953) (unpublished).
'3 If the Schroedinger equation is separated by the substitution

R(r)Y(8,@), then the equation in R(r) is called the radial equation.
0 the change of variable R(r) =u(r)/r is made, then the equation
which results has u(r) as a solution. It is this wave function
which we refer to as the "radial wave function u{r)." The
subscript l, denotes the solution for a particular eigenvalue.

The radial wave function uq(r) "can be separated into
incoming and outgoing waves,

u~(r) =au~' &(r)+bu~~+&(r),

where a and b are constants. But q~
—(b/a) (th——e

fraction reflected), and hence
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to r. After dividing both numerator and denominator of
Eq. (7) by N&1 &(r) and defining the phase constant g~ by

exp(2sg&) = I&&-&(R)/I&&+&(R),

Eq. (7) reduces to

barrier and for charged particles against the coulomb
barrier, i.e., against the nonnuclear type forces. The
shift factor gives a measure of the level shift due to
extranuclear interaction.

Shift and Penetration Factors
'Le&&—&'(r)/I &'

—
& (r)g —» &(S(+iP,)

We discuss 6rst the evaluation of the shift factor Sg
and the penetration factor I'~, leaving until later the
evaluation of the real and imaginary parts of the
logarithmic derivative. In order to evaluate them we
must consider the ss&&+&(r) and N&~ &(r—) of Eq. (5) in
more detail. Recall that N~(r) is the radial wave func-
tion, i.e., a solution of the radial wave equation

&(exp( —2i(&) (1/R)
, (8)

1—g( exp( —2st&) -,=n

where the quantities I'& and S& are de6ned by

dN &
&+& (r)/dr

=S~+s&s
N&1+&(r) d'N&(r) l(l+1)-

+ k' — e&(r)=0. (13)
By making a siIQllal substltutlon for the lncomlng wave
N~& &(r) and solving for»g, one obtains

f&
—S&+sI'~

e+"«
f&

—S)—sT&

Equation (13) is the radial equation for neutrons only,
since no Coulomb potential is included. To solve Eq.

(10) (13) we make the substitution N((r)=(kr)R&(r) to
obtain

Equation (10) is the desired result for»& and hence
(indirectly) for T~. If f& is real, then 1—I&»I' is unity,
and the cross section for formation of the compound
nucleus is zero, i.e., scattering without aIly reaction.
Thus f& cannot be a purely real quantity if a reaction
takes place. The quantity g& is the essential feature of
reaction cross section calculations"; it also completely
determines the (shape) elastic scattering cross section
through the well-known relationships

Pg{cos8) '
~„(e)de=—P(21+1) (1—

~&) da. (11)
k {4 )1

Equation (11) is employed in optical model analyses
in which the primary objective is to determine the
optical model parameters which best 6t experimental
data by (numerically) solving the radial wave equation,
thereby determining the logarithmic derivative f&, and
hence q~.

Upon taking the absolute value of Eq. (10), it can
be shown that Tg is given by

d'R&(r) 2 dR&(r) (+- +I k —IR,(.)=o,
dr' r dr ( r']

where I.'=/(/+1); p=kr; then Eq. (14) can be written

d'R& 2 dR& ( I.' ~

+I 1——(R,=o.
dp' p dp 4 p')

(15)

The solutions of Eq. (15) are the spherical Bessel
functions j&(p) and the spherical Neumann functions
m&(p), i.e.,

OI'

R&"&=constj((p) =constj&(kr),

R& "&= constn&(p) = conste&(k& ),

I&o& = const (kr) j&(kr),

N&&s& =const(kr)m&(kr).

(16a)

(16b)

(17a)

(17b)

The spherical functions are related to the ordinary
functions by the well-known relations"

—4P( Im(fg)

I:«(f~)—S&1'+LIm(f&) —&~7
(12)

j&(x)= (m/2X) V)+1(x),

n&(x) = (~/2X) 1x&+1(x),

with the result that

(18a)

(18b)

Equation (12) is a general result for T& which can
be used to determine both charged-particle and neutron
transmission coe%cients. For a complete determinatioll
of T~, we must therefore determine four quantities: S~,
I'&, Im(fg), and «(fq). I'~ and S& are called the pene-
tration and shift factors, ' " respectively. The penetra-
tion factor gives a measure of the probability of the 1th
partial wave penetration of the neutron to the nuclear
surface against the centrifugal angular momentum

"A. M. Lane, Revs; ivledern Phys. 29, 101 (1957).

Ng" & =const(~kr/2) V(+; (kr), (19a)

ssi~ & =const(Tkt'/2)4V&+1 (kr). (19b)

If we define the regular and irregular solutions such
that they satisfy certain asymptotic conditions, ' then
the constant coefficients in Eqs. (19) are determined. If
we denote this "regular" solution by Jig and this

"P. M. Morse and H. Feshbach, Methods of Theoretical I'hysics
(McGraw-HiB Book Company, Inc., Neve York, 1953).
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"irregular" solution by G~, then another solution is a
linear combination of Ii& and G&. For the theory of
nuclear reactions we choose the combination which
gives an outgoing wave N~&+~ of %he form"

Ng&+g = Gg(r)+iF g (r), (20a)

and an ingoing wave

Ngg-& =Gg(r) —iFg(r). (20b)

From the definitions of Sg and Fg LEq. (9)j and using
Eq. (20),

Gg'(r) +iFg'(r)
(21)

Gg (r)+iF g (r)
Sg+iF g

——R

Gg (r)Gg'(r)+Fg(r)Fg'(r)-

GP(r)+FP(r)
(22a)

By multiplying the numerator and denominator of the
right-hand side of Eq. (21) by the complex conjugate
of the denominator and separating real and imaginary
parts, one 6nds that

by Lax and Feshbach, '~ a,nd by Morse, Lowan,
Feshbach, and Lax. '8 Tabulations of S» and P~ for
neutrons are given by Feshbach, Porter, and Weiss-
kopf, ' and by Monahan, Biedenharn, and SchiGer. "

For charged particles, the Coulomb potential must
be included in the radial wave equation, in which case
the Ii~ and G~ become the well-known Coulomb wave
functions. '0 The evaluation of these functions is a
lengthy and tedious numerical calculation. They are
frequently evaluated by erst determining the zero-order
functions from asymptotic relations, "obtaining their
derivatives, then recurring upward (i.e., increasing l)
to evaluate the higher-order functions. Abramowitz"
has discussed a method for generating Fg(Gg) in decreas-
ing (increasing) order. For our purposes their evaluation
can perhaps best be accomplished by evaluating the
zero-order functions from the asymptotic relations and
from these evaluate $0 and Po, then use the recurrence
relations for these functions to obtain the values for
arbitrary /. The asymptotic forms are"

Fg (p)—sing —(', )l~ rg 1n (-2p)+—grg 7, (29)

Fg'(r) Gg (r) —Fg (r)Gg' (r)
P)——E

GP(r)+FP(r)

Gg (p)=cosp —(z )ln rg ln(2—p)+o g]. (30)
22b The quantity ~g is the Coulomb phase shift given by

Thomas4 has obtained recursion formulas for Sg and P~. where
They are

~g+g ——kg+tan-g (g/)+ 1), (31)

&g=Ag&g-g/U&g —Sg i)'+&g g'7, (23a)

Sg+fgg ——Ag(bg —Sg g)/I (bg —Sg g)'+Fg g2j) (23b)

where

op=~gC+Q —tan —'- (32)

with

A g= p'+ (prg/l)',

&g= i+ (g mli)

p=Ipr, g=0.1574ZZ'EM, ~ VI .

