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l. INTRODUCTION

HE study of hindered internal rotation in mole-
cules has been a subject of interest for nearly

thirty years and numerous methods have been devised
for investigating this phenomenon. We discuss one
of these —the method of microwave spectroscopy—
which has, within the last ten years, been rather ex-
tensively employed. Internal rotation interacts with the
over-all rotation of a molecule and produces certain
eGects in its rotational spectrum which can be observed
in the microwave region under high resolution. Each
rotational transition exhibits a fine structure, the com-
plexity of which depends on the height of the potential
barrier hindering the internal rotation. An analysis of

this fine structure leads to an accurate evaluation of the

potential barrier. Considerable work has been devoted
to the studies of the microwave spectra of molecules in

which one group may rotate internally wit, h respect to
another. This review gives an account of the past work

in this field, including certain details of the methods

employed.
Potential barriers are presumably caused by the inter-

actions of two groups of electrons and nuclei. In prin-

ciple, it should be possible to determine the barrier
heights from straightforward quantum-mechanical cal-
culations. The mathematical complexity of such a
treatment, however, is so great that a rigorous com-

putation seems highly impractical at present. An
alternative approach, which is perhaps somewhat em-

pirical, is to try to describe the origin of the barriers
in terms of the forces which appear in the study of
intermolecular interactions, such as Van der Waals
forces and resonance forces. Although many such
analyses have been published, none of these results is

completely satisfying. YVith the new data on the barrier
heights in various molecules, it may be possible ulti-
mately to formulate a simple theory of the origin of
barriers which not only accounts for all the known re-
sults but also may serve to make reliable predictions,
at least in a semiquantitative way. In view of the pre-
sumed similarity in nature between the origin of the
potential barriers and the general problem of inter-
molecular forces, a satisfactory working theory of the
former may throw some light on the study of the latter.
The bibliography lists a number of papers which con-
sider the origin of potential barriers and various em-

pirical correlations of the barrier heights with the
molecular structures. A review of these papers is not
covered here. A brief survey of this subject is given in
two recent articles by Wilson. "'"'f

In addition to the method of microwave spectroscopy,
various other procedures have been utilized in order to
evaluate potential barriers. Such thermodynamic prop-
erties as entropy and vapor heat capacity are probably
the most commonly used to calculate barrier heights.
Generally, these thermodynamic methods complement
the microwave methods and are applicable for molecules
with high barriers, greater than say 3 kcal/mole (1000
cm '). Although the thermodynamic procedure does
not usually give quite as accurate barrier heights as
the best results from microwave work, the former is
applicable to a much larger class of molecules since the
latter is limited to molecules with a dipole moment. We
do not, however, review the thermodynamic results
or methods here. The readers are directed to the re-
views by Wilson'" and by Pitzer. "

Infrared and Raman spectra" have been used to
determine the frequencies of the internal torsional
oscillations. In principle, this would be the direct
method for determining the torsional frequencies and

f References will be found in the Bibliography at the end of
the paper.
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the potential barriers. Unfortunately, these torsional
oscillations are usually inactive and lie in the very far
infrared region so that their detection and assignment
are usually difficult, if at all possible. Nuclear magnetic
resonance' '7 " also has been used recently to give a
measure of the magnitude of barriers in liquids. Barrier
heights in the range of 5 to 20 kcal/mole may be deter-
mined by measuring the widths of the resonance lines
as functions of temperature. The time scale of nuclear
magnetic resonance is such that if the barrier height is
less than about 5 kcal(mole, the internal rotation
appears to be free.

The phenomenon of internal rotation is similar to the
inversion in ammonia, ' a pyramidal molecule in which
the nitrogen atom may be situated at either side of the
plane of the hydrogen atoms. Although a small poten-
tial barrier restricts the back-and-forth motion and
causes the pyramidal structure, the nitrogen atom may
move from one side of the plane to the other through
the quantum-mechanical tunneling efI'ect, which splits
the doubly degenerate vibrational energy levels below
the barrier into pairs of levels (one symmetric and one
antisymmetric state). Transitions between these states
are observed in the microwave region, and the separa-
tion is very sensitive to the height of the potential
barrier.

For the case of internal rotation of molecules such as
ethane, CH3 —CH~, the situation is similar. In ammonia
the nitrogen atom can move back and forth between the
two equivalent positions, while in CH3 —CH3 one
methyl group can rotate into one of the three positions
which are equivalent with respect to the other methyl
group. If each of these configurations were considered
to be independent, the torsional energy levels would all
be triply degenerate. However, the tunneling e6ect,
analogous to the case of ammonia, splits each torsional
level into nondegenerate (A species of the C3 group)
and degenerate (E species) sublevels. This is shown in
Fig. 1 for an assumed cosine potential function. On the
left are the torsional state quantum numbers. The
torsional sublevel spacing increases as the torsional
energy increases.

Associated with each of the torsional sublevels, one
has a set of energy levels arising from the over-all
rotation of the entire molecule (referred to as over-all
rotational levels). Because of the interaction between
the over-all and internal rotation, the spacings of the
over-all rotational levels are different in the different
torsional states. A given rotational transition then
appears as a number of spectral lines corresponding to
the transitions in diGerent torsional states. The separa-
tions between these lines are utilized to determine the
potential barrier height.

In this reviev we first. formulate the Hamiltonians
for various molecular models. The calculations of the
eigenvalues and eigenfunctions based on various ap-
proximations are given and discussed. The practical
aspects of the analysis of microwave spectra are pre-

V
FIG. 1. Hindered rotational energy levels. A cosine potential

barrier V3 and its associated internal rotational energy levels. The
torsional quantum numbers v are shown on the left ordinate. The
sublevels are denoted by their symmetry under the C3 group. The
free rotational quantum numbers m are shown on the right
ordinate.

sented in Sec. 5. This section is intended for those
interested in evaluating potential barriers from micro-
wave spectra. Finally, the application of group theory,
vibration-torsion-rotation interaction, and experimental
results are discussed in that order. The casual reader
may find it convenient to omit some of the more mathe-
matical sections in this paper. It is recommended that
he first read the sections on "Symmetric Molecules" in
Secs. 2 and 3 and also Sec. 4 and Sec. 8. The notation
has been standardized. A glossary is given in Appendix 4
and a comparison of the notation used by other authors
is given in Appendix 5.

2. HAMILTONIAN

In order to understand the problem of internal rota-
tion and study its efI'ects, the approximate Hamiltonian
of the system must be known. The potential energy
hindering a symmetric internal rotor is discussed first.
Then the kinetic energy is written for rigid symmetric
molecules and for rigid asymmetric molecules with an
attached symmetric rotor. Methods of calculation of
approximate eigenvalues and eigenfunctions are covered
in succeeding sections.

I. Potential Energy

Since the origin of the potential barrier is not clearly
understood, the only requirement that can be imposed
on the potential function is that it be periodic in the
relative angle n between the two parts of the molecule.
Within the interval of n=0 and n=2~, the potential
function must repeat itself cY times, where lV is the
number of equivalent configurations in one complete
internal revolution. For example, .'V is equal to three
for acetaldehyde (CH&CHO) and six for nitromethane
{CH~NO2). In most cases the symmetry of the molecule
is such that the potential function can be expressed as
an even function of the angle n. The potential energy
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can then be expanded in a cosine series as

V(n) =Pbab cosk.Yn. (2-1a)

By a shift in the reference level of the potential energy,
this may be written as

V3 V6
V(n) = —(1 c—os3n)+ —(1 c—os6n) + (2-1b)

2 2

for the case of a threefold barrier. However, it has been
customary to take the potential function as simply"

V3
V (n) =—(1—cos3n)

2

without rigorous justification (Fig. 1).
Serious eGort has been made recently"' '" to ex-

amine the eGects and magnitude of the V6 term, and the
experimental data strongly suggests that the sixfold
term is indeed much smaller than the V3 term, the ratio
being the order of one-hundredth or less. If this is the
case, a good approximation can then be obtained by
considering only the threefold terms in the Fourier ex-
pansion of the potential energy, i.e., Eq. (2-2). The use
of this simple potential function leads to solutions for
the torsional wave equation in terms of Mathieu func-
tions. In case greater accuracy is desired, the higher
terms can be included and the corrections on the energy
levels calculated by perturbation methods.

II. IGnetic Energy and Hamiltonian

In order to derive the kinetic energy, a model is used
which consists of two rigid groups connected by a
bond. At least oue of these groups is a symmetric top.
For convenience the symmetric group is regarded as ro
tating internally about the bond with respect to the other
group which is taken as the framework The entire mo. le-
cule is also rotating in space. Thus there are four
degrees of freedom: the three Eulerian angles 8, 4, y of
the framework and the relative angle between the two
groups, e. The method of solution is dictated by the
functional form of the Hamiltonian which depends on
the coordinate axes used. In the literature two methods
of solution have appeared corresponding to two difI'erent
frames of reference.

In that originated by Wilson" and Crawford"' et al. ,
the set of principal axes of the whole molecule is used
as the coordinate system (hereafter referred to as the
principal axes method or PAM). Since the rotating top
possesses an axis of symmetry, the principal axes of the
molecule are not altered by a change of the relative
orientation of the top and the frame, and the coordinate
system may be regarded as rigidly attached to the
frame. The Hamiltonian function consists of three
groups. The first is recognized as the energy of the

$ Some authors have used the form 1+cos30.' which merely
means a shift in a, i.e., a' =m —a.

rigid rotating system whose moments of inertia are
different from those of the molecule. The second corre-
sponds to the Hamiltonian of a simple hindered rotor
with one degree of freedom. The third appears as the
product of the angular momentum of the over-all
rotation and the angular momentum associated with
the internal motion of the top. This third group repre-
sents the interaction of the two kinds of rotation. In
the solution the first two groups are taken as the un-
perturbed system and the cross terms, i.e., the third
group, are treated as a perturbation.

In an alternative method originated by Nielsen" and
Dennison et al. ,

"' the axis about which the top executes
internal rotation is chosen as one of the coordinate axes
(hereafter referred to as the internal axis method or
IAM). The other two axes are fixed with respect to the
framework and their orientation is, in principle, arbi-
trary, but the choice is usually determined to some
extent by the symmetry of the molecule. In this co-
ordinate system the terms which describe the inter-
action between the over-all and internal rotation are
considerably smaller than those from PAM. Thus the
interaction terms in IAAl lend themselves more readily
to simple perturbation treatment. The chief disad-
vantage of this procedure is that, since the coordinate
axes are, in general, not principal axes, the Hamiltonian
is complicated by the presence of the terms containing
the products of inertia.

or in terms of the components along the axes as

gIaa +2Iwb +gIwc +2Iacg +Inc~
sIaGla +iIboib +2 (Ie Ia)&U +kIa(Mr+n)

(2-4)

where I is the inertial tensor and I„Ib, (I,=Ib), and
I, are the three moments of inertia of the whole mole-
cule about the three coordinate axes; I is the moment

A. Internal Axis Method

In the derivation of the Hamiltonian by the internal
axis method (IAM), the case of a symmetric top (e.g. ,
CHiSiHi) is treated first. An asymmetric molecule with
a plane of symmetry is then discussed. Methyl alcohol
(CHiOH) and acetaldehyde (CH&CHO) are examples
of this class of molecules.

l. Symmetric molecules. '" "—A set of coordinate axes
(a,b,c) is chosen with the c axis along the symmetry
axis of the molecule through the center of mass. One
of the two symmetric groups is designated the frame (a
convention set up for comparison with the asymmetric
case) and the other symmetric group is designated the
internal rotor or top. The a and b axes can be fixed
arbitrarily with respect to the frame because of the
symmetric nature of this end. The kinetic energy T can
then be expressed in tensor notation as (see Appendix 1)

T= ,'io+ I bb+ ,'(Bn/Bt)-+ I -(Bn/Bt)

+,'[ +Ib.b. (Bn/Bt)+-(Bn/Bt)+ I. bb], (2-3)
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of inertia of the top about its symmetry axis, i.e., the
c axis; or„co~, and ro, are the three components of angular
velocity ~ about the a, b, and c axes; and ci is the angular
velocity of the top relative to the frame. Introduction
of the momenta

which eliminates the cross product pP, and gives

pg po p/9
H= + + + +V(n). (2-9)

2I. 2Ib 2I, 2I (I, I )—

and

Pg, =BT/loco~= I~cogi

Pb 8 T/BM b
=Igo b,

P, =BT/Bco, =I~,+I ri,

p=BT/Bri=I ((u,+ri),

results in the classical Hamiltonian

(2-5)

The quantity p' depends solely on n, so that it vanishes
at the classical high barrier limit when o, is a constant.
Here p' is not to be taken as the angular momentum of
the internal motion (which is I ri) but rather rI ri.

Unlike Eq. (2-6), the coefficients of the P's in Eq. (2-9)
are the actual rotational constants of the entire mole-
cule. Furthermore p' does not commute with P and
Pb since from Eq. (2-8),

P'- P' P'
H= +—+

2I 2Ib 2(I;—I )

pP, I,p"-

+— +V (n). (2-6)
(I, I ) 2I (—I„I),—

p ~ (Ib/i) (I)/ Bn)b g „' (2-&)

and therefore p commutes with P, PI„a.nd P, .
At the limit of a very high potential barrier, Eq.

(2-6) does not reduce readily to the case of a rigid rotor
plus a simple restricted internal rotor. The reason is
that the operator p defined in Eq. (2-5) contains not
only the angular momentum of the internal motion of
the top but also the contribution from the over-all
rotation. When the internal torsion is completely frozen,
the classical angular velocity n becomes zero and thus
p becomes I co,= (I /I, )P,. When this expression for p
is substituted into Eq. (2-6), the usual energy equation
for a rigid symmetric top is recovered.

The connection between Eq. (2-6) and the Hamil-
tonian for the limiting case of a rigid rotor can be
brought out more explicitly through the Xielsen
transformation, ~'

P'= P —[(I„!I)I', ]=-[ 1 —(I„'I,)]I„=rI„,. (2-8)~]'.
I', ,

'= P,.,

~j Here, r, the reducing factor, is an important quantity used in
both the IAM and the PAM.

The physical meaning of P„P&, and P, is not im-

mediately obvious. The results of Appendix 1 shov
that P, P~, and P, are the components of the total
angular momentum (including the internal rotation)
about the a, b, and c axes. Therefore they satisfy the
usual commutation relations. The quantum-mechanical
operators for P'„P~, and P, in the coordinate repre-
sentation depend only on the Eulerian angles 8, C, p of
the framework of the molecule but not on o, (see Sec.
IIC2). In this case p is the total angular momentum of
the top including both the external and internal rota-
tion. As a quantum-mechanical differential operator,
p may be expressed as

w, '=co,.+ (I /I, .)ri,

0! =A)

(2-11)

Eq. (2-4) has the form

T= ',I,((u '+co ')-b+-,'I~,"+ rI2ri".

With the new variable co.
' it is natural to define

(2-12)

P,'= (BT/(8~, ')., , b, =I,(u. ,'= I,~.+I ri, (2-13)

p'= (BT/Bri') „b,=L1—
, (I /I, )]I a=rI ri

In addition, P and P~ are unchanged, i.e.,

P~ = (BT/c)(dg) cab, co~'a'= (BT/B(vg)abc's~, a, ,

(2-14)
Pb (8

T/&Gab�)

cU ~,Gl c,b (I9T/(3 cob) Ql g, co g, b

Now the moments P, ' and p' defined in Eq. (2-13) are
identical to the momenta introduced in Eq. (2-8).
Substitution of Eqs. (2-13) and (2-14) into Eq. (2-12)
gives Eq. (2-9).

The coordinate transformation corresponding to Eq.
(2-11) and also Eq. (2-8) is simply

x'=)t+ [(I./I, )n]
= (1/I.)EI x2+(I,—I )g,],tr (2-15)

A =A.

