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I. INTRODUCTION

'HIS paper gives a description of the scattering of
particles of energies in the kev and 3ifev range

by complex nuclei. Starting from exact many-level
formulas for the scattering amplitude, we show that
several phenomena which were inexplicable in the old
compound-nucleus theory arise from phase relations
between the nuclear levels, whereas terms in which
phase relations would not seem to be important corre-
spond to the scattering predicted by the old compound-
nucleus picture, supplemented by statistical assumptions.

This paper might be described as a treatment of the
theory of nuclear reactions in the region in which many
nuclear levels participate in the scattering. Thus, it is
complementary to the comprehensive article of Lane
and Thomas' where the treatment is particularly appro-
priate to the case in which few levels contribute. These
authors employed the R-matrix theory of Wigner and
Kisenbud' which is especially well adapted to the low-
energy case because it makes the energy dependence of
all expressions as explicit as possible. We employ here
the formalism of Kapur and Peierls' which has the
great advantage for the many-level case that the sum
over levels enters linearly into the scattering amplitude.
The formalism employed is only an intermediate step
to the Anal results, and, therefore, we choose the one
that seems simplest for the particular development here.

Surveying 6rst the old compound-nucleus picture, we
note the points at which it must be revised. It was
realized long ago that this was not a complete descrip-
tion; in fact N. Bohr' already suggested in 1938 that a
particle, upon entering the nucleus, might go directly
to a anal state without forming a compound nucleus.
However, most calculations were carried out with the
extreme form of the model, and most physical pictures
tended to follow in this way. By extreme form we mean
the form in which it is assumed that the phases of con-
tributions from diGerent compound levels are random,
and that they therefore do not interfere. Such assump-
tions are generally implicit in statistical calculations.

The compound-nucleus picture formulated by N.
Bohr' explained the very narrow resonances observed in

' A. M. Lane and R. G. Thomas, Revs. Modern Phys. 30, 257
(1958}.' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 {1947).'P. L. Kapur and R. E. Peierls, Proc. Roy. Soc. (London)
A166, 277 (1938).

4N. Bohr, Nature 141, 326, 1096 (1938); Bohr, Peierls, and
Placzek, Nature 144, 200 (1939).

g N. Bohr, Nature 137, 344 (1936); Science 86, 161 (1947).

the elastic scattering of slow neutrons by assuming that
the incident neutron, once inside the nucleus, shares its
energy with many other nucleons through its strong
interaction with them; the resulting compound nucleus
then lasts a long time, until one of the nucleons acquires
sufFicient energy to escape from the nucleus. Because
of the long lifetime of the state, the uncertainty prin-
ciple shows that its energy can be well determined, and
hence, that its width is small. The observed resonances
were of the order of electron volts wide, about a million
times narrower than the single-particle levels formed in
the scattering of particles by the potential wells earlier
assumed to represent the nucleus.

Since the observed compound-nucleus resonances
were so long-lived, it was usually assumed that their
characteristics are independent of the way in which
they are formed, aside from restrictions resulting from
conservation laws, and are also independent of the
neighboring states. It seemed natural then to introduce
statistical assumptions which neglected interference
between the scattering from diferent levels. Then, in
the neighborhood of a compound state, one could write
the cross section 0-

p, ;for a particle incident in "channel"
a to emerge in "channel" P (we give precise definitions
of all terms later), leaving the residual nucleus in excited
state j as a product of factors

Pya YpP j
o e,;=—(2t+1)

h2 (e„—E)'+a '/4

where p labels the compound state, y„ is the partial
width' for formation of it by a particle in channel o.,
y~pj is the partial width for its decay, e„ is the total
width of the state, and ~„ is the real part of its energy.
This type of formula, valid in the region of a single
isolated level, was given by Breit and Wigner' and
bears their names. The above expression for o as a
product of factors implies the independence of the
processes of formation and decay of the level both from
each other and from the properties of other levels.

It is clear that the number of compound states per
unit energy interval increases rapidly with the energy
of the incident particle. Already at energies in the kev
range, the density of levels observed in the scattering
of slow neutrons by medium and heavy nuclei is 10'

' Usually the widths are denoted by capital letters F, e.g. , F„.
However, we reserve these for the widths of the single-particle
levels in a potential well.

7 G. Breit and E. P. Wigner, Phys. Rev. 49, 579 (1936).
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Fro. 1. The increasing
density of nuclear levels
with excitation energy is
sketched on the left. Pre-
dictions of the contin-
uum model for the be-
havior of the total cross
section are shown on the
right.

FIG. 2. Sketch of a giant

MFy resonance of the type ob-
served in the scattering of
neutrons by complex nuclei.

to 10' levels per i4lev. Therefore, in the scattering of
beams of neutrons which generally includes a spread in
neutron energies of several Mev because of the ex-
perimental difficulty of producing monoenergetic neu-
trons of arbitrary energy, one might expect the cross
section to approach that of a completely absorbing
system with increasing neutron energy. A specific model
incorporating these features was formulated by Fesh-
bach, Peaslee, and Keisskopf' and is known as the
continuum model. Here, the wave function of the
neutron incident on the nucleus is subjected to the
requirement that it have only an incoming part at the
nuclear radius, i.e., that

d/dr[nP (r)j~,=g = iKRQ (R—),

where f(r) is the wave function for the incident neutron,
R is the nuclear radius, and K is an "internal" wave
number that the neutron is supposed to possess inside
the nucleus as a result of its interaction with the other
nucleons. The predictions of such a theory for the total
cross section are illustrated in Fig. 1 which also gives an
indication of how the number of compound states
increases with increasing excitation energy. The nega-
tive energy states of the nucleus are shown schematically
as bound states in a potential well. At high energies the
total cross section approaches 2xE'. The rise in the
curve at lower energies is due to the fact that, in this
model, the particle "feels" the nucleus already at
distance R+X, where K=X/2~ and X is the wavelength,
because of quantum-mechanical effects.

Contrary to expectations, the experimental cross
sections, for beams in which the neutrons had a spread
of energies, showed giant maxima of widths of the order
of one or two Mev, as indicated schematically in Fig. 2.
These were reproduced theoretically in the later theory
of Feshbach, Porter, and Keisskopf' by the scattering
from a complex potential well in which the real part
represents some average interaction of the incoming
nucleon with the nuclear particles, and the imaginary
part, the disappearance of particles out of the incident

Q(E')

E,
'

~r
~ ~s g1 ~

FrG. 3. The solid line shows typical predictions of the statistical
model for the spectrum of inelastically-scattered neutrons. The
energy of the emitted neutron is denoted by E'. The dashed line
indicates the type of spectrum observed experimentally.

3IcManus. " Here, the incident particle is assumed to
"chip" off particles from the nuclear surface without
formation of a compound state. For example, the transi-
tion element for the nucleus to go from state i to state
f is assumed to be

2M
M;I ———

~ xf(g)e '~ 'VI(r —g)e' "x;($)d'td'r,
a &„

where expik; r and expikf r are the wave functions of
the incident and scattered nucleon, and xo(g) and yf(g)
those of the initial and residual nucleus. Here r repre-
sents the coordinate of the incident nucleon and g the
totality of nuclear coordinates, conventions that are
used throughout. The radius ro is supposed to define
the point at which the "surface" begins and was chosen
so as to fit the experimental angular distributions.

The form of this theory was suggested by the earlier
description by Butler" of deuteron stripping which is
also a form of "direct interaction. " However, for sim-

beam into compound states. There is no natural ex-
planation for such giant resonances in the extreme
compound-nucleus picture, and the representation of
the nucleus by a complex well indicates a major modi-
fication.

Other phenomena which demanded modification of
the extreme compound-nucleus picture were observed
in the inelastic scattering of nucleons by complex
nuclei. The predictions of the compound-nucleus model,
supplemented by statistical assumptions, are shown as
the solid line in Fig. 3. In this picture, the probability
of leaving the nucleus in t;he various excited levels is
assumed the same for all levels, aside from kinematical
factors. The curve therefore rises as the energy taken
off by the scattered particle decreases (and the energy
left to the nucleus increases) and is cut o6 only when
the wave number of the escaping nucleon (or nucleons)
is so small that it will be reflected at the nuclear surface.
Experimentally, an anomalously large number of fast
particles was observed, as indicated by the dotted line
in Fig. 3. Processes responsible for the high-energy
particles were qualitatively well described by the
direct interaction formalism of Austern, Butler, and

' Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).' Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).
' Austern, Butler, and McManus, Phys. Rev. 92, 350 (1953)."S.T. Butler, Proc. Roy. Soc. (I,ondon) A208, 559 (1951).
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plicity, we discuss the scattering of nucleons since com-

plications are introduced by the composite structure of
deuterons or O,-particles.

Many experiments have shown that the high-energy
particles in these inelastic processes have angular dis-

tributions, usually peaked towards small angles,
whereas the low-energy nucleons have comparatively
structureless, symmetrical angular distributions, as
would be predicted by the statistical theory, and this is

a further indication of the direct nature of the high-

energy processes.
A further phenomenon which violates the early

compound-nucleus picture occurs in the dipole photo-
eGect. Here, the absorption cross section for all complex
nuclei shows a gaint maximum in the region of 15 Mev
for heavy nuclei. This maximum was explained by
Goldhaber and Teller" and Steinwedel and Jensen" in
terms of a collective oscillation of proton density. How-

6

a
FIG. 5. The absorption

cross section for y-rays
showing the giant dipole
resonance.

-'l5MEv

had to be modified, the new phenomena could be repro-
duced by simple physical models which employed a
complex well. However, conceptually, the description
was not complete because it was known from cases
where the cross sections could be investigated in detail
that the giant resonances actually consist of thousands
or millions of compound levels, and the relation between
the detailed behavior —which often could not be inves-

tigated experimentally, but could be inferred —and the
average behavior as predicted by the complex well had
to be clarified. Further, the connection of the param-
eters of the optical well with more fundamental quan-
tities such as the nucleon-nucleon force had to be made.

A unified description of the above phenomena begins
from an exact description in terms of nuclear dispersion
theory. The scattering amplitude is separated into
terms corresponding to direct interactions and com-
pound-nucleus processes. Before going into such a
description, however, we review the dispersion theory
of Kapur and Peierls, ' which is used in the later develop-
ment, and present a simplihed picture illustrating the
physical assumptions employed later in the more
formal arguments.

0 90 iso

FIG. 4. In the upper figure, the angular distribution of the high-
energy part of the inelastic spectrum, Fig. 3, is sketched; in the
lower, that of the low-energy part of the spectrum.

'2 M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948)."H. Steinwedel and J. H. D. Jensen, Z. Naturforsch. 5a, 413
(1950).

'4 D. H. Wilkinson, Physica 22, 1039 (1956).

ever, the decay of such a system, in which the energy
is almost evenly distributed over all particles, ought to
be adequately represented by the statistical theory. In
the case of medium and heavy nuclei, the number of
high-energy protons observed is far in excess of that
predicted by this theory, often by several orders of
magnitude. Such high-energy protons are predicted
naturally by Wilkinson s' picture of the giant dipole
photoe6ect, in which the p-ray is absorbed by a nucleon
which then goes into a single-particle state in a complex
well, and consequently has an appreciable chance of
escaping with the full energy of the p-ray before being
absorbed into compound states. (This absorption is
again described through the imaginary part of the well. )

Thus, although the old compound-nucleus picture

where V(r) is the potential and g(r)=rip(r) with lk the
wave function of the neutron. For radii r greater than
some radius R, beyond which the potential V (r) is zero,

with
(d2@/dr')+k'&=0 r) R

k'= 2MB/A'.

(2)

(2 &)

The solution of Eq. (2) is

@=(sinkr/k)+Se+", (2.2)

where the normalization of p has been chosen so that
the erst term on the right-hand side corresponds to the
S-wave part of a plane wave of unit amplitude, i.e.,
expikr —sinkr/kr for kr«1; S is the amplitude of the
scattered (outgoing) wave.

II. KAPUR-PEIERLS DISPERSION FORMALISM

1. Scattering by a Potential We11

We begin by treating the scattering of an S-wave
neutron by a potential well; this simple example illus-
trates the main features of the theory. The Schrodinger
equation for this case is

d'p
+Le—V(r)]4 =0,

2M dr'
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In the internal region r&R, p can be obtained as By using the orthogonality of the p we can obtain
the a of Eq. (3) by again using Green's theorem.y(r)= a y„r, r(R,

where the p are eigenfunctions satisfying the equation

k2 d2&

+(E V)4—=0,
2M dr'

40
(4-~4 —4 &4-)«=—

k'
p

(4)
2M& dr dr) R

and the boundary condition
k2 d'

+V(r—).
2M dr'

3.2
From Eqs. (1) and (3.1), one obtains

(4.1)

The eigenvalues E are complex because of this imagi-
nary boundary condition, the boundary condition
depending explicitly on the wave number and hence,
the energy of the incident neutron. We discuss the con-
sequences of this later. These eigenfunctions form a
complete set."Orthogonality of the p is easily estab-
lished by considering the equation for p„,

k'
(Z-E )a.=-

2M (dr 4 a

k2

e
—ikRy (g) (4 2)

2M

giving

h2 de„
+(I'J. V)&.=0-,

2M dr'
(3.3)

$2 e—ikR

a„= 4 „(R).
2ME —E

(4.3)

multiplying Eq. (3.1) on the left by p„and Eq. (3.3)
on the left by p and subtracting. Thus,

The joining of the inside and outside solutions at r=g,
gives

k' ] d'p„d'@.q

I+(&- &-)&-@-=-0 (3 4).
2M E dr' dr' )

sinkR
Q a„P (ff) = +Se'"",

1 kk' $P (E)]'S= P e '~s —sinkR .
keikR ~ 2M E —Ek'

~ = (&. I-'.) e-~ « -(3.5).
2M' ( dr dr ~,=g "o

This can be put into familiar form by defining the width

~ ~

By integrating this equation from 0 to R and using giving
Green's theorem, one finds that

From Eq. (3.2) it can be seen that the left-hand side
vanishes and hence

Q„(r)p (r)dr=0, E WE„.
0

~R

@„'(r)dr=1.
0

(3.7)

Two important features are 6rst, the orthogonality
is between p„and p, not p„* and p as is usually the
case, and secondly, the orthogonality depends essen-
tially on the fact that @ and p„obey the same boundary
condition.

