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1. INTRODUCTION

ONSIDER an electron trap in a solid with two
levels, % (upper) and g (ground). A fundamental
question is: how does an electron transition affect the
normal vibrational modes of the crystal? The answer
so far has been obtained either with the use of a phe-
nomenological macroscopic theory, or by the use of
configurational coordinate curves.

The phenomenological theory, due to Fréhlich (F1,*
F2, and H4; also Born and Huang, B2, p. 82), ignores
details of the lattice structure. In a polar crystal
Frohlich assumes that the forces on the ions, as well
as the polarization, depend exclusively on the macro-
scopic electric field and relative ionic displacements
at the point in question. This model leads to pure
transverse and longitudinal modes. It is only true for
the longest “optical” waves in which the positive and
negative ions vibrate 180° out of phase. This theory
does not account for the change in the character of the
normal mode with decreasing wavelength. In NaCl the
longitudinal optical branch in certain directions has a
frequency drop of 57%, and the shortest waves are
pure acoustical, in which the ions vibrate in phase
(M3). Frohlich’s model is useful in the theory of
reststrahlen where one deals with electromagnetic
radiations whose wavelength is large compared to the
inter-ionic distances, but this approach is questionable
for phenomena which depend critically on short range
effects.

The configurational coordinate model assumes that
a very small number of local modes surround a point
imperfection. This approach is supported by recent
calculations. (See M2 and references therein.) One
would expect the local modes to have frequencies-in the
gap between the acoustical and optical branches. This
suggests that their frequency spread may be small. We
refer to this model by the letters LM. It is assumed
that there are one or several “effective” frequencies
associated with the local modes. The extreme situation
where there is only one mode is referred to by the letters
CC (configuration coordinate, D1). The LM models
cannot give a completely correct picture since long
range effects must exist in polar solids. The Frohlich
model cannot either, since it ignores local lattice
distortions.

One of the most important effects of the electron-
phonon interaction is the broadening of optical absorp-
tion lines. Studies of these phenomena will give in-
formation regarding the effects of electronic transitions
on normal modes.

In general, rigorous quantum mechanics has been
used on this problem when the phenomenological model
is employed. The original techniques required infinitely
small interaction between the trapped electron and the
modes. It, therefore, could not be used in the LM or
CC models.

While these developments were taking place, Williams

(W2), as well as Williams and Hebb (W3), developed

* Refer to items in the Bibliography at the end of the paper.
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an independent treatment which was applied to the CC
model. This approach makes a series of approximations
and is sometimes referred to as ‘“‘semiclassical.” A more
detailed justification of Williams’ method has been
made by Lax (L1), Klick (K2), and Dexter (D1). This
development shows that at very low temperatures the
shape of an absorption band should be Gaussian
(provided that the electronic transition does not induce
a frequency change in the CC mode). Further, the
position of maximum absorption is temperature
independent even if the frequency changes.

Since 1950 the rigorous quantum mechanical method
has been fully developed, and one can now apply it to
various LM models. Williams’ simpler approach is still
very useful, since it gives a vivid picture of the absorp-
tion process. However, it is beset by many approxi-
mations, and the final results do not always agree with
more rigorous calculations.

To summarize the development so far, we have
several models—phenomenological (Frohlich), local
modes, and configurational coordinate. We have two
means of calculating shapes of bands—Williams’, and
the rigorous quantum mechanical approach. For some
models the second method can be carried through in
detail. Most realistic ones, however, require Williams’
approach. A rather formal theory for all models has
been worked out by Kubo and Toyozawa (K6).

This paper attempts to synthesize the rigorous theory
and to apply it to various models. We start by examin-
ing the Hamiltonian to be used (Part I). Fortunately,
it can be written in a form that applies to all the models.
We next discuss the properties of these Hamiltonians
and point out the essential difference between phonon-
electron and photon-electron interactions. Only in
special types of solid state problems may they be
considered similar. At this stage, one can see why
multiphonon processes occur. Some of the results of
Part I are known, but their interrelations have not
been fully understood. This has led to appreciable
confusion. Some of the mathematical techniques are
those used by Born and Huang in connection with
another problem.

After this development, the photon absorption
problem is considered rigorously and in some detail
(Part II). The Hamiltonian developed permits a
unification of the field which is most desirable, since
experimental results are being obtained.

Applications of the theory are not considered because
the author does not trust the presently available data.
The absorption band associated with the F center in
KClI has been measured a great many times. It seems
to fulfill the requirement stated in the first paragraph.
Various laboratories, however, do not report the same
results. A typical set of half-width, H, measurements
are shown in Table L.}

At low temperatures H can be measured to about

1 Half-width is defined in Appendix I.
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TasLE I. T of KCI.

8 (°K) H (ev) Observer

28 0.19 Mollow (M10)

4 0.18 Russell and Klick (R1)

4 0.17 Burstein and Oberly (BS5)

5 0.168 Compton and Klick (C3)

5 0.17 Duerig and Markham (D2)

5 0.163 Markham and Konitzer (M4)
85 (App) 0.26 Molnar (M11)

0.23 Mollwo (M10)

87 0.243 Kanzaki (K1)

77 0.3 van Doorn and Haven (D3)
77 0.22 Russell and Klick (R1)

77 0.20 Burstein and Oberly (BS)

78 0.20 Duerig and Markham (D2)
78 0.193 Konitzer and Markham (K4)
77 0.196 Compton (C2)

five parts per thousand so that the variations cannot be
attributed to experimental error (M1). The author
doubts that the scatter is related to the sample purity,
and the temperature variation of H is too small to
explain the discrepancies. Experiments have shown
(K3) that, unless special care is taken, any values
between 0.19 ev and 0.25 ev can be obtained for H
(in KCl at 78°K). Improper quenching and very slight
exposure to light produce new bands, and H then
corresponds to a composite.

Although not comparing the results with experiment,
an attempt is made to present the argument in such a
manner that a comparison with data is readily possible.
Indeed, a comparison has been made with recent data
on the F center in KCl. The agreement on the whole
is satisfactory. It is hoped that in the next few years
sufficient experimental data will become available to
justify and amplify the theory presented here.

The first theory of the shape of an absorption band
in a solid is due to Smakula (S2), who assumed that a
trapped electron behaves like a damped oscillator in a
dielectric medium. Nothing in this theory explains the
temperature dependence of the damping term. The
first attempt to associate the width theoretically with
the thermal vibration was done independently by
Muto (M13), by Huang and Rhys (HS), and by Pekar
(P1) (also P2, 3, and 4). Huang-Rhys and Pekar used
Frohlich’s model and assumed that the electron
interacts only an infinitesimally small amount with all
the longitudinal optical modes. Thus they limited
themselves to first order terms in the various expansions,
as did Muto.

Pekar obtained two expressions for the shape; it
should be nonsymmetric at low temperatures but
Gaussian at high temperatures. He employed the
reststrahlen frequency combined with the Lyddane-
Sacks-Teller (LST) relation to determine the longi-
tudinal frequency (B2, p. 82-128). He also made a
comparison of his theory with Mollwo’s data (M10).

O’Rourke (O1) made a fundamental extension of the
previous calculations, eliminating the restriction that
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Fic. 1. Schematic diagram showing the effects of trapping an electron at an imperfection.

the electron-phonon interaction must be infinitely small.
His most general expressions are limited by the assump-
tion that electronic transitions do not cause frequency
changes. To use his expressions one must assume that a
single ‘“effective” vibrational frequency exists. His
results apply to the Frohlich Hamiltonian, the CC
model, as well as to an LM model, if a single effective
frequency exists. Pekar’s expansions may therefore be
combined with the CC or LM model to calculate the
shape rigorously at very low temperatures. We do this
and show that the shape is not the one predicted on the
basis of the Williams’ approximation. Present low-
temperature data indicate that the more rigorous
treatment is correct.

At about the same time, Lax (L2) developed some
completely general relations between the moment of
the distribution and the temperature. Meyer (M8 and
9) extended the development of Lax, giving a general
approach to the problem. This method is not limited to
Frohlich’s Hamiltonian which was employed by Meyer.
For the calculation to be valid, it is necessary to use an
orthogonal set of eigenfunctions. We show here that
this is true. Further, we indicate that Meyer omits
some important terms.

Meyer also made a serious attempt to analyze
Mollwo’s data by means of the new theories. His
results are most impressive and by themselves give a
good proof of the reliability of his calculation and a
validity of the LST relation. This is not confirmed by
more recent measurements (see Table I). The method
of analysis to be employed is of fundamental im-
portance. An alternate analysis of Mollwo’s data
indicates that the effective frequency is 3.2X 102 sec™!
for KCl. The LST relation gives 6.3X102 sec™!. This
difference suggests that Frohlich’s model does not
apply to the F center in KCl. Other analyses (R1, K4)

support this view. The means of analysis is the im-
portant difference between Meyer’s conclusion and
those obtained recently.

This field has been reviewed by Pekar (P3, P4), Lax
(L2), Meyer (M9), Klick and Schulman (K2a), and
Dexter (D1). Pekar’s reviews, though out of date, are
extremely important contributions to the field. Lax’s
review concerns itself primarily, though not entirely,
with Williams’ approximation. Meyer’s review is limited
to Frohlich’s model and omits some important de-
velopments made by Pekar. Klick and Schulman con-
sider only Williams’ approach. Dexter considered both
aspects of the problem, applying the quantum me-
chanical treatment to Frohlich’s model and Williams’
approximation to the CC model.

This paper concentrates on the pure quantum
mechanical approach and treats all models. Some
aspects of the problem are considered in greater detail
than has been done previously. These aspects are most
important since they can be checked experimentally.

The theory is not developed in full; instead, results
are quoted from the recent book of Born and Huang
(B2), which is cited by the letter B. Those parts of the
theory which have not been presented in book or
review article form are more fully discussed. Although
the theory applies to any imperfection with two or
more bound states, the development is closely related
to the F center, since this has been studied in greatest
detail.

Part I. The Hamiltonian

2. PHYSICAL CONCEPTS INVOLVED IN ELECTRON-
PHONON INTERACTIONS

The trapping of an electron at a site has three effects.
These can be intuitively understood by means of Fig. 1,
which is a schematic representation of the nuclei
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(shielded by the inner electrons) for a one-dimensional
polar crystal.

The nuclei of the solid are assumed to be initially
distributed uniformly. When an electron is trapped
nearby (to the left of the diagram) the following effects
occur.

(1) The electron induces a force on the nuclei,
causing a nonuniform shift of the rest positions, as
indicated by the arrows. This action is very much like
a compression (or expansion) of a spring and leads to
the storing of energy.

(2) The forces between the nuclei are slightly
modified, leading to a shift in the angular frequencies
of the lattice, Aw. At absolute zero the probable position
of an ion is given by a Gaussian curve if an Einsteinian
model is used (no coupling between ions). The trapping
causes a broadening or narrowing of the distribution.
The Einsteinian solid is used here only to illustrate the
effect.

(3) Finally, thereis a third effect similar to a photon-
electron interaction—the electron’s self-energy. The
electrons and nuclei readjust their probabledistributions
so that the total energy is at a minimum. This effect
may be visualized by means of time dependent pertur-
bation theory leading to electron-phonon transitions,
or by time independent perturbation theory (or even
variational methods) leading to wave functions which
are no longer single products of electronic and nuclear
wave functions. This is referred to as the electron-
nuclear correlation.

These effects also occur when an electron redistributes
itself, i.e., acquires a new wave function by jumping
from one bound state to another, or by transitions to
the conduction band. Item (3) is similar to phenomena
which occur in electrodynamics, while (1) and (2) arise
in systems made of light and heavy particles. The
relative importance of these effects depends on the
forces within the solid. In many solids, effects (1) and
(2) are so small that phonon-electron interaction
problems resemble problems in electrodynamics. This
is true in metals and in some semiconductors. In
general, the phonon-electron problem has a different
character because of effects (1) and (2). Our interest
here is the difference between phonon-electron and
photon-electron interactions; hence, effect (3) is not
considered in detail. Usually the effects are considered
independently.

Treatments of the correlation problem appear several
places and take various forms. Born and Huang (B,
p. 166) considered it briefly in a general manner, while
Haken (H1) studied its effect in a special one-
dimensional model.

Simpson (S3) and Pekar (P3) considered effect (1)
in their calculations on the F center. Williams (W2)
in an ambitious and detailed study calculated the
displacements which occur when a TI* ion replaces a K+
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ion in a KCI lattice. Williams finds a change in the
second derivative of his CC plots which is related to Aw.
Klick and Schulman (K2a) have attempted to compute
Aw from experimental data.

The idea of a large frequency shift was invoked by
Seitz (S1) to explain the observations of Dutton and
Maurer (D4). They measured a thermal activation
energy for the V, band in KBr of 0.23 ev compared to
an optical activation energy of 3.0 ev. These ideas have
some theoretical difficulties. A similar problem exists
for the F’ center whose optical activation energy in
KBris 1.3 ev compared to a thermal activation energy
of 0.29 ev (D4).

A problem which involves all three effects is an
electron at the bottom of the conduction band in a
polar solid. The electron interacts strongly with the
surrounding ions. Due to the large difference in the
velocity of the electrons and the nuclei, the forces on
the nuclei depend on the average distribution of the
electron, thus the electron displaces the surrounding
ions. This causes effects (1) and (2) and results in a
potential well. The well in turn traps the electron. The
electron will also be influenced by the polar modes of
vibration about the well. This is similar to the inter-
action between an electron and the zero-point electro-
magnetic vibrations. The presence of the well may be
referred to as self-trapping,] while the electron-phonon
interaction may be called the polaron effect. In reality,
they cannot be separated, although at present the
connection between the two is not completely clear.

3. FORMAL THEORY
The complete Hamiltonian for a solid of unit volume is
H=T +T+V(R). (3.1)

Here T is the kinetic energy operator for all the elec-
trons, T is the kinetic energy operator for the V nuclei,
and V is the total potential energy of the system. V
depends on the position of all the electrons (denoted by
r when explicitly stated) and all the nuclei (denoted by
R). We include in V implicitly any point imperfection
such as a missing ion. The notation of (B) will be used,
namely, the coordinate of a nucleus is X, (%) (a=1, 2, 3
and k=1, 2---N). The explicit expression for T is

T=—®/2) 2 1/M)Vi, (3.2)

where all the nuclei need not have the same mass, Mj.

The Born-Oppenheimer technique assumes that for a
fixed value of R the eigenfunctions, ¢.(R), and eigen-
values, €,(R), associated with the operator

h(R)=T.+V(R) (3.3)

are known.

1 The assumption has been made that the self-trapping concept
implies a stationary distortion of the lattice. There is no reason
for this assumption. Indeed, Seitz and the author (M6) suggested
at an early date that a self-trapped electron might move through
the lattice. The work of Castner and Kanzig (C1) implies that a
self-trapped hole has relatively little mobility.
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Next, one uses the Hamiltonian
1y (Ra)=T+en(R)—en(Rn) (3.4)

to obtain a second set of eigenfunctions x and eigen-
values ¢,. The point R, of (3.4) is defined by the
relations

[9€n/0X (k) IR, =0. (3.4a)
To terms in [AX, (k)] we may write (3.4) in the form

h=T+1}

1 — " | AX.(B)AXs0). (3.5
m;‘;k,t[zu(,,,(k)ax,,(z)LnA BAXs0). 35)

Here AX,(k) is the displacement relative to R,. One
may introduce normal coordinates into (3.5) (B, p. 173)
which are linear functions of the AX,(%). The result is

h=3%2; (pPtwie?), (3.6)
pi=(#/1)(9/9g;), (3.6a)

and j goes from 1 to 3 V. The ¢’s have the dimension
of length times (mass)? and the w’s are given by the
secular determinant,

1 l' %,
(MM )X o (B)3X5(D)

where

|
] — a1 =0.  (3.7)
Rn |

Here é is the Kronecker delta.

The individual term in (3.6) corresponds to a simple
harmonic oscillator with an eigenfunction, x.;, and an
eigenvalue, 7w;(v;+%). The eigenfunctions associated
with %, are products of such functions and are denoted
by xx. 7 corresponds to an electronic state and appears
through the use of €,(R), and v; is the vibrational
quantum number of the jth mode. v; is the sum of the
;’s. Since we are mainly concerned with two states, n
will at times be replaced by g (ground) and # (upper).
Usually the subscript # will not be required. ¢ and x
will be used for the ground state while ¢’ and x’ will be
employed for the excited state.

To complete the notation, the following definitions
are made:

(0w |0 )= f en*Ogdr, (3.8)

where the integration is over all positions of the elec-
trons, and

{xnl!OSXn}zan’v’*OXnvdR) (3())

where the integration is over all positions of the nuclei.
O is any operator. It will be omitted when O=1.