Note that g and o. are related to the Eulerian angles of
the two groups of the molecule g~ and y2 as y=y~,

One may regard 8, 4, x' as the Eulerian
angles for a new set of axes. This coordinate system is
rotating with respect to the one at t,ached to the frame-
work with an angular velocity of (I /I, ,)ri about the
axis of symmetry of the molecule. These new coordlll'g, te

$ g is the same as 4 used in references 8 and 48.

p'P, P.p'=—ih (I./I. )Pb. (2-10)

On the other hand, p' does commute with P +Pb' and
hence the Hamiltonia. n in Eq. (2-9) is separable into
two parts corresponding to the over-a, ll rotation and
the internal rotation.

Equation (2-9) may also be derived through a trans-
formation of the angular velocities. In terms of co.' and
o.' defined as
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In treating the problem of vibration-rotation inter-
action the moving axes are usually chosen so that the
angular momentum due to the internal motion vanishes
to the first approximation. '-" For the present problem
it would seem proper to use the internal rotation axes
as the frame of reference. By letting the three com-
ponents of the total angular momentum in this co-
ordinate system be P ', Pb', and P,', it follows that

where

P,'= (cospn)P + (sinpn)Pb,

Pb' (—sin——pn)P, + (cospn)Pb,

P,'= P„

p=I /I,

(2-17)

(2-18)

For asymmetric molecules 20 the quantity p is a more complicated
function of the moments of inertia:

(Ibb + Ibc )P= (2-19)31 **

where Ibb and Ie, are the moments of inertia about the b and c
axis, respectively, and Ib, is the product of inertia (see Eq. (2-23)j.
For symmetric molecules one has Ib, =0, so Eq. (2-19) reduces to
Eq. (2-18).

Insertion of Eq. (2-17) into Eq. (2-9) gives

P" P" P" I p"
+ + +— +V (o() (2-20).

2I, 2Ib 2I, 2I (I, I)—
Equations (2-20) and (2-9) have an identical form. This
situation occurs because the two principal moments of
inertia I and Ib of the molecule are equa, l. One may
question the basic differences between Eqs. (2-20) and
(2-9) or between P ', Pb' and P, P, The answer . is
that P and Pb, as pointed out previously, do not com-
mute with p' while both P ' and Pb' do. Therefore the
matrix elements (diagonal and nondiagonal) of P,' and
Pb' do not involve the qua. ntum number associated
with the operator

(2-21)

The matrices of P„and Pb, on the other hand, are
characterized by the quantum number of the torsiona. l

operator in Eq. (2-21) as well as by the over-a. ll rota-
tional quantum numbers. Consequently the Heisenberg

**The quantity p is the same as Itoh'saI P and can be defined
somewhat more simply in the principal axes coordinate system
I see Eq. (2-30)].

axes are hereafter referred to as "internal rotation
axes" (called the "molecule-fixed" system by Hecht
and Dennison'-"). It should be remembered that to an
observer located in this frame of reference, both the
framework and the top appear to be moving. The angu-
lar momentum (s component) arising from the internal
motion is

(2-16)

matrix elements of P and Pb contain both the over-all
and internal rotational frequencies. The same results
can be anticipated from a classical consideration. When
hindered rotation is present" the set of the internal
rotation axes of the molecule rotate in the same way as
the principal axes of a rigid symmetric top, while the
two groups execute rapid torsion with respect to each
other. As P and Pb represent the components of the
angular momentum along the axes fixed in one of the
groups, the values of these components vary at the
rate of the torsional frequency.

The cross term pP, in Eq. (2-6) implies a coupling
between the internal and over-all rotation, while

according to Eq. (2-20) the internal and external
motion are separable. The discrepancy arises from the
diferent choice of the coordinate systems. When the
internal rotation axes are used as the frame of reference
as in Eq. (2-20), the internal torsion and over-all rota-
tion are independent of each other and hence the
Hamiltonian is separable. When the framework of the
molecule is taken as the moving frame, the motion of
this set of coordinate axes consists of both rotation and
the rapid torsional motion. Mathematically, this is re-
flected by the cross term in Eq. (2-6). Because of the
difference in the frames of reference in Eqs. (2-6) and
(2-20), the meaning of the term "over-all rotation" is

different in these two cases.
Z. Asymmetric molecmles with a plane of sym

merry. '"""~—For an asymmetric molecule with a
plane of symmetry, a set of coordinate axes is chosen
similar to the symmetric top case with the c axis through
the center of mass of the whole molecule and parallel
to the top (symmetric internal rotor) axis, and the b

axis through the center of mass and lying in the plane
of symmetry. The inertial tensor assumes the form

I 0

0 —Ib,

0
—lb.

Icc
(2-22)

where I. , Ibb, and I„are the moments of inertia and
Ib, is the product of inertia. The kinetic energy, accord-
ing to Eq. (2-3), can then be expressed as

P((=8T/(t(d(( = I(((((((((,

Pb =ItT/B(db = Ibb(((b Ib ((((((

P =BT/(t(d„= I„(d„ Ib((((b+I c(

p = (tT/(7c(= I.(c(+(o,, )u.

(2-24)

As with symmetric molecules, P„, 7 b, and P, are again
the three components of the total angular momentum.

With the substitution of Eq. (2-24) into Eq. (2-23)

~= 2Iaa~a +gIbMb +gIcWc

Ib~b(d, +2I o('+—I,(d~. (2-23)

Similarly, the momenta, are defined as
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the following quantum-mechanical Hamiltonian is
obtained:

FI = A P,'+BbPb'+C, P,'+D„(P,P,+P,P,)
—2Db, Pbp 2C—,P,p+Fp'+ V (n), (2-25)

where

2I,

angular momentum must be macle to vanish. This is brought
about by a slightly different transformation given by Hecht and
Dennison~ or by a modification in the formulation given by Itoh."

Hecht. and Dennison apply three transformations to
the Hamiltonian given in Eq. (2-25). First, a rotation
is performed in order to eliminate the Pbp coupling.
Secondly, a modified Nielsen transformation is applied
to remove the P,p coupling. These two transformations
are given in Eqs. (2-27) and (2-28),

/b'(I„I ) — (I„I)/b'—
~b

2 (IaaI„I I—bb lb.'—) 2r(IbbI„Iac2)—

p// p
Pa = (IbbPb —IbcPc) (Ibb +Ibc )
P,"= (Ia,Pa+ IaaP, ) (Iaa'+ Ia')

(2-27)

(I„I)Ia'—

2d

O'Ibb Ibbk'
C,=

2(IbbI„I Ibb l—b.') 2—r(IbbI, „Ib,') —2d

O'-Ibb

h,'Ib, Ib 0'
Dbc

2(IbbI„I Ibb I—a,') 2r(IbaI- Ia.') 2d—

/b'(IaaI„Ib ')—
p—

)2I (IbbI„I Ibb Ib,—2) 2rI—

IbbI..—IbbI. —Ib.'

IbbIcc Ibc"

Xy'I X,'I

If/ I,
and

d= IaaI„IbbI Ia,2—= r(I—baI„Ia,2) = rI.b—I.
Here I, I„, and I, are the principal moments of inertia
of the whole molecule, and X„X„,and A, , are the direc-
tion cosines of the internal axis with respect to the
principal axes.

By following the method used for the symmetric case, we can
apply the transformation in Eq. (2-8) to eliminate the coupling
between over-all rotation and internal rotation. Unfortunately,
this transformation does not completely remove the coupling for
asymmetric molecules. The results of the transformation on FI
are given in Eq. (2-26),

FI=A nPn'+BOP/, '+Cc'Pc"+ Df,c (PbPc'+Pc'Pb)
Icc

—Dhc(PbP +P Pg) —2—DgcPC P +F P +V(n) ) (2-26)
cc

where

2I„A'Icc

Equation (2-26) is essentially the same Hamiltonian employed
by Burkhard and Dennison' to obtain the Schroedinger equation.
The equivalence between Eq. (2-26) and Burkhard and Dennison's
wave equation is discussed later in this section. Again p in Eq.
(2-26) does not commute with P and Pb.

Although the coupling between p and P, can be eliminated for
the symmetric case by the transformation (2-8), it is not removed
completely for the asymmetric case but is reduced by the factor
Ib,2/IbbI„. In order to minimize the coupling term the internal

Ba"= Iaa(Iaa'+I—b„') '= rI /a'(1 —
r)/2p'd, —

2

/b'& Iaa+I„ Ibb ' Ib' tr 1 1 )
2 Ibbl„lb. ' Iaa2+—lb.' 2 t.I„ I,)
h'

Db,"= Ibc(Iab'+l—b.') '= (rI )'Db, /p'd
2

Ib' pyp, ( 1 1 )
2 p EI„ I )

(Ibb'+Ib, ') &I ~ (hgIc) ' '
(g=~», s),(IbbI„lb.b) 4 I—r )

pr hcIc/I g.
—— (2-30)

Finally, the transformation described in Eq. (2-17),
with p given by the more complicated expression Kq.
(2-30), is applied to Eq. (2-29). This transformation
defines the "internal rotational axes system. "Referred
to these axes the internal angular momentum vanishes.
The resulting Hamiltonian" is

II'= ', (A,+Bb")(P,"+Pb")+C—,"P,"+Fp"+V (n)
+ ', (A, Ba")[(P" P-a") —cos2pn—
—(P,'Pb'+Pb'Po') sin2pn]
+Da,"P(Pa'P, 'jP,'Pb') cospn

+ (P,'P, '+P, 'Po') sinpn j. (2-31)

It can be easily shown that P,', Pb', and P,' satisfy

and

p'= p pP"—
=P I (Iaa'-—+I' ) lP,"(IaaI„lb.') '.—(2-28)

The transformed Hamiltonian which results from these
two operations is

~// g p //2+g /Ip //o+C //p //g

+Db,"(Pb"P,"+P,"Pb")+Fp"+V (n), (2-29)

where
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where

A

bb, = —I " k(I.a)= —yn, (2-32b)

tb=I, (I ' k). (2-32c)
A

Here I is the inertia tensor and k is a unit vector in the
direction of (Ba/Bt). The components of the vector g
can be found from Eqs. (2-22) and (2-32c). Referred to
the a, b, and c axes, one obtains

p, =0, pb= I Ib, (IbbI„Ib,')—
and

p, =I Ibb(IbbI" Ib')— (2-33)

The three components of y along the principal axes and
the magnitude of the vector are given by Eq. (2-30).
By expressing Eq. (2-3) in terms of bb, bb&, and a, one
obtains

the usual commutation rules and they all commute
with p'.

Itoh' has derived the Hamiltonian (2-29) in an inter-
esting and useful way. He also expressed the Hamil-
tonian in a form convenient for comparison with the
PAM .formulation. The over-all angular velocity is
divided into two parts co~ and co2, such that the angular
momentum of the whole molecule associated with su~

balances the internal angular momentum. This is
equivalent to choosing a set of axes in which the in-

ternal angular momentum vanishes. Thus one has

I bbg+I. (Bn/Bt) =0, (2-32a)
or

Molecules with no planes of symmetry have been
treated by Hecht and Dennison" and by Burkhard, '
and the method is similar to that outlined in this
section.

B Princ. ipal Axes Method (PAM)"' ""'" '"
In the PAM the symmetric top Hamiltonian is given

by Eq. (2-6) with the principal axes x, y, and s co-
incident with the c, b, and t.. axes. The transformation
(2-8) is not applied. In this method (for an asymmetric
molecule) a coordinate system x, y, and s, rigidly at-
tached to the framework of the molecule, is used.
Furthermore, this set of axes is chosen to be the prin-
cipal axes of the entire molecule with the origin at the
center of mass so that the principal moments of inertia
I„I„,and I,tt of the molecule are used. The orientation
of the principal axes relative to the framework is not
altered by the rotation of the top because of its cylin-
drical symmetry. Therefore from Eq. (2-3), the kinetic
energy for an asymmetric molecule has the form

T=—.',I~,'+ 2I~y'+-', Izuz'+I~X~~
+I.y„M„a+I X~.a+ 2I as, (2--36)

where cd, co„, and ~, are the components of the angular
velocity along the principal axes, and X, )„, and X, are
the direction cosines of the symmetry axis of the top
to the principal axes. In terms of the momenta defined as

P, =ciT/8(u; (i=x, y, s),

p= BT/Bu,

(2-34) the Hamiltonian can be written in the form'"

The substitution of Eq. (2-32b) into Eq. (2-34) yields

2'=k(~+ra)+ & (~+ca)+2(&-—e+ & e)a'
= 2 p bI&b(co& +p&6) ('~'b+ p )+bakrI

The resulting Hamiltonian is

h' h'
p 1 q

l(p —&)'+U( ) (2-»)
2 i& 2ErI )

where
II.=pbPb+p, P,= y P.

This Hamiltonian is the same as Eq. (2-25). A rotation
of the c axis to the g direction (c' direction) brings the
Hamiltonian to the form given in Eq. (2-29) which then
can. be transformed to Eq. (2-31). This transformation
is not strictly necessary since the quantum-mechanical
matrix elements can be determined from Eq. (2-29) as
well as Eq. (2-31) with only a different torisonal wave
function. This point is discussed in Sec. 3.

Finally, two other types of molecular symmetry
have been considered in the literature. i4Iolecules with
two perpendicular planes of symmetry, e.g. , nitro-
methane, have been considered by Wilson et al.'" and
by Tannenbaum, Johnson, Meyers, and Gwinn. "'"'
Here all the previous formulas apply with Ib, ——0.

II=A,P,'+BbP„'+C,P,'+ ,' Q D;, (P—;P+P,P,)
x,y, z,i Qj

—2 Q Q;P,p+Fp'-+U(a), (2-37)

where
I ~ - X.2I.- I 2

A = 1+ = +Fp',
2I rI, 2I

and similarly for B„and C, by the permutation (x, y, s),

A"- P;. X,ID"=— =Fp p
2 rII;

(i, j=x, y, s and i'),
Es9,,

=Fp; (i=x, y, s),

F=h2/2rI )

('AgI~)' &

p (p*+pu =+p )'= 2 l l p =~ I /I
g=&vzE Ig

X„'I X',Ir=i-
Iy Iz

tt Note that the notation I, I„, and I, is used instead of I, ,
I», and I„because of the absence of the product of inertia terms.



I NTF RNAL ROTATION AN D M I CROKVA VL SPECTROSCOPY 849

C. Comparison of the Tzoo Methods

The chief di6erence between the two methods lies in
the diGerent choice of coordinate axes. Hence, the
Hamiltonian functions can be transformed to each
other simply through a coordinate transformation which
is given in the first part of this section. In the second
part the Schroedinger equations in terms of the Eulerian
angles are given for each method. While it is not neces-
sary to express the Hamiltonian and the wave function
in the coordinate representation in order to find the
energy levels, a comparison of the momentum operators
in terms of the Eulerian angles does show more clearly
the difference between the two formulations.

I. Connecting relations. —For the purpose of demon-
strating the connection between the two procedures a
molecule with a plane of symmetry is taken. The rela-
tion between the components of a vector r in the
principal axes x, y, s and the set of axes a, b, c, dehned
in the internal axis method is

0
0.0 'A„

0
(2-39)

The various terms in these two systems are then related
by the equations

Alternatively one may express the Hamiltonian'" as

II= (Iz'/2rI ) (p —II)'+ (A'/2)Q, P,'/I, +V (n), (2-38)

where

11=8 P=P,P,P,= (X,I /I, )P,
+(X„I/I„)P„+(X,I /I. )P,.

The similarity between Eqs. (2-38) and (2-35) should
be noted.

From Eq. (A1-7) it is clear that P„P„, and P,
represent the three components of the total angular
momentum defined in the usual way. The commutation
relations between the various momenta can be sum-
marized as

(P,,P;) = iViP& —(i,j,h=x, y, s in cyclic order),

(p P') =0.
Furthermore, the coupling between over-all rotation
and internal rotation is apparent in the Hamiltonian
by the cross terms pP;, etc.

For the molecules with a plane of symmetry in their
framework all the above formulation applies with X,=O
(or X„=O).""With two planes of symmetry both of
the direction cosines are set to zero. "'

Inc —If da —If c"- &y'I.
= 1 — —,(2-40)

IggI„.—II 2 Iy I,

From these formulas one can prove the equivalence of
Eq. (2-25) or Eq. (2-35) and Eq. (2-37) or Eq. (2-38).