'~ R. E. Peierls, Proc. Cambridge Phil. Soc. 44, 242 (1948).

In general, E /E„ implies no An; the exceptional case
E =E for nsWn can be handled by special methods,
but it does not occur for the type of potentials we
consider. For m=n, we choose the normalization of the
@ 's so that the integral is equal to unity, i.e.,

Then

he
r„=-

t q„(z)j .
M

e
—2ikR

S=
sinkR

ikR
J (7)

(7.1)

Because of the imaginary boundary condition, the p
and hence the I' are complex. For low bombarding
energies, the imaginary part is small as appears later.

The imaginary part of E can be found by the de-
velopment

R

I (P 2$ * @*Zp )d—r
0

= (&-*—&-)~t 4-4.*«. (g)
0
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From Green's theorem, the left-hand side is

(ikk'/M)y„*y. (R),

and if the imaginary part of E is denoted by —P /2,

of the results derived here. The boundary condition,
Eq. (3.2), can now be written

(E i&—& ) cos(K i&—&„)R=ik sin(E i&&
—)R (9.4)

i.e.,

E =a~ i—P /2, (8 1)

Now E~ is shown to be small at low energies;
Eq. (9.4) is expanded to first order in this quantity.
Then

then from Eq. (8) we find that

(8.2)

(K„i&&—) (cosK~+iKM sinE~)
ik—(sinK R i&&

—R cosE~). (9.5)

This gives

&&
= k sinK~/(K~ sinK~ —cosE~). (9.6)

This has a simple interpretation. The numerator is
proportional to the escape velocity of the particle kh/M
multiplied by the probability of the particle being at
the surface, whereas the denominator represents the
probability of the particle being in the nucleus. At low

energies where the p are mainly real, as already indi-
cated, the denominator is nearly unity Lsee Eq. (3.7))
and comparing Eqs. (8.2) and (6.1), we see that

P —I' (low energies). (8 3)

To obtain a better idea of the sizes of the various quan-
tities, it is useful to illustrate the formalism by evalu-
ating them for a square well. We choose a well V= —U,
r &Rp' V=O, r) Rp,' with U=42 Mev and Rp= 1.45 A&

)&10 " cm, where A is the atomic number; these are
the parameters of the well employed by Feshbach,
Porter, and Weisskopf, ' aside from the imaginary part
employed by them which is introduced later. Con-
sequently, these parameters are typical of those con-
sidered later. The solution of Eqs. (3.1) and (3.2) are
compared later with p (p) defined by

d'
4-"'(r)+(E-"'—1')4-"'(r) =0, (9)

2M dr'

Since cosK~&&K~ sinK~ Lsee Eq. (9.8)), it follows
that

&& k/E~— (9 7)

f&K =k[kR/(K~)3). (9.9)

Although this is a second-order correction (in the sense
that f&E~ is of second order in kR), it is given correctly
to this order by our first-order expression Eq. (9.5),
since further terms enter only in third order. We find,
further, that

By using this value for &&, one obtains from Eq. (9.5)

cosE R= (kR)' si—nK~/(E~)' (9.8)

to lowest order in &&~. Now E~ is large, of the order
of 10 even for medium A and zero incident energy, and
so &&„and cosE~ are small. Equation (9.7) shows that
&&~ is small —which is necessary for the rapid con-
vergence of the expansion above —as long as E&&U,
that is, as long as the bombarding energy is much less
than the depth of the well.

We now let K~=E "&R+bE~, where
= (2/R)& sinK &"R, and E &'&R= (n+ —',)s gives a solu-
tion to Eqs. (9) and (9.1).To lowest order in && R, Eq.
(9.8) shows that

(p)

=0. (9.1)
be„=—e„—E„&'&= (&&&'/2M) (2E~&&E~—&&~')

—[1/(E~)')e, (9.10)

This real boundary condition is that of the Wigner-
Eisenbud theory, and the solutions p ") are real. The
functions @ (p) are considered because it is easier to
calculate these real functions and, at low energies, they
are a good zero-order approximation to p as we show.

In the square well p is equal to

where the energies are measured from the bottom of
the well. For a typical value of E~ of 10, this means
that calculation of the real part of the resonance energy
from the boundary condition Kq. (9.1) gives results
accurate to 1%.

The imaginary part P of E is given to first order
in K~ by ( ' I/&k)MLp &0& (R))' which is equal to

@„=A sin(E„—iK„)r, (9.2) P„—2 '
&&/ikRM—F„, (9.11)

with E and a defined by since
p„&'& (r) = (2/R) & sinE„r. (9 12)

(K„—i&&„)'=2M(E +U)/fi'. (9.3)

For simplicity, the joining radius R in Eq. (3.2) has
been chosen to be the edge of the well, Rp. It can be
chosen diGerently and is generally chosen somewhat
larger, but this is immaterial for the qualitative features

Thus, to lowest order in a~, the I' are real and the
dependence of the real parts of the resonance energies

on the bombarding energy enters only in the second
order of this quantity.

Generalization of these results to the case of a
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complex square well is trivial. The introduction of
V(r)= —U —iW (use V to denote a complex well;
eigenfunctions in this complex well are denoted by
p (r), etc.) so that W simply shifts the resonance energy
by the constant amount —iR'. Hence,

E =E„iW=—e„iP—/2 ilV— . (9.13)

Consequently, introduction of an imaginary part
broadens the resonance levels. The eigenfunctions are
unchanged, i.e., @ (r)=4 in the special case of the
square well. The development for the case in which the
real and imaginary parts vary with r is easily carried
out. This development can also be carried out for
complex velocity-dependent potentials"; this is im-
portant since the parameters of the optical model wells
occurring in practice depend on the bombarding energy.
It is convenient to take the depth of the well to be
different for the different eigenenergies at a given
bombarding energy. In discussing a velocity-dependent
well V(r), one can consider V to be a nonlocal operator
V(r', r), which is equivalent to a velocity-dependent
potential. The wave equation is

(r')+E' @ (r') — I V(r', r)@ (r)dr=0. (10)
2M dr"

Orthogonality of the @ requires V(r', r) = V(r, r');
potentials not obeying this relation can be shown to be
physically unreasonable. " Proof of orthogonality as-
sumes V(r, r') to be zero unless both r and r' are less
than R.

The resonance treatment for a neutron in the complex
potential has been developed in some detail, not only to
illustrate the formalism, but also because knowledge of
the positions, widths, and spacings of the levels is often
useful in theoretical estimates.

Generalization of these results to the case of nonzero
angular momentum is easy. In this case we express the
function, regular at the origin, f (r) as

where 0 (8, q) is the normalized function of angles, e.g.,
in the case of spinless particles, 0 (8,p) is equal to
F'~ (8,y), where F& is the normalized spherical har-
monic, and P is the radial function in the potential
well, regular at the origin and asymptotic to

e"~ sin[kr —(lw/2)+bq],

where 8& is the phase shift for the lth wave. The lower
index a labels all angular momentum quantum numbers,
i.e., in the terminology of Wigner and co-workers, it is
the "channel" index. Further, solutions asymptotic to
outgoing waves are denoted by P+(r), i.e.,

where p +(r) is asymptotic to exp(ikr —i'/2) in the case
of neutrons. Generalization to the case of charged
particles is easily made. Here p +(r) is asymptotic to
exp(ikr g—ln2kr —ls/2+o. ~) where rJ=Ze'/Av, with v

the velocity of the proton, and r& is the Coulomb phase
shift. Solution of the radial Schrodinger equation can
be expressed for r&R, as

with p = (p +)*, the solution asymptotic to incoming
waves. The eigenfunctions p (these have the same
angular dependence as the p (r), so we do not carry the
subscript n on them) are then determined by the
boundary condition

= f-+(&)4- (12.1)

where

(12.2)

is the logarithmic derivative for an outgoing wave at
the joining radius. Again, P (r) can be expanded in
terms of the p,

@ (r) =P u„4„(r), r(R, (12.3)

and the development analogous to that of Eqs. (4) to
(4.3) now gives

The use of Eq. (12) for p leaves only the term in p
on the right-hand side of Eq. (12.4), and we obtain

(E—E-)o-= Df= f-+)4=4-—] (12 5)
4Mik

The Wronskian is

Lf +(r) —f (r)]p +(r)p (r) =2ik, (12.6)

so that we obtain

k' 1 y„(R)
~m=

2M y.+(R) (E„E)—(12.7)

The joining of the inside and outside solutions at r= R
now gives

1 kk' @ '(R) 4.+(R)-4.-(R)
S.=

kL@.+(R)]' - 2M E E2iky.+(R)—
(12.g)

We define

"See Appendix C of G. E. Brown and C. T. De Dominicis,
Proc. Phys. Soc. (London) A72, 1'0 (1958).

kk'
I'„—= P(R)y„'(R),

M
(12.9)
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where P is the penetrability,

@.+(R)@=(R) I@.+(R) l'

We then have

1 y.-(R) I'„1 t' &&.-(R) qs-=—
2kg~+(R) ~ E E—2ik ( @+(R))

The cross section is given by

(12.10)

(12.11)

States C'» and 4 «' are not now orthogonal, but
rather 4'» and 4«', where 4«) is obtained from C «)

by taking the complex conjugate of all functions of
angles, in particular, of the 0 (8, p) occurring in the
single-particle function. Equivalently, to within an
arbitrary phase factor, 4«) is obtained from 4«) by
rotating the wave function so that the total angular
momentum component M is changed into —M without
taking the complex conjugate of the function of intrinsic
structure (e.g. , the radial wave function in the single-
particle case). We choose

~.=4 /S. [2

~ e=(R) I'-
p @;(R)& '

+i~ 1-
~

. (».»)
k' P +(R) E E&— @ +(R))

2. The Many-Body Case

We consider the case in which an incident nucleon is
scattered either elastically or inelastically by a nucleus
of A particles. "Once this particle is inside the radius R—which is chosen so that the interaction between the
incident particle and the nucleus vanishes outside this
radius —the wave function can again be expanded in
compound states C '"(r,g). Here we use r for the coor-
dinate of the incident nucleon and ( to label the totality
of coordinates of the A particles inside the nucleus.
For the moment the incident particle is treated as dis-
tinguishable from those in the nucleus, but later the
generalization to the case where it is identical with
particles in the nucleus is indicated.

The compound states C &»(r, g) obey the equations

HC &»(r, g) =W„C &»(r, g),

H=Ht+T(r)+ V(r, g). (13)

H& is the Hamiltonian of the A nuclear particles, T(r)
is the kinetic energy of the incident particle, and
V(r, g) is the potential interaction between the A nuclear
particles and the incident nucleon. It is a sum of
nucleon-nucleon potentials,

the nucleon to which the coordinate r refers being the
incident particle. It is assumed that V(r, g) is a well-
behaved potential, i.e., a potential without a strong
repulsive core and other singularities; generalization to
the case that it is not can be made using techniques
developed by Watson and Brueckner, but this only
introduces nonessential complications for the points
considered here.

j C «&C &»d'$d'r= 1 (p= q)) )

0

(13.1)

4 &"'(r,5) = 2 a -"x (5)4-'(r).
7 f fs

(14)

The boundary condition on 4 ~") at r=R can now be
simply stated in terms of the boundary conditions on
the &k '. It is convenient, in a,nalogy with Eq. (11), to
introduce radial functions p through

rg ~(r) =0.(s, & )4,.~(r). (14.1)

and the integral is zero for pAq. In using the ortho-
gonality later on, we do not indicate the bar over the
4 on the left since the change in the angular momentum
functions is a trivial one to introduce once we introduce
the expansion, Eq. (14), and all integrals over angles
are easy to carry out.