The essential problem is to find approximate eigen-
functions for the total Hamiltonian (3.1). By using the
foregoing equations, we may define two approximations:

(1) the static—¥(S)= o (R,)x (3.10)
or

(2) the adiabatic—¥(4)= ¢(R)x. (3.11)

MARKHAM

Neither (3.10) nor (3.11) is a complete solution of (3.1).
For some problems one desires to split H into a zeroth-
order Hamiltonian and a residual which represents a
small perturbation. The way this is done depends on the
form of ¥ employed.

For the static approximation

Ho(S)=h.(R,)+1,(R,)
H\(S)=V(R)—V(R.)

(3.12a)

—i " | AX.(B)AXs(). (3.12b
a.gk,z[axa(k)axﬁ(l)]RnA (k)AX (D). (3.12b)

On the other hand, in the adiabatic approximation,
Ho(4) o(R)x=xk(R)o(R)+o(R)Tx (3.13a)
Hy(1) o(R)x

h? 2 1
:__z[_,vw.vkx+—~wi<k>]. (3.13b)
2 My M,

II,(A) assumes that ¢(R) permutes with 7.

An elegant method of arriving at (3.12) was given
many years ago by Born and Oppenheimer (B3). This
treatment is reproduced in a simpler form by (B, pp.
166-173), who have also found a systematic way to
obtain the adiabatic approximation. In the latter case,
the x’s contain higher-order anharmonic terms. The
Born-Oppenheimer technique involves several steps.
Equation (3.4a) is a particularly important one, since
it is involved in /,. Limitations on this technique are
discussed in Sec. 5(b).

To obtain the eigenvalues of (3.13a) we may proceed
as follows:

Hy(A)o(R)x=oR)[e.(R)+T]x
= o(R)[ex(Rp)+4, Ix
= [€n<Rn)+€v]¥’(R)Xy (3.14a)

where (3.4a) and (3.5) have been used. The eigenvalues
H(S) and Ho(A4) are equal since

HO(S)¢(Rn)X:[En(Rn)'l"ev]‘P(Rn)X- (314b)

In view of (3.14a) and (3.14b) we define the total
energy of the system as E.,=e.(R,)+e. We shall
again omit the subscripts, using £ and E’.

The method of splitting H into parts is based on a
physical intuition and the fact that the nuclear mass
is much heavier than the electron mass. Mathe-
matically, the splitting has an unfortunate aspect, since
some of the nicest mathematical properties do not
hold for the Hy's.

One may show (M4) that (1) the static eigenfunctions
do not form an orthogonal complete set while (2) the
adiabatic eigenfunctions form an orthogonal set with
respect to r and R space.

The latter can be shown by noting that the ¢(R)’s
form a complete set of functions in r space for a fixed R,
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and that the x’s form a complete set in R space for a
fixed #. Further, we note

{<¢’ﬂ' (R)Xn’v’l (oﬂ(R)xm’)} = {Xn’v’<¢n’ (R) | ¢n(R))Xnv}
={Xn'v'|0nn' | Xno} =8nnBoor.  (3.15)

(3) It can be shown that (B, p. 189)

[a)?::k) ]R,.= < e(R2)

(Feynman’s Theorem).

For a perfect ionic crystal the lowest eigenvalue of
h. is the total interionic potential, i.e., the coulombic,
repulsive, and high-order terms, from which one
determines the normal modes by well-developed
methods. In the case of interest, all cells in our solid
are not equivalent, since there is a point imperfection.
In the case of the F center there is a missing negative
ion with a trapped electron. Mazur, Montroll, and
Potts (M2) have shown that the modes for such a
crystal are not identical to those of a perfect lattice.
A missing ion creates local modes surrounding the
imperfection. These are the vibrations of greatest
interest to our problem. In a general way the motion
of the ion right around an imperfection is determined
primarily by the local modes (Bjork, B1). The object
here is not to describe these modes in detail but to
indicate what effects electron transitions have on them.
The exact relation between local and crystal modes is an
extremely complex problem. One of the best ways to
study the local modes is to measure their frequencies
indirectly. This can be done from measurements of the
thermal broadening of absorption and emission bands
(Part II).

[a)ia(k)]m MR»)) (3.16)

(a) Ground State

The development so far is completely general. We
now use this development for a crystal with an electron
trap. Assume that there are two (or more) bound
states. Every state generates its own e, w;’s, and g¢;’s.
We start the calculation by using the values appropriate
for the ground state. To stress this point we write
€, for e,; w;(g) for w;; k,(g) for h,, etc. We shall retain
the notation ¢; and p;, however.

(b) Upper State

We could make all the equations apply to the upper
state by simply replacing the subscript g by #. The
2’s and ¢’s of (3.6), however, will be different. The
object is to find relations between the two sets; hence,
we proceed in a different manner. In this case, the
eigenvalue of 4, is €,(R) and the trapping energy may
be defined as

Ae(R) =€, (R)—¢,(R). (3.17)

Ae is approximately equal to the energy the trapped
electron acquires when it is excited from one state to
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another (the nuclear coordinates remain at R).
Actually, the difference in energy is related to all the
electrons rather than just one.

Since we are interested in the ¢’s, e.(R) is expressed
as

eu(R) =€ (R)+Ae(R) =€, (R))+3 32 w7 (g)g?

+Ae(R)+2; €igit3 Zin engsgrt--+, (3.18)
where
€= [aAe/aq,]Ra (3.18a)
and
€= [agAe/aq,‘aqk]Ra. (318]:))

The dimension of ¢; is (mass)? (length) (time)~2 while
the dimension of ¢ is simply (time)~2. The second term
in (3.18) arises because ¢,(R)—¢,(R))=1% > ; w?(2)g?,
which follows from the definition of the ¢’s.

At this point the theory runs into some difficulties.
Equation (3.4) assumes that terms in AX,(5)AXg(k)
XAX,(l) are so small that they can be neglected. If the
¢’s are determined by thermal vibrations, they will be
small at low temperatures. Equation (3.18) includes,
however, the displacement which occurs during a
transition, i.e., the difference between R, and R, de-
fined by

[9¢,/9R]p, =0 (3.192)
and

[6eu/8R]Ru = 0.

Actual calculations of the difference between the R’s
have been made on some simple models. R,—R, is
about 0.3 A for the nearest neighbor in the case of a
TI*+ trap in KCl (W2) and 0.06 A for the self-trapped
electron (M6). These results are to be compared to the
root-mean-square displacement of an atom (Einsteinian
model with a mass equal to 30 times that of the proton
and frequency of 5X10%). For #=0 (the quantum
vibrational number), it is 0.06 A and increases to
0.13A for n=2. X-ray measurements of the root-
mean-square amplitude of vibration in NaCl at 86°K
gives 0.15 A for Nat and 0.13 A for ClI= (L3, p. 50).
These large values must be attributed to the lower-
frequency modes. The self-trapping calculations showed
that the first anharmonic term was of no importance,
due to a fortuitous geometry. However, this is not a
general conclusion. If we include additional terms in
(3.18), there seems to be no apparent simple way to
relate the normal modes in the upper and lower states.
Therefore, we consider (3.18) to be exact. For shallow
traps and for any trap in nonionic crystals, this
assumption must be good. It must also be a fair approxi-
mation for deeper traps in ionic crystals, such as the
F center.

It is further assumed that the modes are non-
degenerate. To those familiar with Frohlich’s phe-
nomenological treatment, this may seem like a radical
assumption indeed. One must remember that Frshlich’s
approximation is not supported by detailed calculations

(3.19b)
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(M3). Secondly, we may be dealing to a large extent
with local modes. This is supported by the analyses on
the shape of the absorption bands. These are in the
forbidden gap and cluster about a single value. There
is no reason, however, to assume that the local modes
are actually degenerate, and the above assumption is a
natural one at the present stage of development. This
assumption probably does not affect any major con-
clusions of this paper.
Now the transformation

€k

(1'=Qj/+z, ——qkl
’ Fwd(g)—wi(g)

is made. The prime on the sum indicates that j=k.
Neglecting terms of order e;jex; or eer; for (k1)
(3.20) gives an orthogonal transformation. To the
same approximation we write

eu(R)= 50(R0)+A5<R9)
+3 20w (¢ + 2 6q (3.21)
wi(u)=wi(g)+ejs. (3.21a)

The new equilibrium position is obtained from
(3.19b). Since the AX’s are linear functions of the ¢’s,
(3.19b) gives

(3.20)

(8/9¢;" ) eu=w;*(1)q/ +€;=0. (3.22)
The shift in the equilibrium position is
¢/ = —e&i/wi(u). (3.23)
Thus, the final transformation
Qi=g/'tei/wi(w) =g/ —Ag; (3.24)
gives the energy of the ground state in the form
en(R)=¢,(R;)+A¢(R,)
—3 25 /et (W) +3 w07 (3.25)
=eu(Ri)+3 2 0P (w)Q7 (3.25a)

By direct substitution one may show that

z,-(;qj)2=z,~(ajj,)2=z,-(a%)2, (3.26)

7

hence, the transformation does not modify 7.

The first three terms on the right of (3.25) appear
in the eigenvalue of /.. The derivation serves to show
the relation between the ¢’s and Q’s. This is of essential
importance and not the final form of ,.

This concludes the formal treatment. The assump-
tions which have been made are now summarized to
emphasize their limitations. These are that

(1) all cubic terms can be neglected;

(2) terms in e;jexr; and ejex; for 51 can be neglected;
(3.27)

(3) the normal modes are nondegenerate.

JORDAN J.
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In view of the work of Montroll and co-workers, we
know that lattice perturbation can localize some of the
modes. This effect does not appear above. The trans-
formation (3.20) without the neglect of higher-order
terms (item 2) may cause a radical change in the modes.
This change most probably does not occur however
during an electronic transition.

The third assumption probably is not a fundamental
one, although the first two may be. The problem of
degenerate modes is that the ¢’s and p’s of Eq. (3.6)
are not unique. Consider two degenerate modes ¢; and
¢2. The substitution ¢""=¢1+¢2 and ¢’ =¢1—¢, will
not change the required form of the Hamiltonian, and
the ¢" modes are equally satisfactory. The additional
terms which occur in the upper state put a requirement
on the possible linear combination of the ¢’s. These can
be obtained from argument similar to those used in
degenerate quantum mechanical perturbation theory.
If we use the proper definition of the ¢’s, the degenerate
problem is similar to the nondegenerate one. For this
reason, the author feels that item 3 is not an essential
restriction. The author has not carried through the
details of this argument. Certainly the transformations
(3.20) and (3.24) allow one to make a simple synthesis
of many theoretical ideas at a time when it is most
needed from the experimental point of view. Hence,
we assume their validity without any further ado.

For a point imperfection we may expect two types of
¢j. The ¢;’s for the local modes will be especially large
in solids with some polar characteristics. This leads to
the LM approximation. The s for individual longi-
tudinal modes are very small; the net effect, however,
may be large. This leads to Hamiltonians similar to
those employed by Froéhlich. For these modes the ;s
must be extremely small and the transformation (3.20)
need not be used.

Item 1 of Sec. 2 enters into the problem through
(3.19b) or (3.24), item 2 through w;(g) or (3.21a),
while item 3 arises through (3.12b) or (3.13b) depending
on the form of ¥ employed.

The technique used on the F center by Huang and
Rhys and by Pekar assumes that ¢; is of the order
of 1/N. This does not hold for local modes, hence the
expansion techniques are questionable. O’Rourke does
not require that ¢;— 0, in the first part of his paper,
thus includes localized modes.

The division made above regarding the types of
modes is not completely satisfactory since the Frohlich
description is somewhat oversimplified. The usual
classification of modes, i.e., acoustical versus optical,
transverse versus longitudinal, apply only to the long
modes in polar crystals (M3). The majority of the
modes actually have a wavelength of the order of
several interionic distances and do not fit into the above
classification. The experimentalist should remember
that the LST relation is not completely reliable, and,
therefore, should not take it too seriously. The theorist
should attempt to formulate his equations in such a
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manner that he does not rely on the extreme simplifi-
cation involved in this relation. As our understanding
of the problems treated here increases (this involves
further experimental data), we shall undoubtedly obtain
much more reliable information regarding the vibra-
tional modes in solids.

4. PHYSICAL INTERPRETATION OF OPTICAL
AND THERMAL TRANSFORMATIONS

A physical interpretation of Sec. 3 is now attempted.
It starts with a one-dimensional Franck-Condon
diagram which will subsequently be elaborated. Next,
the various activation energies are defined and their
interrelations discussed. The results are applied to
the V1 center.

We start by considering the following simple model:
The temperature is 0°K. Only one mode is affected by
the transition. This implies that only one ¢; is different
from zero. In Fig. 2 we plot €, and ¢, as a function of a
coordinate g;. It is convenient, for now, to set ¢;=0;
hence w;(#)=w;(g). Although e is an eigenfunction of
ke, it is useful to divide it into two parts, namely,
e, (R;)=¢,(0), which is considered as an electronic
energy of the ground state, and ¢,(g;)— ¢,(0), which is
considered as a lattice potential energy. This division
is justified by Egs. (3.14a and b). According to the
simplified Franck-Condon principle, the system may
absorb a photon and jump from point a to point b on ..
The use of the Born-Oppenheimer technique assumes
that the electron has sufficient kinetic energy to occupy
all the space required by |¢’|? before there has been
an appreciable displacement of ¢; from 0. ¢, has been
replaced by e, giving an additional “force” —e¢; on g;.
In the case considered in Fig. 2 ;= —w/Aq;. Hence the
total potential energy of the lattice relative to point
b is 3w%9+ €;¢; and its minimum appears at ¢;= — ¢;/w/?
in agreement with (3.23). As soon as the force on the
¢;'th mode has changed, its equilibrium value has as
well, although the ions are not at — ¢;/w2.

During the shift from b to ¢, Ae decreases by —e;Aq
= (¢*/w;?), while the potential energy of the lattice
increases by %3e?/w?, thus giving a total decrease
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of 1¢?/w?. Hence the third term of (3.25) is com-
posed of two effects, the decrease of electronic energy
and the increase of lattice energy. The simplicity of the
interpretation arises because of the assumption that the
restoring forces are not affected by the jump of the
electron in the trap.

Quantum mechanics (still assuming that €;;=0) only
slightly modifies the picture. The stationary states are
represented by horizontal lines since normal vibrations
have kinetic as well as potential energy. The most
probable transitions arise when the classical turning
points of the upper and lower states occur for the same
value of g;. While this is the most probable, it is not the
only one; indeed, the probability of “nonvertical”
transitions explains the shape of the emission and
absorption bands in solids.

The theory developed in Sec. 3 is now used to define
the various types of activation energies. Neglecting
the broadening due to the emission or absorption of
phonons, the zero-point energy, and limiting our
consideration to 0°K, we may define the following:
activation energy for emission of a photon—E*—(¢c—d) ;
activation energy for absorption of a photon—E*—
(a—b); thermal activation energy which is the same
for emission and absorption—FE*—(a—c). The a, b, ¢,
and d refer to Fig. 2.

As has been stressed previously, the Stokes’ shift,
which is the difference between E¢ and E?, is related to
the third term of (3.25). After an absorption (from
a to b), the force —¢;is added, and the system relaxes by
going to ¢. For ¢;;=0, the stored energy after an emission
equals the stored energy after an absorption, i.e.,

e(—e/0f)—¢(0)=eu(0)—eu(—e/wf).  (41)

In (4.1) the arguments of e, refer to values of ¢ not Q.
Summarizing, the absorption activation energy includes
the readjustment energies in both the upper and ground
states; the emission activation energy excludes both,
while the thermal includes the readjustment energy in
only one state.

Although (4.1) was derived by considering the
displacement of only one mode, it is quite general
because ¢, and e, are functions only of the ¢’s and not
of the path taken. The displacements can be compared
one by one to show that for an actual trap the total
stored energy is the same in both states. In general then,

one may write
Ee4-28E=E'4+-SE=E* 4.2)

where 6F is the readjustment energy (3) >; ¢*/w?, or

Et=FE°—(1/2)(E*—E°®)=(1/2)(E*+E°). (4.2a)
If E°=0, Et=}E*; hence, in general
E2 (1/2)E*  (for €;;=0). (4.2b)

In some problems we may be able to introduce an
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Fic. 3. Effects of ¢;; on E* and E!.

effective frequency (Secs. 9 and 10). In this case
dE=3 2 ¢ /wP=hu(3 2; ¢/} =S (4.3)
where w is the effective frequency, defined by (4.3), and
S=3 205 &/hof, (4.3a)

the Huang-Rys factor. One may measure S directly for
some transitions (Sec. 11). It is the ratio of the stored
energy at b to the average effective phonon energy. For
the F center in KCl, S=30 (K4).