(25)

(26)

[1 1 1
gro

———+rg(logic —1)——
gg '+ rg '+

4 l12 360 1260

(24) is used when rg~2. For rg) 2, 0.0 is given by

+ gg '+ ' (33)
1680 1188

C= 0.5772156649

One further significant point should be emphasized.
The functions F~ and G~ are functions of the radial
coordinate r. The quantity g&, however, is independent
of this coordinate. Since these functions are "external"

Fg (r) = (%.kr/2) Vg/, (kr),

Gg (r) = —
(m kr/2) ~Ãg+i (kr).

(27)

(2g)

M; is the reduced mass in atomic mass units, EM, the
energy in Mev. Equations (22) are general expressions
for the shift and penetration factors. They are valid
for both neutrons and charged particles, provided one The quantity C is Euler s constant
uses the proper F and G functions. As shown pre-
viously, for neutrons these functions are expressible in

terms of Bessel functions:

Tabulations of Fg(r) and Gg(r) for neutrons are given

1' The shift factor as dehned by Thomas4" is

s=pL(~~'+GG')/y +c)j
and the penetration factor is defined by

P=p/F'+G'j ',
where the primes denote differentiation with respect to p=kr,
whereas in our notation the primes denote differentiation with
respect to r. The two definitions are equivalent. If the diBeren-
tiation is with respect to p, the Wronskian is unity, while differen-
tiation with respect to r gives a value of k for the Wronskian.

"M. Lax and H. Feshbach, J. Acoust. Soc. Am. 20, 108 (1948).
"Morse, Lowan, Feshbach, and Lax, U. S. Navy Dept. of

Research and Inventions, Rept. No. 62, IR (1945) (unpublished).
» Monahan, Biedenharn, and Schifkr, Argonne Natl. Laboratory

Rept. ANL-5846 (1958) (unpublished).
"Block, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.

Modern Phys. 23, 147 {1951);Natl. Bur. Standards, Applied
Mathematics Series, No. 17 (1952); also NBS-3033 {1954);J. P.
Schiffer, Argonne Natl. Laboratory Rept. ANL-5739 (1957)
(unpublished); Sharp, Gove, and Paul, Atomic Energy of Canada,
Ltd. , AECL-268 (1953) (unpublished); A. Tubis, Los Alamos
Scientihc Laboratory Rept. LA-2150 (1958) (unpublished).

~' I.A. Stegun and M. Abramowitz, Phys. Rev. 98, 1851 (1955).



solutions (i.e., exterior to the nuclear potential), they
must be evaluated at some point su%ciently removed
from any CGects of the nuclear potential. This is a
sufhcient condition for the case of neutrons, but not so
using the method we have described for charged par-
ticles. Since the Ii~ and Gg for charged particles which
we have just outlined are evaluated from asymptotic
relations, one must insure that the point of evaluation
is sufficiently large such that the asymptotic relations
are "good, " i.e., that the Wronskian is unity (or k as
the case may be")

Prosser and Siedenharn22 have investigated the
properties of the shift and penetration factors. In
general the penetration factor is a monotonically de-
creasing function of g and l, a monotonically increasing
function of p and hence energy. The shift function is a
monotonically increasing function of q. Prosser and
Biedenharn2' show that for increasing p, S/p decreases
monotonically. Nq ——const exp( —iK~) (34)

To obtain the logarithmic derivative for a given

model, we must have a knowledge of the wave functions

based on the selection of this particular model. Consider
first the "strong-interaction" model. '7 Our objective is
to obtain the logarithmic derivative f~ based on the
potential of the strong-interaction model. In the strong-
intcl action model thc nucleon upon entcrlllg tlic
nucleus moves with a high kinetic energy and immedi-

ately forms a compound nucleus in which its motion is

completely integrated with the motion of all other nu-

cleons. The potential used to describe this interaction is

a real square well whose width is equal to the nuclear
radius. Since the incident nucleon immediately forms a
compound nucleus and does not return to the incident
channel, we can assume that the wave function is that
of an ingoing wave only, i.e,

Lol,axithmic Derivative

The only remaining quantity in Kq. (12) for T~ is the
logarithmic derivative, of which we need both the real
and imaginary parts. From the preceding discussion we
see that the shift factor S~ and the penetration factor I'~

are functions of the wave number k, the channel radius

E, and the angular momentum /. The logarithmic
derivative fg ls expressed ln terms of tlM wave functions
describing the nucleon-nucleus interaction, the wave
functions being solutions of the wave equation into
which is inserted the nuclear potential. Hence the f~
depends upon the nuclear potential chosen to represent
the interaction. In other words, the quantity f~ must be
specified by a given nuclear model.

The subject of nuclear models has received wide-

spread attention in recent years. Since we do not have
a unified description of the atomic nucleus, we are
forced to adopt diGerent nuclear models, each of which
has a speci6c field of applicability and which is capable
of reproducing results in agreement with experiment
only in limited areas. The subject of nuclear models
has been reviewed by Eisenbud and Wigner, 28 Hughes, "
Frisch, '5 and Moszkowski. '6 %e consider in detail two
specific models (potentials) for the evaluation of the
logarithmic derivative.

~ F. %. Prosser and L. C. Biedenharn, Phys. Rev. 109, 413
(1958)."L.Eisenbud and E. P. &igner, Nuclear Structure (Princeton
University Press, Princeton, ¹wJersey, 1958); EIamSook of
Physics, E. U. Condon and H. Odishaw, Editors (McGraw-Hill
Book Company, Inc. , New York, 1958).

24 D. J. Hughes, Neutron Cross Sections (Pergamon Press, ¹w
York, 1957).

2'O. R. Frisch, Progress in Nuclear Physics (Pergamon Press,
New York, 1957), Vol. 6."S. A. Moszkowski, Handbuch der Physik (Springer-Verlag,
Berlin, 1957), Vol. XXXIX.

where E is the wave number of the nucleon in the
interior region. Hence,

Ns r-a
(35)

The transmission coefficient for the strong-interaction
model can be obtained by substitution of Kq. (35) into

Kq. (12), the result being

(36)

such that

0,(a) =mM P(21+1)
SP+ (ER+E))~

(3"/)

For calculational purposes it is sometimes useful to
rewrite Kq. (36) for incident neutrons after introducing
the de6nitions

x= M, X=XX,
»'= k 'P(dG~/dr)'+ (dP~//dr)'7,

&i=f~P+&Pj ',

from which it follows that Sg——Mvg. It follows that the
numerator of Kq. (36) can be written as 4xXwq, and
further algebraic manipulation reduces the denominator
to X'+(2@X+x'v~')v~. According to Blatt and Weiss-

"So called because the nucleon-nucleus interaction is assumed
to be so strong that the compound nucleus is formed immediately,
with no possibility for return in the incident channel. This model
is also referred to as the "continuum" model or "black-nucleus"
model.

For /=0 neutrons, 50=0 and I'O=kR, hence

~,(n) =~X'&4k@/(R'+k)'j. (3g)
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kopf, '
Vo

where
E= [2ppp(E —V)/k']&. (46)

x2
Vy=

1+x

V2=
9+3x'+x4

6 /'6 3 go
vp' ——1——+( ——i, (40)

xp)
'

The expression for E can also be written

E= [k'—(2m V/i'p')]&, (47)

where k'= 2mB/k'. By denoting 2m/k' by uo'P and sub-
stituting the cloudy crystal-ball potential of Eq. (44)
into Eq. (47), we obtain

V3= v3 =1
225+45x'+6x4+ x'

21 45 (45 6q '
+ +f —-/.

x4 Lxp x)
K= [k'+ot p"U (1+ii')7&

If we let 0,0"U=o.o', this becomes

(48)

The asymptotic forms are

g2l+2

x' /'[(2/ 1) ' 7'
v,——

, v,™,(41)
[(2/ —1)!']'

where (2l—1) !!= (2/ —1) (2l—3) (2l—5). .. The asymp-
totic expressions are valid when x(&/. Lax and
Feshbach" have tabulated the functions v~ and v~'. The
wave number E of the neutrons inside the nuclear
surface is related to the wave number k through the
relationship

E= [k'+oo'(1+if') 7&.