We introduce a complete set of states y, (g) for the
A particles. Boundary conditions for these states could
be chosen in various ways. However, the tightly bound
states close to the ground state in which we are mainly
interested are insensitive to the precise boundary con-
dition, e.g. , if we choose the joining radius R fairly far
out, then both the wave function and its derivative
are small for a bound state dehned in any sensible
way, and it would not matter much whether we chose
the former or the latter to be zero, or to have some small
6nite value at that radius as our boundary condition.
Difhculties enter when the excitation energy e;, which
we measure from eo as origin, of the state y; is suK-
ciently large so that one of the A particles can escape
from the nucleus. However, since the only property of
these highly excited states that we use is that they,
together with those of low excitation, form a complete
set, we believe our results to be independent of the way
in which these boundary conditions are chosen.

In order to make the connection with the optical
model later, it is convenient to employ states &P„(r) in
a complex well of the type discussed in the last section
for the incident particle. We can then expand

'VThe emission of composite particles is dropped from the
dispersion-theory description later on when one makes the
assumption that the interaction between the incident particle and
all of the A particles vanishes beyond the joining radius R. These
processes can presumably be included by modifying the formalism.

The boundary condition is then

dqh 7

=f.+(r, F e,)j„, (r)&—
dr

(14.2)
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The E e—; in the argument of f + indicates that it is
to be taken for that energy. The boundary condition
is chosen to be that of an outgoing wave at the reduced
energy available to the outgoing particle after leaving
the residual nucleus in excited state j.The channel index
&r on the g„&' is again suppressed. Because of the de-
pendence of f + on e;, the P's also depend on j, as
indicated; however, this dependence is weak. The fact
that the boundary condition on the g's depends on j
does not upset the orthogonality of the C &»'s as long
as one always integrates over the g coordinates first.

We can express the wave function 4'(r, g), which is
the solution to the Schrodinger equation,

(15)

With the use of Eq. (14.2), we find

~R
d'g ,(())' dQ

2M(W„E) i—~ & p

d
X IRP„&(R) f—.+(R, E e,)—re(r, g)

dr
(16.1)

where we have indicated the energy dependence of the
f explicitly. The operator in L j s in Kq. (16.1) gives
zero operating on any "outgoing" part of 0', and the
only term that contributes in Eq. (15.2) is the term
in P (r)x, (g). Hence, using the orthogonality of the x's,

as

and as
4(r, &) =P a~4'"'(r, g) for r(R, (15.1) l

f=(R)-f-'(R)
la„= I — P a.„&

2M(W„—E) 2ik

sin(kr —ls./2) (15.4)

we choose
I&=i&(21+1)& (15.5)

for this special case. The (4n.) & is taken into account at
a later stage by multiplying by 4n. to obtain the cross
section, as in Eqs. (7.1) and (12.12); this convention
makes our general treatment correspond to our S-wave
case when l=0.

We can again find the a„by Green's theorem,

~R
(C &»II% —+II@&»)d'gd'r = (E W„)a, —

p

R

2 a; ~ d'rx, (&)
2M 2~ ~P

X)l da RP (R)—L e(r, ()j
dr

—M (R,g)—erg &(r)] . (16)

~4-+( )—4=( ) ~
e(r, g) =I.

l lx.(g)+S.y.+(r)x.(g)
2ik

+ Z 5'-.A- "(r)x~(4) ««&R, (15 2)
a&a'

where S is the amplitude for elastic scattering in
channel 0, and S,; is the amplitude for inelastic scat-
tering from channel n into channel e', leaving the
nucleus excited in state x;. The f ~ represents an
outgoing wave at energy E—e; in channel o,'. The coef-
6cient I represents the amplitude for channel o. in the
plane wave. In the case of spinless particles,

e' '=Q i'$4n (21+1)j&I'&0(8)«) ji(kr). (15.3)

If we set n=l, i.e., identify I &' with 0 for this case,
and use

dORg„(R)RQ (R). (16.2)

The integral over 0 guarantees that the angular de-
pendence of the &t is the same as that of the incident
channel 0,. With this restriction understood, we can
write a„in terms of the radial part of the wave functions,

4= (R) Z a-"L(R)
2M(W~ E) 2ik—

(16.3)

We can simplify Kq. (16.3) by using the Wronskian,
Eq. (12.6), giving

a„=I Q a, &4„(R). (16.4)
2M(W„E) 4 +(R)—

By having a„, we can now obtain S a,nd S & by
matching the internal and external wave functions,
Eqs. (15.1) and (15.2), at the joining radius. If both
equations are multiplied by x,($) and RO~ and inte-
grated over d'$ and dQ, one obtains

5'A-'(R) =Z a.E a-'0- (R)
n m'

I.(y.+(R) —@.-(R))/2i—k (17).
If we introduce the width,

kfi'
2 2 '.."a.""4-(R)4- (R),

@~+(R)&k~ (R) na m'

(17.1)
we can write

I.@.-(R) y„ I. f 4.-(R) q

2k P.+(R) ~ W„E2ik & y.+(R))-
which is of the same form as Eq. (12.11). The cross
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section 0. for elastic scattering is given by

.=W[S.
[

. (18.1)

section can be put into the form of the Breit-Wigner
formula

For spinless particles, n can be replaced by the label l,
and with the value of Ii given by Eq. (15.5), one obtains

7"7"'
k' [W„—E['

(19.3)

~4 (R) ~, f @ (R)l'., =(2»+ 1)— P +i~ 1-
k'@i+(R) p W„—E ( pi+(R)&

(See the Breit-Wigner formula given in the introduc-
tion; there we indicated the channel index on the y's
explicitly. ) In Eq. (19.3)

for the total scattering through channel l. Since the
incident particle is described by a plane wave, Eq.
(15.3), the differential cross section is given as the square
of a sum of terms involving diR'erent 1,'

as previously, and

Pe=is )

.2'Yui =Nui (19.4)

da(8)
=4n (pi 'S(Y(0)'.

dQ t

is the width for the inelastic process.

18.3
Now W„=e„ia—„/2, where e„and a~ are real, and

we are interested in the width a,. This can be obtained
from the original and conjugate equations,

Similarly, the amplitude for inelastic scattering is
(20)(H W„)4(»=—0,

(H —W *)4(»*=0.(19)S, ;= Pa„Pa; "@ '(R).
'+(R)

If the first equation is multiplied on the left by 4&")*
In the inelastic case, the widths do not occur naturally and the second by 4 ~», one obtains, after subtracting

in the amplitude, but if quantities N„and I» are defined and integrating,
by

(kk2) & 1 „, I' C(.)*C(.)d g.„=
2 a.-'@-(R), (19.1)

4 M ) iy.+(R)(

I'd'$JI'dQ

and

then

(kk'q& 1

E o,„"@„'(R), (19.1)
I, m ) )d, . +(R)[-

d d~(»* (~(s))—~(n) (~(n)~)
dr - r=R

(21)

By using the expansion Eq. (14) and the boundary
conditions Eq. (14.2), this becomes

4m.k; Q„ZC„g
o..., ).= ~S... ;~'=—I.g . (19.2) in,

I' 4(»*C(»d'$d'r
k k' s W„—E

The ratio k;/k, with k, defined by kg=2M(E ';)/h', —
is the ratio of the velocity of the outgoing particle to
that of the incident one, which enters into the cross
section.

In case one term, p, in the sum in Eq. (19.2) con-
tributes the main part of the sum, the inelastic cross

a,."*a, 'y '*(R)y.'(R)
2~ z, m, m

X)f +(E e, , R) f. (E— e;, R—)j. —(22)—

Use of the Wronskian, Eq. (12.6), results in

k,o, "*o,-'0-'*(R)0-'(R)/0-'+(R)4-' (R)

4 (»*4 &»d3$d'r
0

(22.1)

where the sum over j includes the term j=0. The right-
hand side of Eq. (22.1) has a simple interpretation
similar to that of Eq. (8.2). In the numerator the jth

' The factor i ' enters because S» is the coeScient of
exp(ikr —i'/2), so that the coeKcient of expikr is

S» exp( —i'-/2) =S»i '.

term in the sum is proportional to the probability of
the particle being at the radius E, multiplied by its
escape velocity and the relevant penetrability. The in-
tegral in the denominator represents the probability of
the particle in compound state p being in the nucleus.
(The normalization is such that this probability is not
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necessarily unity. ) In the low-energy region where all
of the quantities on the right-hand side of Eq. (22.1)
are essentially real, as is shown later, this reduces to

a.=Z& V. (22.2)

~j &&»(r)=0
dr

(23)

This is interpreted as the total width being equal to the
sum of partial widths for the various processes.

Equation (18) is similar to a many-level Breit-Wigner
formula. This relationship between the scattering am-
plitude and the sum of resonance terms is linear, and
this is why it is often simpler to employ in the many-
level case than the Wigner-Eisenbud expressions. How-
ever, before it can be applied to the case in which only
one or two levels contribute, as in the application to
low-energy reactions with light nuclei, it is sometimes
necessary to make the energy dependence of the p„'s
(which results from the dependence of the boundary
conditions on E) explicit, and to determine the imagi-
nary part Lthe p„'s defined by Eq. (17.1) are complex].
The determination of these is equivalent to relating
the formalism back to the Wigner-Eisenbud one in
which the widths are real and independent of energy.
The approximate relationship was developed in pertur-
bation theory by Kapur and Peierls, ' but we prefer
to use a procedure developed by A. M. Lane. "
States P '"'(r) are defined for which the radial part,
multiplied by r, obeys the energy-independent boundary
condition

and we obtain

(24.1)

ik2
(Wn W, "')c—,'= — Q k,a;„&"&a,„&

2~ 7', m, n

Xj &&0&(R)&I „'(R), (f&Wq). (24.2)

The right-hand side is of order ia„/2—, its approximate
size for p=&7, or less. (The signs of the a, «'& and the
a, " can be both positive and negative, and this
tends to make the right-hand side smaller than ia„/—2
If a random-phase approximation were applicable, the
right-hand side would be zero. ) Therefore, for order of
magnitude we have

This equation is exact, but we now use perturbation
theory starting with the zero-order approximation
4'(~ =C'0(~). To obtain the erst-order correction to the
energy, we let p= &7 and set Co'"' equal to C &"' under the
integral. This gives

1V~ W—„&'& —i&—r„/2,

where we have used Eq. (22.1) and remembered that
the a,„'» and p ' are real in this approximation. Hence,
the first-order correction to the energy simply adds an
imaginary part which is just the width of the state C (»
and which is independent of energy in this order. We
can obtain the 6rst-order correction to the wave func-
tion by expanding

in analogy with Eq. (9.1). By building up 40«& as c," &o&„/(W„— W, &0&)— (24.3)

(23 1) Thus in the case of well-separated levels, wheno"'(,6) =2 -'"' (4)4'"'( ),
7 f r&s

we define energy-independent compound states. The
overlap between such states and our energy-dependent
compound states can be found by employing Green's
theorem again as in Eq. (16). This gives

i
W„—W, &o& i» „ (24.4)

~R
(W —W &'&)~ 40&a&c &»&d'g r

0

Q2 R

d'g I dQ RC&&«&(R,()
2M ~0

d
X—LrC ' &(r,g)] . (23.2)

For the case in which the resonances p are well separated
and only S-wave scattering can occur, we have

the c,7' and, consequently, the imaginary part of 4(»
are small, and the latter is of the order of the ratio of
the width to the spacing of the levels. Hence, to a good
approximation, the energy dependence of the various
parameters and the imaginary parts of the widths are
absent in the region of well-separated resonances, so
that, except for effects especially sensitive to these
features such as the "Thomas Shift, " one can usually
ignore them.

The arguments in the next section do not neglect the
energy dependence or the imaginary parts of the widths;
these are included correctly, although we may often use
the case of well-separated levels, which is especially
simple, as an illustration. These features do not essen-
tially complicate the arguments.

R

(W —W "') ) 4'o"4'"&d'$d'r
0

k,a,„~&'&a,.&4„&&'&(R)j„&(R).2~ 7,.n, n

"A. M. Lane (private communication).

(24)

III. THE OPTICAL MODEL AND
DIRECT INTERACTION

1. The Physical Picture

The physical picture underlying the optical model was
developed chiefiy by Feshbach, Porter, and Weisskopf'
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and Friedman and Weisskopf. ' These authors split
the scattering amplitude S into

S.= (5.).,+ (S.—&5.)A.), (23)

where &S,)A, is the value of S averaged over an energy
interval I. The averaging process is defined more

precisely later. The average elastic cross section can
now be expressed as

~ F. L. Friedman and V. F. Weisskopf, Niels Bohr and the
Deeelopnsent of Physics (Pergamon Press, London, 1955), p. 134.

since the cross term between (S )~, and S —(S )»
averages out. Although both terms on the right-hand
side represent elastic scattering, they are physically
quite diferent in nature.

Friedman and Weisskopf, -"' who used a time-depend-
ent treatment, showed that if one constructs a wave
packet of width hE in energy, then the scattered par-
ticles corresponding to the average amplitude (S )A„
i.e., those given by the first term on the right-hand side
of Eq. (26), pass over the nucleus in time r=li/IiE
=Ii/I. This is, in fact, clearly allowed by the uncer-
tainty principle, because one has, by averaging, con-
structed a scattering amplitude (S )A„which varies
appreciably only over an energy interval I; since the
energy of particles associated with this scattering is
undefined within this interval, the time r which the
particle spends in the nucleus can be defined to within
h/I Hence, .if the energy interval I is very large, the
particles corresponding to the average amplitude go
over the nucleus very quickly. It is therefore reasonable
that for suKciently large intervals I, the particles make
only a few interactions with the nuclear particles —even
though the nucleon-nucleon potentials are relatively
strong —and that we can describe them in the weak-
coupling type picture indicated by the optical model.
This scattering, which corresponds to the average phase,
is termed "shape-elastic. "Later we find precisely how
large the interval I must be for various weak-coupling
type descriptions of the average scattering to be valid.