A relaxation of (4.2) occurs when ;0. When
e;x(j#k) is small compared to ¢j;, the effect of the
second derivative is to shift the frequencies of the
modes. One may speak of a frequency shift super-
imposed on a displacement of the equilibrium position.
Now (4.2b) does not apply, and E! can be much
smaller than 3E2. In other cases it can be even larger
than E¢, as illustrated in Fig. 3,§ where only one mode
is considered. If E'<KE® ¢; must be of the order of
w?. For ¢;<0, one obtains the strange case where
E*<E*. However, the author knows of no such case
in nature.

In the self-trapping calculations made by Seitz and
the author (M6) for NaCl, items 2 and 3 of Sec. 2
were not considered; hence, E*=%1FE% This gives
0.34 ev for E’, not the value originally reported. The
error arises from an erroneous formulation of Feynman’s
theorem (Eq. 3.16). The agreement between the calcu-
lation of Frohlich, Pelzer, and Zienau (F3) and the
reported value of £* (i.e., 0.13 ev) must be fortuitous.
The author believes that higher-order terms than e;
must be included. Further, the mobility of the trap
has to be included; hence the value 0.34 ev is a very
preliminary one.

In view of the values of E* and E for the F’ center,
the ¢;;’s must almost equal w?’s for the local modes
which cluster about negative-ion vacancies. The upper

§In Fig. 3, the problem of the intersection of the potential
curves has not been considered.
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F’ state corresponds to an F center and an electron in
the conduction band. The lower state corresponds to
two electrons in a negative-ion vacancy. To the approxi-
mation of interest here we may assume that the free
electron does not interact with the modes. Ae(R) of
Eq. (3.17) is simply the binding energy of the second
electron in the F’ center. Since there is a radical
difference in the upper and lower states, the assumption
of ¢;;=w?(g) seems plausible. The author finds it hard
to believe that a corresponding situation exists for a
hole trapped at a positive-ion vacancy. One assumes
that it possesses two bound states. This is Seitz’s model
for the V; band in KCl and KBr. The hole must be
spread out similar to an electron in the F center.
Transitions of the hole from an excited to a ground
state could influence the vibrational frequencies but
hardly enough to change the activation energy from
3.0 ev to 0.23 ev. Our present knowledge of the V
centers is so meager that the possibility of an alternate
interpretation of the experiment should not be
overlooked.

5. PROPERTIES OF THE TOTAL HAMILTONIAN

In Sec. 3 a theory was developed which is completely
general, provided one may use the Born-Oppenheimer
technique. In this section we compare this development
to alternate formulations of the problem in order to
contrast the ideas. We also compare the development
of Sec. 3 with some problems in electrodynamics, in
particular, to contrast the behavior of phonons and
photons.

In complex systems one likes to split the Hamiltonian
into parts which interact only slightly. Thus, in electro-
dynamics, it is divided into the radiation field H .4, the
part related to the charged particles Hq, and the inter-
action term Hi,s, which relates the electrons to the
photons. One usually develops expressions for Hi.q
and Hqa without regard to each other. The introduction
of an electron in a vacuum does not affect H,,q, nor
does the introduction of black-body radiation affect
H... When one considers a trapped electron in an
electromagnetic field one adds Hiny to Hrpat+Ha
without modifying either.

The solid state problem is more complex, and the
method of splitting the Hamiltonian depends on the
problem at hand. Once ¥ is selected, the term correspond-
ing to Hint is given by (3.12b) or (3.13b). The problem is
to split Ho(4) or Hy(S) in two. These we denote by
H, and H;. In general, H, and H; are intimately
coupled and cannot be separated. One may use a
purely mathematical argument like Born and Oppen-
heimer (B, p. 166) to evaluate the importance of the
various terms. The convergence of the approximation
has not been studied, however. Crude calculations show
that the adiabatic approximation must be used with
caution for shallow traps (M4). The splitting procedure
is discussed in a semi-intuitive manner; further
analytical proofs are most desirable.
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(a) Trapped Electron

For an electron trapped at a point imperfection, we
may use (3.1) or a form which is related more closely
to the way actual calculations are made. For the latter
purpose we define the impurity center Hamiltonian.
With proper care one may make the treatment com-
pletely rigorous. Thus we write

H=t4+T+V,(R)+Vi(R)+V.(R,r). (5.1)

Here ¢ is the kinetic energy of the trapped electron;
Vi+Vr is the interionic or interatomic potential;
V.(R,r) is the potential energy due to an excess electron
at r when the ions (or atoms) are at R.

It is convenient for pedagogical purposes to split
Vi+V; into two parts. Vi is the potential energy for
the perfect lattice, and Vr arises from the point im-
perfection. Thus, in the case of the F center, Vy is due
to the negative-ion vacancy. Mott and Littleton
considered this problem (M12), so one may call ¥ the
Mott-Littleton term. In the more conventional treat-
ment, V4V arises from the coulombic and repulsive
forces of the crystal. In treatments using the Born-
Oppenheimer technique, it arises from the eigenvalue
of an electronic Hamiltonian which includes all the
electrons except the trapped one (B, p. 173).

First, deep traps are considered; hence, we are
required to use the adiabatic approximation. Equation
(3.13) gives

(H+H.)e(R)x=Ho(4) o(R)x
=oTx+ (+V.o+Vi+V.)ex,

Hi(A)=H—Hy(4).

(5.2)
(5.2a)

There is a striking contrast between our problem and
a photon field. The splitting in electrodynamics is done
purely classically and in an elegant manner. Here we
have had to introduce quantum mechanical operators
and further assume an approximate wave function.
How does one split H, into two parts?

Following the development in Sec. 3, we expand
about R, defined by

[Ae,.-}- Vi+ V[:] =0.
X (k) Rp

Aey is an eigenvalue of -+ V. (R,r). We split I1,(4) by
writing

(5.3)

HL= T’+ VL+ Vz—i—Ae,,(R)—Ae,.(Rn) (54)

and

H,=t+V.. (5.5)
T’ means that T only operates on x. We note that
Hy=H +1.. (5.6)

When the sum operates on ¢x an extra function
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Ae,(R)—Ae.(R,) appears. Hy, includes approximately
the cohesive energy of the distorted crystal.||

The modes defined by (5.3) and (5.4) depend on the
state of the electron due to the presence of Ae,. Using
the foregoing development, we may understand the
various simplifications that have been made.

(1) The phenomenological approach (a) ignores the
presence of Vi and (b) makes a crude approximation
of the actual Hamiltonian by assuming that the equation

{H.—Vi—Aea(R)+Aen(Rp)}x= € (6.7

gives pure longitudinal and pure transverse optical
modes. It further assumes that the lower branches
are pure acoustical.

These extreme simplifications are inadequate for
some problems involving normal modes in alkali
halides. The interaction between the trapped electron
and the phonons is obtained by adding Ae, to (5.7);
namely, one requires solutions of the following equation:

{Hi—Vi}x=ex. (5.8)

In principle the inclusion of Ae, leads to no difficulties,
and the method developed in Sec. 3 can be employed.
Meyer has developed a perturbation scheme using V..
This, however, leads to the omission of some terms. In
Appendix II we compare both methods.

(2) The local modes approach: One assumes that
the eigenequation

(5.9)

gives two types of modes, ¢;, which are local, and ¢,,
which pertain to the perfect crystal. For this approach
to be valid, Ae, must be independent of the ¢.. If Ae,
is only a function of a single localized mode then we have
the CC model. The A€’s can again be used to calculate
the effect of the trapped electron on the modes. A
priori, there is no clear reason for believing that Ae,
will be independent of the ¢.’s. Hence, there is no
apparent reason to assume that Ae, will not be a
function of the ¢./s. Only extremely complex calcu-
lations, not available at present, could tell the exact
form of Ae(gs,q.). One may resolve this problem some-
what by obtaining equations for the shape of absorption
and emission bands in solids with adjustable parameters.
These parameters can be evaluated by analysis of the
experimental data. This, in turn, will give basic in-
formation regarding the relations among Ae., g., and
qi. Part II of this paper is devoted to this problem.

Hix=ex

(b) Free Electron

Consider next a free electron in a metal or semi-
conductor. Two arguments suggest that the Born-
Oppenheimer technique should not be used. First,
consider the effect a free electron at r has on the modes.
Its behavior is described by means of a wave packet

| Approximately because we use R, defined by Eq. (5.3) in-
stead of the values of R determined by minimizing V1, or V14V ,.
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made from Bloch functions. The electron proceeds in a
straight line for about 200 A and then gets reflected
through an angle. If the electron has the energy of 3 ev
(approximately the Fermi level of a metal) it collides
with the lattice every 2X 107" sec. It is not confined to
a local region, but wanders in random fashion, so that
an average effect over a period of vibration is meaning-
less. Analytically, for a pure Bloch function, ¢; equals
zero, so such an electron does not exert a force on the
normal modes as shown below. Therefore, one splits
the system’s Hamiltonian as follows (V;=0)

H;=T+V.R) (5.10a)
H.=t+V.Ry) (5.10b)

and
=V, R)—V.Ry) (5.10¢)

to obtain the usual theory (W4-Chap. IX). The normal
modes about Ry, are determined from V. Here another
assumption is made, that one should use ¢(R;) rather
than ¢(R). The continuously readjusting wave function
requires a type of kinetic energy, and one suspects that
the loss in potential energy does not compensate for
this gain (M4).

The distinction between the static and the adiabatic
approximation is academic, since, as Haug (H2) has
shown, that first-order perturbation theory gives the
same results for both. The treatment assumes that one
does not use the Born-Oppenheimer technique for the
free electron—that is, that Hp determines the g¢’s.
This requires that ¢;(Rz)=0. Proof of this relation for a
Bloch electron is now given.

The interaction between an electron and the lattice
in the conduction band has the form

Hl:Zi leA,j, (511)

where the Aj’s are determined from (5.10a). To a
sufficient approximation we write

a;=const exp(ik;-r) (5.12)

where k; is the wave-number vector of the jth mode.
The Bloch function for a conduction electron may be
written in the form

(5.13)

where p is the momentum vector and %, has the
periodicity of the lattice. Hence from (3.16) it follows
that

¢n=1t,(x) exp(ip-1)

e&={¢p| a;] qo,,)=const‘fu,,2 exp(ik;-r)dr=0 (5.14)

since u,, is periodic. This shows that the A,’s describe the
true modes.Y This argument also applies to nonpolar
semiconductors.

9 One may arrive at the expression for ¢; in a more rigorous
manner. In general (p¢|H1|0p)#0 only if p—qk=0 [W4,
Eq. (9.3.3) with g,=0]. Here p=gq; hence, for k;0, ¢;=0.
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This proof as it stands should apply to polar crystals
as well. Detailed considerations show that this develop-
ment is incomplete. This follows because some ¢;; are
zero in spite of the fact that Ae,(R) is not small. For
this case H, has a major influence on the ¢’s, and the
presence of the electron may generate a new set of
modes. Here the problem does not correspond to the
one in electrodynamics.

Applying this approach, Eq. (5.10), to deep traps
where the electron’s kinetic energy is large, (5.14) does
not hold, and exceptionally large values of the inter-
action are obtained, simply because the ¢’s derived
from (5.10) are not the appropriate ones. These x’s
form an orthogonal set, although a force —¢;(Ry)
remains on the nuclei at A;=0.

(c) Comparison with Quantum Electrodynamics

Coming now to some general comparisons between
quantum electrodynamics and the theory developed
here, no equation in quantum electrodynamics corre-
sponds to (3.4a). First, consider case b where all the
€;(R1)’s are zero and the A’s are the true modes. Hence
H.a corresponds to Hy, He corresponds to H,, and
Hiny corresponds to H;. The frequency and wavelength
of the photon modes are determined for free space and
are not influenced by the electrons, although their
number is determined in part by electronic transitions.
The number of phonons is also determined by the
electronic state, if we use time dependent perturbation
theory, although the ¢’s are obtained from Hj. The
polaron problem in semiconductors and metals corre-
sponds to the self-energy problem in electrodynamics.
This is also true for many optical problems in valence
semiconductors, i.e., such as the band-to-band transi-
tion in germanium, silicon, and diamond. Here the
normal modes do indeed behave in a manner similar
to photons, and the word “phonons” is most
appropriate.

This is to be contrasted to the situation where
method (a) should be used. The term which mixes the
electronic and normal mode wave functions or causes
transition is H1(A4) of (5.2a). The ¢’s and ¢;;’s have no
counterpart in quantum electrodynamics. They generate
a new set of ¢’s for every electron level and cause an
essential difference between the two fields. Their
presence makes multiphonon processes natural in some
solids. In this case, optical problems are similar to those
occurring in diatomic molecules (Part IT). The similarity
between phonons and photons breaks down. If one
applies method (b) to polar crystals, there is no simple
way to separate the energy associated with the poor
choice of the modes and that caused by H,(S).

Thus we have two types of problems in phonon-
dynamics. In one the €’s can be ignored and use can be
made of the tools of modern electrodynamics. In the
other, we are in a different domain, where the ele-
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mentary concepts of electrodynamics do not serve as a
guide. The first situation is in a sense a ‘“‘special” case.

6. CONCLUSIONS OF PART I

1. By the use of the Born-Oppenheimer method, we
have shown what effects electron transitions have on
the normal modes of vibration. The problem has been
formulated in a new manner to show the interrelation
of the various terms. The two major effects are (a) a
shift in the equilibrium position of the normal modes—
first-order effect; (b) a change in the frequencies of
vibration—second-order effect. The analytical reason
for these shifts is shown and related to the change in the
electronic binding energies of traps. The relations which
are derived from the microscopic Hamiltonian are
completely general. It was indicated why one would not
expect the calculations made by Huang and Rhys, by
Pekar, and by Lax to apply to an F center. To obtain
an accurate theoretical expression, greater care must
be taken in the use of various expansions.

2. Various activation energies are defined and general
relations obtained between them. These impose re-
strictions on the interpretation of some experiments
done on color centers.

3. A comparison has been made of quantum electro-
dynamics and phonondynamics. Terms not present in
the former arise. They account for multiphonon
processes. These additional terms play a very important
role in the shape of optical absorption and emission
bands. They may enter into the polaron problem. The
electron in the conduction band of some polar solids
may create new local modes about itself. These local
modes do not appear in electrodynamics, hence the
polaron problem in some crystals is not equivalent to
problems in electrodynamics. These terms make it
possible for a hole to be self-trapped, as indicated by
the experiments of Castner and Kanzig (C1). To
understand the stability of some of the new types of
centers, the molecular color centers, we must examine
the phonon-electron Hamiltonian discussed here in
fuller detail.

Part II. Broadening of Absorption Lines Due
to Multiphonon Processes

7. INTRODUCTION TO PART I

In the following sections the theory developed in
Part I is applied to the broadening of absorption bands
in solids. We only consider transitions between two
bound states. The breadth of a line may be due to
several causes.

(a) One is the Heisenberg principle which requires
an uncertainty in the energy of a level, provided its
lifetime is finite. An alternate way of looking at this
problem is to use higher-order terms in the standard
time-dependent perturbation theory (H3, p. 181). This
explains the breadth of the hydrogenic lines at low
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TasLE II. Breadth of absorption lines in ev.
Atomic
One of the H, lines of hydrogen 3X107¢
A very wide atomic line of
Cul(*Fs—*D; at 4540 A) 6X10~*
Solids
The 278 cm™ line of B doped Si 7X10™
The F center breadth in KCl at 0°K 0.16
The F’ center breadth in KCl about 1
A narrow band in LiF (P5) 0.01
Energy of one optical phonon 0.01-0.08

pressure. The breadth of lines due to this effect should
be very roughly of the order of that observed in atoms.

(b) Broadening is also caused by the interaction
between centers. We must assume that there is more
than one trap in a solid so that (5.1), which applies
only to an individual imperfection, does not contain
the whole Hamiltonian. Their sum does not form the
total Hamiltonian, for one must consider interactions
between centers. Without these additional terms, e,
represents a highly degenerate level, since any im-
perfection can be excited. With the interaction terms,
the degeneracy of e, is removed, and the excited
states spread out into a narrow band. Since no detailed
calculation has been made, it is not known whether the
degeneracy of e, can be completely removed. If a crystal
has 5X 106 centers per cc, the mean separation is 270 A.
This type of interaction must be small in polar solids,
since 270 A is large compared to the spread of the
electron wave functions. For example, the excited state
of the F center in KCl does not extend beyond 13 A
(Smith, S6). The interaction may not be small if the
imperfection is such that the spread in the wave function
is of the order of the distance between centers.

(c) Although this effect may make a small contri-
bution to the broadening of an absorption line in solids,
our interest is in the fact that during an optical transi-
tion no strict selection rules apply to the »,s. If
€;=¢;=0, strict rules would apply, and this effect
would not make a contribution to the problem.

Effects (a) and (b) are essentially temperature
independent, while (c) depends strongly on the
temperature.

In view of the complexity of the problem, equations
are derived with parameters which are to be evaluated
experimentally. This is the first necessary step, since
at present our knowledge is far too meager to attempt
exact a priori calculations. Some experimental facts
will be presented before embarking on the theoretical
details.