The solution N~(r) [i.e., krR(r)7 is then

N&(r) =constkr j&(Kr),

whose derivative is

(49)

(50)

de~(r)/dr =const[E(kr) j&'(Er)+k j&(Er)], (51)

where the prime on the Bessel function denotes dif-
ferentiation with respect to ER. Then, by definition,

where

E= (Ep'+k')',

Ko'= (9pr/8) l(1/ro')

(42a)

(42b)
or

K(kR)j p'(KR)+kj p'(KR)
)=R

(kR) jp(ER)
(52)

at low energies k((E, and I'~ and Sg are both small in
comparison to ER. For these energies, Eq. (36) can be
approximated as

Ej)'(ER)
f(=R +1.

jz(ER)
(53)

T,= (4k/E) v, .

The strong-interaction model produces no resonance
structure, nor does it even predict any "gross structure. "

Feshbach, Porter, and Weisskopf" investigated the
consequences of reducing the interaction between the
nucleon and the nucleus. The consequence of this
reduced interaction is that the incident nucleon can
exist in the interior of the nucleus for a 6nite time
without forming a compound nucleus. This necessitates
the inclusion of an absorption coefEcient /' in the
potential for the interaction. In the cloudy crystal-ball
model we replace the nucleus by a one-body potential
which is a complex well; thus,

f( 1+[Xj('——(X)/j((X)]. (54)

Equation (54) is the logarithmic derivative for the
cloudy crystal-ball potential. In order to apply this
result to a transmission coeKcient calculation (and
hence cross-section calculation), we must determine"
the real and imaginary parts of Eq. (54). To accomplish
this we use the trigonometric equivalence of j&(X) for
l=0 and then use recursion relations for j&(X) to
determine the results for arbitrary l Equation .(54) for
l=0 is

fo=1+LXjo'(X)/jo(X)].

If we denote ER by X, then Eq. (53) can be written

V=Uo(1+i/), 0&!-&1, (44) Substitution of jp(X)= (1/X) sinX into Eq. (55) yields

where Vo= —U for r&R, and t/'0=0 for r)R. Though
the potential of Eq. (44) does not reproduce the actual
rapid variations in the cross section, it does describe
the "gross structure" variations.

To obtain the logarithmic derivative for the cloudy
crystal-ball potential, we use the dehnition of the
logarithmic derivative [Eq. (35)] and the (interior)
wave function for the cloudy crystal-ball potential. The
interior solutions to the radial wave equation are"

)
X[(1/X) cosX—(1/X') sinX7

tfo=1+
i I(1/X) sinX

which simpli6es to

fp XcotX. —— (57)

To Gnd the real and imaginary parts of fp, we write
X=X&+iXp with the result that

R (r) =const j&(Kr), (45) f,= (Xg+iXp) cot(Xg+iXp). (58)

'8L. l. SchiG, Quantum Mechanic'cs (McGraw-Hill Book Com-
pany, Inc., New York, 1949).

If cot(X&+iXp) is expanded by making use of the
trigonometric identity for the sum of two angles, Eq.
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(58) becomes
1—i tanXg tanhX2

f0= (Xg+iX2)
tanX~+ tanhX2

(59)

By substituting sine-cosine ratios for the tangent
functions and rearranging, Eq. (59) becomes

where
f0=Re(fo)+i Im(fp), (60a)

«(fo) =

Im(fo) =

Xg cosX~ sinX~+X2 coshX2 sinhX2
(60b)

cosh 2X2—cos2Xi

X2 cosXy slnXy —Xy coshX2 sinhX2
(60c)

cosh 2X2—cos2Xy

We now use the recurrence relations of the spherical
Bessel functions to obtain Re(f~) and Im(f~) for arbi-
trary l. These are"

+j-()
ds

(61a)

(61b)

X'
(63)

but

hence
f~- =1+[Xj~~'(X)/j~~(X)],

fg=[X'/(l fg g)] l— — (64)

The real and imaginary parts of Eq. (64) can be
obtained by writing X as X&+iXu and f& as Re(f&)
+i Im(f&). After collecting real and imaginary parts,
multiplying the numerator and denominator by the
complex conjugate of the denominator, and again col-
lecting terms, one obtains

(XP—X22)[/ —Re(f~ i)]—2XxX2 Im(ft —i)
Re(f() =

D—«(f —)]'+[1m(f~- )]'
(65a)

[XP—X2'] Im(f~ q)+2XqX2[l —Re(f~ q)]
Im(f() =

D—Re(fi i)]'+[1m(f~—1)]'
(65b)

To obtain an asymptotic equation for f& we make use
of the asymptotic expression for j&,

'5

By using Eq. (61a) and solving for j&'(X), subsequent
substitution into Eq. (55) yields

f&
——[Xj~,(X)/j&(X)]—l. (62)

By using Eq. (61b), solving for j&(X) and substituting
into Eq. (62), the result after rearranging gives

j~(s) -+ (1/s) cos[s—(s./2) (l+1)], (66)

which. is equivalent to

j&(X)~ (1/X) sin[X —l(s/2)], (67)

which upon substitution into Eq. (54) yields

fi ~ X cot[X l(~—/2)] (68)

The logarithmic derivative for the cloud crystal-ball
potential is then given by Eqs. (65) in conjunction with
Eqs. (60).

If we write the potential of Eq. (44) in the form
V+iW, then the real part V of this complex potential
represents the refractive part of the optical model, and
the imaginary part 8' represents the absorbing part.
V and S"need not have the same functional dependence
upon either energy" or radial coordinate. s' The radial
dependence of V and 8' is expected to be of the same
form as the charge density distributions determined by
the Stanford workers, "namely, an approximately Bat
central region with an appreciable disuse surface. A
closed-form expression for the logarithmic derivative
for such a potential with a diffuse edge, "or perhaps
absorbing surface, " is not available, Logarithmic
derivatives for such potentials have been obtained only
by numerical iritegration of the radial wave equation.

The formation of the compound nucleus is given by
a weighted sum over the partial-wave transmission
coef5cients which are expressed in terms of the shift
factor, the penetration factor, and the real and imagi-
nary parts of the logarithmic derivative. For neutrons
the shift and penetration factors are expressible in
terms of Bessel functions and for charged particles in
terms of Coulomb wave functions. The logarithmic
derivative depends upon specific assumptions concern-
ing the potential function chosen to represent the
nucleon-nucleus interaction, In the preceding discussion
we have derived expressions for the logarithmic deriv-
ative based on two diGerent nuclear potentials: (1)
strong-interaction model (real square-well potential);
and (2) square-well complex potential. Logarithmic
derivatives for more recent modi6cations of the optical-
model potential are obtained by numerical integration
of the radial wave equation into which has been inserted
the assumed potential form with suitable parameters.
The complexity of the calculation of transmission coef-
6cients for all but the simplest cases necessarily restricts
the computation to electronic computer techniques.

~ Melkanoff, Moszkowski, Nodvik, and Saxon, Phys. Rev. 101,
507 (1956)."R.D. Woods. and D. S. Saxon, Phys. Rev. 95, 577 (1954}."R.Hofstadter, Ann. Rev. Nuclear Sci. 7, 231 (1957).

32Bjorklund, Fernbach, and Sherman, Phys. Rev. 101,- 1832
(1956); 109, 1295 (1958).
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where
F, =expL —2'(E/8, )j, (2a)

g= E2MsZe2R3~/k, (2b)

III. DECAY OF THE COMPOUND NUCLEUS

Particle Branching Ratio

A compound nucleus, once formed, must experience
de-excitation by at least one mode of decay. In the
present section we discuss the probability of particle
emission, leaving until later the problem of de-exci-
tation by gamma-ray emission.