On the other hand, the fluctuation scattering (often
called compound-elastic scattering), described by the
second term on the right-hand side of Eq. (26), varies
over energy intervals of the order of the width of the
compound nuclear states ( 1 ev at low energies).
Hence, the corresponding particles stay in the nucleus
the order of a million times longer than those of the
shape-elastic scattering that would correspond to a
wave packet of the order of 1 XIev wide. If the particles
corresponding to the shape-elastic scattering have time
for one or two collisions, then those corresponding to
the fluctuation scattering stay in the nucleus long
enough to make the order of a million collisions. The
latter particles can be regarded as those forming
compound states of the type envisaged in the old
compound-nucleus picture, whereas the shape-elastic

scattering corresponds to that from the complex well,
the imaginary part of which describes the disappearance
of particles out of the incident beam into the long-lived
component.

We define the complex well V(r) so that it reproduces
the average scattering phase, i.e. , so that S =(5 )A, .
The physical picture indicates that this is the most
reasonable procedure. We then go on to discuss the
characteristics of this well U(r) and relate the param-
eters back to nucleon-nucleon forces.

S "=—5 —(S )A„, (27)

in dispersion theory, using the fact that we choose V so
that S =&S )A„. Then,

~
—2ikR

Vy5 "=S —5 = Q —Q, (27.1)
2k n W„—E mmmm

—E

where the second term in brackets gives the scattering
amplitude in the complex well, and E is the eigenvalue
in the complex well, which may be taken to have the
form, Eq. (9.13), E =c iP /2 iW (We a—re con-— .
sidering the complex well to be a square well here,
although generalization to the case where it varies with
r is easy. ) From our definition, (S ")A„ the average of

' Lane, Thomas, and signer, Phys. Rev. 9S, 693 (1955).

2. The Picture of Lane, Thomas, and Wigner

Possibly the most striking feature of experimental
data on elastic neutron scattering was the appearance
of the giant resonances in the total cross section in the
energy region 0 to 3 Mev, as discussed in Sec. I. In
order to understand these, we develop the picture
of Lane, Thomas, and Wigner. " In this development
we assume that the well V(r), which reproduces the
average scattering amplitude (S = (5 )A„), has the
characteristics of the optical model potential of Fesh-
bach, Porter, and Keisskopf'; that is, if V= —U—iW
then U—42 Mev, tV lies in the range 1 to 2 Mev, and
the radius of the potential is R=1.453&&(10 " cm.
These parameters are used only for order-of-magnitude
estimates; knowledge of their precise values is not
necessary for understanding the conceptual points
considered here. Later in this section we show how to
relate these parameters back to nucleon-nucleon forces.

In the picture by Lane, Thomas, and Wigner, " for
lt/'„—~„, i.e., for energies of the compound states in the
neighborhood of the single-particle energy e„, only
terms m=m' win =the width y„of Eq. (17.1) are
important, i.e., only the (a,„&) are large if W~ lies in
the neighborhood of e„. We now make these criteria
more quantitative. For simplicity, we consider the
scattering of S-wave neutrons in the region of well-
separated levels where the y„can be taken to be real.

We write the amplitude for compound-elastic scat-
tering, defined by
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=P(E)+iQ(E)=Z, (2g)
7y

1

1'm

I W~ EA, — E„E—
where P and Q are real. We find

(a —E)1'

P(E)=E- (~- E—)'+(W+P-/2)'

and

r„(w+P„/2)
~ (e E)'+—(W+ /2)'

(28.1)

S-, is zero. Hence, the average of the quantity in
brackets must vanish. "The intervals over which we

average are always small compared with the widths of
the single-particle resonances, so the second term in
brackets need not be averaged. We can write

in which case

1, I P "
dE'

1. w, -EI „„&. ~ w„-E (E E)—+I

n O'„—E—iI
(30)

where the integral can be evaluated by contour inte-
gration. Quite generally, averaging with this weighting
function a quantity F(E) which has poles only in the
lower half of the complex E plane (such functions are
often called R functions following Wigner), one finds

(F(E))av
=F(E+iI), (31)

where I corresponds to the interval over which the
average is carried out. We always assume this interva
to contain many resonances P.

We find, then,

where F is assumed to be real, which implies speciali-
zation to the low-energy region. We cannot express
P(E) more simply in terms of y~, but the imaginary
part of the sum Q(E) can be put into a more useful
foHIl.

The average (F(E))A, of a quantity F(E) is defined by

(F(E))„„= t p(E E')F(E')dE—'.
J

(29)

The weighting function p employed by Feshbach,
Porter, and Weisskopf' was a square one,

so that

0, x& I/2—
p(x) = 1/I, I/2&x&I/2—,

0, x)I/2
(29.1)

fI E+II2

(F(E))"=- F(E')dE'.
I~ z—112

I
p(E E')=-

x (E E')'+I2—

With such integrals, one has end eGects coming from
resonances where e„ lies near either E I/2 or E+I/2, —
and these must be disposed of, somewhat inelegantly.
Physical results must be independent of the precise
form of weighting function employed, as long as it is
not an unreasonable one, and we find it convenient to
use

Q(E) = Im P
~ O'„—E—iI (32)

Y ~m
x—=1m P

D
(32.2)

when we make the average value of the imaginary part
of the quantity in brackets, Eq. (27.1), vanish, using
(S")A„=O. In the special case where the energy E is in
the neighborhood of e„, the main contribution to the
sum on the right-hand side comes from the nth term
provided that the single-particle resonances are suf-
ficiently far apart. Then,

r„(W+P„/2)
7l—= E—e„.

D (»„E)2+(W+P„/—2)2
(33)

The strength function, for constant W, I'„, and p„, is
thus of the Lorentz form. The contribution of the other
levels is at least of order W/he smaller 2' where he is

By defining the average density of the levels in the
region of interest by 1/D (where 1/D=X gives the
number of levels per unit energy, which is assumed to
be large), one can convert the sum in Eq. (32) into an
integral, obtaining

1 p" yI
Q(E) =—' de, =—, (32.1

D " (e„E)'+Im D—

where we have neglected e„compared with I, and where
y is the average width. The function n.y/D is called the
"strength function. "Our assumption of well-separated
levels is equivalent to xp/D«1.

Finally, we find

~In the low-energy region, where the k-dependent factor
k ' exp( —2ikR) and the penetrabilities in the widths vary rapidly
with bombarding energy, these factors should be divided out
before the average is taken. This is done explicitly in the next
section.

~ Since the sum in Eq. (32.2) relates only to the single-particle
well, one can carry out the calculation of the sum explicity for
special cases, such as a square well, and verify that if ~~„, the
sum of terms min, contributes in order 8'/Ae (see Appendix A,
reference 16).
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the distance between single-particle levels of the same
angular momentum, i.e., of the same channel o.. This
distance is of the order of U, the real part of V.

The validity of the picture depends on W«U, which
is also one of the criteria for the existence of marked
resonances in V. In the range of separated compound-
nucleus resonances, the condition kR«1 is fulfilled, as
appears later, and then the maxima in the strength
function of resonance shape given by Eq. (33) are
simply related to the total cross section O.z, as can be
seen by using the optical relation

Hence
or=(4n/0) Im S . (34)

4~ 4n 2x
((rr)A„= Im—(S )A, =—Im S = =, (34.1)

k k k' D

which we have obtained from Eq. (32.2).
This situation just discussed is illustrated in Fig. 6,

where the distance between levels e„.—e„ is assumed to
be much greater than W, so that the picture of Lane,
Thomas, and Wigner is valid. The 4s and Ss single-
particle levels are shown on the left-hand side, and it
is illustrated on the right-hand side how —although
each single-particle level is split up into many compound
states —there is an appreciable probability of finding
them only within an energy region of width W
bracketing the single-particle energy. '4 Hence, although
the interaction V(r, g) is strong enough to change the
wave function completely so as to split the single par-
ticle level P„ into thousands or millions of compound
states, it is not strong enough to mix the single-particle
level P„, which is a distance of order e„—~„away, into
the compound state in the neighborhood of e„with
appreciable probability.

We might asia how well the condition (e —e )»W
is fulfilled in the actual physical case, taking the
parameters of Feshbach, Porter, and Weisskopf' for V.

(a..)

FIG. 6. On the left, S-wave single-particle resonances in the
complex well are shown; on the right, the behavior of the square
of the expansion coeKcients. Behavior of the strength function
is essentially the same as this.

~ We have made arguments only for the case of separated
levels where the c,„& are essentially real, and therefore our argu-
ments do not apply in detail to the higher single-particle resonancen'. However, it is clear from them that the (a,„j')' has a
spread of order 8', where W' is the imaginary part of V (which is
velocity-dependent) at the excitation energy ~„..

By way of example, consider the nucleus A= 160 where
the 4s single-particle resonance occurs near zero energy
experimentally, as in Fig. 6. The occurrence of the 4s
resonance requires E~= (7/2)s, where E„is the wave
number for a particle of zero energy, measured from the
bottom of the well. The Ss resonance occurs for
K R= (9/2)w. Hence, e„/e„=81/49, where e„and ~„.
are now measured from the bottom of the well. For a
well depth of 42 Mev, ~„—e„—=h~= 27 Mev. Thus there
is no doubt that W«he is the low-energy region, where
W is of order 1—2 Mev."

Although the single-particle width F„ is split up
among thousands or millions of compound states, some
features of the single-particle resonance remain. In
particular, since to a very good approximation,

and since it follows from the completeness of our two
representations connected by the coefficients a, & that
P~(a,„")'=1,then

p &„—-r„,

where the prime on the sum indicates that it is extended
only over compound states in the neighborhood of e„.
In other words, the single-particle width is split up
among many levels, but the sum of widths of these many
levels is just equal to the single-particle width.

At this stage we have an understanding of why the
compound resonances p are so narrow without resorting
to the classical picture which explains this in terms of
the energy being shared among all of the nucleons. The
interaction V(r, g) is sufliciently strong so as to mix
many states x, (g)$ '(r) into the state 4&'"'. Since

P (a,„&)'=1,
7

following from the normalization of the 4 &», and since
there are many terms which contribute in this sum,
then (u,„&)'«1 for any given p and the width of the
compound resonance is much less than that of the
single-particle one.

Nonetheless, the interaction V(r, g) is not strong
enough to break down the underlying single-particle
structure completely and, in particular, it does not mix
difFerent single-particle levels n and e' into the same
C("', but only spreads the single-particle resonance
locally. Consequently, it is not surprising that some of
the single-particle features remain in experiments carried
out with wide beams.

For completeness, we remark that the width of the
strength function is given essentially by W as shown

~5 The discussion of the contribution of terms m&n in Eq. (32.2)
was carried out taking the same W for all terms m, contrary to
the spirit of the other development where we think of V as a
velocity-dependent potential, or, equivalently, a nonlocal potential
V(r', r), in which case the Ws entering into the widths of diAerent
single-particle levels are quite different. However, the sum of
terms mWn must be the same in either method.
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in Eq. (33) (although this equation is a reasonable
approximation only when E is in the neighborhood of
e„), and not by the square root of the second moment
of the perturbing potential, as Lane, Thomas, and
signer" indicated might be the case. Bloch" has
pointed out, using some rough quantitative estimates,
that one should expect the root-mean-square moment
to be much larger than the width owing to large con-
tributions from the wings of the strength function which
are weighted heavily. Use of the form Eq. (33) for all
energies would lead to an infinite second moment which
would contradict the finite expression for it in terms
of the potential, ' so that this form is clearly not valid
far from the resonance energy.

]0-

I ~ z A~
tLc la Nucleus)

4'p g6 ]jo &60 200 2,$0 A

Fro. 8. Ex erimental data compared with theoretical pre-
dictions for ft {solid line) from the complex-well model. A more
refined theory" takes into account nuclear deformations, and the
resulting agreement between theory and experiment is then
better.

lkO I 60 2oo

Fio. 7. Experimental data for the strength function. The solid
line indicates typical theoretical predictions for a complex-well
model. A measured width p„ is reduced to a p(0) by using
y(')=y~(ko/k), where ko is taken to be the wave number for a
neutron of energy 1 ev. A more refined theory~ takes into account
nuclear deformation, and the resulting agreement between theory
and experiment is then better.

'6 C. Bloch, Nuclear Phys. 3, 137 (1957).
"The second moment is clearly finite for well-behaved poten-

tials which are used here.
2 Many of the results in this section were first derived in the

R-matrix formalism by R. G. Thomas, Phys. Rev. 97, 224 (1955).