The width of lines varies over a large range. Some
typical values are given in Table II. Thus the width of
some lines in solids approaches the broadest found in
atomic spectra. In general, lines in solids are considered
broader, however. In polar crystals some bands are
very much wider, and the absorption or emission of a
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single phonon will not explain the phenomenon. The
marked temperature dependence of the shape of some
lines strongly suggests that (c) can dominate the others.
Detailed studies (M5, K4) support this conclusion.

The theory developed here does not apply to the F’
band since the upper state is not bound. It is not
completely clear why some bands in polar materials are
extremely narrow. One may simply assume that
certain parameters, to be derived, are very small. On
the other hand, more complex concepts may be involved,
such as the breakdown of the Born-Oppenheimer
technique; further studies are required. The theory
developed applies to bands whose width is approxi-
mately equal to the F center and is temperature
dependent.

Experimentally, the absorption, e, is measured as a
function of the wavelength or the photon energy e
(in ev). The observed a(e)’s are not simple analytical
curves; hence a way must be found to characterize
them. We may in general define : €., the value of e where
a has its maximum value, an; €, is where « has half its
maximum value on the red side of ex, and €, is the
corresponding point on the violet. Further useful
definitions follow:

the moments— M,.=f a(e)emde (7.1)
0
the average— e=M,/M, (7.2)
: 1fw< Ya(d (7.3
mi=— e—&)’a(e)de 3
Mo/,

and the half-width— H=¢,—¢,. (7.4)

In general,
m2=(M2/Mo)—€2. (75)

The absorption is due to upward transitions induced
by the vector potential of the light which falls on the
crystal. To relate the measured absorption at photon
energy e to the transitions, four factors must be
considered.

(1) The vector potential at the imperfection has to
be related to the intensity of light falling on the crystal.
Lorentz suggested a way of doing this. It is not known
whether his theory applies rigorously to traps in solids
and deviations from his simple equation would not be
surprising. In any case the Poynting vector (the light
intensity) is proportional to the square of the vector
potential at the imperfection.

(2) The second factor is due to the ¢’s which give
matrix elements. The expression may be simplified by
the introduction of an oscillator strength, f. Classically,
the second item contains no unknown since f equals
unity. Quantum mechanically, the problem requires
exact wave functions, which at present are unknown.
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Most probably, we shall have to introduce the f factor
empirically for some time to come.

(3) The imperfection concentration.

(4) Finally, one must consider the shape factor. This
can be done by multiplying the usual atomic absorption
equation, item (2), by a function G.(e). G arises from
items (a), (b), and (c) considered previously. In all
cases studied so far, G, has the property /' G.(e)de=1.

The measured absorption at e is the product of the
above four factors. If one could make exact calculations,
the impurity concentration could be treated as an
unknown and computed from a single point, e. Even
without an exact calculation, one might evaluate the
factor associated with (1) and (2) from experimental
data and obtain the concentration with the use of a
single constant. This would require a detailed knowledge
of G,, which is lacking. The G, can be eliminated by an
integration over e. This procedure is impractical in
many cases, for one cannot measure the absorption at
the wings of the band (due to overlapping from other
absorption bands). The integration technique is also
extremely lengthy. Many years ago Smakula suggested
replacing fa(e)de by a product of an times H. This
requires the introduction of a constant @, such that
a,GnH=1, where G,, is the peak value of G.

To illustrate this procedure, let us assume that G,
has the triangular shape, i.e.,

G.=0 for ea
=(1/H)(e—e¢/a—en) for a>e>enm
=(1/H)(e—b/em—b) for e,>e>b
=0 for b>e. (7.6)

The area under G is unity. The integration over the
frequency equals GnH and_g,=1 for the shape given
by (7.6). Hence, the product G.H or a,H eliminates
the fourth factor. The advantage of this procedure is
that the temperature dependence of H seems to be
eliminated.**

The essence of Smakula’s famous equation is the
substitution of G,H for S'G(e)de, not the exact form
of G.(e). Therefore we refer to the general equation by
his name and call ¢, Smakula’s constant. In this
equation g, is always multiplied by two factors arising
from (1) and (2); hence the actual value of a, is of little
experimental importance. Nevertheless, @, is a measure
of the shape of an absorption band, as are the variables
defined in Eq. (7.1) to (7.5).

It is useful to determine H, m, and a, for several
types of G.(e), namely,

The Gaussian

G,.=:;— exp{ —a*(e—en)?}. )

™

** “Seems to be,” since there is practically no experimental
data to support or refute this assumption.
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Hence, )
H(G)=-[41n27% (7.7a)
a
Further
m?=(1/2a%)= (1/8 In2) H2= (1/5.545) H* (7.7b)
and
a;(G)= (1/GnH)=[n/4 In2 }=1.0645. (7.7¢)
The Lorentzian
b 1
Gpy=—m———— (7.8)
m [14+02(e—e€n)?]
Now
H(L)=(2/b) (7.9a)
and
a,(L)=(r/2)=1.5708. (7.9b)

M, does not exist for (7.8).

The Double Gaussian

G, might be made of two Gaussians, one for the
violet side with ¢=a, and another for the red side, with
a=ga,. Then

Gn=(2/a/m)[(1/a;)+(1/a,) T, (7.10)
H(DG)= (In2)}[(1/a,)+(1/a,)], (7.11a)
m*=3[(1/a,)+(1/a,) 17
X[(1/a)+(1/a.?)], (7.11b)
and
a,(DG)=a,(G)=1.0645. (7.11¢)

Various attempts have been made to describe the shape
of the absorption band associated with F centers and
all three types have been considered. One of the most
successful is the double Gaussian. For this curve a, is
the same as for the single Gaussian.

The Pekarian

This curve is discussed in Sec. 9 and Appendix IV. To
obtain a,(P), numerical integration techniques were
used, since the analytic form is complex. It actually
depends on H. However, unless the half-width is very
small,

m?=H?/5.57 (7.12a)
and

a,(P)=1.07, (7.12b)

which agrees with Egs. (7.7b) and (7.7¢c). A Pekarian
curve resembles a double Gaussian, so that the simi-
larity of a,(P), a.(G), and a,(DG) is not surprising.

In Smakula’s original derivation a,(L) was used. In
recent years experimental studies indicate that the
Gaussians or double Gaussians give better agreement
with the observed curves. Dexter has suggested that
one might replace a,(L) by a,(G). There are good
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arguments for this change. The absorption shapes,
however, are not true Gaussians, and the suggestion
simply means that we replace one empirical constant
with another without gaining any fundamental in-
formation. There is some evidence that the band shape
is Pekarian.

Since in Smakula’s equation a, is always multiplied by
two other factors, the actual value of @, is of little
experimental importance. The danger in making the
change is that confusion will result. The day may come
when one will know the true form of G, and have a
correct expression for a,. As this day has not yet
arrived, the standard form of Smakula’s equation
is preferable.

8. GENERAL FORMULATION OF
ABSORPTION PROBLEM

In this section the absorption problem is formulated
in general. The next two sections discuss the shape and
moments. Since deep traps are to be considered, the
adiabatic approximation must be used. The electron-
phonon interaction term, i.e., (3.13b), will be ignored.
The Hamiltonians of the solid can therefore be written
in the forms: for the ground state

H,=¢,0)+T,/+V, 8.1)
or
E=¢,(0)+2; wi(g) (v;+3), (8.1a)
while for the excited state
Hu=€u(0)+ Tu/+ Vu (82)
or
b= eu(0)+2; Tww;(u) (v +3), (8.2a)

where 9; is the vibrational quantum number of the jth
mode when the electron is in the ground state, while v’
corresponds to the upper state; ¢, and e, are evaluated
at R, and Ry, (3.19a) and (3.19b) H, , is an operator,
while E is the total energy, (3.14a). V, and V, are
e,(R)—¢,(R;) and e, (R)—e.(R,), respectively [see
Eq. (34)].

Effects of thermal expansions are not included in
the theory of Part I. The thermal expansion of the
crystal arises from the dependence of the vibrational
frequencies on the volume (Slater, S5, p. 199). In
principle, the thermal expansion may influence all the
variables. It is believed that the primary effect of the
temperature (6) is on ¢, and e,.

To arrive at an expression for the absorption coeffi-
cient, we start with the standard equation for the energy
absorbed by an atom when light falls on it (2 of Sec. 7).
This expression must be corrected for the presence of
the medium and for various broadening effects, as
discussed in the last section (1 and 4). Since Dirac’s
delta functions are used, special care must be employed.
First-order perturbation theory gives the following
expression for the energy absorbed by an atom in a
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Fi16. 4. Schematic diagram showing the broadening due to the
emission or the absorption of phonons.

vacuum (H3, p. 180):
4r? ¢

Satom=?f;"l{(\1, (A)II‘I‘I’(A))}PI,, (83)

where » is the angular frequency of the absorbed light{t;
¥'(A) and ¥(4) are the total wave functions for the
ground and excited states, Eq. (3.11); and I, is the
intensity of the light per unit angular frequency
interval, i.e., the energy of the light which falls on the
crystals in the angular frequency interval Ay is I,Av.

In a medium, the following modifications must be
made.

(1a) If no is the high-frequency dielectric constant,
the intensity I, (Poynting vector) is (cnoF?/4x). Since
the transition is caused by F2, (8.3) must be divided
by 70.§§

(1b) The space average field must be replaced by
the local field. Since they are proportional to each
other, we introduce a constant b#,. For a Lorentz local
field b= (1/9n0) (2+n)? (B, p. 100).

(2) As discussed, lines have a finite width.

(1a) and (1b) correspond to 1 of Sec. 7. (2) corre-
sponds to the broadening due to the uncertainty
principle and the interaction between neighboring
centers. If (8.3) is multiplied by b, the effects of (1a)
and (1b) are included.

(2) requires the introduction of the function g(»)
with the following properties; it peaks at

v=[E'—E]/#

fo Ce)dv=1.

The g does not include the effects of the ¢’s and ¢;;’s

(8.4)
and

(8.5)

1t The angular frequency of an electromagnetic wave is denoted
by », while the angular frequency of a phonon is w. The use of »
as an angular frequency is not the usual practice, but it has been
used in one standard treatment (H3).

§§ The permeability is assumed to be unity (A1, p. 188). F is
the electric field strength.
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and is not the same as G, Figure 4 illustrates the
problem. There is an over-all absorption band and a
fine structure. We may expect to observe the fine
structure only if the half-widths of the g’s are less than
the energy of one phonon (i.e., 7w). Figure 4 assumes
that one is dealing with a single phonon frequency.
When a center interacts with phonons of several
frequencies, i.e., if there is dispersion, the ¢;’s and ¢;;’s
can cause a broadening of the “lines” shown in Fig. 4.
This problem has been discussed by Krivoglaz and
Pekar (KS). There seems to be no simple way to
separate this effect from those discussed in Sec. 7.
This effect is not considered further here.

We now digress slightly to indicate how the trap-trap
interaction produces a broadening. The breadth of an
electron-spin resonance line also arises from two effects:
one is because of the interaction between the spins
(spin-spin), and the other is because of the interaction
of the electron with the magnetic moments of the
surrounding nuclei (hyperfine). The hyperfine inter-
action often has a much larger effect. The problem is
thus similar to the one considered here. Strangely
enough, we have a much better understanding of the
broadening problem in the newer field (electron-spin
resonance).

For this development the solid is considered to be
a large molecule of unit volume. There will therefore be
N imperfections. We ignore the lattice vibrations, hence
denote by R; the rest position of the jth imperfection,
and by r; the position of its electron (relative to R;).
Again two bound states per trap are assumed. The total
ground state eigenfunction has the following form in the
zeroth approximation, where the interactions between
imperfections are ignored,

®o(g) = p(R;41,). (8.6)

(8.6) uses the Hartree approximation (S2, p. 234),
while the excited state is of the form

@o(u1k) = o (Ri+11)- - - o(Rimrt111)
X ¢ (Rit11) o (Rig1+1141) - - - o (Ry+1y).

It is V-fold degenerate, since any imperfection can be
excited.

We next consider two perturbations: (1) due to the
optical waves and (2) due to the imperfection-
imperfection interaction. The first has the form [H3,
Eq. (13.7)],

(8.7)

2_i(e/me)p;(e) - ARj+r;),

where pj;(e) is the electron’s momentum and A is the
vector potential. If one combines (8.6), (8.7), and (8.8)
with the usual theory of absorption (H3, p. 143 and
p. 179), the following transition matrix is obtained,

I <q)0(u)k) ‘ Reiflcbo(g)”z (89)
Reff=2j I; exp(—ix-R,-)

(8.8)

where
(8.9a)
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and x is the wave vector (v/c) of the exciting light. The
total effect is a sum of (8.9) over all the upper states.
In this approximation (8.9) is just N |{¢'|r]|¢)|% as
one would expect.

The second perturbation produces changes in (8.6)
and (8.7). We first apply the trap-trap interaction and
then use (8.8). Since ®o(g) is nondegenerate, its energy
level will be slightly shifted. The perturbation, however,
will affect ®o(#,k) more profoundly. It removes some
or all of the degeneracy and the upper level will fan
out (Fig. 5). The various eigenfunctions are denoted by
&, (u,k). One may no longer replace Re¢s by r, since the
phase factor is of utmost importance; hence, the matrix
element becomes

(®1(1,k) | Rege| ®1(g)).

Many of the cross terms in the square of the matrix
cancel due to the random distribution of the Res;. The
old theory of spectroscopic stability (V1, p. 137) gives
some useful information. It can be applied directly to
(8.10) to show that

(8.10)

| @olae)] Ru| 29} = N1 (&' ] )

=§ | (@1(2,%) | Rese | 21(g)) |2 (8.11)

The perturbation is assumed to be small enough that
the ®;(u,k)’s can be expanded in terms of the ®o(u,k)’s.
The next step is to define g(») by the relation

v+iAy
—Z}A | (@1(u,%) | Rese | 1(g))|?

=Ng(@) (¢ | 1] ¢)[?A.

The summation is restricted to states where the energy
difference lies between %v==3%Av. The left-hand expres-
sion is simply the sum over all the possible transitions,
while the right-hand side defines g(»). The theorem of
spectroscopic stability assures that /;® gdv=1 as re-
quired by (8.5).

The development is quite formal and gives no
information regarding the shape and width of g. These
are the required steps, however, to introduce the factor
properly into the theory of optical absorption. It shows
that the upper level widens.

(8.12)

WITHOUT
INTERACTION

WITH
INTERACTION

U ——
FiG. 5. Schematic di- o
agram showing the ef-
fect of the interaction
between centers.

GROUND
STATE -~
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This development indicates why one would not expect
sharp lines in the absorption spectra of solids, except
when one “‘imperfection” is very well shielded from
another. Hence the absence of sharp lines in thespectros-
copy of solids is to be expected (see the edge emission
of CdS K2a, p. 117). This factor also accounts for the
fact that the F center absorption does not have a
fine structure. Unfortunately, we are unable to estimate
the width of g, or to separate this broadening from the
one caused by dispersion (KS5).

It is assumed that g is wider than %w, where w is an
effective phonon angular frequency. The g function is
next replaced by the Dirac & function. To obtain the
moments, we integrate over many such functions. For
the shape calculation, more care has to be used. On
introducing the & function into (8.3) and recalling
items (1a) and (1b), we obtain

s(n)=b(4n*/3)(¢/hc)y |{(¥' (4) || ¥ (4))} |*
X&{v— (1/8) (E'—E}}L,. (8.13)

The dimensions of Satomic and s(v) are not the same.
Satomic has the dimensions of mi%—2 (m for mass, I for
length, and ¢ for time). This arises because I, has the
dimension of mt=%, not energy per /*. Equation (8.3)
assumes implicitly a § function (S2, p. 215). In (8.13)
we have written the 6 function explicitly; hence s(»)
has the dimensions of mi*2,

The absorption cross section per imperfection in cm?
is defined by

energy absorbed per unit time in interval A»
energy falling on imperfection per unit time
for unit area in interval Ay

or

o (v)=b(4n*/3) (ve’/hc) | {(¥' (4) | x| (4))} |
Xo{v— (1/4)(E'—E)}. (8.13a)

This cross section must be summed over all the point
imperfections in unit volume. Before summing (8.13a)
we must consider the probability of finding a given
imperfection with energy E. This is given by
(B, p. 178)

P(ve)=Tp (), (8.14)
where
p()=e(1—csi)
=2¢~i+VBi sinh1g; (8.14a)
and
Bi="w;(g)/ k8. (8.14b)

The time average absorption constant is }_,,. P(v;) - o(»).
To obtain the actual measured absorption coefficient,
the & function must be eliminated. This can be done by
the integration

1 o
a,=—-N 2o P(vs)o(x)dx.

w —3w

(8.15)
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On averaging o(v), the error of replacing g by & is
eliminated. For the calculation of the moments, one
need not use (8.15) but simply integrate Y _,,, P (v:)a (v)
over many narrow ‘lines.”