Section II was concerned with the formation of the
compound system, i.e., the 0-, factor. In the preceding
section we have discussed in detail methods for evalu-
ating 0-, by erst determining the transmission coef-
ficients. The present section is concerned with the
factor G, (b), sometimes referred to as the "branching
ratio" for emission of particle b from the compound
nucleus. We consider the branching ratio for cases in
which the statistical modeP' for nuclear reactions is
applicable. G, (b) is the dimensionless probability that
the compound system c, once formed, decays by emis-
sion of particle b. This probability can be expressed as
the ratio of the relative probability of emission of b
divided by the sum of the emission probabilities of all
other possible processes. In this ratio the "probability"
need not be a true probability in the sense that the sum
of all possibilities must be unity. When expressed as a
ratio, these quantities need be proportional only to the
absolute probability. We can thus write G, (b) as

G, (b) =Fg/g, F,,
where Ii; is a function expressing the relative prob-
ability of emission of particle i. The problem is then
reduced to determining the functional form for Ii;.

One can approximate G, (b) by assuming that the
neutron F function Ii„ is unity, and the F function for
charged particles F,~ is the formula for the penetrability
of the potential barrier'4:

where Fp is the partial width for emission of particle b
into the specific channel P, and i denotes any possible
exit channel. Weisskopfa' has shown that the ratio
o.,(n)/p lt ' is independent of the channel o., and hence

with the result that

a.(~) a.(P)

I' X ' I'pAp2
(4a)

or

Fp a, (P)K '

1' o, (n) Xp'

kp'~. (P)

F k,'0, (u)

(4b)

(4c)

where k=1/K. We wish, however, to find G, (P) which
is simply a sum over the I' in the denominator of Eg.
(4c). Hence

I'p kp'o. (P) Qi(2l+1) Tie
G.(P) =

r p. k '0.(a) Q(„(2l+1)Tj
(5)

Equation (5) gives the branching ratio for decay by
particle b into the single channel P only. This equation
does, in fact, describe reactions which can proceed only
to a single level provided the reaction proceeds through
the intermediary of a compound state; in other words,
the mechanism of direct interactions is not included
within the framework of the theory. Hence, satisfactory
results using Zq. (5), cannot be expected for those cases
in which the direct-interaction process is a significant
contribution to the yield of the reaction. According to
Butler, ' it appears that this contribution is signi6cant
for those cases in which the reaction proceeds only to a
low-lying level of the residual nucleus.

To determine the branching ratio for decay by
particle b when several channels are open, we must
multiply by the density p of levels of the residual nucleus
into which the decay may proceed, the results being

y (X)=X ' arc cosX'*—(1—X)', (2c)

and 8, is the barrier height sZe'/E, E the total energy
in the center-of-mass system, M the reduced mass, R
the nuclear radius, and e the charge of the electron.
Equations (2) are valid only when the incident energy
is less than the Coulomb barrier height. We now under-
take the determination of a more realistic form for
these F functions.

The probability that the system will decay by one
specific channel, G, (P), where P denotes this channel,
is the ratio of the energy widths

"K. J. LeCouteur, Nuclear Reactions, P. M. Endt and M.
Demeur, editors (North-Holland Publishing Company, Amster-
dam; Interscience Publishers, Inc. , New York, 1959), Vol. I.

'4 H. A. Bethe, Revs. Modern Phys. 9, 166 (1937).

G.(b) =
kg(r, (b)px (Ei,'—Eg)dEp

(6)
t

&a'

k 'o, (n)px(E ' E)dE, —
0

"V.F. Weisskopf, Phys. Rev. 52, 295 (1937).

where E&' denotes the maximum energy with which
particle b may be emitted, and p& denotes the nuclear
level density of the residual nucleus Y at excitation
E '—E . For a nuclear reaction the maximum energy
Eq' of the emitted particle b is E,+Q,q, where E, is the
incident particle energy, and Q s is the Q value for the
(a,b) reaction. Since k'=2'/k', we obtain the func-
tional form for the quantity Ii:
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p
&a+Qar

E(E.+Q.«) =
4p

R~.(R)pv

X(E.+Q.b
—Es)dEb . (7)

residual nucleus with a given angular momentum J.
Bethe' calculated the probability that a nuclear level
has an angular momentum J to obtain

by virtue of the second equality in Kq. (5). In Kq. (g),
T (Eq) has been substituted for P ~(2l+1)T~(Eq).

Other than the a, (Eb) factor, the only unknown in-

gredient in the integral of Kq. (7) is the nuclear level
density p&. Many attempts have been made to calculate
the density of nuclear energy levels, '~ ' i.e., the number
of levels per unit energy about a given energy within a
particular nucleus. To discuss these in detail is beyond
the scope of this review.

The level density increases rapidly with excitation
energy and also with increasing mass number. a' The
density is quite small in the regions of the magic
numbers. Bethe" used a statistical approach to obtain
a crude method for calculating the nuclear level
spacing. By assuming that the nucleus is a Fermi gas
of A particles and calculating the "entropy, " Bethe
obtained for the nuclear level density

p(U)=~&2(0«U '"A «expLw(AU/io)«], (9a)

in which U is the excitation energy and 2 the mass
number. The quantity i o is a parameter given in terms
of the number of neutrons in the nucleus and a constant
C by the equation

10=LX/C]«.

The constant C is given by

(9b)

C= L2'"/9m] [mR'/5'] «, (9c)

where nz is the mass of the neutron, R the nuclear
radius, and 5 Planck's constant divided by 2m.

It is of interest in the theory of neutron radiative-
capture reactions to know the density of levels of the

'g H. A. Bethe, Phys. Rev. 50, 332 (1936}.
37 T. D. Newton, Can. J. Phys. 34, 804 (1956)."J.M. B. Lang and K. J. LeCouteur, Proc. Phys. Soc. (Lon-

don) A6?, 586 (1954).
3' C. Block, Phys. Rev. 93, 1094 (1954).

N. Rosenzweig, Phys. Rev. 108, 817 (1957).

In Kq. (7) Mb is the reduced mass, 5 is Planck's constant
divided by 2~, E& the energy of the exit particle b, and
o.(Eq) the cross section for formation of a compound
nucleus by particle b on the excited nucleus Y*, and

pi the nuclear level density of the residual nucleus Y*
at excitation (E +Q,q E«)—

A knowledge of the Ii functions completely specifies
G, (b). To determine these integrals, expressions for pr
and for a-, are required. The 0-, factor is determined as
described in Sec. II, namely, Kq. (2a). Input informa-
tion may be expressed either in terms of the 0., or in
terms of T~. For the case in which the input is in the
form of T&, one can rewrite Kq. (7) in the form

p
Eu+Qas

P(E,+Q,g) =m) T(Eg)pv(E, +Q, p Eg)dEg —(g)
0

p(U, J)=L~'2«/432]L5/log2]«
X (2J+1)i 0 'Xo 4exo, (10a)

where

with
Xo——m. LA U/i 0]« (10b)

i 0 =Lk'/2m]L9m A/SR']l. (10c)

Bethe" extended his original work in i937 by obtaining
an expression for the level density based on the assump-
tion that the energy U is related to the temperature 8 by

where e assumes diferent values for diGerent nuclear
models. For the Fermi-gas model m=2. For the liquid-
drop model, n = 7/3 at low excitation energies and 4 at
high excitations. By using the general power law LKq.
(11)]we have, after Bethe, "
p(U)= (2~n) «[a/U"+']+ ~"

Xexpfn/(e —1)a""U&" '&'"]. (12)

For the liquid-drop model U enters in the exponential
to the 4/7 power for low excitation and to the 43 power
at high excitation. Hence, the Fermi-gas model gives
a slower increase of level density than does the liquid-
drop model.