3. Low-Energy Behavior of the Scattering-'

At low energies, where (wy/D)«1 and kE«1, the
interpretation of average quantities is especially simple.
Equation (34.1) shows that the average cross section is
proportional to the strength function in this region. The
maxima in the strength function indicated by Eq. (33)
would be difIicult to observe experimentally by meas-
uring the strength function at various energies for a
given nucleus because the single-particle resonance is
broad, of width 28'+is„, and even if the same experi-
mental technique could be used over this broad energy
interval, the interpretation would become difFicult, both
because waves of higher angular momenta would be
mixed into the experiments and because our simple
consideration —which applied only to the region of
well-separated resonances where kR(&1—would no
longer be valid. Consequently, the strength function is
usually measured at low energies for difI'erent nuclei
and plotted as a function of A. In this way a variation
in the quantity 8—e„ is obtained which depends on ER,
where E is the wave number measured from the bottom
of the well. Some experimental data, plotted in this

way, are shown in Fig. 7."The theoretical curve is not
computed here from dispersion formalism but is
obtained from

x—=2k Im S,
D

(.«2)

Lsee Eq. (34.1)j, where 5 is calculated directly by
integrating the Schrodinger equation with potential V.
Nevertheless, our formulas are useful in understanding
the qualitative behavior in the resonance region.

Historically the first striking observations of the
nonmonotonic behavior of average cross sections with
changing A referred to measurement~ of a quantity
sometimes called the "potential scattering. "To obtain
this quantity, we expand in k, considering k to be small,
but must carry the expansion one step further, i.e., we
express the average cross section (oz)A as

(o r)s, ——(ts/k)+ b, (35)

~ Hughes, Zimmerman, and Chrien, Phys. Rev. Letters 1, 461
(1958).

~ Fields, Russell, Sachs, and Wattenberg, Phys. Rev. 71, 308
(1947).

"Seth, Hughes, Zimmerman, and Garth, Phys. Rev. 110, 692
(1958).

'

which can be done at low energies where terms of higher
order in k are negligible. The first term on the right-
hand side is the familiar 1/e term in the cross section
which is related to the strength function and which
was already discussed in Eqs. (34.1) and (34.2), and
the second term is often expressed as

(35.1)

where R' is interpreted as a radius. The observed
behavior of R' with atomic number A is shown in
Fig. 8."

A simple description of b is difFicult to give in the
Kapur-Peierls theory in so far as the imaginary parts of
the width p„[see Eq. (23) ff.] are of order k compared
with the real parts, and these must therefore be taken
into account. It is consequently more straightforward
to give this description in the Wigner-Eisenbud for-
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malism. We sketch this briefly, following the treatment
of Lane and Lynn, " and refer to the review article of
Lane and Thomas' for a detailed discussion.

The expansion is actually in powers of p=kR, as in

Eq. (9.5) ff., because p is a good expansion parameter
at the energies of interest. To make this explicit, we
write

where
2ik(S)A, =e "'—1+2ipe "'(RKp)Av, (36)

t' sw(E')
sg =, Rgr = dE.

J
(37.3)

Here y&" is the average of y„"', the width with the
Wigner-Eisenbud boundary conditions )see Eq. (23)j.
The expansion to any required order is now easily made.

Rrrp= Q„x„/(W,—E), (36.1)

Rx~ being the Kapur-Peierls R function. (It has poles
only in the lower half of the complex plane. ) x„ is the
reduced width,

x.=(2p) 'v~ (36.2)

The relation between R~p and the Wigner R function
R~ is easily obtained by looking at the scattering
matrix in the two theories. It is

Rxr =Rw/(1 i pRw). — (37)

In averaging Rzr by adding iI to E, we find that

(Rzp)A Rw/(1 ipRw)—, (37.1)

(see pp. 306—309 of Lane and Thomas), where

Rgr =Rg "+zest (37.2)

with R~" and s~ now real, and given by

is helpful in understanding the qualitative behavior of
s~ and R~" in the actual physical case. We have
already indicated the resonance-type behavior in the
strength function in Eq. (33).We see immediately from
Eq. (37.3) that to the extent that the strength function
is symmetrical about its maximum, R~" is zero at
this maximum which occurs at the real part of the
single-particle resonance energy. Further, R~" becomes
negative on one side of the maximum and positive on
the other so that one can understand the qualitative
behavior of R' shown in Fig. 8.

Theoretical curves, such as those shown by the solid
lines in Figs. 7 and 8, are obtained by calculating S
and then using (S )„„=S .

In past work the term (ms w)' has often been neglected.
However, near the single-particle resonance at A= 50, s~
is appreciable, as R. K. Seth has pointed out, "and it is
vital to include the term (wsw)' in analyzing data near
A=50. Otherwise (1—Rw") comes out to be too large.

This treatment illustrates the type of problem in
which the Wigner-Eisenbud formalism is useful. It is
advantageous here to deal with the real quantities of
this theory in which the energy dependence is explicit.

Reverting to the Kapur-Peierls formalism, we can
show the relation between the average cross section for
forming a compound nucleus and the t/t/ in this energy
region, to lowest order in k. The former is defined as

tTc Av
= &T Av geek

where a„is the cross section for shape-elastic scattering,

„=4 l(s.).„l'=4 Is.l'.

Use of the relation between (a&)A„and Im S given in
Eq. (34.1) results in

4x 4xp—Im(S )A,
= (wSW)

k k'
(a, )A 4w —Im S.—~S.~' .

k
(38.2)

4m p'
+ (1—R«")'—(~sw)' +0(p').

k'

By using the resonance expansion for S Lobtained
(38) from Eq. (7) by replacing E by E ] and remembering

that F„ is of order kR, we find, to lowest order in kR,
The left-hand side of Eq. (38) is equal to (ar)A„by the
relation Eq. (34.1). We now can identify easily the a
and b of Eq. (35); thus,

4n. WP /2
&c Av-

k' ~ (E e„)'+W'—(38.3)

4xp
a = (m.s«.),

k'

b =4''[(1—R w")' —(m.s «) 'j
(38.1)

To lowest order in p, 2pws« =~&/D and, retaining only
a, we see that Eq. (38) reduces to our earlier expression,
Eq. (34.1).

This derivation is independent of any particular
model, although the model introduced in the last section

@ (R)y„(r)
e—ika Q

2M m E —E
(38.4)

where we see that the shape-elastic scattering does not
contribute in this order. To interpret this formula we
consider P (r), the solution of the Schrodinger equation
in tke complex well. Since we are dealing with S waves
we can expand @,the radial part of P multiplied by r,
in terms of eigenstates @ . The coe%cient has already
been derived in Eq. (4.3). Thus

32 A. M. Lane and J. E. Lynn, "The widths and spacings of
resonance levels, "Harwell Report T/R 2210 (1957, unpublished).

'3 R. K. Seth, Optical Model Conference, Tallahassee, Florida,
March, 1959.
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E E
FIG. 9. Illustration of

the position of the neu-
tron energy with respect
to the single-particle res-
onances in our "simple

(Q „) case of scattering. "
e "'" F„sinkR

(s.)„= e—ikB

2k e„—E k
(42)

quently, if E—e~)W, then a good first approximation
is to set E—W„equal to E—~„ in the denominator of
Eq. (41). Evaluation of the sum over p gives in this
approximation,

This formula clearly shows the resonance behavior of
the probability

pB ( ks ) 2
L@ (R))s

l~-(r) I'«=
l l Z, (»)"s &2M) ~ (E e„)s+—W'

of finding a particle inside the nucleus whose wave
function has unit amplitude asymptotically. Here we
have dropped P which is of order kR smaller than W.
It is clear that

8xM
(rre)Av=

k'k
(40)

In other words, the average cross section for compound-
nucleus formation just defined is proportional to the
absorption W times the probability 6' of finding the
nucleon inside the nucleus. In a somewhat classical way,
one might interpret W as the absorption per unit nucleon
in the nucleus.

4. A Simyle Case of Scattering

Much of the relationship of our detailed picture,
where we make a complete description in terms of the
C&» to the simplified complex-well model, can be
understood by considering an especially simple case""
in which the energy of the incident particle falls
between single-particle resonance energies. I.et us
suppose, referring to Fig. 6, that the energy E of the
incident particle lies midway between e„and e„, as in
Fig. 9. The amplitude for elastic scattering coming from
the lower group of levels is

e "'n (a &)'I'„sinkR
e
—isR

2k n W'„—E k
(S) = (41)

~ J. Bowcock, Proc. Phys. Soc. (London) A70, 515 (1957).~G. E. Brown and C. T. De Dominicis, Proc Phys. Soc.
lI',London) A70, 668 (1957).

where the lower suffix n on S indicates that this is the
S that would result if only the lower group of levels
existed. We have here used the model developed in the
last section and dropped the e,„.& in the widths y„
referring to the set of compound-nucleus levels lying
around e„.

The 8'~ are spread a distance 8" about e„. Conse-

which is just the contribution to S from the nth
resonance in the complex-well picture if we neglect W'

compared with E—e„ in the denominator.
Therefore, if the spread of the y~ about the single-

particle resonance energy is small, then the whole set
of them act together just as the single-particle reso-
nance. This is related to the principle of spectroscopic
stability, from which it follows that —although the wave
functions may be drastically changed by the perturba-
tion—certain simple features come out just as in the
unperturbed problem.

The main oversimplification is in the neglect of the
widths y„which lie close to E, i.e., the y„are not so
well concentrated around e„and e„as we have shown.
However, our approximations are good in so far as the
"shape-elastic" scattering is concerned. Our neglect of
the near levels has simply resulted in our dropping the
compound-elastic scattering. We now make the de-
velopment more precise in such a way that the near
levels can also be treated. Such a treatment is clearly
necessary in order to consider general E which may be
in the region of a single-particle resonance.

5. Exyression of the Scattering in the
Green's Function Formalism

In defining V(r), it is convenient to express S" in
terms of the Green's function as was done by Bloch."
Actually, Bloch's elegant formalism is much more
general than that we use, and by specialization to
specific representations he can obtain either the Kapur-
Peierls or Wigner-Eisenbud expression. However, our
simpler formalism is adequate for illustrating the points
considered here. We again specialize our consideration
to the scattering of S-wave neutrons; generalization of
our results to other cases is obvious.

We use the notation

c'"'(r, K)= lp)=&pl, x~(()4-'(r)= lirrs)=&irrsl (43)

alld
R

(pljm)=~I C&»(r, ()x,($)P„'(r)d'rd')=a; '
0

No distinction is made between
l p) and (pl since ex-

pansion and orthogonality conditions in this theory
involve only the wave function and not its cornp1ex
conjugate, aside from the trivial changes in functions
of angles mentioned in part 2 of this section.

~' Q. Brooch, Nuclear Phys. 4, 503 (1957).
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We then have

cea

om' @ R y„R, 44

1
2ikB Q om

m, m' H —E

1'

2k ) W„E—m g„E—
k2 1

o '*"' Z E(plom)(plom') p p
2M H —E

can be derived directly from scattering theory without
recourse to dispersion theory.

Insertion of the unit operator p„l p)(p I
in the second

term on the right-hand sides of Eqs. (46) and (47)
allows replacement of (H —E) ' by (W„E—) ', indi-

cating that all of the poles of this term lie in the lower
half of the complex energy plane. Thus we can average
this term with respect to energy by replacing E by
E+iI, following the procedure of Kqs. (30) and (31).

(S "(E))A„S"(——E+iI). (4g)

The complex potential V(r) is defined by the condition
S (E)=(S (E))A„or by (S "(E))A„——0. This can be
accomplished by requiring

1
om om'

I

it) (E))p (R),
E

where B is obtained from H by replacing V(r, g) by V,

&olU —Ul o)

1
o V—V V—V o =0. 49

H —E—iI
j..e.,

H =II+ (V(r, g) —U(r)) =II+8V. (44.1)

By using the identity

1 1 1 1
(U —V)

H E II E—H E, — —H —E

1 1 1
+ (V—U) (V—U), (45)

H —E H —E H —E

which is easily checked by multiplying both sides of
the equation by H —E, we obtain

k2 1 1
ce — ~

—2 ikRa 2M, 'E —EE —E

1
X (om I

V—Vl om') — om (V—V)—
H —E

X (V—V) om') i„iR)i (R) (46).
At this stage, by using Kq. (38.4) we obtain S "in a
convenient form,

ce (onl V—Vl ou)
A2

1
on V—U V—V on, 47

H —E

where )p is the scattering stat. e defined by Eq. (11) and
the discussion following it. Further expansion of
1/(H E) by itera, tion with Eq.—(45) would give the
Born expansion for 5 ",i.e., the expansion in successive
powers of the perturbing potential bV Equation (.47)

One can therefore define an optical potential V(r)
which reproduces the average scattering phase. At this
stage, not very much has been proved because the
formalism does not make it clear that V does not vary
rapidly and possibly nonmonotonically with energy; its
usefulness empirically comes from the fact that it varies
slowly and regularly with energy and with atomic
number A. We now go as far as we can towards demon-
strating that V has these characteristics. In order to
do this, we make the connection between the parameters
of V and the nucleon-nucleon potentials.

where
V= V—sv,

V—= (ol Vlo).

(49.1)

(49.2)

"Brown, De DoIninicis, and Langer, Ann. Phys. (X. Y.) 6,
209 (1959).

