
;V. :agneto. ~yi roi ynamic-. ;..ypersonic .&, .ow in t.xe
Quasi-:4'ew tonian Approximation'

RUDor, z X. MxvzR

Space Technology Laboratories, Inc , Los. Angeks 45, California

L DTTRODUCTION

HK hypersonic Qow past a, body of revolution at
zero angle of attack is considered, in the case

where a magnetic held is present. The gas ahead of the
shock front (Fig. 1) is cold, and therefore nonconduct-
ing. Inside the shock layer, thermodynamic equilibrium
is assumed, and the gas is at least partially ionized. A.

magnetic field is applied, which is rotationally sym-
metric with respect to the axis of symmetry of the body.
Only thc lnvlscld Qow outside thc boundRry lRycl ls
considered.

Previous analyses of the inviscid Qow were concerned
with the local behavior near the axis of symmetry, and
made usc of cxpanslolis VRlld ln this nclglibolliood
However, in some applications, a knowledge of the
magnetohydrodynamic Qow in the large is required.
This ls ncccssRry for lnstRIlcc foI' the determination
of the magnetic drag of the body.

Here the Qow is considered by means of the ¹w-
tonian approximation (or rather the "Newtonian-plus-
centrifugal'" approximation) famihar from hypersonic
aerodynamic theory. The theory is developed in detail
for the steady Qow about a body of revolution. No appli-
cations Rrc glvcn.

In the case of steady Qow of an inviscid gas, for which
radiation and heat conduction can be neglected, the
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cquRtlons of 1Tlagnctohydrodynamlcs Rrc

VXH=j

vxm=o

v 8=0
V' (pu)=0

pDu/Dt= —VP+j&$ (5)

p(D/Dt) (h+x2N') =j E.

They are supplemented by constitutive equations which
usually assume the form

S=pH

j=o (E+u&(8)

together with the caloric equation of state h=h(p, p)
and an expression for the conductivity o=a(h, p). In
these equations, the electromagnetic quantities 8, 0, E,
and p have their usual. meaning, j is the current density,
o. the (scalar) conductivity„u the velocity, p the density,
p the pressure, and h the enthalpy. The electric Geld
strength E in these equations is the one observed in thc
stationary frame.

A recent discussion of the energy equation in mag-
netohydrodynamics LEq. (6)] has been given by Chu. '
In formulating it, the Joule heating j'/o must be taken
into account. In many problems which are time inde-
pendent and which exhibit certain symmetries, E can
be shown to vanish identically. In particular, this is the
case for rotationally symmetric problems, such as the
magnetohydrodynamic Qow about a symmetric body
at zero angle of attack, provided that no electric-
potential difference is impressed on the bounda, ries. In
these cases, it follows from Eq. (6) that the total
cnthalpy is conserved along streamlines, just as in the
ordinary gasdynamics of an inviscid fluid. The Joule
heating is then just equal to the work done against the

- magnetic 6cld.
The permeability p can be replaced in Rll cases of

interest here by the permeability of vacuum. The con-
ductivity generally depends very strongly on the tem-
perature, and —to a lesser degree —on the density. 'The
strong temperature dependence is particularly pro-
nounced in cases in which the gas is only weakly
ionized. If the degree of ionization is of the order of 1'Po
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or higher, the conductivity very nearly satisfies Spitzer's
equation' derived for a fully ionized gas and increases
approximately as the ~ power of the temperature. A
more complicated temperature dependence must be
expected, however, in the case of an incomplete ioniza-
tion of a multiply ionizable gas.

The simple form of Ohm's law represented by Eq. (8)
is valid only in the limit of weak fields. In particular,
if the magnetic field strength is such that the Larmor
frequency of the electrons becomes comparable with or
larger than their collision frequency, this equation does
not apply. A more generally valid expression has been
derived by Schluter. ' For the case of weakly ionized
gases, Kemp and Petschek' indicate that two new
eGects arise, namely, a Hall current and an "ion slip. "

The set of equations given in the foregoing is mathe-
matically complete. It is not necessary to include here
the expression for the net charge density as the diver-
gence of the dielectric displacement, because the net
charge can be shown to have a negligible effect in situa-
tions described by one-Quid magnetohydrodynamics. '

In the equations governing the motion of the gas
inside the shock layer, the derivatives with respect to
the azimuth q vanish by reason of symmetry.
Furthermore,

some 6xed point inside the shock layer. Similarly, Bp
and Ep are a characteristic Qux density and a charac-
teristic length of the problem. The free-stream velocity
is designated by e„, and the free-stream density by p„.
Similarly, the coordinates are made dimensionless by
dividing through by Ep.

As preparation for the limiting process implied in the
Newtonian approximation, curvilinear coordinates x
and y are introduced. The quantity y is taken propor-
tional to the Stokes stream function and is defined such
that the mass-Qow rate through the inside of a circle
concentric with the s axis and passing through the point
(r,s) equals 2syp„u„E0' Ahea. d of the shock, y is con-
stant on the surface of circular cylinders of radius (2y) &.