The exponential depends on U& for the Fermi-gas
model. If the coefficient can be considered constant,
then Kq. (12) can be written

p(U) =C expL2(aU)«], (13)

where a and C are constants which depend upon the
mass number of the residual nucleus. The constant a
can be deduced from the work of Newton":

a=0.062(j~+j„+1)A«, (14)

' A. G. W. Cameron, Can. J. Phys. 35, 666 (1957}.
4' Dostrovsky, Rabinowitz, and Bivins, Phys. Rev. 111, 1659

(1958); G. Igo and H. E. Wegner, Phys. Rev. 102, 1364 (1956}."R.K. Bullock and R. G. Moore ]r. (to be published}.

where j„and j„are appropriate averages of the total
angular momenta of the single-particle states lying
near the Fermi level of the gas. These quantities have
been tabulated by Cameron. 4' Much effort has been
given to the study of the constant a and its variation,
in particular, with the nuclear mass number. A summary
of the variety of a values which can be deduced from
the analysis of various reaction data can be found in the
work of Dostrovsky, Rabinowitz, and Bivins. 4' As yet
it is not clear exactly what values this parameter should
have. Preliminary analyses4' of (N,p) and (N,n) cross-
section data indicate that satisfactory fits to experi-
mental curves for some 15 reactions can be obtained if
one uses the a values reported by Blatt and Weisskopf, '
ignoring the odd-even character of the nucleus. How-
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2m„
p

A2 ~o
E„'0,(E„')pr(E„E„')dE„'. (16)—

At low incident energies ((~4 Mev) both compound
elastic scattering and inelastic scattering may take
place. Hence, for single neutron emission (i.e., F„),
E is equal to the incident neutron energy. If one
assumes that compound elastic scattering does not
contribute at reasonably high energies, then the neutron
P function need not be integrated from zero at E„at
high E„.If the neutrons are emitted with energy equal
to E„, then they have been (compound) elastically
scattered. If compound elastic scattering does not take
place, then the maximum energy with which the neu-
trons can be emitted is E„—Eo, where Eo is the energy
of the lowest excited state of the residual nucleus. At
high energies, however, this change in the upper limit
produces negligible effect upon a calculated cross
section with the result that it is permissible to integrate

ever, it appears43 that such an assumption for the
parameter C does not Qt experimental data. Preliminary
results" indicate that the C values reported by Blatt
and Weisskopf' are valid for odd-mass nuclei where as
those for even-mass nuclei are given by the equation

g Codd-odd Ceaen-odd Codd;even ~ce~en-ev en ~

It may be that satisfactory Gts to experimental data
could be obtained by including the odd-even character
of the nucleus in the exponent by introducing an ef-
fective excitation energy U' related to the actual
excitation energy U in the following way: U'= U—8,
where 8 depends upon the odd-even character of the
nucleus. "

Subsequent to Bethe's initial work, many attempts
have been made to deduce expressions for the nuclear
level density. Lang and LeCouteur" made a detailed
study of the statistical behavior of nuclear levels and
have calculated the level density of a Fermi gas. These
results agree with those of Bethe" at high excitation
but give a value somewhat lower than Bethe's at low
excitation. Block" has developed a theory of nuclear
level density which starts with the independent-
particle model and then includes the e6'ect of mutual
interactions. Block" includes symmetry-dependent
terms in the nuclear potential energy, in addition to

~ the central potential. Newton" and Rosenzweig' have
included the eGects of nuclear shell structure in the
level density.

From the foregoing we see that the cross section for
a neutron-induced reaction, for example, can be ex-
pressed as

0 (e,x) =0,(n) (F./g; F;), (15)

where the symbol i denotes any possible exit particle.
In general, i corresponds to e, p, and n. For i =p or n,
the F functions are given by Eq. (7). For neutron emis-
sion the F integrals assume the form

from zero to E at both low and high incident neutron
energies.

For the emission of two neutrons. (i.e., F2,), E, is
taken equal to the incident neutron energy less the
binding energy of a neutron in the target nucleus. In
expressing F2„ this way, we are assuming that if the
Qrst44 neutron is emitted with energy between zero and
E„(BE)—, then at least (BE) remains as excitation
energy in which case we assume that a second neutron
is emitted,

If F„(E„—Eo) is used as F, in Eq. (15), the result is
the statistical inelastic scattering cross section. If,
however, F PE (BE) j—is used as F„then the result
is the (e,2e) cross section. Since the residual nucleus
for the emission of the erst neutron must be highly
excited in order to emit a second neutron, the (e,2n)
reaction is a high threshold process. If we assume that
the (e,2e) reaction is basically a neutron inelastic
scattering problem and neglect the emission of charged
particles, then the (n, 2e) cross section can be greatly
simplified.

We consider the total (e,2e) cross section to be the
product of the cross section that one neutron is emitted
(i.e., the inelastic scattering cross section) times the
probability that a second neutron will be emitted:

0(e,2e)=0. 'B„,

where 8 denotes this probability that the second
neutron will be emitted. To And this probability we
use the assumption that if the residual nucleus after
emission of the erst neutron has excitation energy at
least as high as the neutron binding energy, then the
second neutron will be emitted. In other words, the
probability that the 6rst neutron has energy betmeen
zero and E (BE)„ is equival—ent to the probability
that a second neutron mill be emitted, Hence 8 has the
form

&~—(»)~

8„=
E„'0.,(E„')pv(E. )dE„'

(18)

E„'0,(E„')px(E. )dE„'.

In Eq. (18) E„ is the incident neutron energy, (BE)„
the neutron binding energy in the target nucleus, and
E„' the energy of the erst emitted neutron. The excita-
tation energy E, is given by

If we ignore the variation of o, (E„')with E„'and make
certain assumptions about the level density pY, the
integration of Eq. (18) can be carried out to obtain an
approximate expression for 0 (e,2N).

To determine a suitable form for the level density
pv(E, ), we make use of the definition of nuclear

44 The case in vrhich the two neutrons are emitted simultaneously
is very unlikely for incident energies less than 50 Mev.
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entropy S(E),
S(E)= lnp(E, ).

Since

(19a)

E,„E E, , it follows that

pv(E ) =pe(E E'—)=exp[S(E —E„')]. (20)

If we expand S(E„E„')—in a Taylor series, then

S(E. E')—=S(E ) E'[—8S/8E. ]z, =z . (21)

If we define the nuclear temperature 8(E) as

1/8 (E)=8S/8E, (22)
then

S(E„—E„')=S(E )—E '[1/8(E„)]. (23)

Upon substitution of Eq. (23) into Eq. (20), one obtains

pY(E, ) =exp(S(E„)—E„'[1/8(E„)]}. (24)

The factor depending upon E„only can be factored
out and included as part of the constant coeKcient
with the result that

pY(E,„)= const exp[—E„'/8(E„)]. (25)

By ignoring the energy variation of 0,(E„') with E '

and using Eq. (25), we can write the integrands of Eq.
(18) as'

const( E„'exp[—E„'/8(E )]}. (26)

By substituting the integrand in (26) into Eq. (18) and
using Eq. (17), one obtains

)&n—(&&)a
E„'exp[ —E„'/8 (E„)]dE„'

0

0 (e,2n) =0„„'
p&n

E„'exp[ —E„'/8(E„)]dE„'
J0

(27)

If E is large so that we can assume exp[—E„/8(E„)]
is negligibly small, then the denominator of Eq. (27)
can be approximated by 82(E„). Integration of the
numerator by parts gives

p &n—(&&)n
E„'exp[ —E„'/8(E„)]dE„'

=8'(E-)—(8'(E-)+8(E-)[E-—(&E)-]}

Xexp(L —E.+ (&E).]/8(E.)}. (28)

where the symbol AE„has been used for [E„—(BE) ].
An estimation of cr„„' then provides a method for the
estimation of the (ii,2N) cross section. For high energies
the 0„„'factor can be approximated by the cross section

Division of Eq. (28) by 8 (E„) and substitution into
Eq. (27) gives

hE„—AE„
0(1)2n) =a~~' 1—.1+ exp (29)

8(E„) 8(E„)

for the formation of the compound nucleus at the
incident neutron energy E„. Since the (n, 2e) is a high
threshold reaction, we can approximate the (e,2e)
cross section by

U= (A8'/f) 8, — (32)

where U is the excitation energy, A the mass number,
8 the nuclear temperature, and f a quantity with no
regular variation with either U or A; f has a mean
value of around 8 Mev.