Z. Comparisozz by Euleriarz angles. (a) P—rincipal axes
method: To express the angular momentum operators
in coordinate representation use is made of the relation

BT 88 BT 84 BT 8& BT—+ - —+
Bco~ l9coz 88 BM~ 8+ BQ)z I9~

gg g$) gX
Pe+ Pe+

Bco~ loco~ Bco~
(2-41)

Since co„cu„, and ~, constitute the angular velocity of
the framework of the molecule, they are related to the
Kulerian angles describing the orientation of the frame-
work through the equations

~,=8 sing —4 sin8 cosy,

~~= 8 cosy+@ sin8 sing,

co,= X+/ cosO.

The quantum-mechanical operators for P, P„,and P,
are readily obtained if one replaces p& by (tzz/i) (a/a8) c, ,
etc. It follows that

ip (a) (a )=»nx( —
I

-co» csc8( —
i

h (a8), &ac j,„
(ay

+cosy cotai —
)(ax) „.

ip~ (a) (a )=cosx
)
—

f +sinx csea( —
[

h Eaa&,„. &ac J,„.

ip, (a)
(ax) z,.

—sing cot8~ —
)

hag) z~.

(2-43)

These expressions for the angular momentum are
identical to those for a rigid rotor, and the customary
commutation rules can thereby be established. Since
~„ar„,cu, have no dependence on 6 and 0,, one can see
that

P = (a2'/an)-*, -, ,-.= (a&/an) ze„ (2-44)

and the quantum-mechanical for p is, accordingly,

lz(a )
i tan) ze,

(2-45)
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Inspection of Eqs. (2-43) and (2-45) confirms the com-
mutation relation

pP; —P p=0, i=x, y, z.

Equations (2-43) and (2-45) may now be substituted in
the Hamiltonian in order to derive the desired wave
equation.

(fi) Interleaf axis method: The coordinate transfor-
mation from 8, C, x, o. to 0, 4, g', n', as described in
Eq. (2-15), can be used to express P„Pi„P,', and p'
in terms of the new set of variables

(~/~x) -= (~/~x') -' (2-46)

(~ /~ o). I(~=/~X')- + (~/~o')

Equation (2-46) is valid so long as the c axis is parallel
to the bond connecting the framework and the top.
However, after the transformation Eq. (2-27), this is
no longer true and the Eulerian angles y, n, y', and ~'
are related by more complica, ted expressions I see Eq.
(8) of reference (20)j. In order to simplify the mathe-
matical details, only Eq. (2-46) is used.

It is now possible to write with the aid of Eqs.
(2-15) and (2-46),$f the following angular momenta,

used for the other. It is important to specify the inde-
pendent variables in the partial derivatives because Eq.
(2-46) shows that (8/Ba) „ is different from (8/Bi»)» and
also from (8/8u')» Since P, and Pi, involve all four
angular variables, the eigenfunctions of the operator

P '/2I, +Pg'/2Ib+P, ~'/2I,

depend on the internal coordinate n', in addition to the
three Eulerian angles, in a rather complex manner.
For example, these functions are not identical to the
asymmetric top wave function. It is apparent that the
absence of the cross product between the two kinds of
momentum operators in Eq. (2-29) does not signify a
complete separation between the external and internal
coordinates inasmuch as the P's are actually functions
of n. When the momentum operators in Eq. (2-26) are
written in their differential form given in Eqs. (2-47)
and (2-48) Lwhere p is I /I„ from Eq. (2-8)], the
Schroedinger equation is obtained. This equation was
given by Burkhard and Dennison. g

The rather unsatisfactory feature of having n' mixed
in the P's can be removed by a transformation which is
the inverse of Eq. (2-47), i.e., introducing Po' and Pi,'

so that

P,= cospo. 'P &'~' —sinpo. 'P~&'~'

PI, = sin pof'P, &'~'+ cospn'Pq&'~'

where

h pap pa ~P,»' '= sinx'I —
I

— —cosy' cscHI —
Ii i Bg) @,» ~ & ilk) g».

(2-47)
, I

=
I . I I

=
I , , I (2-49)

(P~') ( cospn sinPnl (P, '1 (P,"' '
t

LPi,') E —sinpn cospn) l Pi,) L.Pi,
' ')

This transformation is similar to the one employed
previously in Eq. (2-17) in connection with the internal
rotation axes. Equation (2-49) shows that P,' and P&'
do not contain n explicitly and thus commute with p'.

The Hamiltonian may then be written in the Schroed-
inger representation with the aid of Eqs. (2-48) and
(2-49).

(~l
+cosy' cotHI —

I

&&X') 9..
Pi (8'l (8 )Pb"' '= — cosy'( —

I
+sinx' cscHI —

I

(IN) @»'~' ~INC') y» ~'

(2-48)

—sing' cotOI
(ax') ~-

ff. These may be obtainef1 by a proce&lure similar to that efn-
ployed in Eq. (2—41), i.e., from the relations

ae ae a&'P =—Pe+—P@+—P„.+—p, etc.
~Ma ~GOO ~Ma ~Cda

The two superscripts on P and Pf, denote two of the
four "independent variables" (the other two being
always 8 and C) one chooses in taking the partial de-
rivatives. One might well recognize that P &' '

and
P~&' '

have almost the same form as P and P„ in Eq.
(2-43) (which in our present notation, would be written
as P» and P„" ) aside from the fact that y' and a'
are used as variables for one ease while y and n are

3. HIGH BARRIER APPROXIMATIONS

In Sec. 2 the Hamiltonians were derived for various
coordinate systems and for molecules of various kinds
of symmetry. These Hamiltonians can generally be
divided into three parts: the over-all rotational part,
the internal rotation torsional part, and a coupling
between over-all rotation and internal rotation. Since
the separation is not complete, except in the case of a
symmetric type molecule, the Schroedinger equation
cannot be solved exactly; perturbation theory is usually
applied. I or ease in computation we use a matrix for-
mulation, and two approximate methods for diagonaliz-
ing the matrix are commonly used. The high barrier
approximation is applicable to the cases where the
separations of the torsional energy levels are large
compared with the rotational energy separations. The
other is the low barrier approximation where the prob-
lem of the free internal rotor is erst solved and the
barrier treated as a, perturbation. Section 4 deals with
this low barrier approximation.

$f See p. 411 of, reference 8.
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The Schroedinger equation for a high barrier can be
solved by using either the PAM or IAM.

In the PAM the energy matrix is constructed in a
representation in which the over-all rotation part and
the internal torsion part of the Hamiltonian are sepa-
rately diagonal. The cross terms (coupling terms) be-
tween the total angular momentum and the internal
angular momentum are chosen as the perturbation. The
basis functions are then the product of the rigid sym-
metric rotor wave functions and the functions of the
internal angle 0., known as the torsional functions which
are related to the tabulated Mathieu functions. The
perturbation terms are treated by the Van Vleck trans-
formation'4 so that after this transformation the secular
equation can be approximately factored into blocks
corresponding to the diferent torsional states. Associ-
ated with each torsional state there are two different
submatrices in the energy matrix and thus two sets of
rotational levels. From the separation of the pair of
spectral lines arising from a given rotational transition
in the two sets of rotational levels, the barrier hindering
internal rotation is determined.

In the IAM the Nielsen transformation (or the
modified form given by Hecht and Dennison" or Itoh")
is applied to the Hamiltonian so that the coupling terms
between the internal and external coordinates in the
transformed Hamiltonian are completely removed or
become much smaller than those which occur in the
PAN, and hence can be treated by perturbation method
more readily. The basis functions of the energy matrix
are again taken as the product of the rigid symmetric
rotor functions and the torsional functions which are
the solution of a differential equation similar to the
Mathieu equation. The torsional functions here are
diferent from those in PAN because of the different
boundary conditions as explained in Sec. I. B. Because
of the interaction of the external and internal rotation,
the torsional functions depend on the quantum number
E and, in principle, the differential equation for the
torsional functions should be solved for each value of
E. Since it is necessary to have the torsional functions
in order to evaluate the elements of the energy matrix,
the determination of the torsional functions becomes one
of the major difficulties of this method. Approximate
formulas" have been derived for the matrix elements
involving the torsional functions. At the high barrier
approximation the infinite energy matrix can be reduced
to a series of (2J+1)X(2I+1) blocks, corresponding
to the case of limiting rigid rotor. Since the coordinate
axes used in setting up the Hamiltonian in Eq. (2-25)
are not the principal axes for the asymmetric rotor, a
coordinate transformation to the principal axes should
be made so as to simplify the solution of the secular
equation. When this is done, each of the submatrices
becomes very similar to that of a rigid rotor with some
additional elements which represent the effect of the
internal torsion on the over-all rotation. From the
structure of the energy levels it was found that each of

t.he rigid-rotor spect. ral lines is split into a doublet as
also predicted by the PAil. The relations between the
separations of the doublets to the barrier height have
been given by Hecht and Dennison" and also by Lide
and llann. 62 These approximate equations are equiva-
lent to those derived by PARI so that one has in many
cases an equal choice as to which method to use: PAM
or IA3,l. In the discussion to follow the symmetric
molecule is covered first by the PAM and the IA3I.
With these principles in mind the effect of asymmetry in
the molecular frame is introduced into both the PARI
and the IAAI.

where
H=Ha+Hr+Hra,

Hrr =A, (P,'+P„')+C,P,',

Hp Fp'+ V (—n—),

HTR 2CzI zPy

(3-1)

O'

2I, 2I„,

O'

C,= =—+Fp',
2(I,—I ) 2I,

(3-2)

2rI 2I (I, I)—
Here, H& and Hz comprise, respectively, the terms de-
scribing the over-all rotation and internal rotation, and
Hrrr represents the interaction term.

~~~~ In the calcula-
tion of the energy levels of H, we take Hz+Hz as the
unperturbed Hamiltonian and treat H~g as the per-
turbation. Since Hzg does not vanish at the limit of
infinite barrier, the eGect of the perturbation is not
small. Consequently, for molecules with an intermediate
barrier, fourth-order perturbation procedure must be
applied in order to obtain accurate results for the barrier
heights. Nevertheless, the advantages of this approach
will be seen.

1. Rotational equation Hg.—The eigenfunctions of
Hz are the symmetric rotor functions and they are
usually expressed as

SJr;sr (8,p) e' ' x

where J is the total angular momentum and E and M
are the projection of J on the body-fixed and space-
fixed axes, respectively. The energy and the matrix

~~~( For a discussion of the "interaction" between over-all and
internal rotation see the last paragraph of Sec. 2 II. A1.

I. Symmetric Molecules

A. I'rincipa/ Axes Method (PAN)

As derived in the previous section [see Eq. (2-6)j,
the Hamiltonian for this class of rnolecules can be
written as
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elements of /';ire

The rotational constant, C„associated with P,' is not,

that of the limiting rigid rotor and hence H~ does not

represent the entire Hamiltonian for the case of infinite

barrier height. The reduction of H into the rigid-rotor

Hamiltonian for the limiting high barrier is discussed

in Sec. I. A5.
Z. Torsional equation Hr. (a) E—igenfurzclzons azzd

eigezzvalues: The eigenfunction U(n) and the eigen-

values E of H7 are to be determined from the differential

equation

[ 1'd'/dn—'+ V (o() )U(a) =El ((s) (3-.3)

Physically we know that U((z) must be periodic in 2zr.

When V(n) is taken as a simple sinusoidal function

such as —,'V&(1—cos3(z), the above equation can readily

be transformed through the substitutions

3o(+zr=2x, s=4Vz/9F,

U[(3n+zr)/2j=M(x), b=4E/9F,
(3-4)

to the Mathieu equation

d'M(x)/dx'+[(b ,'s) ,'s cos2xj—ib—(x)—=—0. (3-5)

The solutions of Eq. (3-5) may be expanded by Fourier
series

M(x) =pic(,- coskx+(lk sink(.

Since Eq. (3-5) is invariant. under the operat. ioii

x —+ —x, x ~ x+zr, the eigenfunctions of Eq. (3-5) have
one of the following forms'":

Se&,(s,x) =Q)De2(, "")cos2kx (period n) (3-6a)

Sez,+i(s,x) =P)(Dezz+i" "cos(2k+1)x
(period 2zr) (3-6b)

Soz, (s,x) =p),Doz(„.('") sin2kx (period zr) (3-6c)

Sos +i(s,x) =E„Do»+,&'~" sin(2k+1)x
(period 2zr) . (3-6d)

Here s is a parameter associated with the different. ial

equation (3-5). For each type of the functions, Se(s,x)
and So(s,x), one finds a series of eigenfunctions and

they are labeled by the superscript r. The values of b

corresponding to these functions are denoted by be..„,
bezel+i( bog„, bozo+i. Wllen Eqs. (3-6) are substituted in

Eq. (3-5), four different infinite secular equations are
obtained from which the eigenvalues can be determined.
This procedure can be carried out in a systematic
fashion which is described in Appendix 2. The Fourier
coeKcients of the eigenfunctions are then obtained from
the recursion relations associated with the infinite
determinantal equations. The eigenvalues and the

l'ouricr coefficients of the associated cigenfunctions can
be found in the Tables Relating to Matthieu Fswsctions. ""

From the torsional equation one may readily see
that since the Cz group operations leave Eq. (3-3)
invariant)($; the solution of this equat. ion can be
expanded in the form

E„=9Fb„/4, S=4+3/9F,
A levels (o-=0)

V b„reference 104
0 bpp bep

1 b1p bo2

2 b2p be„
3 b3p bo4

4 b4p be4

2x= 3cl+7I
E levels (0=~1)

reference 36
b„(b, ,)

b21(b2 1) b1

b31(b3 1) b,
b41 (b4—1) b2

Each member of the series of the degenerate and non-
degenerate solutions is labeled by the index a with
v=O for the lowest eigenvalue. At very high barriers
the spacings between the nondegenerate and degenerate
energy levels of the torsional equation associated with
a given v are much smaller than those between levels
with different v (see Fig. 1). For this reason, the index v

is called the torsional quantum number and the dif-
ferent energy levels associated with a given ~ are
thought of as the torsional sublevels belonging to the
same torsional state. 'I'he sublevels are distinguished
by the index 0. with cT=O for the nondegenerate level
(species A) and o.=&1 for the levels of species E
(Ei. o.=+1, Ez: o.= —1). In Fig. 2 the energy levels
are plotted as a function of the barrier height from free
internal rotation to a relatively high barrier. The solu-
tion of the free rotational energy levels and the meaning
of the "nz" quantum number are discussed in Sec. 4.

A solution of the torsional equation can then be
written as

I, „(~)=g~ „~e((zi+~)~ (3-9)

$$ Strictly speaking, Eq. (3-3) belongs to the C3, group. How-
ever, in the present discussion, it is more convenient to consider
only the subgroup C3.

ZiA z(,e"" (A) (3-7a,)

ei (zk+i)a (E ) (3-7b)

e((3k—1)a (E ) (3-7c)

corresponding to the symmetry species 2 and E of the
Cz group. The first form of the expansion in Eq. (3-7)
gives rise to nondegenerate eigenfunctions while the
last two constitute the doubly degenerate pairs. The
series of eigenvalues and eigenfunctions of the non-
degenerate solutions can be obtained from the tabu-
lated Mathieu functions wit. h period zr, Eqs. (3-6a) and
(3-6c), after the slight modification as set down in
Eq. (3-4). The degenerate solutions have been tabulated
recently by Kilb."The relations between the notations
adopted here and those used in the various tabulations
may be summarized as follows:
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and the eigenvalues associated with these functions are
correspondingly denoted by E„.