6. Perturbation Theory of the First Kind

In the perturbation theory to be developed, we will
have to carry out an expansion in 8V= V(r, g) —V(r)
since we wish to obtain expressions for quantities which
do not contain the complicated C '». The smallness of
the widths of the C '» compared with those of the single-
particle states tt which, together with y; we em-

ploy as unperturbed wave functions, indicates that
a large number of terms are necessary in the expansion
Kq. (14) of C&&) in terms of g;(g)tt '(r). Thus, an
expansion of 4 &» in perturbation theory, starting from
yo($))p '(r) as zero-order function, would converge very
slowly, if at all. However, the perturbation expansions
of the average phase involve less stringent criteria for
convergence than those for the wave functions as might
be suspected from the physical arguments of the 6rst
part of this section. We now formulate these criteria,
following the development of Brown, De Dominicis,
and Langer. '~

'N is de6ned as
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Equation (49.3) can be explicitly solved for t'ai." For
brevity,

and

e= H —E—iI,

e= H E i—I= e——(V—V).

(49.4)

Then Eq. (49.3) can be written

(
1

o (e—e+'N) 1—-(e—e+%) o =0,
e

Our defining equation, Eq. (49), for U becomes

(
1

o (V—V+%) 1— (V—V+%') o =0.
H —E—zI

(49.3)

as can be checked by expanding in powers of (V—V) 1/e.
One can derive this expression without recourse to per-
turbation theory as an intermediate step."~ For pur-
poses of perturbation theory it is more useful to think
of the denominator of Eq. (50) as e+(1—A,) (V—V),
since the expansion is in powers of (1—A,)(V—V).

In working with Eq. (50) it is advantageous to use
a representation for the extra particle which is diagonal
in T+V rather than in T+U. The importance of con-
sidering %' comes from the fact that it contains the
entire imaginary part of U; its contribution to the real
part of U would be important only in case one was
trying to calculate this quantity fairly accurately. For
the simple case in which U is a square well, changing the
imaginary part of it by it/t/ does not change th eeigen-
functions but only shifts the resonance energies by i8".
Our new energy eigenvalues are, therefore,

1
o e—e+'N —e—VP o

e

1 1
o (e—e)-e o — o (e—e)- o %V

e e

(49.5)

E„=c„iP„/2— (50.2)

3C =H A, (V V). — —
We label them by Qp and 8'p', i.e.,

BC0„=W„'0„.

(51)

(51.1)

We now investigate the eigenfunctions and eigen-
values of the operator

Since Ht~O)=0, the factor (e—*K) in the final term
commutes with

~
o) and can be taken out to the right.

Equations (45)—(49) imply

(49.6)
and

To lowest order

n„=c( )+sn„,

Sn„=P. o„m~ "&.

(52)

Now, —A, (V—V) can be considered as a small per-
turbation since the Qp are not very diferent from the
C(p). Thus, we choose

and from this we see that the final term in Eq. (49.5)
is equal to 'N. We can then solve the equation for 'N,
obtaining

TÃp'= TVp. (52.1)

The use of Green's theorem as in Eq. (16) and the
assumption4' that Qp satisfies the same boundary condi-
tion as C 'p', gives the result1

o (V—V)—(V—V) o
1 e ~R

1— o V— —o (49 7) I (@(m)~Q Q ~4~ )d'gd r=0
e 0

where we have added to the final factor the term

1
o (e—e)-e o

e

for symmetry. This term is zero, since (o~e—e~o)=0.
Equation (49.7) is equivalent to

1
o V—V V —V o, i0

e—A.(V—P)

where

(50.1)

38 C. T. De Dominicis, J. phys. radium 19, I (1958).

=(W —W )u "+Z(PI(V V)lorn)(om~m), (53)

where Wp LYp and Qp=C(p) on the right-hand side
since we wish to compute ap" only to lowest order. Hy
employing

(p~ V—V( om) =(p( H H( om)—
= (W„—e.,+iP,./2)(p t om), (54)

' J. S. Langer, thesis, University of Birmingham, 1958.~ H. Feshbach, Ann. Rev. Nuclear Sci. 8, 44 (1958).
"Actually, the functions Q„obey slightly diferent boundary

conditions from the 4 ("), because, as is clear from Eq. (51), the
()„contain no components p0, these being projected out by the
operator A0. However, such components of 4(") do not con-
tribute to the left-hand side of Eq. (53) because they are orthog-
onal to 0„,and the equality given there holds.
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we obtain

(Wp e—„+iP }(2)
a,"=Q (p ~

om)(om
~
n).

For order-of-magnitude estimates,

(p ~
om)(om

~
n)p„, (p ~

om)'p„

(55)

Fxo. 10. Positions of
poles in the complex-
energy plane. The scat-
tering amplitude, aver-
aged over energy inter-
val I, is obtained by
taking its value for the
complex energy E+iI.

E+iT

W+
x )e x x x 4 4 $j

TTp

x E)m

and on the giant resonance

8'~—e &lV.

As a result the a„"are large only if (W„—W„) Wy„/I'
and, therefore, because of the smallness of p„, only a
few of the neighboring C's are mixed into each 0 by
the perturbation.

We can expand the 0's in terms of the y's and the
}P's just as with the C (»'s. Then

(55.1)

One important diGerence between the right-hand side
of Eq. (55.1) and that of the expansion of the C (», Eq.
(14), is that the right-hand side of Eq. (55.1) contains
no terms with j=0. These have been projected out by
the operator A„so that the eigenfunctions of K form
a complete set in the space orthogonal to yo.

Since the eigenvalues and eigenfunctions of BC di8er
only slightly from those of H, aside from the fact that
the former do not contain components in

~
o), our argu-

ments about the distribution of the a; & apply equally
well to the distribution of the b, &. However, it is
important to retain the h., in the denominator of Eq.
(50), i.e., not to approximate the Q„by the (I)(»,4'

because this would allow states
~
o) to occur as inter-

mediate states in the expansion which would give large
spurious contributions. Retaining the A, is related to
the need to eliminate unlinked clusters in expansions of
the Brueckner type.

We are now ready to discuss the criteria for pertur-
bation theory. We can express the matrix element as

(one'N(E)
i on)=(one V —Vip')

X (p'iV —Vion), (56)
W„—E—iI

where we label the eigenfunctions of X by
~

p'). In a
perturbation expansion of the type

1
W(E)=(0 (V—V) X ( —1)"

H —E—zI =o

- n

X (1—A.}(V—V) (V—V) 0), (57)
H —E—iI

~ This was pointed out to the author by Dr. A. M. Lane. The
partial summation of Bloch26 takes this into account properly.

the lowest-order term of the expansion can be expressed

as

(on) V—V~ jm)(jm) V—V[on)
(on[Vs(E)(on) —g

ll~ E, —E—i7
(58)

The same result can be obtained by replacing
~
p') by

~ jm)(jm~ p') in Eq. (56) and then approximating
8'„by E; . This approximation is justified if I is large,
because the (jm

~

P') are large only if W„'—e; & W by
the arguments of the preceding section. The situation
is illustrated in Fig. 10. In the complex energy plane,
the state

~
jm) has an appreciable probability of being

found in states
~

p') distributed over a region of
width W. In going from Eq. (56) to the approximation
Eq. (58), we are approximating the distances E+iI
—8'„' in the energy plane by the common distance
E+iI E, . This —is justified if ~E+iI E; ~&&W—, W
giving the spread of the W„as indicated in Fig. 10. In
the worst case for the fulfillment of this criterion, in
which E=e;, which is illustrated in Fig. 10, we can
satisfy this criterion by making I suKciently large, so
we must have I))W.

This could be phrased in the following way: Calcu-
lating only the average phase means that we can evalu-
ate it for the imaginary energy S=E+iI. The ap-
proximation of taking only the first term in the expan-
sion is clearly better, the larger 8—E; . In the simple
case of scattering considered earlier (where we actually
approximated at a different stage), a large value for the
distance between 8 and the single-particle resonance
was obtained by taking E, the real part of 8, to be far
away. The same result can be achieved by pushing h
up in the complex plane, which means averaging over
larger intervals.

We have thus formulated mathematically the physical
considerations of part 1 of this section. There it was
seen that the time spent in the nucleus by the particles
corresponding to the average phase decreased as the
interval I, over which the average was carried out,
increased. This development shows that the larger I is,
the faster the series Eq. (57) converges. This series
in powers of 8U can be interpreted as an expansion in
the number of collisions the incident particle makes
with the target nucleons. The larger I is, the more
quickly the particle passes over the nucleus and the
fewer the collisions it makes.

The expansion of 'N in this way has been carried out
by Bloch." After expansion, he makes assumptions
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FIG. 22. Variation of
absorption W with en-
ergy of the single-par-
ticle excitation.

(59)

where we have put a lower suQix m on the 8' on the
left-hand side to indicate that it refers to the state

l m),
and we now denote the W referring to state

l I) by W .
In other words, the width of the state into which the
single-particle excitation decays is less than the width
of the original single-particle excitation.

Usually, the state j is a highly excited one since the
number of states per Mev available increases exponen-
tially with excitation, and in this case W ((lV„. Of
course, the more highly excited states also tend to have
a more complicated structure so that the matrix ele-
ments for excitation of the A particles become smaller.
In the next part of this section it is shown that the ratio
(E e,)/E tends to be 1/—3 or, W /W„1/9. How-
ever, in the case of easily deformable nuclei, there are
large matrix elements to low-lying states j, the collective
ones.

From the foregoing, we see that the inequalities

W„&I&W„, (60)

~ The energy of excitation is limited since the initially excited
particle does not drop into a state already occupied. This is incon-
sistent with our neglect of antisymmetrization, but this does not
seem to be an essential difhculty.

about the randomness of signs of the (&l
l
~V

I j~) ~e
do not, however, make such assumptions, and show
later that they are not justihed. The expansion is,
however, convergent without these assumptions pro-
vided I is suAiciently large.

It might appear that the condition I))$' is difhcult
to achieve. The decisive point here is that the W to be
employed is the W appropriate to the state

l jm) which
corresponds to the nucleus excited by energy e; and a
single particle of energy roughly E—e, in the well. This
is illustrated in Fig. 11.From our earlier developments,
we can assume energy conservation to within the width
of the excitation

l jm). Thus E e;+—e„The .width of
the state

l j), which is a true compound state, can be
neglected relative to that of the single-particle excita-
tion lm). But the W corresponding to state m) is much
smaller than that corresponding to state n) because
the former is far down in the well, and W is a rapidly
increasing function of energy, as shown in Fig. 11.
Taking the quadratic dependence of 8' given by simple
theories, as discussed later,

can usually be satis6ed, although 8' is smaller than
TV„only by a numerical factor and not by orders of
magnitude. When these inequalities are satisfied, the
average can be carried out over an interval which is
large enough for the convergence of perturbation
theory but small enough so that one can still obtain
information about the shape of the single-particle reso-
nance of width 5"„.In fact, neglect of the variation
in the le) and other quantities in the various averages
constrains us to average over a distance &W„.

The same arguments apply, with slight modi6cation,
to the case of inelastic processes going into a low-excited.
final state. Here the transition amplitude is

1
jn' V—V V—U on

H —F.

X(V—V) 0~) 4„(R}$ '(R),

where j is assumed to be a low-excited state. Perturba-
tion theory can be used to calculate the &S .,)A„, since
the states that m and m' decay into are, in general, of
substantially lower energy and consequently have a
smaller width. This gives the result, in the first approxi-
mation,

2M
&s-,,)"=——

&j 'I V—Vl 0 ),
A'

(62)

which has been used extensively in calculating direct
interaction processes. This is just the same result as
follows from lowest-order Born approximation, i.e.,
keeping only the lowest term in 6V with initial and 6nal
states distorted by the complex well. Such a weak
interaction picture is only applicable to the average
phase and then only if it is averaged over a large energy
interval.

7'. Perturbation Theory of the Second Kind.

Relation (62) is an important one in that it justifies
the use of perturbation theory —in the usual termi-
nology, Born approximation with distorted waves —in
direct interaction calculations. We found also, in part 6,
that the average elastic scattering amplitude was
reproduced by V=V—%' with Vv" given to lowest
order by Eq. (58). This latter relation is interesting but
not well adapted for the calculation of %' since it stilL
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involves the highly complicated nuclear states z, ($).
We therefore develop a perturbation expansion of the
type used by Bruckner, Eden, and Francis~ which
essentially relates quantities back to shell-model states.
This expansion gives an expression for VP which is
practical for calculation; however, to satisfy the cri-
terion for its validity, one must average over a large
energy interval as we shall see.