Newton'~ has expressed the nuclear temperature in
terms of the excitation energy and also in terms of the
number of individual neutron and proton levels per
unit energy at the neutron Fermi energy that have a
given magnetic quantum number. %ritten in this form,

~ Note added iN proof.—Essentially three simplifying assump-
tions are conventionally made in estimating (n, 2e) cross sections:
(1) charged-particle emission is negligible; (2) the inelastic scat-
tering cross section is replaced by the cross section for compound
nucleus formation; and (3) the energy variation of the compound
nucleus cross section can be ignored in the high-energy region.
The author and his associates recently carried out extensive IBM
704 calculations of (n,2e) cross sections in an effort to examine
these assumptions quantitatively. For the results of these analyses,
see R. G. Moore, Jr., and R. E. Bullock (to be published).

~("»")=& (&) 1—
I

1+
I expl I

(3o)
8(E„) E 8(E„))

in which 0,(N) is the cross section for the formation of
the compound nucleus by neutrons of energy E, AE
is the incident energy above threshold, and 8(E ) is the
nuclear temperature of the target nucleus at E .

The quantity 8(E„)merits further consideration. The
fact that we draw these thermodynamic analogies
implicitly assumes that the compound nucleus can be
pictured as a gas which can be described by thermo-
dynamic methods. We assume that the formation of the
compound nucleus leaves this nucleus in a highly excited
state which we interpret as the property of heat. This
heating of the compound nucleus gives rise to the
emission of particles which may be described as
"evaporation. "The energy distribution of these emitted
particles follows the classical Maxwellian distribution
determined by the temperature 8(E„). If one makes
the assumption that the square of the temperature
8(E„) is proportional to the incident neutron energy,
then it can be shown' that the proportionality constant
is the reciprocal of the level density parameter a of
Eq. (13), i.e.,

(31)

Equation (31) is admittedly an oversimplification of
the true state of affairs. An attempt to determine a
more realistic relationship between. the. energy and the
nuclear temperature has been made by several workers.
In their studies of nuclear level density, Lang and
LeCouteur" deduced a relation between the energy and
the temperature expressed as a function of the mass
number. Their relationship can be written in the form
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the equation is somewhat complicated but can be
reduced. Following Newton, "we can express the tem-
perature by the approximate relationship

process the branching ratio becomes simply

G.(V) =I'./I', (34)

8—3.2 A &E&.

Experimental studies for determining nuclear tern-
peratures have been carried out by Gugelot" who
measured the energy spectra of neutrons emitted during

(p,e) reactions initiated by 16-Mev protons and by
Ashby, Catron, Newkirk, and Taylor. 4 Their results
indicate that for 14-Mev neutrons, nuclear tempera-
tures are of the order of 2 Mev for mass numbers of
around 60 and drop to less than 1.5 Mev for elements
with mass numbers around 200.

The accuracy of the results predicted on the basis of
Eq. (30) depends upon the energy range of the incident
neutrons. For the heavier elements (-A ~60) Eq. (30)
predicts a value of the (e,2n) cross section which is

expected to be slightly high from threshold to about 18
to 25 Mev. Measured (e,2N) cross-section curves reach
a maximum at an incident energy of around 20 Mev.
Equation (30), being exponential, never predicts this
maximum with the result that the theoretical estimate
becomes less accurate with increasing neutron energy.

Reactions of the form X(a,b)Y which proceed through
the formation of a compound nucleus can be described

by assuming that the cross section for the (a,b) reaction
can be separated into two factors, one of which describes
the formation of the compound nucleus; the other
describes its decay. The formation of the compound
nucleus has been previously described. The "branching
ratio" describes the decay of the compound nucleus and
is expressed as the ratio of the relative emission prob-
ability of particle b divided by the sum of the relative
emission probabihties of aH possible processes. These
relative probabilities are expressed as integrals over the
product of compound nucleus cross section times the
nuclear level density evaluated at a suitable excitation
energy, the most common expression for the level

density being a simple exponential with constant coef-
ficient whose exponent varies as the square root of the
excitation energy. By use of simplifying assumptions,
the (e,2e) cross section has been simpli6ed to an
exponential form expressed as a function of the nuclear
temperature.

De-excitation by Gamma-Ray Emission

In order to 6nd the cross section for the reaction (a,b)
which proceeds by decay into one specific channel, one
need only multiply the formation cross section 0., by
the branching ratio G, of Eq. (3). For the capture

4'P. C. Gugelot, Phys. Rev. 81, 51 (1951).
46Ashby, Catron, Newkirk, and Taylor, Phys. Rev. 111, 616

(1958).

where I is the nuclear spin. Then for /=0 particles, Eq.
(35) becomes

0 (e,y) = n.x'g
%-—~.)'+ (I'i2)'

(36)

Equation (36) is the familiar Breit-Wigner one-level

formula for orbital angular momentum zero."It gives
the variation of the cross section in the immediate
neighborhood of an isolated resonance as a function of
incident particle energy, and has been discussed by
many authors. 4' Its derivation is presented many places
in the literature. ' It is obtained as a special case of the

"For the ease of particles of arbitrary angular momentum, see
reference 9.

4' See, for example, G. Sreit, Phys. Rev. 69, 472 (1946'}:refer-
ences 1, 3, and 9.

where I'~ denotes the radiation width and I' the total
width. %e divide the discussion of the radiative capture
process into three sections: (a) resonance region; (b)
thermal region; and (c) continuum region. In order to
be specific, we restrict attention to the neutron capture
reaction.

The resonance region for neutron cross sections is not
a well-defined region of energies, but instead is charac-
terized by the nucleus under consideration. The reso-
nance region is defined as that region of neutron energies
for which the excitation function is characterized by the
appearance of resonance structure. For the lighter
nuclei this structure extends to higher energies than for
the heavy nuclei.

The region of energies for which the resonances are
strong and well separated is of the order of 1 ev to
approximately 10 kev. The light nuclei, however, still
show a pronounced resonance structure up into the Mev
region. For the moment we restrict attention to the
region of energies for which the resonances are "iso-
lated, " i.e., for which the level width is much less than
the level spacing.

To determine the capture cross section in the reso-
nance region, we simply multiply the resonance 0, of
Eq. (2e), Sec. II, by the G, (y) of Eq. (34),

4

F„F~
0 (e,y) = (2l+1)m4' - . (35)

(&.-~.)'+(Ii2)'
For cases in which the spins of the incident particle and
target nucleus are different from zero, Eq. (35) must be
reduced by a statistical factor which gives a measure
of the relative probability that the incident particle and
the target nucleus in an unpolarized beam have a given
channel spin. For spin ~ particles this statistical factor
is given by

1

g(i) =ll 1~
2&+»
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I"„)=I'„Ovg (40a)

I'„,=I'„0'(z)'n, . (40b)
49 D. J.Hughes and.J.A. Harvey, Brookhaven Natl. Laboratory

Rept. BNL-325 (1955); Suppl. No. 1 (1957).

formal theory due to signer and his collaborators' by
assuming that only one level contributes appreciably
to the expansion of the signer-Kisenbud many-level
formula for the derivative matrix. The %igner matrix
formulation for the theory of nuclear reactions has been
reviewed recently by Lane and Thomas. ' In Eq. (36)
the energies E and E„can be expressed either as
incident particle properties or as properties of the com-
pound nucleus. It is customary to consider E to be the
incident particle energy and E„ the incident particle
energy at resonance. It is equivalent to consider E„as
the excitation energy of the level in the compound
nucleus. The two representations are equivalent since
for the excitation energy representation both E„and
E„ include the binding energy of the particle, but the
diGerence E =E„remains unchanged.