The quantity x is taken constant on orthogonals to the
surfaces of constant y. The orthogonals are parame-
terized by means of the (dimensionless) arc length
measured along the body (Fig. 1).

Lame's scale factors k„k„,k„are introduced for the
curvilinear coordinate system, defined in such a manner
that kgx is the element of (dimensionless) arc length
perpendicular to the surfaces of constant x, and simi-
larly for k„and k„. Clearly,

(9a) and, from continuity LEq. (4)j,
B9,=0,

N„=O,

jV„=jV,= jV =0

(9b)

(9c)

(9cl)

k =(p /po)(rpu) '.

An expression for k, is not required.
From Eqs. (1) and (7) follows

where the subscripts indicate the components in cylin-
drical coordinates. The postulate of symmetry expressed
by these equations is justified by showing that they
satisfy Eqs. (1)-(8) and the boundary conditions of the
problem. Equation (9a) means that the current flows in
circular loops about the s axis. Equation (9b) follows
from it by an application of Stokes' theorem to Eqs. (1)
and (7). Furthermore, it follows from Eq. (9a) that the
ponderomotive force j&(Bhas no q component and that
therefore the gas, which ahead of the shock has no azi-
mutha1. velocity component, never acquires one. Finally,
since j and u)($ are purely azimuthal, it follows that,
consistent with Kq. (8), E can have at most an azi-
muthal component. But even this component must
vanish, as follows from applying Eq. (2).

It is convenient here to introduce a slight change in
nomenclature and to put SBp for the magnetic Qux

density, jp„u„'/B&0 for the current density, uu„ for
the velocity, ppo for the density, xspp„uJ for the pres-
sure, —,'hN„' for the enthalpy, and 00p for the conduc-
tivity, where 8, j, u, p, P, k, and &r are dimensionless
ratios. pp and Op are the density and conductivity at

6 L. Spitzer and R. Harm, Phys. Rev. S9, 977 (1953).
~ A. Schliiter, Z. Naturforschg. Sa, 72 (1950); 6a 73 (1951).8¹H. Kemp and H. E. Petschek, J.'Fluid'-Mech. 4, 553

(1958).
9 W. M. Elsasser, Revs. Modern Phys. 28, 135 (1956).

B B pteloo p—(kuBu) —(k&.) =j.
k,k„Bx By Bp'

where B and B~ are the components of 8 in the direc-
tion of the streamlines and perpendicular thereto. It is
convenient to introduce

i=j„(rpu) '(I./po)-
which is, except for a constant factor, the current Qow-
ing through a rectangular area, with one side being of
unit length along 'the streamline and the other side
corresponding to a unit increment of mass-Qow rate. We
also define the parameter

Q =0 0Bp'Eo/ppu

which is a measure for the ratio of ponderomotive to
inertial forces inside the shock layer, "and the magnetic
Reynolds number

E~=Q~Ep0 pP.

Consequently,

(a/ax) (k„B„) (8/By) (k&,)—
=~k.L(u-/I o)(&-/Q) j (1O)

'0 Since the velocity in the shock layer behind an oblique shock
in general is of the order of I .
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Equation (3), if expressed in the curvilinear coordi-
nates, yields

(8/Bx) (rk„B )+ (8/By) (rk,B„)=0. (11)

From Eq. (5) follows

pu(8N/Bx)+ P—(BP/Bx)(p /po)7+k, iB„plr=0 (12)

for the direction of increasing x, and

(I/R) ,'[(BP—/B—y)rj+iB,r =0 (13)

for the direction of increasing y, where R=R(x,y) is the
dimensionless radius of curvature of the streamlines.
The sign of E is chosen such that E. taken on the surface
of the body is positive if the body is convex.

For Gnite conductivity, the Rankine-Hugoniot equa-
tions of conservation of mass, momentum, and energy
across the shock are not aGected by the presence of the
magnetic Geld. In particular, the total enthalpy is con-
served, and, therefore, from Eq. (6), with E=O, there
is for any point in the region between the shock and
the body,

ture of the body. " With p„/pp~0, k ~ 1, r(x,y)
—+ r(x), it follows from Eq. (10) that B, is independent
of y, B,=B,(x). Similarly, from Eq (11), B„=B„(x).
The magnetic 6eld is seen to be continuous across the
shock layer in this approximation. Upon elimination of
the current density, Eqs. (12), (13), and (15) result in

8N/Ox+ QB„'(x)(0/p) =0, (16)
and

L /R(*)7-&L (*)/27(~p/»»
+QB.(x)B„(x)(0/p) =0. (17)

Together with Eq. (14), which is unchanged, and the
caloric equation of state, the last two equations form a
system of equations sufhcient for the determination of
u, P, and p. B, and B„are determined by the currents
external to the Qow field.