To carry the solution further, the delta functions
must be expressed in terms of integrals. » appears in the
6 function and as a multiplier of this function. If the
oscillator strength|| || is introduced (S4),

JR)=(2/3)(m/R)»| (¢’ (R) | x| o (R))[2.

a, takes the following form

(8.16)

1 o 2e2x?
aw(v)=_be d”[ Z P@)|[{xX'| flx} 1

—tw cm
xa{ v—%(E’—E) H (8.17)

which nicely hides the frequency dependence of the
term in front of the § function. The mass of the electron
(m) is introduced by using (8.16). It can be considered
as an adjustable parameter provided we have a knowl-
edge regarding the behavior of f. The next step is to
forget about f’s dependence on » and R and write

2m2be? o
fN G(x)dx

v—iw
Gam) =2 P@)|{x'[x}[*{»— (1/A)(E'=E)}. (8.18a)

In Sec. 10 we shall show that G, is normalized. In
(8.18) the shape and moments only depend on the
x’s. The assumption that f is independent of R is known
as the Condon approximation. Meyer has eliminated
this restriction. There is no good theoretical justification
for the steps taken in obtaining (8.18). The frequency
spread may be large over the bands, and one can hardly
replace » by an ‘“average” value. In emission, a »®
appears before the § function, and it certainly cannot
be ignored. For instance, from the data on the emission
from the F center in KCl at 77°K (D3) we know that
e-(em)=1.08 ev and ¢,(em)=1.35 ev. Since (1.25)3=2,
the frequency factor could lead to an experimentally
detectable skewness. One can assume that fis a function
of the ¢’s and of » and still solve the moments problem.
The present absorption data are not good enough to
justify these added complications; they are considered
only in Appendix V.

The theoretical problem is to know whether to treat
(' R)[x[e(R))| or [(¢'(R)|pi(e)| o(R))| as the
fundamental quantity independent of the frequency.
The sum rules are in terms of the f (S4, p. 503). Dirac’s
formulation of the radiation problem deals with matrix

(8.18)

Ay ( V) =
coom

LIl (¢’ r] @) is assumed to be real; thus f* is real. This allows
a simplification in the notation without any limitation on the
derived equations.

79 Since the absorption is small, we may assume that # is
independent of » (BS).
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elements of p;(e), while the elementary theory uses the
matrix elements of the electron displacement. To refine
the theory, this problem must first be resolved. This has
not be done so far.

One cannot simply borrow theorems which hold for
atoms since the phonon modes give additional degrees
of freedom to the problem and their effects on the sum
rules have to be explored with care.

Peierls, many years ago (S2, p. 671), considered the
absorption problem when the centers have a lattice
geometry. In this case the ®;(»,k)’s have a rather simple
form and strict selection rules exist for the transitions.
The problem here has only an indirect relation to the
one considered by Peierls. We assume a random
distribution of imperfections; hence, no strict selection
rules.

Lax and Burstein (L2a) have formulated the above
in an alternate manner. They consider H; as a pertur-
bation which broadens the ¥’s making bands out of the
ground and excited states. This is an interesting and
useful point of view.

Although there are limitations on (8.18a) we shall
now use it to obtain the absorption coefficient when
the ¢;’s equal zero (Sec. 9), and the distribution
moments in the most general case (Sec. 10). The
foregoing equations apply rigorously to all the models
discussed in the general introduction.

9. SHAPE OF THE BAND

Using a development of O’Rourke and Pekar, the
integral G,.(») can be evaluated giving expressions for a.
The problem, however, has to be simplified by the use
of two assumptions: (1) that ¢;=0, and (2) that an
effective mean frequency exists. Use is made of Mehler’s
formula and various expansions of the modified Bessel
function.

The delta function can be expressed in the integral
form (H3, p. 66)

1 0
5(r)=— f — (9.1)
2rd_

By substituting (8.14a) and (9.1) into (8.18a), one
obtains

1 0
6= f o TR, (DA, (9.2)
Y 0

where
F=2sints; [ [T2,, expl— (N @)s(a)]

XL, expl— (v +HuIx (Q)x, Q1) Jdgidgs’  (9.3)

vug= (1/h) €. (6) — €,(6)] (9.3a)
Aj=pBi+iw;t (9.3b)

and
M= —iw_,-t. (93(:)
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To obtain (9.3) we have employed (3.9), (3.24), (8.1a),
and (8.2a). Also, a term has been added and subtracted
in the exponent to make the next step simpler. u; arises
from (9.1), while A; is a result of a combination of (9.1)
and (8.14a). Finer mathematical points, such as the
use of (9.1) and the rearrangement of the order of the
summation will not be considered.

O’Rourke now uses Mehler’s formula which can be
written

20, € DG (g:)x3(q5)
=a;(27 sinhg)~* exp{ —1e,?[ (¢;+¢/)? tanh}s

+(g;—¢/)* coth3£1},  (9.4)

where
af=w;/h (9.4a)
(Appendix III). The substitution of (9.4) into

(9.3) makes the integrand take the simple form,
exp[ —ax2+57]. The operation can now be carried out
by the use of standard formula, giving

— 6}‘)
Fi= exp{ ]
’ w;2(w;h)[coth (38;+ Siw,t) — cothliw;t]

€ 2
=exp[ —( ! )[coth%ﬁ,-—i sinw,t
2wh

—cothiB; cosw;t] } . (9.5

The steps between (9.3) and (9.5) are essentially
elementary, although slightly involved. The use of
Mehler’s formula does not require that the frequency
of the two states be equal. One may obtain more general
expressions for the Fj’s [Vasileff (V1), or Dexter (D1)].
We want to obtain e, (v), hence must obtain a rather
simple expression for II;F;. This is the reason for
requiring that all the ¢; vanish.
Now

€

2

wrmenlz (%)
i

X (coth3B;—1 sinw,t— cothiB; cosw;t) } (9.6)

The existence of the following equality (for any 6 and ¢)
must be assumed

1_2
2€
Z](h-;’) [coth§B;—1 sinw;t—cothiB; cosw,!]
i

1.2
2€j

=[coth}B—1 sinwl—coth}B coswt ] Y ; (9.7)

The relation certainly holds for the CC and Frohlich’s
model. If the local modes cluster about a point between
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the acoustical and optical branches, (9.7) should be a
good approximation. One would not expect (9.7) to
hold if the important modes are a combination of
several types (longitudinal optical and local) involving
radically different frequencies. Combined with (8.14b),
it defines the “effective” or ‘“average” frequency w. In
Sec. 11 a method is described which can be used to
determine whether or not several effective frequencies
exist. For the time being, (9.7) is used. Introducing the
famous Huang and Rhys factor, we write

1 0
Gn(V)=—f dt e=it=ruot
2rd_

Xexp{—S[coth3B—i sinwt—cothif coswt]}, (9.8)
where
€’ 1
J
S=3% Jw,ﬁh:Z’w,-h%wﬁ(Qj_qj)z’ (9.8a)

S is nondimensional. Equation (9.8) resembles integrals
which appear in the definition of Bessel’s function. To
relate G, to these functions, the following transforma-
tion is introduced:

7= (1/2)ip. 9.9)
The integration variable of (9.8) is now changed to
r=cwt—1. (9.10)

Since one may show, with the use of (9.9) and (9.10)
that

1 sinwi-+cothiB coswt=cschig cosw, 9.11)
Eq. (9.8) takes the form™**
1 p*dx .
Gn(v)=—| —exp{—i(pn+px)
2md_p w
—S coth3B+S csch3p cosx}, (9.12)
where
p=(v—ruy)/w. (9.13)

One may show thatttt

1 = .

— [ exply cost—ipga=F s(p~BIL,(3), (.130)
21 —o

where I, is the modified Bessel function and % is an
integer. Now (9.12) takes the form

e—ipn—sS cothif

G.(v)=- —— 22 8(k—p)I,[S cschig]. (9.14)

w
***1In (9.12) an alternate path of integration is used. This can
be justified by taking contour integrals and assuming that p is
an integer.
111 To establish (9.13) one must use an integral expression for
In (J1, p. 547), and it is noted that §(x) = =2, ¢2%inz for —1 <z <1,
etc.
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Equation (9.14) requires that p or (1/w) 2_; wj(v//—1;)
be an integer for any value of v; and v;’. This means that
w=w;. Evidently Eq. (9.7), which holds for any ¢, can
only be satisfied under this condition. Therefore, the
derivation holds exclusively for this condition.

The author believes that this is the result of using
the & function in Eq. (8.13) and that in reality Eq.
(9.14) will give the correct shape (envelope—see Fig. 4)
even if the frequencies vary over a small range. We
thus write

p-': 1);'“7)5.

(9.15)
Equation (9.14) can be put in the alternate form

P17 1
G =[] = epl-s@r+1)]

v
XL (k=p)I,{2S[o(+1) 1},

where =3[ coth(8/2)—1], the mean quantum number
of a normal mode in the ground state.

The actually observed shape is obtained from (8.18);
hence,

(9.16)

- G.(v)dv=—

WY% 14w w
Xexp[ —S(20+1) T ,{2S[o(7+1) %},

where p is the integer closest to (1/w)(r—wy). ©
appears in (9.17) because the unknown g function has
been effectively replaced by the step function.

1 prite 1 [1').{. 1 }p/2
1)

(9.17)

1

g=0 for » <;L(E’——E) —1w

1 1 1
g=— for —(E'—E)—}0<v<-(E'—E)+3iv (9.18)

w /3 %

1

g=0 for ;L(E'—E)+%w<v.
The factor 1/wexp[—S(25+1)] does not affect the

frequency dependence of the absorption, i.e., the shape.
It is convenient to introduce an average shape factor

o+17#/2

G4=[—_—] I {2S[5(v+1)7). (9.19)
D

The term 1/w is a measure of the width of the

band. Larger «’s cause wider absorption bands
provided that the ¢;’s remain the same. We shall see that

é* J
[p(z)= 1+;

o (~1)[4p—1[4p*—3] - -[4p°— (2n—1)7]
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f;'f,’oe_s @G Ad1>= 1
pendix IV and Sec. 10).
Equation (9.19) is exact for the models considered
provided (9.7) applies. It does not require that ¢; — 0.
This is not obvious unless the derivation of O’Rourke is
used. Two alternate forms of G4 will now be found
using some developments originally due to Pekar (P1).

so that JSG,(v)dv=1 (Ap-

(a) Low Temperature

If §— 0, 7 is a small quantity. It is useful to define
z=2S[#(@+1)]* which is also a small quantity. Here
2, — 0, and $>0; hence, our concern is for the situation
where p is a positive integer. Now we expand I, as
follows (J1, p. 542):

(%Z)"[ (32)* (32)*
Ip = 1+ { oo 9.20
@ st L st 2042 (p+1) ] (6-20)
and obtain
GA(n)~Gi()=57/p!. (9.21)

This approximation improves as p increases. For large
S, one may use the Stirling approximation and show
that the maximum occurs at

n=S. (9.22)
This corresponds to the angular frequency
V1= vy +Sw. (9.22a)

Since p is an integer, S in (9.22) refers to the nearest in-
teger value. The violet side of the band corresponds to
higher values of p, where (9.21) is a better approximation.

It seems appropriate to refer to (9.21) by the name
Pekarian, since Pekar was the first to employ expansion
(9.20) in relation to this problem. The use of Eq. (9.21)
requires the inequality,

2/4p1. (9.23)

At the point of maximum absorption this is equivalent
to the conditions

(Pekarian Criterion)

Si<<1. (9.24)

The shape of the absorption band of some F centers
seems to be given by (9.21) (K4). Little is known about

this type of curve. Its behavior is studied in Appendix
IV.

(b) High Temperature

At high temperatures 7 is not small and z>>1. As the
temperature increases, z approaches the value 25%6/7uw.
This suggests the use of the asymptotic expansioni}f

(2x2)}

n!(8z)" (0.25)

111 This type of expansion is discussed by Jeffreys and Jeffreys (J1). Their equation for I, however, is slightly in error.
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Our interests are not limited to small values of p or to
the first few terms of the sum.  may have the value of
100; hence, for appropriate values of z the major
contribution arises from terms with high values of .
If the series can be broken off before r=p, the simple
form is obtained,
ez
ne=-——|

2 1 2\ 2 1 3
B YY)
(272)} 2z 2!\2g 31\2z

B (2;)& eXp(z_g)'

For (9.26) to hold, one requires that (2n—1)2<4p? for
all important terms. This will be true if p?/2z<1.
When p?/22>1, the expansion (9.26) must be explored
further. The highest terms of the series occur (approxi-
mately) at n=p2/22, or Eq. (9.26) requires that
42> (p*/7%). These facts suggest that criteria for the
applicability of (9.26) are

[22/p]>1

and (Gaussian criteria)

(9.26)

(9.27a)

[p>>1. (9.27b)

The high-temperature shape is obtained by substituting
(9.26) in (9.19),

GA(V) th(l')

: { 1’*+p1(1+1)} (9.28)
YR b oL o\ @

Its maximum occurs at

121 1-}—1 o (9.29)
=32 n( —)=—z .29
" 3/ 2m0
=S (9.29a)
and
V= Vug+ (fus?/2k6)z (9.30)
= vy o+Sw. (9.30a)
The peak value of Gy is
autman)= el )]
max) = exp1 2 . 9.31
" Qe P 8k26? )
Hence

Gr=G\(max) exp‘ —%(\%—2%\/3)2] (9.32)

=Gh(max) exp[ —ziz(v—v;.)’}. (9.32a)

Y4

Thus at high temperatures the absorption should be
Gaussian provided (9.27a) and (9.27b) apply.
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TasrLe IIL.
4k9 ICICRRIN
0 °K v fiw [] g for S$=30
5 3.11X10718 0.139 1.11X1077 3.34X107%
10 5.58X 1077 0.278 7.47X10°5 4.48X1072
20 7.47X10™* 0.555 1.36X 1073 1.63
30 8.30X1073 0.834 3.04X1073 5.47
50 5.95X1072 1.39 5.02X1073 15.1
75 0.172 2.08 5.96X1073 26.8
100 0.311 2.78 6.40X 1073 38.4
200 0.949 5.56 6.80X 1072 81.6
400 2.31 11.1 6.91X1073 165.
600 3.69 16.7 6.93X1073 250.
800 5.07 22.2 6.96X 1073 334.

If the ¢;’s do not approach zero, p will be greater than
unity, and criterion (9.27b) will hold, except in the
region where =0, i.e., v=v,,. Since p,>0, this occurs
to the red of the peak. In the broad bands which arise
in polar solids, this will not be a real limitation on the
applicability of (9.32a).

To test criterion (9.27a) at the peak, it is combined
with (9.29) to give

22/ pr=4k0/hw> 1. (9.33)

In Table III some typical values of 9, 2, (4k8/%w) and
(1/6)[#(+1)]t are given. The phonon frequency
selected was 27 (3X10'2) sec™! (MS5). The table indicates
that (9.33) applies above room temperature. Since
p<pu for the red side of the band, Eq. (9.23a) should
hold there.

If we multiply Gx by (1/w) exp{—S(2541)} one sees
that /"G.dv=1, provided one neglects small quantities.
In the next section we show that this relation holds
exactly.

Deviation from a Gaussian form should be looked for
on the violet side of the peak where p> p5; here (9.27b)
could break down. This treatment does not suggest
that a band should be Gaussian for all », although at
medium temperatures one would suspect that the red
side would approach such a shape. At some temperatures
the following conditions may occur: (2z/p)>1 for the
red side (Gaussian), and (2?/4p)<1 on the violet side
(Pekarian).

We may obtain an expression for H at high tempera-
tures. Equations (7.7) and (9.32a) show that 2#%w%
=1/a? and

H = (5.545)%wz?

= (5.545)15%w cschig. (9.34)
For high 6

H= (11.090S ki) 6", (9.34a)

Equation (9.30) predicts that the peak of the
absorption band is temperature dependent. The
dependence is given by »,,(8) and z/6. In Table III the
dependence of [#(7+41)]}/6 on 6 is given. This quantity
is proportional to 2/8 of (9.30). Except at low tempera-
tures, where our approximations break down, this term
is insensitive to variations of 6.
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2y N

qj_—

Fic. 6. Diagram illustrating the broadening effect. The upper
and lower configurational coordinates are shown. The distribution
probability at 0°K is given in_the lower left corner. Point “g”
is at ;(R,), while “c”’ is at e.(Ry).

The dependence of », and H on temperature given
by (9.30) and (9.34) is due to the approximations used
in this section. These relations require correction, but
the high-temperature prediction is valid and (9.34a)
holds.