(b) Harmonic oscitfator approximation: With a very
high barrier the internal motion degenerates into small
oscillations, and the potential energy ~V3(1—cos3&r)

may be expanded about the equilibrium point yielding
(9/4) V3a2. The torsional wave function in the vicinity
of the equilibrium configuration can be approximated
by the harmonic oscillator functions which are denoted
as H„(&r). The corresponding eigenvalues are

E,=3 (V3F) '*(&t+-,'). (3-10)

There are three functions of H, (a); one situated at each
of three potential minima. These functions are denoted
by H, (", H, ('), and H, (3&. When the tunneling effect is
considered, the correct zeroth-order torsional func-
tions are""

U„o(n) = [H„&'&+H—&"+H &'&]

v3

1
U„&(n) = &&H &'&y—&dH &"+rd'H "'] (3-11)

Frc. 3. The torsional matrix. Each block on the diagonal con-
tains the over-all rotation and internal rotational matrix elements
associated with that torsional level. The shaded area represents
the coupling between the rotational levels of the various torsional
states. Kith the Van Vleck transformation the matrix elements
in these shaded areas are folded into the blocks on the diagonal.

I00
POTENTIAL BARRIER~

FIG. 2. The hindered internal rotational energy levels as a
function of the barrier height. The free rotation quantum numbers
m are at the left ordinate, i.e. , a zero barrier, and the torsional
quantum numbers v are on the right ordinate, i.e., a relatively
high barrier. The diagonal line V3 shows the actual height of the
barrier in relation to the energy levels. Those energy levels below
the top of the barrier are clearly discernible.

where a&= exp(2mi/3) and r, , as before, denotes the tor-
sional quantum number. The first function in Eq.

(3-11) is nondegenerate (A levels) and the last two are
degenerate (E levels).

3. Perturbation treatment. The energy matrix for H
as given in Eqs. (3-1) and (3-2) is now constructed
in a representation in which Hg and HT are diagonal.
From Eq. (3-9) it is obvious that p is diagonal in the
quantum number fr but not in v. Consequently, the
secular equation can be grouped into blocks corre-
sponding to diferent v and a. Within each block the
Hamiltonian is given by Hz+Hz, and blocks of dif-
ferent v are connected by the matrix elements of Hl&.
If the energy separations between diGerent torsional
states are large compared to those between rotational
levels of the same v, a VanVleck transformation'4 may
be applied to the energy matrix to reduce the matrix
elements nondiagonal in v to the second order; such
matrix elements can then contribute only fourth-order
terms to the energy and can usually be neglected. The
elements diagonal in v are, of course, modified by this
transformation and the eGect of this transformation is
to fold the elements not diagonal in v onto the v

blocks. ***The matrix is illustrated in Fig. 3 where the
shaded areas contain those matrix elements oB diagonal
in v which are transformed into the v blocks shown on
the diagonal. Therefore, the infinite secular equation is
eGectively factored into separate blocks corresponding
to various combinations of v and o-, and only one such

***For this particular class of molecules, both HH, and HIg
are diagonal in E and e is the only nondiagonal index; conse-
quently the Van Vleck transformation is identical to the ordinary
perturbation treatment. However, the difference between these
two methods becomes apparent for the asymmetric molecules.
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block need be considered at a time. To the second-order
approximation the matrix elements of a v, fr block are
given by the Hamiltonian operator"'

H„=A, (P,'+P„')+C„.P,' 2C—,P,p„.,„.+E,„., (3-12)

where

p„.„.= U„.*(n)-—U. ,(n)dn,
2 dO!

C..=C.
~

1+4C.&'
~ E,. I:'. , —

=C+Fp'l 1+4F Q'
~ F.„E,,&—

c= II'/2I, .
Here H„, can be regarded as the effective rotational
Hamiltonian for a given torsional stat. e. The energy
is then

E(JKI/Ao) =A,J(J+1)+(C„A,)K'—
—2C,Kp„, „,+E, . (3-13a)

The perturbation treatment can also be carried to
higher order. The energy obtained from the nth order
perturbation calculation can be expressed simply as"

E„.=A J(J+1)+(C A)K'—
+F Q„w„.'"I (pK)", (3-13b)

where
p=I /I„

w„.'oI =9b„/4,

wvrr = 2pwa, err~
(1)

vIT, TI'a

w„."'=1+(16/9)P„',etc.
b„.—b„.

For the nondegenerate, 3 level the torsional functions
are real and hence the diagonal elements of odd order
in p vanish, i.e., zl„("=0.The rotational Harniltonian
is given to the second order by the first. two terms of
Eq. (3-12). This is formally identical to the Hamil-
tonian of a rigid symmetric rotor with a modified rota-
tional constant C„,. Consequently, the rotational levels
associated with a nondegenerate 3 type torsional level
(hereafter referred to as A rotational level or simply A

levels) have the same structure as the levels of a rigid
rotor (referred to also as the pseudo-rigid rotor levels).
For the case of the degenerate torsional levels, p„&„& is
different from zero, so that the structure of the rota-
tional levels here (called E rotational levels or E levels)
differs from that of a rigid rotor. The linear term in P,
in the Hamiltonian has the effect of removing the E
degeneracy characteristic of the rigid symmetric rotors.
Furthermore, since the second-order perturbation term
w„.&" in Eq. (3-13b) is different for the A and E levels,
each torsional sublevel will have a different effective
rotational constant, C„,. The rotational levels with
0-=&1 are doubly degenerate with respect to cr but
nondegenerate with respect to E, and vice versa for
the levels with 0-=0. Hence, all the energy levels are
doubly degenerate with the exception of the ones for
which 0-=E=O. Here the spatial M degeneracy has
been disregarded. The three pairs of doubly degenerate
levels g-=0, ~E; o-=+1, +E; 0= —1, —E; and
o.= —1, +E; o-=+1, —E are shown in Fig. 4.

Physically, the presence of two sets of rotational
levels with o-=0 and ~1 may be understood from a
semiclassical point of view. For a high barrier the in-

II
/

/

J+I,K
II

l

The first two terms of Eq. (3-13b) are the energy of a
rigid symmetric rotor while the last term, which is a
power series in pE, represents the effect of the internal
torsion on the rotational energy levels.

The convergence of the power series depends mainly
on the magnitude of pE. Although the coe%cients z,.("'
are strongly dependent on the barrier height (more
precisely s) of the approximate form" Ass exp( —Cgs),
they do not converge very rapidly with increasing n
(see Fig. 8). Consequently the magnitude of the factor
(pK)" must be examine'd and the perturba. tion calcula-
tion should then be carried out to the desired accuracy.

4. Energy levels and spectra. —For a given torsional
state v there are two torsional sublevels characterized
by the symmetry properties A and E (or o =0 and &1).
Associated with each such torsional sublevel is a set of
rotational energy levels, the structure of which is
governed by the effective rotational Hamiltonian H„.

HIHOEREO

SYMMETRC

II II II II I I
HROEREO HINOEREO ASYMMETRC SYMMETRIC
ASYMMETRIC ASYMMETRC
INTERMEOIATE HISH

SARRIER OARRIER

FLo. 4. Correlation of rotational energy levels. The rotational
energy levels and rotational parallel (DE=0) transitions for
various conditions of asymmetry and barrier height. At either end
the symmetric rotor energy levejs and transition are shown. Intro-
duction of hindered internal rotation splits each energy level in
three levels for a threefold potential barrier. The three transitions
however are coincident, giving only one line. Asymmetry splits
the A level (E doubling), but only shifts the E levels. Two weaker
lines on each side of the pattern are possible transitions between
the E levels, but these are not shown in the figure. If the barrier
height is raised, the energy levels tend toward the asymmetry
doublets, and two doublets are observed in the spectrum. Finally,
if the asymmetry is removed we are back to the symmetric rotor.
The thickness of the lines for each energy level is approximately
in agreement with the degeneracy of that level.
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ternal motion can be pictured as a back-and-forth
oscillation about the equilibrium configuration of the
molecule. The over-all rotation of the molecule along
with this mode of internal torsion gives rise to the set
of the 3 levels. The E levels can be associated with a
diferent mode of internal motion in which the molecule
passes from one equilibrium configuration to another in
a circulatory manner through the tunneling efFect.
The double degeneracy of the E torsional levels is
related to the two senses (counterclockwise and clock-
wise) of tunneling internal rotation. One may then
expect the E levels and wave functions to have some
free rotational character.

As the dipole moment of the molecule is independent
of n, the selection rules for the rotational transitions are
AJ=&1, AI«=0, and Iso=0 (see Sec. 6). Equation
(3-13) shows that the frequencies of the rotational lines
are not changed by the internal rotation. Both the A
and E levels give rise to the same spectral lines and the
three transitions shown in Fig. 4 are all coincident.
Thus the e6'ects of the internal rotation in the syrn-
metric molecules are not detectable in the rotational
spectra associated with the ground torsional state. This
result can also be understood from the classical descrip-
tion by noticing that the rotation of a symmetric top
about its figure axis causes no change in the orientation
of the dipole moment and thus no dipole interaction
with the radiation. When internal rotation is present
in a symmetric top molecule, only the angular velocities
of the two groups along the figure axis are afFected. "
In the excited torsional states, however, the frequencies
of rotational transitions are appreciably altered by the
internal rotation through the interaction with the other
molecular vibrat;ions. 4'- The shifts of the frequencies of
these lines then serve as a means of determining the
barrier heights for the symmetric top molecules. This
method is more fully discussed in Sec. 7.

5. Reduction to a rigid rotor at a very high barrier. —
At the limit of a very high barrier, the torsional func-
tions can be taken as Eq. (3-11).Furthermore, the over-
lapping between H„"', H, "', and H, (" can be neglected,
i.e., the diagonal elements of p (i.e. , w„,&") approach
zero. At first sight one might conclude that the eGect
of Hz& vanishes for infinitely high barriers and the
Hamiltonian is then given by Hz. This, however, is
not correct because the rotational constant of P,' in
H~ is not the rotational constant of the rigid molecule.
The reason for this is that the ofF-diagonal elements of

p increase v ith the barrier height so that the second-
order term

P„'(b„.—b„.)-
( p„.„..]

remains Finite in such a way that w, (2) ten&is to zero.
This latter fact. would be expected since Eq. (3-13b) is
in the form of a rigid molecule with the actual rotation
constant. tVith Eq. (3-11) it can be shown that the

only nonvanishing matrix elements are

1 I9Vby'

v2i (4F&

(3-14)

B. Internal Axis Method (IAM)

The essential feature of the IAM is the application
of the Nielsen transformation to remove the coupling
term between the angular momentum for over-all rota-
tion and that associated with the internal rotation.
Therefore, external and internal rotation become sepa-
rable for the case of symmetric molecules. The IAM,
however, has the disadvantage that the torsional func-
tions are dificult to determine and are not conveniently
tabulated.

For the PAlt~I the coupling term Hrrb (which is not
small) is reduced by the Van Vleck transformation to a
power series in E whose coefTicients vanish at the limit
of an infinite barrier. On the other hand, the coupling
term Hrg is removed in the IAM by the Nielsen trans-
formation, Eq. (2-8). The difference between these two
transformations is that the Van Vleck is barrier de-
pendent while the Nielsen is barrier independent.

The Hamiltonian was given in Eq. (2-20) as

H= A.(P,''+Pb")+C,P,"-+Fp"+V(&«),
where

A, =A =h'/2I„
C.=C=h'/2I, (NC.).

The a, b, c axes are the same as the principal axes for
symmetric molecules, and the difFerential operators for
P,', Pb', P,', and p' are given in Sec. 2 II. C2(b). Since
the P"s do not contain n, the wave function can be writ-
ten as a product of the symmetric rotor wave functions
and the torsional wave function:

The symmetric rotor functions are the eigenfunctions
of the first three terms of the Hamiltonian Eq. (2—20)
and Mrr„, (&«') represent the eigenfunctions of the
equation

(3-16)

Furthermore, the energy of a torsional harmonic oscil-
lator was given by Eqs. (3-4) and (3-10) as

E,=3(v+-', ) (VbF)'*= (9/4)Fb, .

AVhen this equation and Eq. (3-14) are substituted
into Eq. (3-13) the second-order term w„.&'& becomes
zero. Therefore, the efFective rotational constant C,
becomes the rigid rotational constant C.
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M(a)=e' rP(a) (3-19)

where P(a) is periodic in 2sr and f is a real constant
which is chosen so that Eq. (3-19) has the periodicity
as demanded by the physical situation. For the present
case one has

(K/I, )[I n2+ (I,—I )ni]+f(ns —ni) = n

(an integer). (3-20)

This can be satisfied by setting f equal to either pK-
Li.e. , —(I K/I, )j or (1 p)K Li.e. , —+(I, I /I, )Kj. —
In the first of the series of papers on the internal rota-
tion in methyl alcohol, Koehler and Dennison chose
(1—p)K'. LAlso their internal angle x is equal to —a
which is used here (see Appendix 4).j However, it turns
out, for most cases, to be convenient to take f= —pK.
The resulting wave equation is then

Q=SJKsr(e, q)e'x~'e '~"~'P(a') (3-21.)

Equation (3-21) shows that the internal and external
motion are separable inasmuch as the wave function
can be expressed as a product of a function of the three
external Eulerian angles and a function of a (a' a)
alone. The fact that the quantum number E appears
in the torsional part of the wave function does not
signify a physical coupling between the over-all rota-
tion and the internal motion in the sense that the
torsion of one group of the molecule about the other
does not aGect the motion of the "internal rotation
axes" (see Sec. 2 II. A1). On the other hand, the reader
may recall that in the treatment of the symmetric
molecules by PAM there is a coupling term Hzg be-
tween the external and internal motion. In the PAM
the set of moving axes is rigidly attached to one group
of the molecule; while in the IAM the internal rotation
axes, which are used as the coordinate system, are
moving with respect to both of the groups. Since only

with the appropriate boundary conditions. The sym-
metric top wave function of Eq. (3-15) contains x' in-
stead of y as a variable. The angle y' was defined in
Eq. (2-15).

The boundary condition for Eq. (3-16) must now be
considered. Obviously, the wave function must be
periodic in 2rr with respect to xi and g~ (the Eulerian
angles of the two parts), i.e. ,

P(8 'p gi x2) =)P(8,p, xi+2srni, 'tt2+27rnz), (3-17)

where ni and n2 are integers. In terms of y' and 0.', the
wave function )P becomes

)P(~ w x~ a ) )l'(tl p x + (2rr/I )LI n2+(I I )n 3
a'+27r(ns ni—)} (3. -18)

In order to satisfy this condition use is made of the
fact that according to Floquet's theorem, a particular
(nonperiodic) solution of the Mathieu equation can be
written as

the rotation of the internal rotation axes is unaltered
by the internal motion, the coordinate frame used in
PARI also oscillates at the frequency of the internal
torsion.

1. Eotat~oIsal eqlation. —The first three terms of the
Hamiltonian Eq. (2-20) are the same as a rigid sym-
metric rotor molecule with energies as

IIa=A (P,'+Pi,2)+CP s

Ez)csr=A J(I+1)+(C A)K—',
where

A =h'/2I, and C= It'/2I, .

(3-22)

Z. Torsional function. —Although the torsional equa-
tions for the PAM and the IAM are identical, the
torsional functions for these two cases are not the same
because of the different boundary conditions. As ex-
plained above, the torsional function of IAM may be
written as

M(a) =e '&x P(a). — (3-23)

The differential equation for P(a) is obtained by sub-
stituting Eq. (3-23) into Eq. (3-16) with the result

Fp—
2(I,—I )

I
and P p2 =—

2 I,(I. I)—
This equation I or Eq. (3-16)$ can be solved in the
most general way by the method of continued fraction
which is discussed in Appendix 2.

(o) Properties of the torsional levels: Since the solu-
tions of Eq. (3-23) are different for diferent K, the'
value of E should be included as a labeling index for
P(a) a,nd E. Furthermore, as a appears explicitly in
Eq. (3-16) only as cos3a, an eigenfunction M(a) can
be classified into one of the three general types corre-
sponding to o.=0, &1$$$ in the expression

or
Kv~i (3k+ rr) a

7

—e ipxu Q A Ice—ei(3)f+~)n
(3-25)

Analogous to the solution of the torsional equation in
the PA%I, for each given 0- one has a family of the func-
tions Pic„.(a) and these functions are again labeled by
the index i. Unlike the V(a)'s given in Eq. (3-9), the
eigenfunctions Px „ i(a) here are not degenerate with
Px „ i(a) because the differential Eq. (3-24) for P(a)
contains imaginary coeKcients. On the other hand,
since P*(a) is a solution of the equation obtained by
taking the complex conjugate of Eq. (3-24) (the same

$/) The quantity 0 is the same as Itoh's —p, and is related to 7.
used by Dennison et al.'"~ ' by the expression K+r =0+1
(mod 3).