The widths in Eq. (36) are functions of the incident
channel energy; the wavelength is also a function of this
incident particle energy. The parameter E„ is inde-
pendent of the incident channel energy only for 3=0
neutron resonances. It is customary, hovr ever, to
neglect the energy dependence of the radiation vridth"
and the quantity E, and to express the equation in a
slightly di8erent form such that the energy variation
of X and F„ is included in the equation which then
allows one to use constant values for X and I' .

In contrast to radiation vridths, neutron widths are
not relatively constant from level to level. Neutron
widths are appreciable only for small values of angular
momentum. For l ~3, neutron vridths are quite small,
and at lovr energies are negligibly small compared to
xM4atlon widths. Since

I „,= (4~/IC) (.,/2 )D, (37)

then when the level spacing is small (i.e., heavy nuclei),
the neutron widths are small; this observation is
supported by experimental evidence. 4' This equation
a'iso shows that the neutron width contains a factor
proportional to (8)& (through k). We can de6ne a
"reduced" neutron width I' ~' which is the vridth
evaluated at 1 ev by the relation

I'-~'=I'-~/F'(:) j' (3g)

which follows from the fact that the neutron width is
proportional to the square root of the neutron energy.
The neutron vridth can then be expressed as the product
of the reduced neutron vridth and the square root of the
neutron energy (in ev). For 1=0 neutrons, v~ ——1 Lsee
Eq. (40), Sec.IIj, hence Eq. {37)becomes

r„,=(4~/Z)(D~/2 ). (39)

Then Kq. (37) can be written

Since resonance is a low energy phenomenon, Eq. (37)
shovrs that k&&E.

Following Teichmann and Wigner, ~ one can express
the neutron width as

Fn)= 2kn&Q) p (41)

r =P/Tg. (45)

But the lifetime of the level is related to the width by

r.=a/1. , (46)

But I'=2mb/D with the result that

I'.=Ti(D/2s j,

(47)

(48)

vrhich expresses the relationship between the vridth and
the transmission coefficients which are energy dependent
quantities. For well-defined resonance levels, we require
r&&D vrith the consequence that the transmission coef-
6cient must be small for the resonance region.

We now return to the problem of reducing Kq. (36)
to a form in which I'„and lt are constants (in particular,
their values at resonance). To rewrite Eq. (36) in this
more convenient form, vre make use of the fact that the
neutron wavelength is inversely proportional to the
square root of the energy to vrrite

X=LE„/E ]&lN „, (49)

where X, is the neutron @wavelength evaluated at the
resonance energy E,. Then Eq. (36) becomes

-E„- rr,
0 (e,v) =ger lt,' — . (50)

-&- —(&-—& )'+(I'/2)'
60 T, TeichInann and K. P. %'igner, Phys. Rev. 87, 123 (1952}.

vrhere yE is related to the reduced neutron vridth by

~,R-~= (r„,o)~. (42)

Substitution of Kq. (42) into Eq. (41) yields

(43)

Combination of Eq. (43) with Eq. (37) gives a result
for the reduced neutron width in terms of the level
spacing D

r„,0=D~/~ZZ.

Since the neutron widths are functions of the neutron
energy and represent a measure of the probability of
decay of the compound nucleus by neutron emission,
it should be possible to express the neutron width in
terms of the transmission coeflj.cient T~. This is indeed.
the case.

If g denotes the lifetime of the state 0., then v. can
be expressed as the ratio of the period I' of motion of
the nucleons of the compound nucleus to the trans-
mission codBcient 1 q, which represents the fractional
number of successful attempts to escape from the
nucleus. Thus
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By virtue of the fact that the neutron width is propor-
tional to the square root of the neutron energy, F„can
be written

I'„=LE„/E„]iF„„, (51)

where F„„is the neutron width at resonance. Substi-
tution of Eq. (51) into Eq. (50) yields

r„„r,
o (n,y) =gv.X,'' E„(E„-E,) + (F/2)

(52)

In Eq. (52) all of the parameters are evaluated at
resonance and hence are constants; therefore, the only
way the incident neutron energy enters into Eq. (52)
is through the quantity E„.

It is also possible to express Eq. (36) in an alternate
form which is given in terms of the reduced neutron
width. Substitution of Eq. (38) into Eq. (36) yields

r„or,
o (n,y) =gv V (E„)&

(E.-E.)'+(F/2)'
(53)

One can also express the (n,y) cross section in terms of
the reduced width by use of Eq. (43) rather than Eq.
(38) for the neutron width. This reduces Eq. (36) to

r.or,
o.(n,y) =2' ltRg

(E-—E.)'+ (F/2)'
(55)

for an l=0 resonance. For arbitrary l the e& factor is
not unity, and the widths must be evaluated for the
given value of l. In the very low-energy resonance range
(of the order of a few ev) the total width is essentially
equal to the radiation width, and then Eq. (35) reduces
to

o (n,y) =4v M[F „/F,] (56)

at the resonance energy E =E„.From this relationship
one can estimate the ratio of neutron width to radiation
width from the maximum cross section.

It is possible to extend these resonance results to the
thermal region to deduce the energy variation of the
thermal-capture cross section. By thermal neutron
energies we mean that region for which the incident
neutrons have energies of the same order of magnitude
as the average kinetic energy of the atoms or molecules
of the surrounding medium. Since the average kinetic
energy of these atoms is determined by the temperature
of the medium, the range of neutron energies corre-
sponding to equilibrium with these surrounding mole-
cules is referred to as "thermal" energies. These energies
@re those below a few tenths of an electron volt.

This can be reduced further by combining the (E„)&
factor with the neutron wavelength. The result is

gal 5 r„or,
a(n, y) =

-(2m)'- (E.-E.)'+(F/2)'

The cross section for the radiative capture process in
this energy range can be described by a rather simple
relationship. Application of the Breit-Wigner equation
in the thermal region can be expected to be only quali-
tatively reliable since one must assume that the reso-
nance energy is the resonance energy nearest to the
thermal region. In this case the factor (E —E„)' is
large and essentially constant. In fact, this term is so
large as to make the (F/2)' term negligible, hence, Eq.
(35) becomes

o.(n, y)=orle'(F F,/const). (57)

For extremely low energies the radiation width varies
quite slowly with energy, and it also can be assumed
constant:

o (n,y) = const%'F „.
We recall that I „is proportional to the neutron velocity
whereas X shows a 1/v (v being the incident neutron
velocity) dependence with the result that

o (n,y) = constL1/v],

which is the well-known "1/v law" for the neutron
radiative-capture cross section in the thermal region.
At room temperature, the thermal neutron energy
region is in the neighborhood of 0.0253 electron volts.
Cross sections for many elements at an incident neutron
energy of 0.0253 electron volts have been tabulated~'
and can be used to determine the proportionality
constant of Eq. (59),

o (n,y) = (2200/v)o (n,y) ~
o.oooo, (60)

in which e is in meters per second. A velocity of 2200
m/sec corresponds to an energy of 0.0253 ev. The deriva-
tion of Eq. (59) assumes that the radiation width is
essentially constant. If one does not make this assump-
tion, he may express the thermal radiative-capture cross
section in terms of the radiation width and the level
spacing D. In the denominator of Eq. (35), the term
(E„—E„) is of the order of the level spacing but is not
larger than D/2. We define the quantity 8&& by the
equation

(E.-E,
~

=D/2a. ,
-(61)

where E„ is now a thermal neutron energy. By sub-
stituting Eqs. (44) and (61) into Eq. (55) and taking
g=-,', one obtains

o.(n,y) = 4hoho(X„/K) (F,/D), (62)

since (E„—E„)'»(I'/2)' in the thermal region. Equation
(62) is an expression for the thermal neutron radiative-

'

capture cross section in which one does not assume the
radiation width to be energy independent.