In this treatment the unperturbed Hamiltonian is

formally similar to Eq. (56), and by the same procedure
as employed to solve the latter, we can find that Kq.
(64.2) can be satisfied by choosing % to be diagonal in
the

I q) representation, with matrix elements

1
q II—H jH H) tt)—, (65)

H Aq(V— V) —E —iI—
where

(63)II=+(T;+V,)—-', Q V,;,

In
with eigenstates

I q) such that the

HI q) =E.I q&.
- (63.1)

Here V; is the self-consistent potential defined in the
state

I q) felt by the ith particle, as in the Hartree-Fock
theory, and

(65.1)

evaluating (ql% I q& by lowest-order perturbation
ory which now means replacing

{H Aq(H H—) E —iI}—'—

V' =&ql V'
I q). (63.2) we find that

A
The summations cover the incident particle (i=0) as
well as the A particles in the nucleus. Thus, the A+1
particles are here treated symmetrically. The c number,
—,
' g;, , V;;, has been subtracted to ensure that (qlHlq&
is equal to the energy in the Hartree-Fock approxima-
tion. The crucial question in using the

I g& as zero-order
functions relates to the extent of the spread of the
strength function (g I

p)' in energy. This can be obtained
from

—f(cia)) =&~ v c)
1

D A.

1= Im g g, 64

where B is a comparison Hamiltonian which has been
introduced as an artifice to calculate this strength
function. "Its significance is seen later. It is given by

(64.1)

where 'N is then defined by

0= g%g

1
V—y+~ V—V+M q, 64.2

H —E—iI
which guarantees satisfaction of Eq. (64). I

See the
similar development, Eqs. (44)—(49).$ This equation is

443rueckner, Eden, and Francis, Phys. Rev. 100, 891 (1955).
$ee also M. Cini and S. Fubini, Nuovo cimento 2, 75 (1955) and
A. M. Lane and C. F. Wandel, Phys. Rev. 98, 1524 (1955).

4' We use the symbols H and VP because, although they stand
now for different quantities than previously, there is a close
analogy between these and the previous ones.

with
i&j=o

(65.3)

&el~'~lq&=Z &qlV;, Is& . &slV'~lq& (65.4)
~q Eg —E—iI

The half-width of the strength function s.{&pip)'}„„/D
is given by

Im(ql W;, I q&, (65.5)

if we neglect the natural width of the state
I q).

If we identify
I q) with the state in which A+]. par

ticles form a state, wherein the A levels from the bottom
of the well are filled except for one hole in the state we
label by k' and in which two particles are excited in
states labeled by k and l, then it is easy to identify the
various parts of the width:

Im P(ql'Na;I q) and Im P(ply„l q&,
i=o

correspond to the widths for the particles k and l to
interact with the other particles so that the two-particle
excitation, in perturbation theory language, decays into
a three-particle excitation. (One should omit j=k' and
i=k' in the sums. )

2. Im P, '(q
I
*Wq,

I q& corresponds to the width for the
decay of the shell model state with a hole in it, i.e.,
the width for absorption of the hole. (The prime indi-
cates that the term j=k' should be omitted. But j= k
and l should, for completeness, be included in the sum. )

By using the approximate symmetry of holes and
particles" near the Fermi surface Ep, we find that the

4' Calculations by E. P. Pendlebury, analogous to those of Lane
and Wandel, ~ indicate that this symmetry holds only near the
Fermi surface; the absorption for holes then rises more steeply
than that for particles (private communication).
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from the simple theories referred to previously. We
label the width of the original single-particle excitation
~e) by W as previously, and we employ the W's to
denote the imaginary parts of the %;;.

The width of our original single-particle excitation is
given in the lowest approximation by

W„=Im P
0

&«IZ V.;—2 V-I9)&VIZ V-—Z V.*I-)

Eq —E—iI (67)

The largest phase space is available when the energy
is equally distributed among the particles and the hole
so that W~, Wq, and W~ are each (1/9)W„. Since
WI,+W&+WI, &W, we can again satisfy

W~&I& W„, (68)

and employ perturbation theory, although all three of
these quantities are of the same order of magnitude,
so that the average must be carried out over an interval
I that is a good fraction of the width of the single-
particle resonance.

In case
~
0) can be described as a shell-model state,

i.e. , as an antisymmetrized wave function of inde-
pendent particles moving in a well, or can be obtained
from such a state by successive application of the two-
body interaction, the A+1 particles can be treated
symmetrically, and the identity of the particles can be
taken into account easily. By using such an iteration in
which the evaluation is carried out starting from the
Fermi sea, which is assumed to be a reasonable approxi-
mation for the interior of a large nucleus, Brueckner4'
finds that the value of W is increased considerably over
that given by the simple theory and introduces both a
term linear in energy and a constant term in the depend-
ence of W. This would mean that the criterion, Eq. (67),
might not be satisfied by any I since the sum
WI.-+W~+ WA, might be as large as W„. Whereas
Brueckner's calculation brings out the sensitivity of W
to correlations in the ground-state wave function near
the Fermi surface, there are good indications that these
cannot be calculated in perturbation theory, i.e., that
the ground-state wave functionx, (g) cannot be obtained
in the region of the Fermi surface by iterating the
shell-model state. 4' In fact, the parts of these correla-

4' K. A. Brueckner, Phys. Rev. 103, 172 (1956).
48 Bohr, Mottelson, and Pines, Phys. Rev. 110, 936 (1958).

total width of
~ g) is

WC= Wa+Wi+Wa

(Ey Ep) + (6i EF) + (EF 6k')

i

W„, (66)
(~. E—F)'

tions responsible for the pairing forces tend to make the
Fermi surface stiffer against perturbations, working in
the opposite direction from the effects calculated by
Brueckner. 4' Consequently, a consistent evaluation of
the corrections to the lowest-order theory undoubtedly
gives results smaller than Brueckner's calculation.

In the discussion following Eq. (59) we promised to
return to the question of easily deformable nuclei where
there are large matrix elements from g, to low-lying
rotational states so that the initial single-particle
excitation has a high probability of decaying into an
excitation where the initial particle has only slightly
less energy. This state, therefore, has a width almost
as large as the initial width. In this case, one should
separate out the strong transitions to the low-lying
collective states which, together with the initial channel,
we term the "chosen channels" and treat them sepa-
rately in a system of coupled equations as has been
done by Sano, Yoshida, and Terasawa, 4' (references to
extensive earlier work by Yoshida and others are given
in this article) and by Chase, Wilets, and Edmonds. "

In fact, the preceding development can be generalized
so that V—V is a matrix between chosen channels,

~
o)

becoming the space of the chosen channels and A,
excluding these from occurring in intermediate states,
essentially reproducing Yoshida's formalism. This
generalization is within the spirit of the optical model
where the distortion provided by the central potential
is supposed to represent the average effects from the
great number of channels and correspondingly large
number of degrees of freedom which cannot be con-
veniently treated in detail.

lV =—{&oe~P V.,—P V., ~q)')A„
D

(69)

where the Fermi sea
~
0) is taken as an antisymmetrized

product function of plane waves,
~
n) is a plane wave

of energy above the top of the Fermi sea, and
~

rg) is a

"Sano, Yoshida, and Terasawa, Nuclear Phys. 6, 20 (1958).
9' Chase, Wilets, and Edmonds, Phys. Rev. 110, 1080 (1958).

8. Special Models

It would not be possible to evaluate 'K from either
Eq. (56) or Eq. (58) since the matrix elements
(oe~ V—V~ p) or &on~ V—V~ jm) cannot be calculated
owing to the complexity of the C &&'(r, g) and the x;(g).
It would be diKcult to evaluate VP even from the
equations of the last section since these would involve
using wave functions in a complex well of finite extent.
Consequently, somewhat idealized models have been
introduced to carry out this evaluation and we now
discuss their relationship to the development here.

The interior of a large nucleus has been represented
as a Fermi gas. In this case, the absorption, Eq. (67),
is approximated by
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state of the same energy as
~

oe) in which a second
particle has been lifted above the sea.

In such a model it is immaterial how large the interval
I over which the average is taken in calculating V7 or W.
No features are left in the model capable of giving rapid
variations in the quantities calculated, so that the
scattering amplitude is a smoothly varying function of
energy and the average phase, for reasonable intervals,
is very close to the actual phase. Consequently, one
does not need to carry theiI in the energy denominator
in the actual evaluations. However, in establishing the
validity of Eq. (67), it was necessary to carry the iI
in the compound-state picture.

A second model, which is not so useful in obtaining
numerical values, but is instructive, has been used by
Wigner. " He assumes that levels

~ jm) are evenly
spaced in energy and that the matrix elements

(jrn ~

8V
~
kl), where 6V is the perturbation, are all equal

in absolute value but of random sign as long as E;
is less than a certain quantity (in the Wigner formalism
the energy eigenvalues are real) and zero for greater
energy differences. He then finds, under certain con-
ditions which are probably satisfied in the nuclear case,
a Lorentzian form, i.e. , the shape Kq. (33), for the
strength function in the region of the single-particle
resonance. This implies, according to Eq. (33), that
8' is constant with respect to energy.

A third model, used by Bloch, '6 is similar to Wigner's
except that the point at which he makes his assumption
of random signs and equality of matrix elements is in
the perturbation expansion, Eq. (57). This means that
only the even powers of the expansion contribute. His
analysis shows that the largest number of nonvanishing
terms comes from the lowest-order term, corresponding
to Kq. (58).However, such assumptions of random signs
are unjustified in the actual physical case, and for the
case of a large nucleus, when approximated by a Fermi
sea, it is found that the third term in the series, "which
would be zero under the above assumptions, actually
contributes about as much to the imaginary part of the
potential as the second term. Furthermore, the second
term appears to be much less predominant when the
exclusion principle is taken into account since the
second-order processes are severely inhibited.

Once one has adopted a simplified model, any
mechanism that might be present in the actual nucleus
to give rapid variations in the parameters has been
dropped, and consequently, the result is insensitive to
the interval over which one averages since the actual
phase is very nearly the same as the average phase.
However, the inclusion of iI when the compound-state
energies 5'„were present was necessary to establish
the relevance of these models to the calculation of the
average phase.

It seems reasonable that at high bombarding energies,

' E. P. Wigner, Ann. Math. 62, 548 {1955).
52 L. Verlet and J. Gavoret, Nuovo cimento 10, 505 {1958).

where the widths of the compound states are much
greater than their spacings, the actual scattering am-
plitude varies smoothly with energy and that fluctua-
tions are small. Consequently, one might expect the
actual amplitude to be the same as the average one
here, and again, the calculated amplitude would be
insensitive to the distances over which one averaged.
This would explain why our formulas for the average
amplitude have the same form as those of Watson and
collaborators for higher energy scattering even though
no average over energy is carried out in their work.

However, in the intermediate region where fluctua-
tions may still be important and in the low-energy
region, it is necessary to carry out the averages over
energy as we have done.

We have not discussed the fluctuation scattering in
much detail. This is because it is not possible to evaluate
this directly; since the corresponding particles stay in
the nucleus a long time, any expansion in terms of suc-
cessive collisions is bound to fail. In fact, because of
their long duration in the nucleus, these particles would
seem to correspond to those described by the original
extreme compound-nucleus model. Consequently, it is
reasonable to neglect phase relations here on the aver-
age, and this results in angular distributions sym-
metrical about 90'. There is always some ambiguity
about adding in the fluctuation scattering, but if one
can calculate the average scattering amplitude so as to
obtain the first term on the right-hand side of Eq. (26),
one obtains a lower limit on the cross section for the
relevant process. This is especially useful in inelastic
scattering where similar considerations apply. An appli-
cation of this is indicated in the next section. Further-
more, if the above assumptions are justified, the Quc-
tuation scattering is rather structureless and simply
tends to make the minima in the shape-elastic scattering
less pronounced without altering the general picture.

IV. DIRECT INTERACTION IN THE
DIPOLE PHOTOEFFECT AND

IN RADIATIVE CAPTURE

We treat one case in which the incident and emerging
particles are difI'erent, namely, that in which one of the
particles is a photon. As discussed in Sec. I, a giant
resonance is observed in the absorption of photons by
complex nuclei in the region of 15 Mev for medium
weight nuclei. Collective models give a natural ex-
planation of the absorption mechanism but not of the
number of fast protons emerging which is orders of
magnitude in excess of the predictions of the statistical
theory. Direct interactions are necessary to account
for them. This does not mean that emission of fast
protons is the dominant decay process; this constitutes
only l%%uo of the total decay processes in heavy nuclei
where such decays are strongly inhibited by the
Coulomb barrier. However, this is several orders of
magnitude above the predictions of 10 4 or 10 ' for
the probability given by the statistical theory. The
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where S~, , is the amplitude for p-ray absorption with
emission of the nucleon into channel a', leaving the
residual nucleus in state j. For r&E we have

e.(r, ()=++,a„e i i(r, g), (71)

where the C&'» are the compound-state functions, Eq.
(13).Here 4, is the wave function of the initial nucleus
(it being understood that a p-ray is present). It can
often be adequately represented as a shell-model wave
function. The coordinate of the particle to be emitted
is labeled by r whereas those of all the other A —1
particles are labeled by $. Thus, although there is a
symmetry between the A particles, we choose to
describe the absorption by a particular particle for
simplicity, and our description consequently singles
out this particle. The interaction with the radiation
field (electric field 8 along the s axis normalized to a
flux of one photon per cm' sec) is described by Hr
where

Hr ——eS,= e(2p ho~) '-z (72)

~ F. Beck, Nuclear Phys. 9, 140 (1958/9).~ A. M. Lane and J. E. Lynn, Nuclear Phys. 11, 646 (1959).
66 B.L. Cohen, Phys. Rev. 100, 206 {1955).
h' G. E. Brown and J. S. Levinger, Proc. Phys. Soc. {London)

Ail, 733 (1958)."D.C. Peaslee, Phys, Rev. 88, 812 (1952).

inverse (p,y) processes violate the predictions of the
statistical theory in just as striking a fashion. ""

Whereas this theory would predict a strong decrease
in the cross section with increasing energy or increasing
atomic number A, the experimental results of Cohen"
show no such decreases for proton energies in excess of
5 Mev. This is an added indication that direct processes

play an important role.
Wilkinson" has proposed a model for the (y,p) reac-

tion which incorporates the physical features that
follow from the detailed theory. He views the absorption
of the p-ray by one of the nucleons as leading first to
an excited state of the single particle of v idth l4' in the
complex well. This is just the single-particle excitation
discussed earlier. One then associates with this level
the natural width I' for escape from the nucleus and
the width 2W for absorption into compound states.
Consequently, the proportion I'/(I'+2') escape, car-
rying off essentially the full energy of the p-ray. This
reproduces the observed order-of-magnitude of fast
protons when averaged over the relevant single-particle
levels.