F(d'P/da'—)+2iFpK (dP/da)

+2 V3(1—cos3a) P= (E Fp'K') P (3—-24)

where
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as the differential equation for P(n) with K—), we have

and

PK, e, l(n) P—K,v,—1 (n) 1

Px. ,o(n) =P x...o*(n),

Mrr, „,.(n) =M rc, „, .*(n),

Pp, ,——U, „

(3-26)

E~ „,I.=E ~ „

Ez, ,o=E z,.o.

At high barriers the arrangement of the eigenvalues
(Ex.,) in the IAM is similar to that in the PAM, i.e. ,

the levels are grouped in a number of clusters corre-
sponding to diferent values of the torsional quantum
number v. Within each torsional state there are three
distinct levels (rather than two in contrast with the
results of the PAM) characterized by a=0, 1, —1, for
K/0. The three levels are shown in Fig. 4. YVhen E
is equal to zero, the levels with 0.=1 and o-= —1 are
degenerate. The result that the eigenvalues are diR'erent

for the PAM and the IAM comes as no surprise for the
torsional equation is actually defined difI'erently in
these two methods. Physically, this discrepancy arises
from the fact that the external rotation in the IAiU is
not the same as that in the PAM. However, the com-
posite energy levels for the combination of the external
and internal rotation calculated by both methods are
identical as one would expect. This is illustrated in
Sec. I. 83.

(b) Eigerivalues of the torsional equation: The tabu-
lated solutions of the Mathieu equation are not directly
applicable to the torsional function in the IA3 I since
these functions do not have the periodicity of 2~. The
general method for obtaining the solution by the use of
continued fraction is described in Appendix 2. l'he
procedure for determining the eigenfunctions is in
general complicated but at the very high barrier these
functions can be approximated by the harmonic oscil-
lator functions. In addition, the eigenvalues can be
simply obtained by the following approximate method:
when pE—0- is replaced by pE —~+3, the form of Kq.
(3-25) is not altered, and therefore the eigenvalues re-
main unchanged. One may then regard the eigenvalues
as periodic functions of (2or/3) (pK &r) and expand' —
them in a Fourier series as

Ex„. Fg„,a„&"' cos(2vu/——3)(pK a). (3-27)—
If pE—0. is equal to zero or a whole multiple of three,
then Kq. (3-25) reduces to the solution of the Mathieu
equation (with a periodicity of v) when the substitu-
tions given in Eq. (3-4) are made, i.e. ,

E(pK—a=0) ~ b(n.).
Here b and E dier by the scale factor given by Kq.
(3-4). Similarly, one can show that

and more generally

E(pK o=—x) ~ b(37r/x).

Up to this time only the low integral values of 3,/x have
been tabulated (see Appendix 3).

If the series in Eq. (3-27) converges so rapidly that
E may be approximated by the first two terms in the
Fourier expansion, i.e.,

E=Ft ao+a, cos(2v/3) (pK —o)~, (3-28)

then the coe%cients ao and a& may be determined from
the tabulated values' ' of b(v) and b(2v). When this is
done, Kq. (3-28) can be used to calculate the approxi-
mate values of b(X~) To this. approximation the equa-
tion for b(1V7r) is

1 ( 2vrq
b(Ã~) =-l 1+c»—lb(v)x)

1t 2xp
+-I 1—c»—lb(2~) (3-29)

such that any Mathieu eigenvalue can be approxi-
mated" from b(v.) and b(2gr) provided that the Fourier
coe%cient a~ is small. If the coefficient a~ is not small
then b(3gr), b(47r), etc. , can be used to obtain the co-
e%cients ao and a, and a better value of b(X7r) (see
Table III). Therefore, the Mathieu eigenvalues can
be readily approximated for any periodicity.

(c) Inharmonic oscillator approxirnaliors: As in the case
of the PAL%, the torsional function can be approxi-
mated by harmonic oscillator wave functions at very
high barriers. Since the classical amplitude of the in-
ternal torsion approaches zero at the limit of very high
barriers, the factor e '&~ in the torsional function
M (n) may be replaced by unity and Mx„.(n) —+

Px,.,(n) Under such ci.rcumstances M(n) can be ap-
proximated by Eq. (3-11). The energy levels of Eq.
(3-16) are then given by Eq. (3-10).

3. Energy lnels and spectra. —The total energy of a
symmetric top exhibiting internal rotation is equal to
the sum of the energy associated with the over-all rota-
tion Ez&~ and the torsional energy Ez, , or

E(JKMvo)= Esx,v+Ex..'. (3-30)

Since the E degeneracy remains in the rigid symmetric
rotor energy, from Eq. (3-26) it may be seen that

E(J,K,M, v, o) =E(J, K, M, v, —o). —

Therefore, all the energy levels are doubly degenerate
except the E=0, 0- =0 levels —a result which was also
found by the PAM. Now substituting Kqs. (3-22) and
(3-27) into Eq. (3-30), we obtain

E(JKMvo) =A J(J+1)+(C—A)K'

E(pA —o.=-,') —& b(2x),

E(pK o= 1) —& b(3m.), — +Fga "cos
2&n

(pK —o). (3-31a)
3
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The last term in this equation represents the effect of
the internal torsion on the rotational energy levels. If
pE is reasonably small and the Fourier series converges
rapidly, the cosine terms in the last member of Eq.
(3-31) can be expanded in the following manner:

27rs
Q a„&"& cos (pE —o.)

2~cr 1 (2mn
pE I+

3 2&3 )
=P a„&"' cos

+Q a„&"& sin
27ra 2''Pl

pE+ . . . (3-31b)
3 3

For o =0 the E'term from'-Eq. (3-31b) can be incor-
porated into the term (C—A)E' in Eq. (3-31a), and
therefore it has the effect of modifying the rotational
constant. The rotational levels for this case have the
same pattern as a rigid symmetric rotor —pseudo-rigid
rotor level. In the case of the degenerate torsional
levels (o.= &1), the expansion in Eq. (3-31b) introduces
a term linear in E, into the energy equation. This
causes a splitting of the E degeneracy of the rigid
symmetric rotors. The conclusions obtained here are
therefore in complete agreement with those derived
from the PAltl. When pE becomes larger, the (pE)"
and (pE)4 terms should b'e included in the expansion of
cos(2gr/3)(pE a}. In term—s of the PAAf the higher-
order Van Uleck perturbation treatment must be
applied to the Hamiltonian in order to obtain accurate
results.

By following the selection rules 6J= &1,5E=0, and
Ao-=0 one finds again that the rotational frequencies
depend only on the rotational constant A and the
quantum number J, and are not affected by the internal
torsion. Therefore, only one line is observed as shown
in Fig. 4 for this model.

C. Comparison of the Two Methods

The main difference between the two methods is that
the IAM gives a relatively simple Hamiltonian but
more complicated torsional functions, whereas the PA)1
gives a more complex Hamiltonian but simpler torsional
functions. The chief difhculty in the IAill is associated
with the determination of the torsional eigenfunctions
and eigenvalues. On the other hand, the coupling term
pP, in the PAN is not a small perturbation, so fourth-
order perturbation calculation is sometimes necessary
to obtain accurate results for the energy levels.

A comparison of Eqs. (3-13b) and (3-31a) shows that
the effects of the internal torsion on the rotational
energy levels are expressed by a power series in the PA%I
and a Fourier series in the IAB~,I. C'enerally, calculation
of the first- and second-order terms in the power series
(w„,«& and &'w)is lcomparatively simple, but the

higher-order terms are more difFicult to evaluate.
Herschbach" has suggested that the tabulated eigen-
values of the Mathieu equation and the 6rst two per-
turbation terms in PA'AI be used to determine the
Fourier coefFicients in the IAM which are otherwise
tedious to calculate by the method of continuous frac-
tion. Since the Fourier series in IAM converges much
faster than the power series in Eq. (3-13b), the former
may be used to obtain the rotational energy levels and
also the higher-order perturbation terms of the PAM.
This technique is really very interesting for we have
solved the problem approximately by the PAM where
the boundary conditions are simple and have then con-
verted this to the more exact solution of the IAM.

Ht= —2 Q Q;P,p,

and

(3-32b)

H. =-,'( 1,—B,) (P,'—P„')

+ s P D;,(P,P,+P;P.;). (3-32c)

The energy matrix is now constructed with the basis
functions

Ssx tr(8, y)e xxI'„.(n).

In this representation Ho is completely diagonal; H2
is diagonal in v, but not in E; and Hi has diagonal and
off-diagonal matrix elements in E and e. As in the case
of symmetric molecules, the Van Uleck transformation
is applied to remove the nondiagonal elements in e so
that the new energy matrix assumes the block structure
shown in Fig. 3. The effective rotational Hamiltonian,
correct to second order, for the vth torsional state is$$$

H„,=A „P '+B„,P„'+C„,P,'+E,
+'; Q D;,w,.&s'(P;P+P,P,)+Q Q.,P,w„."', (3-33)

where
h'- X 'I

rI,2I

+ v&r 2Pv0', v0')

, I
p-;"I'

to„,&"=1+—P„.'
b, —b„

f/) Here we have assumed that the torsional levels of different
o are much more widely spaced compared to the rotational levels.
When this is not the case, the (It

I
IC'} elements, introduced by II&

to the diagonal v blocks through the Van Vleck transformation,
have a very complicated form. "

II. Asymmetric Molecules

A. Prirscipal Ans Method (PAshf)

The Hamiltonian given in Eq. (2-37) can be grouped
in the following manner:

Hs ', (A,+B——,)-(P,'+P„')+C,P,'+Fp'+V(n), (3-32a)
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and similarly for B„and C„with t.hc appropriate l)(;r-
mutations of x, y, and s.

Alternatively the Hamiltonian given in Eq. (2-38)
could be used for the perturbation treatment. The Van
Vleck transformation now gives the following":

where

O' Pg'
H„.= +0 —+F Q w '"&ll"

2 IQ

rr=& P

(3-34)

and the z, ~"'s are the same perturbation terms given
in Eq. (3-13b). Naturally, Eqs. (3-33) and (3-34) are
identical. Equation (3-33) shows the perturbation cal-
culation more clearly and shows that the rotational con-
stants are modified by the internal rotation. Equation
(3-34) shows the similarity to the symmetric molecule
formulas and leads more naturally, as we will see later,
to higher-order perturbation corrections.

1. Energy levels and spectra. —From Eq. (3-33) the
rotational constants for the over-all rotation of the
molecule are modified by the internal rotation. Also the
orientation of the "eRective" principal axes is changed
by the cross terms D;,w„,."'(P,P,+P,P,). Both of these
changes depend on the torsional state v and o-. As in
the case of the symmetric molecules, there exist two
sets of rotational levels for each torsional state. The
Hamiltonian for the pseudo-rigid rotor levels (a=0)
to second order is given by Eq. (3-35),

Ko=~.oP~'+&v oP„'+C.oPz'

+Q —,'-D;,w. ()'-" (1';P,+P,P;), (3-35)

g) It should be noted that the eEect of the linear terms is
negligible only when it connects no near degenerate levels. Also
if the quantity pE becomes large, higher-order perturbation terms
are needed Lsee Eq. (3-34) and Sec. 3j.

where the rotational constants A, o, etc. , diRer from the
respective constants of a rigid molecule by terms pro-
portional to m, o"'. Also the cross terms between the
P's contain m„o"'. As mentioned before, the quantity
zv„o(') decreases rapidly with increasing value of the
reduced barrier height s [defined in Eq. (3-4)] and
approaches zero for very high barrier.

For the E levels the Hamiltonian is also given by
Eq. (3-33). Because of the linear terms in P„P„,and
P. the spacings of the E levels are diRerent even quali-
tatively from those of a pseudo-rigid rotor. However,
in some cases, especially for high barriers and low E
energy levels, when the asymmetry splitting of the E
doublet is not too small, the eRect of the terms con-
taining p„, „, is negligible. cbf&f The eA'ective rotational
constants A„~i, etc. , are, however, appreciably diRerent
from those for the A states as well as those for the rigid
molecule. Under such circumstances both sets of the A
and E levels are similar in structure but have different
eRective rotational constants.

l he selection rules are i~it. ntical to those for a rigid
;asymmetric top with the additional restriction of 6~=0
since the dipole moment is independent of the angle e.
The most intense spectrum arises from the molecules in
the lowest torsional state, i.e. , v=0. For each rotational
transition one finds two lines; one originates from the
rotational levels associated with the nondegenerate
torsional levels and the other one from the degenerate
E, levels. The essential feature of the spectrum is that
doublets occur instead of a single line as in the case of a
rigid molecule. This is illust. rated in Fig. 4. The lines
belonging to the 3 species follow a pseudo-rigid spec-
trum to the second order and the E lines may or may not
be fitted to a pseudo-rigid Hamiltonian depending on
the height of the barrier and the asymmetry of the
molecule. The two members of the doublet are of more
or less the same intensity; the ratio of the intensity is
governed by the relative nuclear statistical weight
assigned to the A and E levels (see Sec. 6). The separa-
tion of the two lines of a doublet depends very critically
on the height of the barrier. It is from these splittings
that we determine the barrier height. In the next sec-
tion we discuss the calculation of the doublet splittings.
The methods of evaluation of the barrier height from
the measured values of the splittings are presented in
Sec. 5.

2. Calculalion of e&zergy ond doublet sPlitlings. —The
matrix elements of H„, in Eq. (3-33)"' are

(EIH..~E) =-,'(3„.+8..)J(J+1)
+[C„,.——', (A „.+8„.)]E-'+Q,w„."'E,

(E
~
H„.

~

Ea1)=-,'[(D„.aiD, .)w..~z&(2Ea1)

+ (Q„&iQ,)w„."'][J(J+1)—E(E&1)]l,
(E

~

H, .~ E&2)= ——,'[4„.—B„.&2iD.„w„.&'&]

X[J(J+1)—E(E+1)]**
X[J(J+1)—(E&1)(E&2)]l. (3-36)

The indices J, M have been deleted since H„, is
diagonal in these quantum numbers, and the constant
term E„, has been dropped. Here, in addition to the
(E~E&2) contribution from the usual asymmetry of
H~, there are oR-diagonal elements from the cross terms
in D.;,m, ,.(2). Also H~ has contributed both a diagonal
term in Q:wv„, &» and off-diagonal terms in Q,w„,"'
and Q„w„,&'&.

The Hamiltonian H„ in Eq. (3-33) may be simplified
by performing a rotation of coordinate axes to eliminate
the cross terms between the components of the total
angular momentum P. Referred to this new coordinate
axes system which is the "eRective principal axes"
system for a, torsional level, the eRective Hamiltonian
becomes

H„.'=.4 „.'P "+8,.'P„"
+C..'P ''+Q;Q P'w„."' (3-37)-.-.