As we have seen, in the low-energy region neutron
cross sections exhibit widely separated resonances
which become more closely spaced with increasing

"D. J. Hughes, Pire Neutron Physics (Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1953).
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energy until they finally form a smoothly varying
function of energy. The method described by Margolis"
provides a method for estimating neutron radiative-
capture cross sections which represent an average over
resonances in the low-energy region and which. provide
the actual cross sections in the smoothly varying region.
The branching ratio for gamma-ray emission is, accord-
ing to Eq. (34), the ratio of radiation width to total
width evaluated at a suitable energy. The cross section
that the compound nucleus state J will decay by emis-
sion of a gamma ray is given by the product of the a.,
of Eq. (2b) of Sec. II and the appropriate G.(7):

o(e,p) =~it'(2l+ I)T,(E)
X

l (ljm&m l
Jm) l'(F,~/F ), (63)

one obtains

e,)~(2J+I)F,~
o(e,y)= P Tg(E) P

2(2i+ 1) ~o ~=o F~
(68)

o(e,y) = P T,(E)
2(2i+1) &-o

If we neglect the emission of charge particles (because
of the Coulomb barrier), then the total width can be
expressed as the sum of the neutron width and the
radiation width. Substitution of this sum for the total
width with subsequent division of both numerator and
denominator by the neutron width yields

e;(~(2J+1)
XQ, (69).~ 1+ l F„~(E)/F,~(B+E)j'

where (ljmpn; l
Jtn) is the Clebsch-Gordan coei5cient. "

If the s axis is taken along the direction of the incident
particle, then m~ is zero and m=m, . Then the Clebsch-
Gordan coeScient can be reduced to yield where the functional dependence of the widths is now

indicated. Margolis" has shown that the ratio
o (n,y) =m V(21+I)T((E) F~~(B+E)/F~~(B) can be expressed in terms of the

X
l (1 jul J~) l2(F J'/F&). (64) nuclear level spacing D and the level density p by the

relationship

F,~(B+E) 1 D~(B+E)

Fv'(B) f~r(E) D'(B)

The radiative-capture cross section for unpolarized
neutrons of any value of I is obtained by summing over
J and 3 and averaging over j and m. All terms in the j
summation are not allowed. Certain terms are elimi-
nated by selection rules. This can be included in the where the function f~r(E) is given by
summation over j by use of the symbol e,&J defined by

(70)

IJ—ll ~j=lJ+ll forj=j+
1i I

J ll =j ~
I
J+ll for j=only one of j+

=0; otherwise.

Then Eq. (64) becomes

f~r(E) =
e'~'+'p(B e)do—

c' '+'p(B+E o)dc—
(71)

(N,~)= gpss(2i+I) I T,(E)
2J+1 ~ t z

X l (lj0ml Jm) l'e, &~(F ~/F~) (65).
Since~

where B is the neutron binding energy, D~(E) is the
spacing of levels of the compound nucleus of spin J and
given parity at excitation E, p(E) is the nuclear level
density at excitation E, and 26I is the multipole type
of the radiation in the gamma decay of the compound
nucleus. Since l Eq. (48)j

then

2J+1
Pl(ljoml Jm) l'=

nl 2l+1
(66)

F„(E)= l T,(E)D~(B+E)1/2,

Eq. (70) becomes

(72)

00 00 . JI J
o(~,~) = g g (2J+I)~VT,(E)

2j+1 i-o z~ pJ
(67)

F„~(E) D'(B)
T((E)f~r(E)

F,~(B+E) 2~F„~(B)
(73)

The T&(E) are not functions of J and hence can be Substitution of Eq. (73) into Eq. (69) and summation
removed from the J summation. Replacing j by i + —„over all exit neutrons yields

7l A, e,('(2J+ 1)
o(~,v)= . Z Ti(E) Z

2(2i+1) &=& &-0 1+gzfsr(E)gi P~ &i~&' T& (E—En)-

"B.Margolis, Phys. Rev. 88, 327 (1952).
~ W. Hauser aIId H. Feshbach, Phys. Rev. 87, 366 (1958).

(74)
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E„ is the energy of the eth excited state, and $z is

defined by
(75)t.=D'(B)/2 F,'(B).

The quantity l' denotes the angular momentum of the

emitted neutrons. The sum over /' includes only those

terms for which the parity of the system is conserved.

If the parity of the ground state and that of the eth
excited state are opposite, then only odd l' values

appear, wheras if these parities are the same, only even
/' values appear.

Equation (74) is the result for the neutron-capture
cross section for intermediate and heavy nuclei for
energies in the range 1 kev to several Mev. Several
approximations'4 to this equation can be made resulting
in more simplified expressions for the capture cross
section. If one assumes that fez is unity (which is
equivalent to saying that B+E=B), then Eq. (74)
becomes

7rX' ~ ~ L2~F,~(B)/D~(B) je,(~(2J+1)
(~,v)= . 2 T(E) Z (76)

2(2i+1) &=0 &~ L2n F~~(B)/D~(B) j+P~ P ej 't~T~ (E E„)—
after replacing PJ by its equivalent in terms of the width and spacing. If no inelastic scattering is present (i.e.,
E„=O), then Eq. (76) reduces to

~V 2~F (B) '
g, ,~(2J+1)(,~)= . Z T(E) Z

2(2~+1)ID(.B) ~=0 J=o

L2~Fv(B)/D(B) j+ 2 ~,~'Ti (E)
l'=0

(77)

~X2-2~F, (B)-
0 (e,y) =

2 D(B)
00 00 (2J+1)
Z T~(E) Z
i=o z=o L2~F, (B)/D(B)]+Tg(E)

The summation over J extends over the values

(78)

in which we have now assumed that both D and F~ are
independent of J, and hence can be removed from the
summation over J. For target nuclei with i=o, since
J and parity must be conserved, 1=t', and all the 6j)
are either zero or one but not two, thus Eq. (77) further
reduces to

It may be worthwhile to recapitulate the assumptions
involved in the derivation of Eq. (82):

(1) The compound nucleus is formed, and no con-
tribution from a direct process is present.

(2) The emission of charged particles is negligible.

(3) The incident energy is small compared to the
neutron binding energy.

(4) No inelastic scattering is present.

(5) The level spacing and the radiation width are
both independent of J.

(6) The target nucleus has spin zero.

~+i, 1+7 1,", — (79)
Summary

and for i equal zero, this becomes

thus

(80)

a(e,y) =~V

54 L. Dresner, Nuclear Sci. and Eng. 1, 103 (1956).

Qg(2J+1) = (2Jy+1)+ (2%+1)=2(21+1). (81)

With this result, Eq (78) becomes

2nF, (B) ~ . (2l+1)T((E)

D(B) —L2~F, (B)/D(B)1+T~(E)

(82)

The branching ratio for gamma-ray emission is given

by the ratio of radiation width to total width. The
radiative-capture cross section in the resonance region
is obtained by multiplying this branching ratio by the
resonance compound-nucleus cross section. The result
is the well-known Breit-Wigner equation, which is used
to demonstrate that the capture cross section in the
thermal region is inversely proportional to the neutron

velocity. With increasing energy the resonances gradu-

ally become wider until they form a continuum. The
capture cross section in this region has been obtained
in a general form and reduced by means of simplifying

assumptions.