The physical interpretation of the above equations
is indicated in Fig. 6. Although the development
considers more than one mode, this description is
limited to the CC model. This is done for convenience
only, as the arguments can be generalized to any
number of effective modes. Since the e;;’s are zero,
the frequencies are not affected by the transition. In
Fig. 6 ¢,(g) and e.(g) are plotted against ¢. The hori-
zontal lines are various values of E= ¢,+ fw(v+2) and
E'=e,+hw(v'+3). The relative probability of finding
a particular value of ¢, when the electron is in the
ground state, is shown by the shaded area on the lower
left. The probable distribution, p(g), at absolute zero is
x2(g) for v=0. At any finite temperature it is

1
p(Q)=2p(V)x*(q) = exp[ —¢*/a*], (9.35)
a/m
where
"
a=(—) cothiig. (9.35a)

One obtains (9.35) from (8.14a) and (9.4). At high
temperatures a? has the value 2k6/w?, and (9.35) has a
form which one can obtain by Boltzmann’s statistics if
the total energy of the system is assumed to be (1/2)w?g2
The actual energy of the system, however, is not
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(1/2)w?¢?, since (9.35) is the sum over many states
unless §=0°K.

The first question is: what is S? It is simply the ratio
of the difference in potential energy at 0 (b) and at
Ag (¢) to the energy of a phonon, %w (Fig. 2). This
follows from (3.24) and (9.8a). The maximum of the
absorption occurs for transitions from v=0 to v'=3S as
is seen with the use of (9.22) and (9.29a). This is the
vertical transition if we ignore the zero-point energy.
One would expect this to be the peak because of the
shape of p(g). So far complex analysis has not led to
anything very surprising.

The bandshape at low temperature, however, is
non-Gaussian; indeed it is nonsymmetric. This means
that |{xs+1"|xo} |2 does not equal |{xs_1"|xo} |2 Here O
and S=1 refer to the quantum states of x and x’. This
lack of symmetry leads to the skewness in absorption
curves at low temperatures. This has created a serious
problem in the experimental analysis (K2a, p. 119).
We stress that this lack of symmetry stems from the
properties of the x’s and not e.(q)—e€,(g), which for
this problem has the simplest form possible, namely

Av=Rwu 30 (Ag)*—w?(Ag)g. (9.36)

v is a linear function of g.

At high temperatures the spread on the red side
occurs because of transitions where v’ —v; is smaller
than S. The violet side is affected by transitions from
the ground state where v,’ is greater than S. The theory
suggests that these transitions tend to make the curve
more symmetrical and in the extreme case, Gaussian.

The Williams’ approximation suggests that the
transition probability at frequency » is obtained from
(9.35) and (9.36). First, (9.36) is solved for ¢; then the
absorption is obtained from p(g). Since p(g), however,
is composed of several states (unless §=0°K), this
approach is inconsistent, since e.(g)—e¢,(¢) does not
equal E'— E. Further, the matrix elements are somewhat
asymmetrical.

The question of the asymmetry of the absorption
band is an extremely fundamental one. The Williams’
approximation happens to give the correct temperature
dependence of H (Sec. 10). Equation (9.34) might also
be a good approximation. Actually, it is a poor one.
It is the asymmetry of the curves, i.e., Eq. (9.21), which
gives us the necessary insight to understand what is
really happening.

In conclusion, one should mention that Krivoglaz and
Pekar (KS5) report a shape where the term const (v — v3)3
is added to the expression in the curly brackets of
Eq. (9.32a). This term will create a skewness when
(v—w) is not too small. As » approaches »;, the curve
becomes symmetric and almost Gaussian. This fits the
experimental data better than (9.32a), since there is
another adjustable parameter. The experimental data
seems to resemble a double Gaussian curve more nearly,
however. There is no evidence, however, to believe that
a discontinuity in the absorption occurs at y= ;.
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Arguments by Kubo and Toyozawa (K6) indicate
that the simple model employed here gives a
symmetrical shape at high temperatures. This same
conclusion can be obtained from the higher moments
calculated by O’Rourke. The conclusion of Sec. 9(b)
regarding the symmetry of the shape is not due to
(9.25). Experimental data suggests (K4) that the
results may not be completely valid. However, the
simplifying assumptions give some useful information
regarding the low-temperature shape and the transition
probabilities.

10. METHOD OF MOMENTS

The method of moments was developed by Lax (L1)
and extended by Meyer (MS8). We now combine the
development of Part I with this powerful approach.

Returning to Eq. (8.13a), we first sum over v/ and
then take a weighted average over v, using (8.14); thus,

K €0
Avf 2odt{x| X X 2 x)

a(v)=—
2

Xexp{ 1[ (E'—E)%—th} , (10.1)

K=27%e*N/cm. (10.1a)
In this approach «(») is used. To obtain (10.1) we have
made use of (9.1). Av implies a weighted average over
the ground vibrational states. By expanding exp{iE't/%}
in series, one may show that

X' exp{iE't/h} = eiHutlhy’, (10.2)
Now (10.1) takes the form
K
0[(1/) =— AVfdt Zv’
2
X{x| flef [ x'} {x' | fle=iHotlk| x}e=t.  (10.3)

We note that E’ depends on »,’; H,, however, does not.
Therefore, we take it out of the sum. Equation (10.3) is
a product of the three integrals: one over ¢; the other
over the nuclear coordinates involved in the first
{ }; while the third arises because of the second { }.
Since the x’s form a complete set in ¢ space, we use the
following property of eigenfunctions (H3, p. 66)

2ooixi (g)xi (¢) =08(g;—gi') (10.4)

and write
K

a(u)=2—fdt Av{x| fleilutih flg=iHotlk |y} e=ivt (10.5)
T

Now the Condon approximation is used to remove f
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from the matrix element, giving
Kf : :
a(v) =—2— Avfdt{xle“”"—”v)‘/ﬂx}e‘”‘. (10.6)
™

The quantum mechanics is contained in the order of the
operators; thus one cannot remove exp{i(H,— H,)t/%}
from the matrix (Appendix V).

By assuming that f is frequency independent, we see
that « is the Fourier transform of the function
KfAv{x|exp[i(H.—H,)t/%]|x} and it follows that
(M7, p. 252)

Kf Av{x| e/t toh| x) = f a)edy.  (10.7)
Setting /=0, we find

fa(v)dv=Kf. (10.8)

Therefore, it follows that G, () of (8.18a) is normalized.
The thermal vibration spreads the absorption band
but does not affect the area. Equation (10.8) is based
on the approximation that f is independent of frequency.
Had we assumed that (¢’| | ¢) is frequency dependent,
the zero moment would be temperature sensitive. Using
(7.1), it follows that

My=%K{. (10.9)

Further,

{(h/i) ) f a(y)eivtdmu)}ho: f (v ()

= (B*/1)Kf AvL(9/00){x|e'Hv=Ho Ik |} T,y (10.10)

and

M=hKf Av{x|H.—H,|x}.  (10.10a)

Now,

{—mj—; f a(u)ei”‘d(ftu)]t=0= f ()a()d(y)  (10.11)

and

My=hKf Av{x| (Hu.—H,)*|x}. (10.14)

By similar methods we may evaluate the higher
moments. For these situations, one may not write

exp{ (i/%) (H.— H )t}
for

exp{ (i/A)H.ut} exp{(—i/h)Ht}

as explained in Appendix V.

To evaluate (10.10) and (10.12), expressions for the
operator H,—H, as well as Av{x|qg;"|x} (» is an
integer) are required. The matrix elements can be
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calculated from the properties of the x’s and are
(B, p. 173-181)

Av{x|g;|x}=0 (10.132)
Av{x|q?|x}=[%/2w;(g)] coth}B; (10.13b)
Av{x|q?|x}=0 (10.13c¢)
Av{x|q*|x}=3[%/2w;(g) ] coth® 38;.  (10.13d)

B; is defined by (8.14b) where the ground state w; is
used.

An expression for (H,—H,) is obtained from (8.1),
(8.2) and the expansion technique employed in Sec. 3.
It now follows that

Hu—H,=Ae(0)+2; ;03 i st
+3> i engigr  (10.14)

Ae(0)=e.(Rp)—¢,(Ry) =tvut3 2 6f/wi(u). (10.14a)

To obtain (10.14) and (10.14a) use has been made of
(3.27). When comparing Secs. 9 and 10, it should be
remembered that Ae does not equal #v,,. The prime on
the sum means that j7%. The temperature dependence
of Ae is due to the expansion of the crystal. We as-
sume that the ¢’s and e;’s are independent of 6. The
derivatives are evaluated at the equilibrium position
of the ground state, and the ¢,’s are the normal modes
for this state.

The evaluation of M; and M is now straightforward.
Using (10.9) and (10.10)

é=(M/ M)
=Ae(0)+% 2; €[ /w;(g)] coth3p;.

To evaluate M, we square (10.14), i.e.,

(Hu—H,)*=Aé(0)+2; eq°+2 54" eiexqiqn
+i 2 6fgitt1 i eierigfi’
+248e(6) 225 eigit+Ae(0) 2jesiq
+Ae(0) 25 €rgiqr

+2 5k €j€rgiqid,

(10.15)

(10.16)

where again terms involving ejer; and ejere; (B#0)
have been omitted. Using (10.12) and (10.13) results in

(Mo/Mo)=Aé(0)+2; [/ 2w;(g) Je? cothi;
+3 2j [/ (g)] coth? 38;
+1%6 Lir ijerr 7?/wi(g)wi(g)] cothiB; cothiBy
+34e(0) 25 €5 #/wi(g)] coth3B;.  (10.17)
A combination of (7.3), (10.15), and (10.17) gives the
important equation

m*=2_; e[#/2w;(g)] cothB;
+% X5 &[7/wi(g)] coth? 385 (10.18)
We have made only two assumptions—that f is not

a function of » or ¢, and that the adiabatic approxi-
mation can be used to terms of e€;;, €x1, and ejex;, where
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k=~1.§88 These equations are extremely general. The
possibility of calculating the ¢’s and ¢€’s about a point
imperfection with any degree of accuracy is small.
Hence, the equations as they stand are of little use.
We must make further assumptions to obtain relations
between &, m, and 8 which involve parameters to be
evaluated experimentally. The generality of the
equations assures one that terms will not be omitted.
Thus, we may apply the equations to the Huang-Rhys
problem (the Frohlich approximation) and compare
our results with those of O’Rourke and Meyer. On the
other hand, we may make the approximation used by
Klick.

(a) CC Model

Here, there is only one ¢ whose ground state has the
angular frequency w(g) ; hence, from Sec. 3,

X=q/M} (10.19)
where M is an effective mass of the order of an ionic
mass. For this model
Ae(g) =hvu,+30® (u) (g— Ag)2— 302 (g)¢?

= lvugt30? (1) (Ag)*—w?(u) (Ag)q

+3[e?(w)—w?(g) I (10.20)
Using the definition of (3.18),
== (u)Ag=—o’ (W) M*AX (10.21a)
and
eii=w? (1) —?(g) =20 (g)Aw. (10.21b)

Equations (10.15) and (10.18) now have the form

é=Ae(0)+37Aw cothip (10.22a)
and
mi= {1 v (u)M (AX)? }hsz(u) cothig
2 o (g)
X +342(Aw)? coth? 8. (10.22b)

A generalized S is defined by the use of (10.18) and
(10.22b),

S—l oy 1 _1ij2(u)
207 wi(@ep) T has(g)

The last step uses (3.24). S equals the expression in the
curly brackets of (10.22b). This definition agrees with
(9.8a) and is equivalent to the one used by Meyer. An
exact comparison is somewhat involved since Meyer
takes a thermal average over modes which do not
include Vr and V, of (5.2). The S for absorption and
emission need not be the same. Both w(g) and w ()
enter into the definition.

(Qi—gi)*. (10.23)

§§§ We also assume that the modes are nondegenerate (Sec. 3).
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The second term in (10.22b) is new; it arises from a
superior approximation.|[|||| To estimate its effect we
set 6=0°K and Aw=~w. Now

mo=ho[ S+ (1/2) 1t
=hSH 1+ (1/45)]. (10.22¢)

If S is of the order of 30, the correction term is of the
order of 0.01, which is at the experimental limit of
accuracy. If S were smaller than 30, and if Aw is large,
one might be able to detect the second term in (10.22b).
This would be done from the temperature behavior of .

Equation (10.22a) has a great deal less information
than (10.22b), since no reliable information regarding
Ae(B) exists. As stated, Ae may change because of the
lattice expansion. €. for the F center seems to be a
function of the interionic distance, d. From empirical
data, one may obtain the following relation, em(d)
=const d1-# (Mollwo (M10), Ivey (I1)). Combining
this with density measurements at various tempera-
tures, one may calculate Ae(6). Using Henglein’s (H3a)
expansion data for KCl, one obtains

em(193°K) — €, (273°K) =0.011 ev
em(80°K) — €, (273°K) =0.025 ev,

where & has been replaced by €. This change of en is
too small to explain the observed temperature variation
(0.040 ev and 0.070 ev), which is an indication that
Aw>0 for this particular absorption band. One might
attempt to combine the Ivey relation with (10.22a).

On the other hand, we may assume that Ae(6) equals
a constant. This can be tested by plotting e, against
cothB/2; B having been evaluated empirically from
(10.22b). If the data give the equation A+ B cothB/2,
one may evaluate Ae and Aw. There is a danger in this
procedure since Ae(§) may also vary as A-B cothgB/2
over a limited range of temperatures [for small 8,
cothB/2=(2/B)]. In this situation the coefficient of
coth8/2 would not equal 3%#Aw. As the range of
increases, the possibility of accidental correlation
decreases.

Using recent data on the F center in KCl, » has been
evaluated with the use of (10.22b) (without the second
term). From (10.22a) w, & and #Aw were determined.
One again concludes that the correction to (10.22b) is
very small.

Klick and Schulman (K2a, p. 110) have used the
Williams’ approximation to obtain an expression for
H. It is identical to the first term of (10.22b), provided
H and m are proportional. This does not imply that
the derivation given here is identical to the one obtained
previously. The latter method does not give the second
term of Eq. (10.22b), nor the Pekarian shape (at low
temperature). The latter is readily observable and
requires understanding. If one uses Eq. (9.34), H
depends on the cschB/2 instead of cothS/2, which

[l [ A term of this nature appears in the formal treatment of
Kubo and Toyozawa (K6).
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indicates that the relation given by William and Hebb
(W3) and by Lax (L2) is fortuitous.

(b) Huang-Rhys Problem

In this case we assume that all the modes have a
single frequency given by the LST relation; then

é=Ae(0)+3 X hAw; coth} (10.24a)
and
m2=%2%2(1)S cothif+1 (3 ; #2Aw?) coth? 3. (10.24b)

Equation (10.24a) was first obtained by O’Rourke,
using the approximation that Aw is very small. Later
Meyer obtained this equation by an alternate method.
These authors did not note the thermal dependence
of Ae(f). The first term of Eq. (10.24b) has been given
before, while the second term is new, see however (K6).
It may be detected when careful measurements are
made on bands with small S’s.

(c) Double-Frequency Model

We may apply (10.15) and (10.18) to more complex
situations. An alternate model is one with two effective
ground frequencies w; and ws. For this situation

e=Ae(0)+ {2_ €} cothip,
4w1(g) j'O
3
€01 h% 2 10.25:
+4w2(g){2 } cothifs  (10.25a)
and
m?="%w?(1)S1 coth3Bi+7%%w?(%)S;s cothiB..  (10.25b)
Here
S1=3% L[ 1/hw;(g)ws (u) Je? (10.26a)
Se=3% 2i[1/hwi(gw?(u)Je? (10.26b)
61‘—' (h/k0)w1(g) and ﬁz= (ﬁ/kO)wg(g) (1026C)

j is summed over the modes associated with the
frequency wi, and 7 is over the ws modes. The second
term in (10.18) is omitted.

We again use an effective frequency and write

S1= [1/2hw1(g)w12(u):| Z,’ 6,2. (1027)

Since the data are always limited to a range in tempera-
ture, this may be less restrictive than (9.7) which must
hold for every value of ¢. If (10.27) is to hold for every
value of B;, there cannot be a spread in the values of
the w’s.

We may assume that S, is related to the local modes,
and S is associated with the longitudinal optical modes.
B1 will be roughly half B,. The question is: can one
detect the difference between (10.25a and b) and
(10.22a and b) or (10.24a and b)? For the answer to
this question, we must consider the various methods
employed to analyze the data.
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11. ANALYSIS OF EXPERIMENTAL DATA

In the last two sections, we derived several equations
which can be compared with experimental data.
Various attempts have been made to analyze the data
with radically different results. Some of the difficulties
stem from the data itself, yet this is not the major
problem. While at low temperatures (Table I) there is
considerable disagreement, this is not the case at room
temperature (Table IV). The agreement between
Mollwo’s (M10) and the most recent data (MS) is
good. Russell and Klick’s (R1) value of H seems to be
too large at all temperatures.