The orientation between the two sets of axes can be
determined either by diagonalizing the 3&3 matrix in
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TABLE I. Loiv J enelgy 1cvels. '

Epp=0
E1o=A-'+B-' —(g++g )
E11——g(A„,'+B.,')+C,a'+g(g++g )

~t:(Q.'-, ) +!(A,.'-B..') -(A..'-B,.') (g, -g.)»
E2fl ——IV„(A„,'B„,'C„'1=2, E.=0)—3(g++g )

+0t (A —B}(2C—A —B) 'gj
E21= (5/2) (A „'+B„')y Cy, '+3 (g++ g ) /2 —(k++k )

~$(Qa'0"')'+(9/4) (A-' —Bt ')' —~(A~ ' —B~ ') (g —g*) l~

where

g+= (Q "+Q ")[YfJ. ")j'PC-' —A.~'—B-'~2Q.'~
g;=Q;"Pal, ~&')g't 2C„'—A, ' —B,,'j '(z=x, y)

g.+g.='(g'+g )
k+=2(Q, ' +Q„')Lm, ~(')1 L6C,a' —3A,,' —3B,,,'&2Q, 'z&,a")j '

The A&~', B&a', and C«' are not necessarily identical with the A, B,
and C of King et al. ,4' and the quantum number K is no longer a good quan-
tum number, but it is still used for labeling. In the expression for the E20
energy Wr is the rigid rotor energy with the rotational constants A&', B.',
and C,' ~

the usual manner or by applying successive 2)&2 rota-
tions. The relations between the new coefficients A„,',
etc. , in Eq. (3-37) and the old ones in Eq. (3-33) can
be set down by noting that A, 8, C, D „, etc. , trans-
form like the six components of a symmetric second-
rank tensor and Q„Q„,Q„ transform like the com-
ponents of a vector. Very often the change in the
effective rotational constants introduced by such a rota-
tion is negligible. For instance, in the case of acetalde-
hyde (CH3CHO) the cross term P;P, is removed by
rotating the body axes through an angle of approxi-
mately one degree.

For the nondegenerate A levels the last term of Eq.
(3-37) vanishes. The rotational energies are just. those
for a pseudo-rigid rotor with slightly corrected rota-
tional constants and can be calculated by well-known
methods or obtained from published tables. ' ' '" In
the case of the E levels the energy matrices for both
Eq. (3-33) and Eq. (3-37) contain a term linear in K
on the diagonal and also (K I

K&1) elements. The two
kinds of factoring available for rigid asymmetric tops
are spoiled, and for a given J, a (2J+1)(2J+1) de-
terminantal equation must be solved. Except for low J,
the straightforward diagonalization of this matrix is
very di6icult. The procedure of diagonalization may be
somewhat simplified by applying a Van Vleck trans-
formation to reduce the (K I

K&1) elements. Except for
the energy levels with small asymmetry splitting, after
a second-order Van Vleck transformation the new
(KIK&1) elements are usually such that their con-
tributions to the diagonal terms are negligible for low
J levels. The approximate formulas for some of the
energy levels are given in Table I. Also approximate
formulas for the splitting of the 4 and E /evels (not the
lines) can be derived; these are given in Table II.

Khen the barrier is very high the value of x „."'

becomes so small that the E levels !or low A. also con-
form to the pattern of a rigid rotor with effective rota-
tional constants different from those belonging to the
A levels. The energy splitting between the A and E
levels, AlV, is simply equal to the difference between
the "rigid rotor energy" of the two types of levels,
lV~, and H~E, as

AiV= IVg —IVr. = (B$V/BA)h '1

+ (BlV/BJ3)AB+ (BlV/BC)AC (3. -38)

If the rigid rotor energy is written in the usual form"

IV=l(~+C)J(J+1)+l(~—C)E(x) II II II (3-39)

then it. follows that

BlV/B.4 =
2J(J+1)+2J'.'(x) ',-(x+1)—[B—E(x)/Bx j,

BlV/B J3 =BE(x)/Br. , (3-40)

BlV/BC = ,' J(J+1) ,'—E(K)+4(—K —1)[BE(x)/B—x]

The values of [BE(x)/Bx] can be estimated from the
tabulated eigenvalues of rigid rotors. ""' By substitut-
ing the results of Eq. (3-40) into Eq. (3-38) the energy
separation between the A and E levels is obtained.

3. Higher order -effects (a) T.—hird artd fourth -order-
perlurbatiort terms" "b: Il-p to this point the discussion
of the PA%I represents the second-order theory in the
Van Vleck perturbation treatment. Khen the barrier is
not suKciently high and/or the quantity pK is large
(as in the case of CH3COOH), "' the third- and fourth-
order perturbation terms should be taken into con-
sideration. The form of the effective Hamiltonian
given in Eq. (3-34) is very convenient for the calcula, —

tion of the higher-order terms. Also, the perturbation
coeflicients are the same as those given in Eq. (3-13b)
for a symmetric molecule. The higher-order perturba-
tion corrections can be calculated directly from the
matrix elements of p or by the labor-saving method
given in Sec. I. C. Herschbach"" has tabulated a num-
ber of these terms. The readers are directed to Sec. 5 for
more detail of this method. Kith the higher-order terms,

TABLE II. Low J energy splitting (A —E).

aEoo=o
61' 1p =AA +AB+g +g
~E„=oC+-', (~A+~B) —-'. (g +~-)

Q 2L2fJ (1)]2
+ —', (~A —~B)+(g —g ) ———

A —B
QE21 =AC+ (5/2) (aA +bB)—(3/2) (g++g ) + (k++4 )

Q 2L~& (1)j2
(3/2) (» —»)+3(gu —g.) ———

3 (A —B)
v here

I
Q*~-"'I &

I (~ —~) I

t~
[j [) In this equation the rotation constants A, B, C, are such

that A &B&C and they are not necessarily identical to A, .„
B,.„and C. .
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matrix elements of the form (Ki K&3) and (KiK&4)
are introduced and these can be treated in a manner
similar to Kivelson and Wilson)s treatment4' of the
centrifugal distortion problem.

(b) Sixfold potential energy term, V6"'" ".' So far we
have assumed that the potential function is sinusoidal
in e without rigorous justification. If the expansion of
the potential function in Eq. (2-1b) converges rapidly,
the V6 term can be treated as a perturbation. YVhen

this is done, the V6 contribution merely changes the
values of all the perturbation coeKcients zi„.(") in such
a way that its contribution cannot; be separated from
that of V3 without data from more than one t,orsional
state. In order to evaluate t.he V6 coe%cient, it is
necessary then to study the internal rotationa, l effects
in more than one torsional state. ii", ~i~i~ This V6 term
should be generally smaller than the threefold potential
by a factor ranging from ten to a thousand.

B. Internal Axis Method (IA31)

Since the treatment by the IAAl for the most general
type of molecule (no symmetry aside from that of the
CH& group) is algebraically very complicated, the dis-
cussion here is confined to those molecules which have
a planar framework. Papers by Pitzer and Gwinn, 84

Hecht and Dennison, " and Burkhard' discuss the
general type of asymmetric molecule by the IAhl.

1. Hamiltosziars and matrix elements. —In Sec. 2 three
difkrent forms of the Hamiltonian v ere derived. They
were given in Eqs. (2-26), (2-29), and (2-31). XVe are
now at liberty to use any one of these Hamilt. onia, ns to
solve for the energy levels. Let us first consider the
Hamiltonian (2-29).'-"' " Thi» Hamiltonia, n can be
divided as follows:

1t'= Ssx yy(0, 4&)e' Q(n), .(3-41)

where Q(a) is the solution of the torsional equation

L~p"+ V(o)]Q(~) =EQ(~). (3-42)

'ti]l $ Kilb ef att."calculated a V6 term but their approximation
is now realized to be inadequate because they ignored the third-
order correction in the evaluation of the V6 term from the split-
tings in the ground torsional states.

Ho ———,'(A +Bg")(I',"'+Pb"')+C,"I-',"'+F-p"+ V(u),
1(A B I/)(P I/2 P II2)+D lf(P IIP II+P II@ fl)

P ", P~", and P," are the components of the tota, l

angular momentum along the axes fixed in the frame-
work of the molecule (rather than the internal axes
which rotate with respect to both the framework and
the top), i.e. , the orientation of this axes system is
described by the Eulerian angles tt, C, and x (but not
)t'). Consequently, we choose the eigenfunctions of Ho
as the basis functions for constructing the energy
matrix. These functions are

Q(&) —P A zv&~(3m+0)a

Furthermore, it can be easily seen that

Kvtr & = —Kv—tr & )

+Kve=~ Kv-n.

(3-45)

(3-46)

Before deriving the matrix elements of H let us con-
sider the Hamiltonian'0 given in Eq. (2-31). This
Hamiltonian can be divided as follows:

Ho ———,'(A, +By")(P ''+Pg")+C-,"P "+Fp''+ V(n)-
Hg —', (A,—Bg"——)

X[(P," Pb") cos2p—n —(P,'Pq'+ Pq'P, ') sin2pn]

+D6,"[(pq'p, +P,'Pq') cospn

+ (p, 'P, '+P,'I', ') »inpn. ]. (3-47)

Here P ', Pf, ', and P,' are components of the total
angular momentum along the internal rotational axes.
The orientation of this axes system is described by the
Eulerian angles 04g' where

x'=x+p,
[see Eq. (2-28)]. The basis functions a,gain are chosen
to diagonalize Ho. They are

P =Serr qr (0)@)o 'x x M (n ) (3-48)

where M(u') is the solution of the torsional equation
(3-44b) which must satisfy the boundary conditions
Lsee Eq. (3-20) Sec. I. 8]. Furthermore, we can see
that the basis functions given in Eqs. (3-41) and (3-48)
are indeed identical as

&iA gQ(&) o k:y'& Ii pAaQ(o) &xxy'M(~i)—

The energy matrix can then be constructed from the
Hamiltonian Eq. (2-29) with Eq. (3-41) as the basis
functions or from Eqs. (2-31) and (3-48). The results
of these two schemes are identical.

The matrix elements of the Hamiltonian'-'" are as
follows:

(K&'o
i Hi K&'o) = —,

' (A.+Ba )LJ(I+1)—K']
+C,"K'+Err„„(3-49a)

Since P," is diagonal in II&, using Eq. (2-28) we can
write

p'= p pP—,"= (1/i) (it/itn) gg, „, —pK, (3-43)

which can then be substituted into Eq. (3-42) with the
result

P'( i(d—/«) pK—)'+ V(~)]Q(~) =EQ(~) (3-44a)
or

[ F(d2—/da' )+V-(a)]M (a) =EM (n), (3-44b)

where M(a) is e "x Q(u). Equations (3-44) are just
the same as Eqs. (3-16) and (3-24) only with the scale
change in p and F Lace Eq. (2-30)). Analogous to the
function P(n) in Eq. (3-25) the eigenfunction Q(n) can
be expanded in a Fourier series as
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If the Hamiltonian form given in Eq. (2-26) were!,o
be used, '" then the scale factors p and I' would be
those corresponding to the symmetric molecule, i.e.,
p=I /I, „and F= (f12/2)[I„/I (I,„—I )]. 1Tnfortu-

nately, there are more matrix elements (those linear in

p') which needed to be calculated and generally this
formulation has no advantage over the other two. As a
result we do not discuss it further.

2. Irltegrals involvi12g the torsional functions " In. —
order to obtain the energy levels it is necessary first to
compute the integrals given in Eq. (3-50). Evaluation
of such integrals is generally quite complicated because
of the difhculty involved in the determination of the
torsional functions by the procedure of continued frac-
tions. Fortunately, for the case of high barriers (s& 20),
one may use the harmonic oscillator approximation for
the torsional funct. ions and the integrals can be ob-
tained in a much simpler way.

At the limit of infinite barrier, I~, ~" approaches
zero for v/v' and unity for v=v'. It is convenient then
to introduce the terms

t!K+1,na = 1 QKvg (CI)QK+l, un(C2)&l&y

"o

p 21I

tlE~2 „n " = 1
J QKn~ (I2)QKy2, nn(R)dc2

C

(3-51)

By using the harmonic oscillator approximation for the
torsional wave function Hecht and Dennison" obtained
the following formulas for the ground torsional state
v=0:

(Evo
i
II

i K+1, v'a) = Do, ,
"(K+2)-

X [I (1+1)—A (K+1)]'IK,1,„.""", (3-49b)

(Ev~~a~E+2, v'. )
= ——,

' (A.—Bo")[J(J+1)—E(E+1)]*'
X [J(J+1)—(If+1)(K+2)]lIK+2,„.K"', (3-49c)

where
t, ill

QK, .*(o)QK'"(~)da **** (3-50)
0

portant property of thc integrals in Eq. (3-50) is their
relative independence of the quantum numbers E and
o-. Furthermore, unlike the case of PA%I the matrix
elements ofI'-diagonal in v are usually very small and
their contributions to the energy are rather unimportant.

3. Diagonalisatiolv of the energy matrix Th.—e di-

agonalization of those elements off-diagonal in v can
be accomplished by a Van Vleck transformation. After
this transformation the energy matrix takes on a block
structure in which each block corresponds to a certain
value of J with the dimensions (2J+1)X (2J+1).Both
(K

~
K~1) and (E

~
K&2) elements are present in these

submatrices because the coordinate axes are not prin-
cipal axes. One then applies a transformation S (=S1S2)
which diagonalizes the limiting rigid rotor Hamiltonian.
The off-diagonal elements of the transformed Hamil-
tonian now consist of only the terms containing the
integrals I~ „.~" and E~.„.Examples of the trans-
formed Hamiltonian have been given by Hecht and
Dennison for J=1.)t'ff The energy levels can then be
obtained by the usual perturbation method (or a
modified procedure may be recommended in case near
degeneracy occurs). One may, of course, apply a trans-
formation S' to H to bring it directly into the diagonal
form. The advantage of using S instead of S' is that the
former transformation matrix can be set down in a
systematic fashion.

I.et S be written as S~S2 where S~ transforms the co-
ordinate axes to the principal axes system and S& is
the matrix which diagonalizes the asymmetric rigid-
rotor Hamiltonian (referred to principal axes) in the
symmetric top representation. The elements of S2 can
be determined from the asymmetric rotor energy levels

by well-known techniques. "The elements of S& can be
written directly from the representation of the rota-
tional group as given by Wigner'" as

llIKn QKD (p)KpK4'JK ZK(S1)EnIIWIEr (3 53)

where E„and E refer to the quantum number along
the s principal axis and the internal axis, respectively,
and

DI (p) Ic„Ic=p( —1)"

where

&K+1,o '= f(p/3),

gE+2.o. "=f(2p/3)~

1 1
f(x) = x'+—x'(1-x"-)+

Qs 2s

(3-52) [(I+K)!(J—E) '(I+En)!(J Kv)!]'—
X

(J K„rl)!(J+K rl)!22!—(22+K—„E)!— —

( p) 2I+K Kp 2n ( p) 2n+Kn K—— —
(3-54)

Expressions for I» „,E"(vWv') have also been derived
by Hecht and Dennison from the harmonic oscillator
approximation [see Eq. (28) of reference 20]. An im-

****Hecht and Dennison' chose the torsional function in the
form of

(~) —g2 (1—P ) I2. aQE (~)
which leads to the same integrals IK, ~'~ in different forms. The
form given above is the same as Itoh's. "

The summation is from the larger of 0 or (K—Kv) to
the smaller of (J—K) or (J E„).The angle P —is the
angle between the vector y and s principal axis, i.e.,

ttf'f See p. 38 of reference 20. In these matrices the elements
nondiagonal in v have been neglected because they do not con-
tribute to the splittings of the A and E~ levels but only cause a
shift in frequencies.
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the angle between the c' and the s axis:

sinP = p„/p.

For small angles of P Eq. (3-54) can be expanded (to
the order of it') with the results":

p2

(Sz)KK=1 ——LJ(J+1)—E'],
4

(Sl)K,K+1 + (Sl)K+1,K L(J +)(I+It+1)]
2 (3-55)

p2

(S,) z, z
——(Sz)z, ,———J(J+1),

8

4. Ezzergy levels azzd spectra. Since the—energy matrix
given in Eq. (3-49) is diagonal in o, one may expect to
have three series of energy levels corresponding to a =0,
1, —1. From Eq. (3-46) the energy submatrices for
a-=1 and a-= —1 are identical, therefore the energy
levels for a-=&1 are doubly degenerate. The eigen-
functions for a.=~1 correspond to the symmetry
species E of the C3 group, and the levels with a=O
have the symmetry properties of the A species. Since v

is nearly a good quantum number (the elements off-
diagonal in v are small), a torsional level is labeled by o

and a-, and associated with each torsional level one has a
set of rotational energy levels characterized by the
quantum numbers J, E, M.