We now extend the formalism to treat the absorption
of radiation following Brown and Levinger. " This
extension is similar to that carried out in the framework
of the continuum theory of nuclear reactions by
Peaslee. '~ The wave function of the system in which
p-rays are absorbed consists only of outgoing waves and
is described by

e(r, g) = P S.. , .x, (()P.. +(r), ryR, (iO)
a', j

on restricting the consideration to the dipole interaction.
Since the coupling to the radiation field is weak, the
a~'s are needed only to first order which can easily be
done by requiring 0' to satisfy the Schrodinger equation
to that order. We have

Hr@.= (E—H)P a,C'»=Q a„(E W„)C—&». (73)

By multiplying on the left by C &» and integrating, we
find

a„=(P i Hr i o)/(E —Wp), (73.1)

as expected from perturbation theory. Here we use
~
o)

for +,; E is the full energy of the system. We now
measure it from the ground state of the initial nucleus,
E=fuo, where Ace is the p-ray energy. "

We easily obtain S~, , by equating 4' from Eqs. (71)
and (73) at r=R, multiplying by z, ($)O (8,+) and
integrating over d'$ and dQ.

&plHrl o)«.(e,~) . (74)
S'~—Ace

From the expansion, Eq. (14), we find

Spa' j= &p I »I o)2 0-'(R) &i ml p), (74 1)y, i+(R) p, m W„—&co

This gives a cross section

kk;

Mc
(75)

Once again we are concerned with the average scat-
tering amplitude (S~, ,)A„which can be obtained from
Eq. (74.1) by replacing hoi by hce+iI in the denomi-
nator, i.e.,

&plH.
I )(S.-,,)"= 2 4 '(R)(jalap), (76)

y. i+(R) .,- lV„—E—iI
which in the equivalent Green's function description is

1
( ~,,)A, = 2 0 '(R)~ jm Hr o (.

'+(R) 4 H I iI—-
(76.1)

The equivalence of Eqs. (76) and (76.1) is easily shown
by inserting the unit operator

~ p)(p~ to the left of Hr
in the latter. By employing an expansion similar to
that, Eq. (45) for (H hoi iI) ', one ha—s—

"This means that the energy of the excited particle, in terms
of single-particle excitations, is measured from the energy of the
ground state of the original nucleus, whereas earlier, the E asso-
ciated with the single particle in our discussion of elastic scattering
was its energy at r = ~.
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I
&jmlHzl o&

&8,.. ;&A„—— p Q„i(R)
y..i+(R) I 8;„k— iI—

1 1

E,„koi—zI E—i, i ko—i iI—

X (jmlV —VIkt&

&jml 1'—1'I p&&pl ~—izlkt)

TV„—Euv —xI

X (kt I
Hz

I o), (77)

indicated that the series expansion converges for large
enough I so that we could calculate further terms if
necessary for good numerical results.

The first term on the right-hand side of Eq. (77)
looks very much like the matrix element that would
describe the photonuclear process for a particle in a
complex well, since the states

I p) have disappeared.
Remnants of the fact that the process is really not a
single-particle one remains however, in that states

I j)
are employed rather than the shell-model excited states
which are just the states in which particles fill all but
one of the A levels from the bottom of the well. To
show how we can dispose of the details of the states

I j),
let us assume that the initial state +, is well represented
by the shell-model state so that we can write

where the label k refers to the excited states of the A —1

particles as does j. We now limit consideration to the
case in which e; —E, i.e. , the single particle takes off
approximately the full energy of the p-ray. The other
case, in which e; —E))W where W is the absorption
relating to the single-particle state

I m), can be treated
just as our simple case of scattering, Sec. III, 4.

Perturbation theory here amounts to expanding the
(W„—Izio —iI) ' and the first term is obtained by re-
placing Ip&(W~ duo zI) —'(pl —by

P;,„I
in) (8,„—AGD —zI) 'gn

I
.

As discussed in Sec. III, 6, this is a good approximation
because the states

I
n) are mainly at a lower excitation

than the original It) which are the states reached by
the single particle absorbing approximately the full
p-ray energy, and consequently the spread of the

(pl in&' is small compared with W~, the absorption per-
taining to the state

I l).
We can expect the first term on the right-hand side

of Eq. (77) to be a good approximation to &S„,,&A, .
We consider first the case

I
jm)= Ikl). In this case, it

is useful to consider both terms in square brackets
together. If it is remembered that the overlap between

I j) and the part of 4', relating to the g-particles is
large only if the states of the g-particles are similar in
both (the final factor (klI Hzl o& ensures this will be as
shown), and if Vis chosen so as to satisfy Eq. (49), then
the term in square brackets here very nearly vanishes,
any remaining effects coming from the small differences
between

I j) and the $-variable part of O', . Since the
two terms in the square brackets are separately of order
8', and since the denominators in front never become
smaller than W +I, then if the two terms cancel to a
good approximation, their contribution can be neglected.
Estimates of the first term in square brackets for the
case

I jm)W lkl& indicate that it is of order (V/A)/
(Wi+I) rela. tive to the first term. Corrections for this
term may have to be made in some cases. We do not
pursue this further but assume that the first term gives
a sufficiently good approximation. In any case, we have

+.(r, h) = fl(4)4- (r), (78)

= (m I Hz lm'&Qo;, (78.1)

defining Qa;. Let us assume that only one single-
particle level contributes essentially to a given channel
which is often a good approximation. The cross section
arising from the first term on the right-hand side of
Eq. (77) is

hk, 1 (ml Hz lm')
1&~ -,,) .I'=2 1'- Q,'—,(79)

Mc ~ kc E,„—duo —iI,
where

kk' 1
le„'(R) I,

M P '+(R)
(79.1)

is the full single-particle escape width taken at energy
fun —e, where e; is the excitation energy of the state j.
From completeness, the probability of finding the state
0 somewhere in the excited states

I j) is unity, i.e.,

E;Qo,'=1. (79.2)

From the development in Sec. III, 7, the width of the
distribution of e; about

I
e ~

I
is W, where W ~ can

be interpreted as the width of the hole in state m'.
Consequently, we see that the width of the total dis-
tribution of emitted fast particles is the sum of the
width for the excited particle and of the width of the
hole in the shell-model states.

These arguments do not add any new physical
features to Wilkinson's model but show how this
simple description relates to the many-body description.

Similar equations can be used to estimate the cross
section for direct radiative capture of neutrons or

where P (r) is the bound state occupied initially by
the r-particle. Then we can split the matrix element
coming into the first term of Eq. (77) into

f8

(jm I
Hz

I 0)= (mI Hz
I
m') n(()x, (g)d'$
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Fio. 12. Relation of the (y,p) to (p,y) reactions.

protons. An extensive description of this is contained
in work by Lane and Lynn. '4

The cross sections for (y,p) and (p,y) reactions can
of course easily be related. We have the (p,p) cross
section by summing over all members of the configura-
tion of the final A —1 nucleons (see Fig. 12). The (y,p)
reaction goes from the ground state to all final states j.
The (p,p) reaction may go from the ground state
x, (g) to the various final states Lsee Fig. 12(b)] which
contain an appreciable component of x,(g). (The wave
function for the g-particles must remain the same since
H& is a function only of r.) Further, the final state must
contain an appreciable component of tk (r), the rele-
vant single-particle state in the well. From arguments
similar to those already used the probability of finding
x,P ~ somewhere in the ground or low-excited states is
essentially unity. Thus, the cross section for the (p,p)
reaction, summed over the ground and low-excited
states, is given by Eq. (79) with two minor changes:
(i) we multiply by the usual factor k~'/k„' from detailed
balance or dispersion theory where k~ and k„are
y-ray and proton wave numbers; (ii) we use I', with-
out the averaging implied in the sum over j in Eq. (79)
since the incident particle now has a unique energy.

V. DISCUSSION OF OTHER FORMALISMS

Recently, a unified theory of nuclear reactions has
been formulated by Feshbach, '~ and many of the rela-
tions between compound-nucleus parameters and those
of the optical model have been derived by him, although
he does not develop the perturbation theory described
in Sec. III. Conceptually, his formalism has the ad-
vantage that it avoids the introduction of a joining
radius. However, his formalism does not seem to be as
convenient for making many of the arguments of Sec.
III and Sec. IV as the one used here. In any case,
there is a close connection between his formalism and
the one employed here even though they appear quite
di6'erent at first sight. %e briefly demonstrate some of
the relationship, trying to preserve most of Feshbach's
notation so that one can easily compare our formulas
with his papers.

Feshbach employs functions 4„(r,p) which are eigen-
functions of the operator X, Eq. (51), and which are,
consequently, just the Q„of Eq. (51). The A, in Eq.
(51) effectively projects off the incident channel so that
the 4 „form a complete set of states in the space orthog-
onal to that of the incident channel. Hence, one can
write the solution of the Schrodinger equation as

O(r, g) =x.(f)u.(r)+P a'"'C „(r,g), (80)

and this equation holds for all values of r since the
boundary conditions on the 4 „are taken to be outgoing
waves at infinity in case the particle can escape by a
channel other than the incident one. In this case, the
C's form a continuum, and the sum in Eq. (80) is to
be understood in a generalized sense to include both a
sum over discrete states and an integral over the con-
tinuum states. Since the boundary conditions are
imposed at infinity, introduction of a channel radius is
not necessary.

The a&"' are determined by requiring 0' to satisfy
the Schrodinger equation H+=&I, and one finds

g(n)—

C „(r,f) V(r, g)xo(&)uo(r)d'gd'r

(81)

where we have used Feshbach's notation in denoting
the eigenvalues of C „by 8„.Our a(") are the same as
his A„. One also finds, by multiplying the Schrodinger
equation on the left by x.($) and integrating over d'r",
that

(T—V—E)up(r)

+2 a'"') "x (&)V(r 5)c'-d'5=0 (82)

(83.1)

and 'U is an integral (nonlocal) operator. One can
easily make further connections between our formalism
and his by noting that his matrix H;; is just

By substituting the a'"' from Eq. (81), one finds that
u, (r) obeys the equation

(T+'0 —E)u. (r) =0, (83)

where U is Feshbach's generalized optical potential

v= V(r)+P

"H. Feshbach, Ann. Phys. 5, 357 (1958).
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In the very low energy region in which only elastic
scattering is possible, the main difference between the
two formalisms results from the fact that the incident
channel occurs in our C'» but not in Feshbach's C„.
The width corresponding to this channel is contained
in our complex W„, whereas one must essentially invert
a matrix —which can be done in a straightforward
fashion —to introduce the widths into the denominators
of the scattering amplitude in the formalism of Fesh-
bach. The discussion following Eq. (51) shows that the
eigenfunctions C&» and C„are, aside from the above
difference, very nearly the same.

The difference between the formalisms is that one
can start from a formalism without joining radius, as
Feshbach does, in which case the expression for the
wave function is simple, but the transition to the scat-
tering amplitude is somewhat complicated in detail.
On the other hand, one can begin with a joining radius,
in which case the scattering amplitude is simply ob-
tained, and then carry out various sums as we have
done to obtain results in which this radius does not
appear. Whereas the former procedure has conceptual
advantages, the intermediate formulas seem simpler in
the latter procedure and the arguments about the
spectrum of the compound states, which we have made
to establish perturbation theory, appear to be simpler.

A more general formalism for nuclear reactions has
been given by Bloch,"and we have referred to his work
at several points. By appropriate choice of represen-
tation, one can obtain either the Wigner-Eisenbud or
Kapur-Peierls theory from his formalism. Making the
arguments of this article in his formalism would be
completely equivalent to the treatment here, and we
have chosen the simpler notation of the less general
treatment.

Finally, many of the arguments of this article were
first formulated in the Wigner-Eisenbud formalism.
This is especially true of the development of Sec. III, 3
as shown by a given reference. However, for uniformity
we have chosen to restate most of these arguments in
our formalism which is just as suitable for them and is
probably simpler for other considerations as discussed
in Sec. I.
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