The equations apply in the region between the body
(y=0) and the shock Ly=r'(x)/27. There are two
boundary conditions, namely,

I= cosh at y= r'(x)/2,

&+I'=+1, (14) from conservation of the tangential component of the
momentum across the shock, and

where use has been made of the hyp'ersonic approxima-
tion, namely, that the enthalpy of the free stream is
negligible compared with its kinetic energy.

Finally, Eq. (8) needs to be considered, resulting in
the relation

ipr =QoB„. . (15)

III. QUASI-NEWTONIAN APPROXIMATION

This approximation consists in assuming that the
density at any point inside the shock layer is very 1arge
compared with the free-stream density. "'" In the
case of air, and assuming that the component of the
free-stream velocity perpendicular to the shock is hyper-
sonic, this ratio actually is roughly between ten and
eighteen for points directly behind the shock. The
Newtonian approximation can be regarded, for instance,
as the limit in which the dissociation energy per mole-
cule is inGnite compared with the product of the tem-
perature and Boltzmann's constant, " but of the same
order as the kinetic energy of the free stream.

As a consequence, the shock-layer thickness tends to
zero and R(x,y) ~R(x), which is the radius of curva-

» M. J. Lighthill, J. Fluid Mech. 2, 1 (1957).
12 W. D. Hayes and R. F. Probstein, Hypersonic I'/om Theory

(Academic Press, Inc. , Nevr York, 1959).
~' The latter ratio is large because of the much greater number

of translational states of the dissociated gas, compared with the
molecular species.

p= 2 sin'X at y= r'(x)/2,

from the hypersonic approximation to the conservation
of the normal component of momentum. The angle
included between the s axis and the shock (which in the
Newtonian approximation is replaced by the angle
between s axis and body) is designated by X=l%.(x).

The application of these results 'is particularly simple
in the case of a cone at zero angle of attack. If the mag-
netic field on the surface is given by

B~=x ' cosP; 8~=x ~ s111P (18)

(where P is a given constant characterizing the direction
of the magnetic Geld on the surface of the cone), a
similarity solution exists, since the expressions

f'23', & (2P
e=e( —csc% i; P=P) —csc9, i;)'

(2y
p=pi —csc'X

) (19)
&x'

satisfy all equations identically. This is the case even if
the conductivity and enthalpy are arbitrary functions
of the pressure and density.

' In the experiments reported by R. W. Ziemer and W. B.Bush
)Phys. Rev. Letters 1, 58 (1958)j, Q is very large, and the theory
cannot be expected to apply.
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DISCUSSION

Session Reporter:

A. R. Kantrowitz, Avco-Everett Research Laboratory, Ev-
erett, Massachusetts: I might just point out that the last prob-
lem—the conical problem in question —was done by one of
Sedov's students in 1957. This has been published.

R. X. Meyer: In the present case the conductivity is finite
and can even be temperature dependent. As I remember, the
paper you are referring to assumes a constant conductivity.

H. E. Petschek, Avco-Everett Eesearch Laboratory, Ev-
erett, 3Assachusetts: That paper assumes an infinite con-
ductivity.

R. X. Meyer: Yes, infinite. It is interesting, however, that
the present solution has conical symmetry even in the case of
variable conductivity.

P. S. Lykoudis, Purdue University, Lafayette, Indiana: In
your solution did you find that even with the existence of
the magnetic field you obtained conical flowsP

R. X. Meyer: Yes.
P. S. Lykoudis: Have you solved the problem of how the

shock wave is distorted P

R. X. Meyer: The shock wave remains conical. If the mag-
netic field has the special distribution stated in the paper,
there does not appear a characteristic length in the problem.
While I had not said it explicitly, the derivation assumes that

N. H. KEMP

the magnetic Reynolds number referred to a typical body
length is of order one. This is the actual situation we have in
our experiments. But if one refers the magnetic Reynolds num-
ber to the shock layer thickness, then in the Newtonian limit,
this magnetic Reynolds number becomes very small. Thus, it
essentially drops out of the problem and this is the reason why
there are no characteristic lengths left even in the case of finite
conductivity.

P. S. Lykoudis: One of my students is considering the same
problem but without preservation of the conical properties.
The approach is the following: First of all, it seems from
previous work that the pressure distribution does not change
appreciably. We may assume a Newtonian pressure distribu-
tion. If you do so, then the differential equation of motion
which you can write along a streamline shows you that the
shock wave curves away. Unfortunately, we have not ex-
tensive experimental data to see to what degree this is true.
Nevertheless, from the limited information that was given in
an article by Dr. Kantrowitz, ' we see that this is the case since

you would expect the flow to decelerate more and more and
you need more area for the fluid to go through.

a A. R. Kantrowitz, Astronautics 3, 18 (1958).