The selection rules Do=0 (derived in Sec. 6) predict
two lines for each rotational transition associated with
the ground torsional state x=0 for relatively high
barriers, one from the nondegenerate torsional levels
a-=O, and one from a.=&1. Figure 4 shows two pairs
of such transitions arising from the two E doublets of
a slightly asymmetric top. The splitting of the doublets
depends mainly on the tunneling, and the separation
between the two pairs of doublets depends on the asym-
metry. When the splitting and the separation become
comparable in magnitude a mixing of states occurs
such that "forbidden lines" can now occur. This is
discussed in Sec. 5.

The doublet structure in the microwave spectra is
characteristic of the threefold high barrier case, and
when the splitting is not too large, the doublets can
easily be recognized because the Stark eGect is virtually
identical for the two lines. Since the 8 s and the in-
tegrals I are to a good approximation independent of E
and a-, the difference between the two corresponding
eigenvalues of the degenerate and nondegenerate sub-
matrices for a given J arise only from the terms con-
taining I ~„.. Therefore, the splittings of the doublets
in the microwave spectrum depend to the first order
only on E',I-„,but not 6z', ' and Iz „~""which cause
only a shifting in the positions of the lines. The e6ect

of the 8's and I's can be included, "but the relations are
rather complicated. After the transformation S, the re-
sulting Hamiltonian contains some elements which
carry the 5's as coefficients and have the same structure
as the ordinary rigid asymmetric rotor matrix elements. '
As a result the 5's add a correction to the rotational
constants which is the same for the degenerate and non-
degenerate levels.

Since the energy levels (except E=O, o=O) are all
degenerate for symmetric tops with high barriers, it
can be seen that the presence of the asymmetry splits
some of these degenerate levels so that the levels with
a.=0 are now nondegenerate. The splitting of the levels
by asymmetry can be seen in the following way: to
split a pair of degenerate levels of the unperturbed
system (the symmetric molecule), say E=2, o =0, and
E= —2, a-=O, it is necessary that the perturbation
(the asymmetry) offers matrix elements connecting
these two levels directly or through high-order terms.
In the present case these two levels do indeed interact
with each other through the asymmetry terms as

E=2, a-=0&-+E=O, a. =O+-+E= —2, a =0.
On the other hand, since the asymmetry terms are
diagonal in a-, the pairs of levels with quantum number
E, a =1, and —E, a = —1 which are degenerate in the
symmetric top case, can never connect each other under
any high-order interaction. Consequently all the levels
with a.= &1 rema, in doubly degenerate. This is shown
in Fig. 4 where the thickness of the levels was drawn
to illustrate the degeneracy. Each J, E level has a
weight of six from the two E levels and the three in-
ternal rotor levels.

At the limit of infinitely high barriers, the 6 s and
I's approach zero and the energy matrix in Eq. (3-49)
reduces to that of a rigid rotor.

5. Splitting of the hizzdered rotation dolblets The.—
splittings of doublets associated with the ground tor-
sional level are utilized to determine the barrier height.
Hecht and Dennison" have given expressions for the
differences between the A and E component of a rota-
tional state in the ground torsional level up to J=3.
Kith these formulas the barrier can be evaluated from
the splittings of the low J rotational lines. For higher J
levels the splitting of the A and E levels can be calcu-
lated as follows: A transformation S~S2' is applied to
the Hamiltonian where Si corresponds to a rotation of
the axes as defined previously and S2' is the matrix
which changes the basis vectors from the symmetric
top wave function to the Wang symmetric and anti-
symmetric combinations. Note that 52 is difI'erent from
S2. I,et the transformed Hamiltonian be written as
Hg+H~+H~~ where H~ is the rotational part, Hz is
the internal rotation part dependent on I'~... and H~g
is the internal rotation part dependent. on the integrals
which, as pointed out before, have little effect on the
split. tings of the internal rotation doublets. For slightly
asymmetric tops the splittings are caused primarily by
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the difference in the diagonal elements of IIz between
the A and E levels provided the asymmetry splitting is
not too small.

Approximate formulas for the diagonal elements in
the BT were derived by Lide and Mann" for the case of
small values of P. These formulas for the splitting of
the energy levels follow directly from Eq. (3-55) and
are given in Kq. (3-56):

For the K=1 levels only, the asymmetry and the o6-
diagonal elements of II& compete directly with one
another for the shifting of the levels. If the two effects
are of the same order of magnitude, then the correction
can be determined from the

(4bK +bAs ) '. (3-60)

~ELK= &K+ (P'/4) L(J+E)(J E+—1)I» K i
—

2L J (J+1)—E']6K
+ (J E)(J—+X+1)aK+i],

AEgi ——hi+ (P'/4) P(J—1)(1+2) (Ap —6 i)]»

(J+Ei+E+i 'even), (3-56)

AEsi= I»i+ (P'/4)L2J(J+1)ho
—(3J'+3J—2)hi+ (J—1)(I+2)hp],

(J+E i+E».i odd),

AEgp ——hp+ (P'/2) J(J+1)(Ai —Ap),

where
/2'

IAK p(EKsl+EKv 1)+EKvp —+fFai cosl PE

]2~= 6p cosl —pE I, (3-57a)(3 )
IAp=+pPFai=+(9/4)FI»b. f+f+ (3-57b)

In general the o6-diagonal elements of IJ~ should also
be considered for the E levels especially when the asym-
metry splitting is small. They connect the states corre-
sponding to the symmetric and antisymmetric com-
bination of the symmetric top functions and have the
form of

(X+ I
H

I

X ) = bK ——+ (I~ K„,, F. K„,)— —
2

u (27r=+—ao sin
l

pE I, (3-5g)—
E3

where
a= p*/~= (1—P)'*

Both the quantities Az and 8z can be approximated by
the trigonometric form only when the barrier is rela-
tively high such that Ez„, can be approximated ac-
curately by the Fourier coe%cients ap and a~ with the
neglect of the higher terms. The term bz is equivalent
to the linear terms in P, in the PAN and the term A~
is equivalent to the shift in the rotational constants,
i.e., C,p

—C,g.

The asymmetry term is of the form

bA,„=——,
' (A —8)P(J—E) (J—E'—1)

X (J+E+1)(J+X+2)]». (3-59)

ffff Here, 50 is the negative of 60 in reference 20 because me
have taken the A level minus the E level. Here ~b is the diGerence
between the values of b t see Eq. (3-4)j for the 3 and E sublevels
of a torsional state.

Here 6&,~' is the asymmetry splitting and not the asym-
metry term (note that for E=1, t'hey are the same).
If b~&&8~,~', the suitable zeroth-order basis functions
are no longer the Wang functions but rather the sym-
metric rotor functions. After the transformation Sj,
the energy matrix can then be diagonalized exactly or
by perturbation methods. If, on the other hand,

y &8z' then the splitting due to the oft-diagonal
elements of Hz must be calculated by the proper asym-
metric rotor wave functions, i.e., the eR'ects of P' and
higher-order terms should be considered. Lide and
Mann" have derived expressions to the order P' for
the frequencies of the parallel transition, J+1,E+—J,E.

6. General case.—The most general type of molecules,
where the internal rotor is arbitrarily located with re-
spect to the principal axes, has been considered by
Pitzer and Gwinn, ~ Hecht and Dennison, ~ and Burk-
hard. ' The method follows in an analogous manner,
only with added complications. As an aid in the com-
putation it is usually easier to determine the molecular
parameters such as p and r by the PAM and then con-
vert them to the IAM.

7. Intermediate barr~er case.—If the barrier hin-
dering internal rotation becomes too low for the high
barrier approximation to be valid, the matrix elements
oB-diagonal in v would have appreciable e6ect on the
energy levels. The whole matrix can then be diagonal-
ized either exactly or approximately by using modiied
perturbation procedure.

Methyl alcohol, methyl amine, and methyl mercaptan
are examples of molecules with intermediate barriers,
i.e., low s values. Considerable work has been done on
these molecules and this is discussed in Sec. 8. The
low s values in these molecules are caused in part by
the small reduced moment of the methyl group. With
the light asymmetric frames, these molecules have only
a slight symmetry. All the oG-diagonal matrix elements
due to asymmetry and internal rotation are small and
their effect can be calculated by perturbation theory.
For the main Q branch series (AJ=O, DE=&1) re-
ported, the transition positions are determined essen-
tially by the limiting symmetric top rotational transi-
tion plus the internal rotational transition. The off-
diagonal elements contribute small terms which can be
expanded in a power series of J(J+1).The coefficients
of these power series are the perturbation correction
terms including centrifugal distortion. Usually some
parallel transitions are needed in addition to aid in the
structural determination.

Should the asymmetry be large, the solution of the
low reduced barrier problem is quite diAicult. Kith the
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matrix elements given in Eq. (3-49) a diagonalization
of the low J energy matrices could be made. The (i

~

e')

connections probably could be treated to suScient
accuracy by perturbation calculations. Evaluation oi
the torsional functions needed for calculating the matrix
elements is discussed in Appendix 2.

4. LOW BARRIER APPKOXIMATIONS

The barriers of most molecules determined from the
microwave spectra are in the category of a "high
barrier, " i.e., of the order of 0.7—5.0 kcal. Here the
"high barrier approximation" (Sec. 3) can be used, in
which both a rotational and a torsional equation are
solved, and any interaction removed by a transforma-
tion. In the low barrier approximation the free internal
rotational problem is solved exactly and then the
barrier is added as a perturbation. So far two molecules
have been treated by t.his method; they are nitro-
methane (CH3NO;)'"" '"' and methyl difluoroboron

(CHgBF2). '4 "
The possession of a sixfold symmetry in these two

molecules is believed to be the cause for the low value
of the barrier. Consider the case of CH3N02. The inter-
action of a single oxygen with the methyl group gives
rise to a barrier to internal rotation in the form

-', V3(1—cos3n)+ —.
', V~(1 —cos6n)+ —,

' V9(1—cos9n)+

The second oxygen contributes another potential bar-
rier which is 180' out of phase with the one from the
first oxygen. The potential due to both oxygen atoms
is then

Vo(1 —cos6n)+ Vi (1—cos12n)+

The present discussion is therefore confined primarily
to molecules with sixfold symmetry. The treatment,
given can, in principle, be extended to the more general
case though the actual analysis might become quite
complicated.

I. Free Rotation

.4. Symmetric Molecules

For symmetric molecules the difference between the
solution by the principal axes method and the internal
axis method is not as distinct as in the high barrier
problems because the torsional equation with its dif-
ferent boundary conditions is now eliminated.

In the PARI, the Hamiltonian is'~'

FI= A, (P,'+P„')+C,P +I'p' 2C,pP„(4-1)-—
where

But this is just Eq. (2-9) in the IAM. 's The eigenfunc-
tions of these two equations are

&=AJ(J+1)+{C, A)K—2+Fm2 2C,—Km, (4-5)

F=AJ(J+1)+(C A)K'—+FLm (I /I—.)K]-". (4-6)

However, if the IAM Hamiltonian Eq. (2-20) is
used in which y' and o.

' are the variables, then the eigen-
functions are

5JEsI(~ p)e (4-7)

The choice of m' is governed by the boundary condi-
tions, i.e., the wave function must be invariant under
t.he transformation

x& ~xi+ 2'», q, ~ x,+2s ii, . (4-8)

With Eq. (2-15) and following the same method as
used in Eq. (3-20) we obtain the result

m'=l —(I /I, )K, (4-9)

where l is an integer. Consequently the eigenvalues
given in Eq. (4-10) are obtained:

I'=A J(J+1)+(C A)K2+F// —I /I, )K]' —(4-10)

Clearly, if we identify l with m, Eq. (4-10) is identical
to Eq. (4-6).

The selection rules for the microwave spectra can
be stated as AJ=&1, IsIC=O, km=0 (see Sec. 6) (or
d, i =0). The frequencies of the rotational transitions are

vs+&~g = 2.4 (J+1), (4-11)

which are exactly the same as those for a rigid sym-
metrical rotor. Therefore, the effect of completely free
rotation in symmetric tops cannot be detected from the
microwave spectra.

8. Asymmetric Molecules (CH3NO2 type)

If the methyl group of CH~N02 were allowed to exe-
cute free rotation (zero hindering barrier), the micro-
wave spectrum would be considerably different from a
rigid molecule. The Hamiltonian may be split into that
of a symmetric internal rotor plus the asymmetry
term, i.e. ,

H= IIO+HI,

sÃkl (0 w)eiKxei»sa (4-4)

where m is an integer. The eigenvalues corresponding
to Eq. (4-1) and Eq. (4-3) are then, respectively,

A =A2/2I =k'/2Iy: '1

C,=A'/[2(I, —I )],
(4-2a) where

(4-2b)

F=A2/2rI =O'-I,/$2I (I, I )]. (4-2c)—Ho i~ (A+8) (P;"+P ')——
+C,P,2+Fp' 2C.pP. , (4-12a)—

This equation ca,n be rearranged to Eq. (4-3), II&= -', (A B)(P," P„')— - — (4-12b)

H=A(P '+P„')+CP,'+F(p (I /I, )P,)'. (4-3)—By using the basis functions Eq. (4-4) which diagonal-
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ize ISO, we obtain the matrix elements

(JKm~ H
~
JEm) = ', (A-+8)J(J+1)

+[C. !, (A—+B)]E''+I'-m-"2C—,Km,

(JEm
~

H
~
J, E+2, m)
= ——,

' (A —8)[J(J+1)—E(K&1)]l
X[J(J+1)—(Ea1)(KW2)]l. (4-13)

The Hamiltonian is diagonal in J, m, and M and the
energy matrix consists of submatrices of the order 2J+1
for a given set of J, m, and M. As different values of E
are connected only in steps of two by the o8-diagonal
elements, each of the submatrices can be factored into

even and odd E blocks. When m is equal to zero, the
secular equation degenerates into one identical to that
of a rigid asymmetric rotor with the exception that C,
is the rotational constant of the framework alone rather
than the entire molecule. For m/0, the Wang trans-
formation does not lead to further factoring of the

secular equation because of the presence of the elements

linear in E. As examples, the secular determinant with

odd values of K for J= 1 and J= 2 are given below. The
terms independent of E in the diagonal elements have

been omitted since they can be regarded as additive

constants for a given J and m.

! [C,——,'(A+8)]—2mC. —)J=1 —k(-1 —8)
—-,'(A —8) =0

[C,——,
' (A+8)]+2mC, —X

(4-14)

[C.——,
' (A+8)]—2mC. —X

J=2 ——,
' (A —8)

,' (A —8—)—
=0

[C,——,
' (A+8)]+2mC. —)

(4-13)

For each re there exists an identical secular equation
corresponding to —m and hence the energy levels (with
m&0) are all doubly degenerate. The selection rules
(see Sec. 6) for dipole radiation are identical to those
of rigid asymmetric tops with the additional restriction
of des=0. If the dipole moment is along the s axis, the
parity of E cannot change.

From the secular equations (4-14) and (4-15) the
frequencies of the J=2 ~ 1 odd K, parallel transitions

(BE=0) are given by

E=-2(A+8)J(J+1)
+[C, ', (A+8)]—E—'+Fm' 2C,Em—

(A —8)'
+

64([C,—-', (A+8)](E—1)—C,m)

X[J'—(E 1)'][(J+1—)'—(E 1)']—
(A —8)'

64([C,—-', (A+8)](K+1)+C,m)

X[J'—(K+1)'][(J+1)'—(K+1)']+ (4-17)
= 2 (A+8) &([4m''+ (9/4) (A —8)']'*

[4,C,+, (A 8),],) (416) The t«nsitionsofthetypehJ=&1, DE=0,gghm=0
again give rise to a band-like structure for each given J.

For each value of m, two lines are predicted which are
symmetrically spaced with respect to the midfrequency
of 2(A+8). As m increases, the separation between the

pair becomes smaller and finally the transitions con-

verge to the band head of v=2(A+8). This effect has
been observed on CH3NO2 by Tannenbaum, Myers,
and Gwinn' ' and on CH~BF2 by Naylor and
Wilson. "" The intensities of the higher members
would tend to decrease on account of the unfavorable
Boltzmann factors.