Russell and Klick conclude that (10.22b) (without
the second term) applies to the F center, provided the
angular frequency in KCl is 1.6X10% sec™. On the
other hand, Pekar (P2 and 4) and Meyer (M8 and 9)
conclude that the same equation holds, provided a
value of 3.95X 108 sec™! is used. It was obtained from
the LST relation. Pekar and Meyer use Mollwo’s data.
The reason for the difference stems from the method
of treating the data. One may use Mollwo’s data with
an alternate method of analysis and obtain 2X10"
sec™! for w.

Pekar’s analysis is most remarkable (P4, p. 129 ff
and p. 145 ff). He had only one adjustable constant, the

TaBLE IV. F center in KCI at room temperature.

Experimenter (M10) (R1) (MS5)
€m €V 2.20 2.2 2.225
I ev 0.35 0.39 0.35

effective mass of the electron. It was evaluated from the
experimental e, at room temperature; hence, his results
should apply to the most recent data. Using this value,
Pekar calculated S by employing (9.8a) and (3.18a).
For the relation between the ¢’s and the X’s he used
the very long wave approximation (B, p. 213). His value
of S for KCl is 23.8. Using this value, the LST relation
(10.24b), and (7.7b), we compute the values in Table V.
Equation (7.7b) was used to relate m and H ; this gives

H2=8 In2(hw)? cothj (fw/k6). (11.1)

The calculation of H at 300°K does not agree with the
value, 0.40, reported in Pekar’s paper of 1950 since it
was based on Eq. (9.34), not (10.24b). Strangely
enough, in 1953 Krivoglaz and Pekar (KS5) derived
(11.1). However the corrected numerical values of H
were not reported in Pekar’s subsequent review paper
(P3), although (11.1) was quoted. The correct expres-
sion for H at 0°K seems to have been first given by
Pekar in 1950 (P1). While the results of the table are
not satisfactory, they are really quite remarkable, since
there is only one adjustable parameter.

A method of analysis which the author believes is
quite useful is now discussed. If one has to use Eqgs.
(10.15) and (10.18) with various values of @;, the
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TasLE V. Comparison of Pekar’s parameters with experiment.

6 H (cal) H (exp)
300°K 0.43 0.35
0°K 0.30 0.16

problem becomes hopeless since the number of adjust-
able parameters is too large. The opposite point of
view, which is very naive, is that one exists and that
Egs. (10.22a) and (10.22b) or (10.24a) and (10.24b)
apply. If we further assume that Ae is independent of
temperature, there are only four adjustable parameters
and the equations of interest take the forms99 ¥

é=Ae+ B coth} (i) k6) (11.2)
m2=12%2S coth (hww/k6)+1B? coth? L (Fw/k9). (11.3)

Next we may assume that B?is very small compared to
#2w2S and hence can be omitted from (11.3). This is
true for the F center in KCl. To obtain m from an
arbitrary curve is a laborious process involving a great
deal of numerical work. In some cases, one may be
able to replace m by H [Egs. (7.7b) and (7.12b)7], hence
in the simplest situation we wish to test critically the
relation

H2=H2(0) coth} (7w/k9), (11.4)

where H(0) is the half-width at 0°K. It can readily be
obtained from measurements at low temperatures
(approx 4°K). The validity of (11.4) is based on the
assumption that the ratio of m to H is temperature
independent. This has to be tested by numerical
integration.

Equation (11.4) suggests plotting coth™'[H/H (0) ]
against 1/8. We have the desired test if 1/6 can be
varied over a large range of values. A straight line
going through the origin is a clear indication of the
validity of (11.4) and the development in Sec. 10.
Further, it shows that there is one effective mode, so the
theory developed in Sec. 9 can be used. Such a plot is
a more critical test of the theory than the previous
methods of analysis, since one deals with straight lines
rather than a complex curve. If one combines this
technique of analysis with Mollwo’s data, one obtains
the 2)X10® sec™! value mentioned above.

Three alternate methods have been suggested.

(1) Klick (K2) plots H against 6%. At high tempera-
tures, a straight line is obtained whose slope is propor-
tional to Siw!. At moderately low temperatures, a
departure from a straight line is obtained and the
analysis requires the determination of this departure.
At extremely low temperatures (about 25°K), one gets
a straight horizontal line. While Klick’s approach is
useful, one cannot determine the validity of (11.4) in a

99 We assume here that (Z;jhAw;)?=3;(hAw;)? which, of
course, need not be true except in the CC model. The B from
(11.2) will however give us the order of magnitude of B2 in (11.3).
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critical manner since the points are not supposed to lie
on a straight line.

(2) Pekar (P3) has plotted H against 6. In this case
one does not get a straight line except at extremely low
temperatures. An analysis of experimental data by this
method is difficult, and the author knows of no detailed
study using this approach.

(3) Meyer (M8) has plotted (H/Aw)® against
cothl (7uw/k6) using a known w (from the LST relation).
An erroneous w can be detected only at low tempera-
tures (under 100°K). If a great many points are
available below 100°K, one can see that his technique
does not give a straight line except for the correct value
of w. Thus, using recent data on the F center in KCI
(M5) one may show that his w is incorrect. Mollwo’s
data had too few points in the critical region, so that
Meyer was unable to detect the deviation. Actually,
Meyer was unable to confirm (11.4) and was forced to
add a constant [Appendix V and Eq. (11.5)7].

We are particularly interested in what happens when
there is a breakdown in the approximation made in
arriving at (11.4). In particular, how does Eq. (10.25b)
look on a plot of coth™'[H?/H?*(0)] against 1/? This
question is only meaningful provided the ratio of w; to
ws is not near unity, and S, and S, are approximately
equal. One cannot hope to detect the difference between
Egs. (10.25b) and (11.4) with the use of experimental
data unless there is an appreciable contribution from
both types of modes, and the frequencies are distinct.

®|—

One may assume that both the local modes and the
longitudinal optical modes interact with the trapped
electron. The local modes should be in the gap between
the acoustical and optical branches. In NaCl and KCl
this gap is roughly at one-half the frequency of the
longest longitudinal optical modes; hence the ratio of
the w’s should be of the order of 2.

To understand the problem various coth™'[H(6)/
H(0)]? against 1/8 plots have been made using several
ratios of S; to S: and several ratios of wi to ws
(Fig. 7).**** In making these graphs, the values of Sy,
Ss, w1, and we were assumed to be known. Then, H?(6)
was calculated. From this H? coth™'[H?(6)/H?(0)] was
computed. Since the data refer only to a limited range
of temperatures, the curvature shown in Fig. 7 will not
be detected. A sure indication of the difference between
(11.4) and (10.25b) is in the intercept, where 1/6=0.
If the line goes through the origin, we have a fair
experimental proof that (11.4) applies, and that there
is a single effective frequency. If not, one must attempt
to express H by means of a more complete equation.
Strangely enough, the data on the F center in KCl can
be interpreted in this very simple manner (K4).

Similarly, in Fig. 8 plots have been made with the
use of Meyer’s equation, namely,

H?=C+D cothj (fw/k6). (11.5)
This equation assumes that f}is a linear function of ¢

**** In Figs. 7 and 8 we assume that m~H.
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(Appendix V). Again, the same conclusion is obtained;
namely, the validity of (11.5) can be judged by the
interception at 1/6=0.

Use of this kind of plot requires measurements at
both low and high temperatures. Measurements at
extremely low temperatures cannot be used, since
H?/H*(0) approaches unity, and there is a large un-
certainty in the coth™ of H2?/H2(0) due to slight
uncertainty in the evaluation of H? (one or two parts
per thousand). This is one disadvantage of this plot.
The other proposed methods are no better in this
temperature region if (11.4) applies.

€y~ €g = const + Aq
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As suggested by Meyer, one may test (11.2) by
plotting & or e, against coth}(%w/kf), w having been
determined from (11.4). If Ae is independent of 6 one
will obtain a straight line. Of course, Ae could vary as
const+b cothB/2 for a limited range of 6.

No completely satisfactory method suggests itself for
testing the shape of an absorption band, since we do not
have a simple analytic relation’ between a and e. It is
fairly well established that (7.7) and (7.8) will not
apply to absorption bands in solids, except in very
special cases. For detailed comparison of the theory
and experiment, see the forthcoming paper (K4).

12. CONCLUSIONS OF PART II

The theory developed in the first sections is applied
to an impurity center with two bound states. Considera-
tions are limited to absorption and, for a large part, to
the simplest model (Secs. 9, 11, and 17). It has thus
been possible to make exact calculations.

The broadening of an absorption band is on account
of at least several causes. The band is composed of
narrow subbands. The width of these arises from the
uncertainty principle, from the center-center inter-
action, and from the dispersion of the normal modes.
The envelope curve (the height of the subbands) is
due to the displacement of the normal modes during an
optical transition. The over-all shape arises from terms
which appear in phonondynamics and are absent in
electrodynamics. The broadening effects are illustrated
in Fig. 9. The energy levels of the system are drawn on
the left-hand side. At absolute zero before the transition,
the system is in its ground state (v,=0). Various
transition probabilities exist for the excitation to levels
in the excited state (v¢/=0, 1,2, ---). The height of
the vertical lines on the right are proportional to these
transition probabilities (Eq. 9.21). The result is an
asymmetric curve which resembles the F center in
KCl (K4). We have plotted v from right to left as is
usually done. For emission one may exchange v, and

m
3
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v,/. Here the emitted energy is Ae(Q=0)—7w (v, —2/),
and the diagram should be “flipped over.” The absorp-
tion curve shown on the right is probably not limited
to the model on the left but only requires that all the
important normal modes (whose ¢; do not equal zero)
have an effective single frequency (Sec. 9). The generali-
zation of Fig. 9 to any model with a single effective
frequency is a result of the use of Mehler’s formula.
This is a result of the fundamental contribution of
O’Rourke.

The shape presented is thus exact for the model
considered at absolute zero. To extend these calcu-
lations to higher temperatures, various approximations
must be made. The asymmetry disappears and the
agreement with experiment is much less good. One may
indeed show rigorously that the model on the left of
Fig. 9 gives a symmetrical curve at high temperatures.
This can be done most simply by calculating the third
moment (01). Hence the model has to be expanded to
predict the shape observed at high temperatures in
the F center of KCI (K4).

As to the accuracy of the theory developed, the
simple model (Sec. 9) does not predict the correct
relation between £°and E°. For example, in the F center
of KCl, $=30, 2»=0.012 ev, and E* (at 0°K)=2.3 ev.
From (4.2a), E*=E°*—2hwS=1.6 ev compared to the
experimental value of 1.2 ev (V1). For this situation we
may not let the frequency change be zero, and a more
complex calculation is required (Sec. 10). For large
values of S, we do not have to describe the potential
curve over the entire range if we are interested only in
emission or in absorption shapes. Returning to Fig. 2,
the absorption shape is determined primarily by the
potential curves about points “a” and “b.” Likewise the
emission shape also is determined primarily from the
curves about “c” and “d.” Therefore, one would expect
that the general features given in Sec. 9 will be observed.
While the general features are given by the develop-
ment, the calculations are not truly exact. The change
in the frequency and higher-order terms must have a
detectable influence. These corrections must somehow
be used to explain the asymmetry at high temperatures.
How to do this remains an unsolved problem.

In Secs. 10 and 18 several more general models are
considered where various corrections are introduced
in the expression for the moments. The effects on & and
m? are, however, small and usually beyond the range of
detection, except for the case where we have two
radically different frequencies. We thus conclude that
the basic equations have considerable validity. This
field needs more reliable data and its complete analysis
in terms of absorption and emission. In Sec. 11 some
methods of analysis are suggested.
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13. APPENDIX I. LIST OF SYMBOLS

Although an attempt was made to associate a single
physical concept with every symbol, this has not always
been possible; thus, € has been used for an eigenvalue
as well as for a photon energy. Similarly, m has two
distinct meanings. Usually subscripts have been
employed to differentiate between physical concepts,
or the symbols have been employed at distinct parts of
the text. Gaussian units have been employed except
for experimental values which are reported in electron
volts. Only the important symbols are listed here.

as—Smakula’s constant—ratio of the area under an
absorption curve to the product of a,,H ; also
(GnH)™
b—local field correction (Sec. 8)
c—velocity of light
e—charge on the electron
f—oscillator strength (8.16)
g—shape factor associated with items (a) and (b) of
Sec. 7, as well as the dispersion of the modes
#i—Planck constant divided by 2
he—electronic Hamiltonian (3.3)
h,—vibration Hamiltonian (3.4)
k—Boltzmann constant
(k)—the kth nuclei
m—See (7.3) except (8.16)
gi—reduced coordinate of the jth normal mode
(In Part IT it is associated with the ground
state.)
Ag;—shift in the equilibrium position ¢;/ —Q; (3.24)
p—see (9.13)
pr—see (9.22)
pr—see (9.29)
;7—momentum operator associated with g;
r—coordinate of all the electrons of interest to the
problem
{—kinetic energy operator associated with the
excess electron
v;—vibration quantum number associated with the
jth mode, ; (ground), and v;’ (upper)
v,—total vibrational quantum number, i.e., 3_; v;
v—thermal average quantum number of single
mode
B—reference (B2)
E—total energy in vibrational state v, associated
with the ground-electronic state
E'—total energy in vibrational state v, associated
with the upper-electronic state
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E°—activation energy for absorption
E°—activation energy for emission
E!—thermal activation energy
Ga—see (9.19)

G.,—normalized shape factor associated with the
absorption or emission of phonons
Gn—maximum value of G,
H—width at half-height (half-width) (7.4)
H—total Hamiltonian [see (3.12), (3.13), (5.4),
and (5.10) for various meanings
K—see (10.1a)
LST—Lyddane-Sack-Teller relation (see B, p. 86)
M ,—nth moment of the absorption curve (7.1)
N—number of imperfections per unit volume
—reduced coordinate of the jth mode associated
with the upper state

P(v;)—see (8.14)

R—coordinate of all the nuclei
R:—value of R which minimizes Vy,
R,—see (3.4a)

S—Huang-Rhys factor %> ;e?/fw? (4.3a) and

(10.23)

T—Xkinetic energy operator for all the nuclei
T'—T which only operates on the x’s

T —kinetic energy operator for all the electrons
V—total potential energy of the system

V —potential energy due to an excess electron
V—potential energy due to a point imperfection
V .—potential energy of a perfect lattice

X.o(k)—actual coordinate of the kth particle in the
ath direction

a—absorption coefficient
an—absorption coefficient at e,

Bi—see (8.14b)

e—stands for an eigenvalue

e;—ground state eigenvalue of 7,

e—see (3.18a)
e;r—see (3.18b)

ex—nth eigenvalue of %,

e,—upper state eigenvalue of %,

e,—vibrational eigenvalue

Ae(R)=¢,(R)—¢,(R)—see after (5.3) for special mean-

ing in Secs. 5(a) and 14
Ae or Ae(0)=Ae(R,) in Part II
e—also stands for a photon energy
em—photon energy for maximum absorption
e—see (7.2)
6—absolute temperature
v—angular frequency of the absorbed light
vug—see (9.3a)
o—absorption cross section
¢—electronic eigenfunction [¢ (ground) and ¢
(upper) are also used]

x; and x;'—ground- and upper-state vibrational eigen-

functions associated with the jth mode

x and x'—total vibrational eigenfunctions of the ground

and excited states
¥—total eigenfunction of the system
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w—the effective angular frequency of the inter-
acting phonons
w;—angular frequency associated with the jth mode

14. APPENDIX II. MEYER-PEKAR METHOD

This appendix relates the method developed for the
trapped electron (5a) to the techniques used previously.
Meyer (M8) has made the most extensive calculation.
We now split Hy(4) of (5.2) as follows:

Ho=T'+V +V; (14.1)
H.=t+V.(Rp) (14.2)

and
HLe= Ve(R) - Ve (R[) (143)

The division of H, here is not identical to the one made
previously. Equation (14.1) determines a set of normal
modes, Aj, from an expansion about the point defined by

(Vi+ Vz)] =0. (14.4)

[ 7]
0X a(k) RI
There is a close similarity [ see Egs. (3.12a) and (3.12b)]
between Hp+H, and H,(S) and between Hj, and
Hy(S). The Ho(S) and Hy(S) here correspond to the
impurity model of Sec. 5. The potential energy term
in 4, (R) has been modified slightly. Meyer refers to Hz,
as the lattice-center interaction. This term is actually
given by H,(4).

An appropriate way to find a solution is to expand
Hp., as follows,

Hpe=3; ajA+% 3k bjeh A

We assume that the eigenfunctions ¢, and eigenvalues
A€y of H, are known at R;. The perturbation method
is now used to obtain eigenvalues and eigenfunctions of
H.+H;, for any R. Thus,

(14.5)

,<¢’m1 a’J" ‘Pn>

‘pn(R) = ‘Pn+ZiZm omA;

Ae,—Aep

+higher terms. (14.6)

In the last term m><#n, and we assume that the eigen-
values associated with H, are nondegenerate. The
argument R; of ¢ and Aeon the right-hand side of (14.6)
has been omitted. The higher-order terms which are
proportional to A;Ax arise from the use of second-order
perturbation theory as well as from the last term of
(14.5).

The ¢.(R)’s must form an orthogonal set with
respect to r for a fixed value of R. This follows since
the complete series (14.6) gives eigenfunctions of the
Hamiltonian H.+H .. This was not evident to Meyer.
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Associated with (14.6) is the eigenvalue
Aen(R)=Aen+3(0n] @] o)A
+35 2 ir{en|bir| en)AsAi

1
+30 e ———enl ] em){em| ar] en)Aids. (14.7)

Aen—Aep,

Terms of (14.7) may be identified with those which
arise in an expansion about R;. We assume proper
convergence. In such an expansion, terms similar to
those in (3.18) appear. Thus,

&= (¢n] a;] @n) (14.82)

and

1= {on|bjr| ¢n)

+3n (14.8b)

(on| @il em)(em|ar| on).

€En— A€

Equation (14.8a) is a form of (3.16). The first term in
(14.8b) was omitted by Meyer. One may use the ¢;’s
exactly as in Sec. 3 to determine the relation between
the true ¢’s and the A’s. One should stress that Hy, does
not arise from a true electron-phonon interaction but
occurs only because a fictitious definition of the phonon
field was used. On occasion the A’s are assumed to have
a very simple form, and the €’s obtained by these means
correspond only very approximately with the real ones.

15. APPENDIX III. MEHLER’S FORMULA

Mehler’s formula, Eq. (9.4), is “well known” in the
theory of Hermite polynomials and has been used since
it was discovered in 1866. Its proof is not available in
standard texts. The steps are rather simple, providing
one interchanges two integrals with an infinite sum.
A proof due to Hardy is presented. It originally appears
in a paper by Watson (W1). We shall not concern
ourselves with the convergence of the series, so the
proof as presented is not completely rigorous. A
standard integral of interest is

0 \/1‘_
f exp[ —a*u?+ibu Jdu=— exp[ —b*/4a?]; (15.1)
—o0 a

hence,

v

H,=(—1)" exp[#"]— exp[ —«*]

dx®

—_2 x 0) @
_ (___z)\;_p[x] f w exp[ — w2+ 2ixeJdu.  (15.2)
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One would like to examine the sum

>:j I ()% ()

=2 exp{ — 32>+ }t*H, () H,(y)

2vyl/7
(20
—rt el [ [———

X exp{ —#?—w?+2ixu+2iyw}dvdw. (15.3)

For convenience, the usual w/7%’s which appear in the
x’s have been omitted. » is the quantum state of x,.
Hardy’s device is to change the order of the sum and
the integrals. Further, he replaces > [ (—2tuw)*/!] by
exp{ —2tuw}. The convergence of (15.3) is such that
this is permissible, provided #<1. Watson states this
requirement but does not give details. One can see that
(15.4) requires this relation. After this step, Eq. (15.1)
is used twice, going from right to left. Thus,

2ot Hix, (x)Xv (y)
=ttt exp{3(2>+97)}

X f f exp{ —u?— 2tuw—w?+2ixu+2iyw}dudw

=t exp{3(+*—)")}

X fexp{ — (1—=)u*4-2i(x—yt)u}du

t ] (@ ()’
e
2 1—2

_}[ ! ]% { (x2+y2)(1-}—t2 + 2 }
el P 2 1—:2) el
(15.4)

If we set t=¢t(£>0), Eq. (15.4) gives (9.4) after some
elementary transformations which use the properties
of the hyperbolic functions.

16. APPENDIX IV. PEKARIAN CURVE

Properties of Pekarian curves, Eq. (9.21), are
discussed here. This equation gives the relative proba-
bility for a transition from »,=0 to any »/=p (Eq.
9.15). Since the number of modes does not enter into
the problem, we again use the CC model as an illus-
tration. The Pekarian shape is not limited to this case
but also applies to the Frohlich and LM models. The
only serious limitation is the use of Eq. (9.7).

Absorption shapes do not seem to be completely
symmetric (K2a, p. 118), and one may inquire as to the
symmetrical properties of the Pekarian curve. Consider
first the case where S=20. The most probable transi-
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TaBLE VI. The symmetry properties of a Pekarian curve S=20.

p=v’ 23 22 21 20 19 18 17 16
S”(SS)“ (20)3 (20)? 20 19 19(18) a7)(18)(19)
—_ — o 1 —_—
pIAS! (21)(22)(23) (21)(22) 21 20 (20)2 (20)3
Transition probability 0.7529 0.8658 0.9524 1 1 0.9500 0.8550 0.7268

tions occur for v/=S—1 and S. If one assumes that
the transition probability for these jumps is unity, then
one may obtain the properties in Table VI. The transi-
tion probabilities do not lie symmetrically about the
midpoint, which is very nearly at 19.5.

To stress the asymmetry of the problem, Fig. 9 is
included. The left-hand side is similar to Fig. 6 except
that the upper state has been shifted twice as much,
and only the case where v,=0 is considered. On the
right-hand side |{x'|x}|? is plotted against v,". On the
% axis v, increases in going from right to left, in agree-
ment with experimental procedure. It is evident
that e,—emen—e, so that the Pekarian curve is
asymmetric.

In Fig. 10 three Pekarian curves for S=3, 10, and
20 are plotted. On the curves the ratio of e,—en to
em—¢, is noted. These values show that the curve is
slightly lopsided for all values of S and resembles a
double Gaussian. The violet side is indeed almost a
perfect Gaussian.

To calculate various factors associated with a
Pekarian curve, we use (9.17) and let §=0. The follow-
ing formula is obtained :

l {Xp'lXO} |2=Ge—’= (Sp/p!)e——a_

0 and p are the total vibrational quantum numbers of
the states x and x’. The term 1/w has not been included.
It determines the width (or height) of the curve. Also,
we set w=%w=1. Using (10.9) and (10.24b) we note
that,

(16.1)

Zﬂ:'I{XIIXO}P:l (16.2)

and
m?=S. (16.3)
Since Mo=1 it is temperature independent [Eq.

S=20

3
S
»
@

_i_
B I,

RELATIVE ABSORPTION

5
3

20 0 o
PHONONS CREATED

Fi16. 10. Three Pekarian curves for various values of S.
Note the lack of symmetry.

(10.9)7. Hence, we know that the relation

2o iP(00) Lo [{X [ x0} |?=1 (16.4)
holds for any 6. Now, since
2o Plv)=1, (16.5)
we conclude that
Zov {X o |00} [P=1 (16.6)

for any v,. This is a sum-rule which has one surprising
feature—it does not involve the frequency. In atomic
spectra, the sum-rules involve the transition frequency.
This means that we may not accept the atomic sum-
rules without further careful considerations.

By numerical calculation we obtain Table VII. Here

TaBLE VII. Some properties of Pekarian curves.

S 1 (67*G)max H Area H?/m?=H?/S a.(P)
3 2.5 0.229 418 1 5.82 1.04
5 4.5 0.180 5.28 1.01 5.58 1.06

10 9.5 0.126 7.46 1.00 5.57 1.07

20 19.5 0.0892 10.56 1.01 5.58 1.07

30 29.5 0.0728 12.92 1.01 5.56 1.07

the lines of Fig. 9 have been replaced by the envelope
curve. Column 3 is the value of the absorption at the
peak (at p;).t1t The fifth column is the area (planim-
eter) under the curves when the factor ¢=¢ is included.
This area might be slightly larger than unity because
we are replacing a sum by a smooth curve. At S—1
the envelope is larger than the values at S or at S—1.
To obtain the sixth column, use was made of (16.3), and
the seventh is obtained from the definition of Smakula’s
constant found in Sec. 7, combined with (16.2). Columns
6 and 7 should be compared with the value found for
the Gaussian shape, that is, 5.545 and 1.064. The
Lorentzian value of ¢, is 1.57. The deviation from the
Gaussian values is very small. The variation for small
values of S is probably real; however, we attach no
importance to the slight deviation found in the last
four rows. One may readily superimpose various
Pekarian curves unless S is smaller than 10.

17. APPENDIX V. EFFECTS WHICH OCCUR
WHEN f IS NOT A CONSTANT

We now consider what happens to the equations of
Sec. 10 when the simplifying assumptions regarding f

. 111 Since no fine structure is observed p will not be limited to
integer values.
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are removed. One might use the Lax-Meyer method
throughout, but the algebraic complexities become too
involved. In Sec. 10 we replaced exp(iH.t/h)
Xexp(—iHgt/h) by exp[i(H.—H,)t/h]. It is correct
only to terms in (H,—H,)? This arises because
exp (1H,t/%) is only a shorthand notation for an infinite
series and the terms in the two sums do not in general
commute. Hence, this method is not used in the first
section of this Appendix.

The two problems are: what happens to the expres-
sion for & and m? when f becomes a linear function of
the frequency, or a linear function of the ¢’s?

(a) Oscillator Strength Depends on
the Frequency

First, we consider the effects of having the oscillator
strength proportional to the frequency. For this
purpose, the dipole matrix M is introduced.}{{f It is
assumed to be a constant. Further, we limit our con-
siderations to the case where one may assume a single
frequency and omit the ¢;;’s, i.e., the situation treated
in Sec. 9.

Combining (8.16), (8.18), and (9.8) results in

47’
a(v)=bN\—3E| (¢’ er] @) |2vG(v)

0

e~ ilr—rug)t

Xexp{—S[coth}8—1 sinw!—coth3p coswt]}dt, (17.1)

where
K'=4x*N /3hc (17.1a)
and

M= (¢ |er| o).

Since our interest is in the moments of the distribution,
we assume that the absorption is a series of delta
functions.

Taking the Fourier transformation of «(v)/v, one
arrives at

(17.1b)

f La(v)/v]e*'dv=K' M?eirust

Xexp{ —S[coth}B—1 sinw/—cothiB coswt]}. (17.2)
From this it follows that
Mo= (h/i){ (8/01) f [a(v)/v]e”‘dv]
@ =0
=hK'M?*{v,y+Sw}=K'M?Ae=Khf, (17.3)
where )
F=2msM2/3¢h (17.3a)

111t For simplicity of notation M is considered to be a real
scalar,
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and
v=Ae¢/h. (17.3b)

Use has been made of (10.1a) and (10.14). (17.3)
should be compared to (10.9). Further,
M= —52{(0%/98) S %L (v)/v]e?tdv} 1o
= K'M?[ (Ae)*+H%2S coth3f]

= K'M2Ae[ Ae+ (72?/A€)S coth3f] (17.4)
and
M= — (#3/1){3%/38) S % [a(v)/v]e?dv} o
= K'M2Ae[ (Ae)*+3*#2S cothip
+ (*h3/A€)ST].  (17.5)
Irurther,
é=Ae+ (h%?/A€)S cothip (17.6)
and
m?=w?h2S{cothif+ (wh/Ae)
—[#w?/ (Ae)?]S coth? 38}. (17.7)

Equation (17.6) shows that & shifts to the viole with
rising temperatures. The shift is very small, since
#2w%S/Ae is of the order of 0.0015 ev. If 7w were 0.08 ev
and S=30 this term would be observable. This might
occur in LiF if the transverse optical mode were im-
portant for the interaction. m? now has a constant term
and a term proportional to coth? 3. The negative sign
on this term means that m? can be negative at very high
temperatures. This anomalous situation arises from
the mathematical formulation and has nothing to do
with actual emission. By returning to (17.1) we see that
a(y)<0 if »<O0. Since the mathematical techniques
require integration from — o to -+, the integral
J=(v—7)*»G(v)dv can be negative in spite of the
fact that (v—#)2>0. The author expects that both
additional terms in (17.7) are very small and will not
be detected experimentally.

The form (17.7) is not valid at extremely high
temperatures, say S000°K, if (%w)2S/(A€)? is of the
order of 1073. For the F center in KCI this term is of
the order of 8X10~*, and our interests are limited to
temperatures below 600°K. The above calculations are
most probably valid under these conditions. They
indicate that the assumption that f is independent
of » does not have an important influence on the
moments. In the language of Dexter (D1, p. 392), we
have shown when the “narrow-band approximation”
is valid.

(b) Oscillator Strength Depends on the ¢’s

In the case where f* depends on the normal modes,
the solution is straightforward but extremely laborious.
To simplify the problem somewhat the CC model will
be used, thus f*is taken in the form

fi= fo+fidq. (17.8)

Equation (17.8) is a possible assumption, and it is
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made without any profound theoretical justification.
In (17.8) g is the coordinate associated with the ground
state. The normal mode for the excited state is taken
in the form ¢—Ag=(Q. Further, we again assume that
the ¢;’s are very small so that the frequencies in both
states are equal. As before, f} is taken as real; further,
our considerations will be limited to terms in fi}.
Equation (10.6) cannot be used, and we require some
more complex equations given by Lax (L1), namely,

M=K Av{x|f|x} (17.9)
Mi=#K Av{x| PH.fi—fH,|x}  (17.10)
and
Mo=1K Av{x|H2?
—2f'H.f*H+fH?|x}. (17.11)

Equation (17.10) is equivalent to (10.12) provided
{x|H.H,|x}={x|HHu.|x} (17.12)

when f is independent of ¢.
To establish (17.12) we require some of the properties
of the x’s. One may show (M7, p. 121 and 358)§§§§

(3/89)xo= (w/B)H{ 3v)ixom1—[3 (v+ 1) Pxon}  (17.13)
o= /)Y [3(0+1) Pxosr+ (0/2)ix—1}. (17.14)

Hence

{x|q(8/39)|x}=—1% (17.15)

and

{(X|TVuolx}={x| Vol |x}- (17.16)

To establish (17.16) we have used (3.26) but placed
no restriction on the v’s; hence, (17.16) applies to the
case considered in Sec. 10 and is the justification for
Eq. (10.12). A similar argument has not been found
for terms in (H,—H,)? and the technique of Sec. 10
requires lengthy and complex algebra.

Returning to (17.8), we note from (17.13) and
(17.14) that our interest is limited to even terms of the
¢’s, i.e., such as ¢ or ¢(8/dg), not ¢* or 8/d¢. Hence,
substituting (17.8) in (17.9), one obtains

Mo=%K fo. (17.17)

Had terms in f; been included, we would have found
that M, is temperature dependent. Now, substituting
into (17.10), we obtain

M =kK Av{x|fo(V.—V,)
—2fotfil?(Ag)g?|x}  (17.18)
=hK (fohe—whAgfotfi? cothip) (17.19)

M(d)—M(a)

=ﬁKfo[Ae—wﬁ[ ] Coth%ﬂ}. (17.19a)

(a)
M (a) and M (d) are dipole moments at positions (a)

§888 The subscript is the vibrational quantum number.
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and (d) of Fig. 2. The ratio [M (d)— M (a)]/M (a) must
be of the order of 0.1 or much less, probably much less.
The second term of (17.19a) cannot possibly be larger
than 0.001, and we would not expect to detect it
experimentally. Further,

My=1K Av{x| fo(Vu—V )’ + [l [l [TV.ug+V.Tyq
4 qTVu=3gV. T+2q(V.u— V) ]|x}.  (17.20)

Since
{(x|TV.uglx}={x|qV.T|x}

{x|V.Tqlx}={x|qTV.|x}
={x|qV.T|x}— (#*/2)*Aq,

(17.21a)

(17.21b)

we have

My=%K Av{x| (V.= V) fotfo[1}[2¢(V.—V,)?
—h?Aq]|x}. (17.22)

The third term gives rise to a temperature independent
factor in m?. Taking the indicated average in (17.22)
results in

Mo=hK{fo[ (Ae)*+72%2S cothlB]

— Agfof [ 28k cothdf+72?T}.  (17.23)
Returning to (7.3) we obtain
m2=%2w[S cothif—Aq(f1}/fo})]. (17.24)

To estimate the magnitude of the second term we again
use Fig. 2. From the definitions of the f’s and Agq one
obtains

Agfd/ft=[M(d)— M (a)]/M (a). (17.25)

The maximum correction term that one may expect
in (17.24) is 0.1. Such small values could barely be
detected experimentally (Sec. 10). Meyer (MS8)
suggested that this term equals —10. Such large values
cannot be explained readily by the theory.

The conclusion is rather straightforward. The
assumptions used in arriving at (8.18) are most prob-
ably oversimplified. However, they do not produce
major changes in the moments of the distribution or
in the shapes. Some corrections to the moments have
been worked out here. They are certainly too small to
be measured, and the author cannot envisage any
theoretical calculation which will be sufficiently
accurate to determine them. One may show experi-
mentally, however, that M ; has a complex temperature
dependence (K4). The theoretical reason for this is at
present unknown. The author believes this will come
out of a more realistic model.
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