The other J=2 ~ 1 transition which is even in E,
can be treated in a similar manner. As Naylor and
Wilson'4 "have pointed out, the J= 1, E=O eigenvalue
is zero and the J=2, E=O eigenvalue is positive, de-
creasing with increasing m. This group of lines therefore
converge toward 2(A+8) from the high-frequency side
as m increases. For large values of m the energy matrix
Eq. (4-13) may be solved by second-order perturbation
theory which leads to

II. A Low Sixfold Barrier

The sixfold potential barrier introduces to the Hamil-
tonian an additional term of the form

V(n) = (V~(2) (1—cos6n)
= (V6(4)(2 —e" —e " ). (4-18)

The first term -', V6 merely represents a common addi-
tive constant and can be safely dropped. The energy
matrix analogous to Eq. (4-13) is

(JE tHm~ JKm) = ,'(A/8) J(J+1)-
+[C. ,'(A+8)]E'-+Fm2 2—m—C,E-

(JKm~H~ J, K&2, m)= —4(A B)([J(J+1)—
E(K&1)][J(J+1—)—(E&1)(E&2)])'* (4-19)

(JEm
~

H
~
JE, m+ 6) = ——,

' V6.

When V6 is small, the nondiagonality in m may be re-

$)$$ In the present case E is nearly a good quantum number.
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The two resulting matrices aremoved by a Van Vleck transformation. '4 To the second-
order approximation the matrix elements reduce to
those given in Kq. (4-13) with the additional diagonal
term

a' b+4U6
(4-23a)

-b+4 V6

andV6'-2

192[C,K—F(m+3)] 192[C,K—F (m —3)] b —4V6
(4-23b)

b —-', U6FV'
(4-20)

32[(C,K Fm—) ' 9F'—] The double degeneracy discussed in the previous para-
graph and in the free-rotor case is now split by the
barrier when ~m~ =3. In fact the energy levels corre-
sponding to m equal to whole multiple of three are all
nondegenerate (see Fig. 2). The higher the multiple of
three, the higher the order of perturbation required to
demonstrate the splitting. The method for calculating
these splittings is very similar to that, used for the
) doubling in diatomic molecules.

There are now four lines for the J= 2 ~ 1 transition
with odd K and ~m~ =3. These four lines appear as
two pairs, both symmetrically spaced about the band
head v=2(A+B) and the splittings of these two pairs
of lines are extremely sensitive to the barrier height.
In CH3BF2 the splitting of one of these pairs, which
would be practically coincident at the limit of zero
barrier, amounts to about 4000 Mc, for a barrier of 14
cal/mole. These splittings are what make it possible to
determine the barrier height with a high degree of
accuracy from the microwave spectra.

The selection rules are given approximately by

The submatrices for m and —m are still identical and
the energy levels remain doubly degenerate. Calcula-
tions show that the two correction terms from the Van
Vleck transformation in Kq. (4-20) have very little
eGect on the frequency provided —,

' V,&&F. The spectrum
is therefore almost identical to that for free rotation.
The validity of Kq. (4-20) depends, of course, on the
relative magnitude of V6 and F. When the potential
barrier becomes larger it is necessary to consider the
third- and fourth-order terms from the Van Vleck
transformation, but it has been indicated" that even
when the eGect of the higher terms may be quite
appreciable as far as the positions of the energy levels
are concerned, the eGect on the frequency may be
negligible.

The foregoing treatment is not directly applicable
to the ~m~ =3 levels because a near degeneracy exists
and it becomes necessary to consider the m= —3 and
m=3 block as a single secular equation. The matrix
elements connecting 3 with 9 and —3 with —9 can,
however, still be treated by the Van Vleck procedure.
An example is furnished by the block corresponding to
J= 1, K odd.

Exact selection rules may be obtained by the group
theoretical treatment (Sec. 6) or by an explicit evalua-
tion of the transition moments.

In principle three sets of lines should be observed.
The first set, which has the structure of the ordinary
rigid asymmetric top spectrum, corresponds to m=0.
Analysis of these lines yields the two principal moments
of inertia perpendicular to the axis connecting the in-
ternally rotating groups (the C—E or C Bbond)

~~ ~~ (( ~~—
and also the moment of inertia of the framework about
this axis. The second set consists of all the lines with
mWO and m/3. A band structure is observed if a
sufhcient number of high m transitions is detected.
The ~m~ =3 lines constitute the third set and the
splittings of these lines are used to determine the
barrier height accurately.

mK (—3, —1) (—3, 1)

(—3, —1) a b

(—3 +1) b a'

(3, —1) —-', V6 0
(3, 1) 0 —~U6

(3, —1)
——,V61

0
a'
b

(3, 1)
0

——,
' V, , (4-21)
b

where

a= 2 (A+B)+C,+9F 6C, —
192 (6F—C)

V6'-'
a'= ,' (A+B)+C,+9F+6—C,+

192(6F+C)

b= ——', (A —B). III. A Low Threefold Barrier

The problem of a low threefold potential barrier can
be handled in essentially the same fashion. The paper
by Wilson, Lin, and I ide"' gives a treatment for a
general lY-fold barrier. Here, however, there are no

~j ~~ ( ~)
Nuclear spin syInmetry {see Sec. 6) in CH3NO2 allows

only those energy levels with X—m even so that the second set is
also needed to determine the moments of inertia.

The symmetry about the antidiagonal allows this
matrix to be factored through a transformation which
is equivalent to choosing wave functions nf the type

(4-22)

I NTERiN AL ROTATIOX AX D )I ICROEVA VE SPEC I ROSCOPY
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degenerate levels like the
~
m

~

=3 for the sixfold barrier
which are connected by matrix elements of the barrier.
Therefore, the barrier height cannot be as accurately de-
termined. Recently CH3C=—CCH2Cl has been studied"
and an estimate of the barrier height has been given.

S. CALCULATIONS OF BARRIER HEIGHTS

After the rather lengthy discussions of the high
barrier approximation and the low barrier approxima-
tion for the IAM and PARI, the casual reader may be a
little perplexed as to when the approximations are
valid and which representation to use. Consequently,
it seems desirable to give a few suggestions in regard
to the analyses of microwave spectra, characteristics of
the spectra, and methods of calculation.

I. Analyses of Microwave Spectra

As pointed out previously, the eGects of rigid internal
rotation are not observed in a symmetric top molecule.
As a result, all the applications of internal rotational
theory have been done on asymmetric molecules. The
methods for determining the barrier heights for the
symmetric top molecules from the microwave spectra
are discussed in Sec. 7.

For convenience the eGect of internal rotation in an
asymmetric molecule can be subdivided into the follow-
ing groups according to the magnitude of the parameter
s as defined in Eqs. (3-4):

(1) The pseudo rigid -rotor case (s) 30).—With a
relatively high barrier and large asymmetry splittings,

i.e., the asymmetry splittings are larger than the in-
ternal rotation splittings, both members of a transition
follow a rigid-rotor spectrum. This is especially true of
the low E energy levels with the possible exception of
the E= 1 levels.

The splittings due to the internal torsion may be
ascribed to the Az term PEqs. (3-57)7 in the IAM or
the AW term [cf. Eq. (3-38)7 in the PAM. Acetyl
fluoride~ is an example of this class of molecules.

For the ground torsional state, the frequencies of the
A transitions are generally somewhat higher than those
of the corresponding lines of the rigid molecule while
the E transitions usually have lower frequencies. The
shift of the A line from the "unperturbed position" is
approximately twice that of the E line. This follows
from the fact that according to Eqs. (3-57) and (3-28),
2(EIc„&+I:x„-,) is approximately equal to 2EKyp or--
from Eq. (3-33) and Table II, roo&&2& is very close to
—~wpp( ). AIany exceptions to this rule can occur,
especially for the E= 1 energy levels, but generally it is
a useful hrst approximation.

(Z) A departure of tlute F~. levels from a pseudo rigid-
rotor pattern(15(s. (30) The b.x—term in the IAM
or the zpI(" term in the PAM causes the E energy levels
to depart from a rigid-rotor pattern and for a given E
the two DE=0 transitions tend toward one another so
that the spectrum becomes similar to that of a slightly
asymmetric top. In other words, the internal rotation
cancels out part of the asymmetry. This b~ term is
especially important for the E= 1 energy levels because
both the asymmetry and this "nonrigid-rotor term"

"8 4' '2~ s lsIO, S 25I I, l2 2 2 I2, I I IS,IS I6, I4

L

I.O M%ec
TTI'IG. 5. High E transitions in i)ropy lene oxide." 'I'lie takeo 1'. lines are sul&eriinposed on the left of the first transition but split in the

second transition as A. increases. In the third transit. ion the 17 line is now under the .3 line and finally comes out the other side on the
last transition.
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connect the same pair of levels. If either the asymmetry
term or the internal rotation term dominates to a large
degree, the other can be treated as a perturbation. "If
the two terms are of the same order of magnitude, then
a 2X2 matrix must be solved (cf. Sec. V).

(3) High X energy levels T.—he high E energy levels
of an asymmetric rotor are nearly degenerate even for
very large values of asymmetry, so the internal rota-
tional splittings often dominate the asymmetry split-
tings. These high J, high E energy levels are very
similar to symmetric rotor levels except for a shift due
to the asymmetry. For the parallel type transitions
(DE=0) very little splittings are observed, but for
the perpendicular transitions (6K=&1) a triplet is
observed consisting of an A symmetry line and two E
symmetry lines. This is explained in Sec. 6 II. B.
Propylene oxide" is an example of this group and some
of these triplets are shown in Fig. 5.

(4) Intermediate barrier heights (s(15).—When the
internal rotational splittings are of the order of the
spacings between diGerent rota, tional levels, then the
various approximations used in the high barrier case
are not generally valid. This is true especially for the
perpendicular transitions. Consequently, a more de-
tailed calculation is needed. The IAM is usually recom-
mended for the intermediate barrier problem, espe-
cially for the slightly asymmetric molecules, e.g. , methyl
alcohol. As a guide to the first analysis, the low J
parallel transitions should be used to obtain the ap-
proximate barrier height and molecular structure since
these lines are relatively barrier insensitive. A more
detailed analysis of the perpendicular transitions is then
made to determine the barrier height more accurately.
For molecules with large asymmetry (such as acetic
acid"') many times the PAM is more convenient.

(5) Iow barrier heights (s(Z).—For barrier heights
in this region the low barrier approximation given in
Sec. 4 is recommended. A considerable number of lines
will be observed with all the possible m values. Naturally
the Boltzmann factor eventually decreases the intensity
of the high ns lines.

Generally, the m=0 lines should be analyzed first,
followed by the low m (except

~
m~ =3) transitions which

are relatively barrier insensitive. Then an accurate
barrier height can be obtained from the

~
m

~

=3 levels
which are widely split by the sixfold potential energy
term.

Finally, in the analysis of the spectra, regardless of
the s values, the choice of the axis of quantization is
gauged by the axis of internal rotation in both the IAM
and PAP'I. This follows directly for the IAAI. In the
PAM the principal axes closest to the top axes are
used as the s' axes even if this does not conform to the
best choice fair the solution of asymmetric rotor energy
levels. 4'

—IOO

(b)
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Fio 6 4 rotational hne in the ground state and excited vibra
tional (or torsional) states. (a) The rotational lines of the ground
state and first two excited vibrational levels (or torsional levels
without internal rotational splitting). (b) The same pattern in-
cluding internal rotational splitting into the A and E lines. The
observed spectrum is from propvlene oxide. '7

EI. General Characteristic of the Spectra

While the most intense part of the spectrum for
molecules wit. h a relatively high barrier arises from the
transitions in the ground torsional state, the rotational
transitions in the excited torsional states are usually
observable. For example, at room temperature the in-
tensities of the spectral lines from the first excited state
could be reduced by a factor of two or three and those
from the second excited states by a factor of about ten.
These weaker lines (known as satellites) are shifted
from the main line associated with the ground torsional
state because of the inhuence of the vibration of the
molecule. This total eGect is taken into account by
using efI'ective rotational constants 8, which are related
to the actual rotational constants 8, as 8;=8,—Z;
)& (r,+-', )a;. The splittings between the A and F.
satellite lines in the "heavy" molecules are, however,
rather insensitive to the eGect of molecular vibrations
and, to a first approximation, are caused by the internal
rotation only. The general formulas for the A and Ji
splittings developed in Sec. 3 are applicable to the
rotational lines in the excited torsional states provided
that such torsional levels are far below the top of the
potential barrier. As the internal rotation splittings be-
come magnified in the excited torsional states, the po-
tential barrier many times can be determined from the
splittings of the satellites. " In propylene oxide'7 '" the
same barrier can account for the splittings of the rota-
tional lines in the three lowest torsional levels (see
Fig. 6). In the lighter molecules, such as methyl alcohol
and methyl silane, 4' the splittings of the sa.tellite rota-
tional lines cannot be completely ascribed to the in-
ternal rotation. This is because the eAects of molecular
vibrations contribute appreciably to the splittings as
well as the frequency shifts of the rotational lines in the
excited states.

In the identification of microwave transitions, a rigid
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model of the molecule can be used in order to first
locate the approximate positions of the lines. The
Stark eGect can be used in a similar manner as in a
rigid asymmetric molecule. The A symmetry levels can
be thought of as those of a rigid molecule possessing
torsional oscillations. The J. symmetry levels, on the
other hand, can exhibit some first-order Stark eGect
(see Sec. III), but this is usually quite small for ca.ses
of high barrier and large asymmetry. However, in other
cases the E transition can be distinguished from the A

transition by the Stark eGect. The nuclear spin weights
can also aid in the identification. For the normal methyl
group, the intensity ratio of A and E is 1:1; but in a
deuterated methyl group, the ratio is 11:16with the I:.
level stronger" (see Sec. 6).

With the identification of the various transitions,
approximate unperturbed rotational constants can be
determined by using either the average position of the
A and E doublet or else two-thirds the doublet separa-
tion from the A line. The latter method is a better
approximation except for the E=1 levels. With the
approximate rotational constants one can determine the
structure of the molecule which along with the .4-F'

splittings may be used to obtain the barrier height.
Successive iterations lead to more accurate results.

IV. High Barrier Case

In the symmetric top case, the energy associated
with the internal rotation for the IAM is expanded in
a Fourier series LEq. (3-27)] while for the PAM it is
expanded in a power series LEq. (3-13)]as

27r
I'», ~=F ag+ai cos—(pK —0')

3
4'

+a2 cos—(pK —0.)+
3

(5-4)

ever, for the case of ~m~ =3, the transformation Lsee

Eq. (4-22)] eliminates the diagonal elements of cos8.
The resulting oG-diagonal elements then give rise to a
second-order Stark eGect with a large Stark coefficient
analogous to the case of near degeneracy in rigid asym-
metric tops. This serves as a means for identifying the

When the barrier becomes higher, the asymmetry has
a larger influence. The coefficients a and b in Eq. (5-1)
depend on bi; and b»„' (defined in Sec. 3) as

a~ —P=~2bx(4bx~+b», ~)
—t

Since bI; is very barrier sensitive, the first-order Stark
eGect rapidly vanishes as the barrier height is increased.

III. Stark Effect Ex„=F[w, 0 +w, ' pK+w„, '~(pK)~+ ]. (5-5)
For the case of free rotation, the lines with m=0

show a second-order Stark effect (first order if acci-
dental degeneracy exists) which is a characteristic of a
rigid-rotor spectrum. When m is not equal to zero the
situation is diGerent. As stated before, the Wang com-
binations of the K and —E symmetric top functions
are no longer the proper zeroth-order wave functions
because of the presence of the linear E terms in the
secular equation. For example, an eigenfunction for
J= 1 and odd values of E may be written as

+=ag(K= 1)+bg(K= —1), (5-1)

where a and b are not identical. The expectation values
of the direction cosines between the electric field and the
body-fixed s axis is then

(a' b')KM—
~

»I*cost&dr= (5-2)
J(.~+1)

This leads us to the conclusion that, in general, a first-
order Stark eGect is observed provided m, E, and
3E are all diGerent from zero. For example, with
J= 1 ~ 0 only AE =0 and AM =0 are allowed and the
transitions have a second-order Stark lobe while the
Stark effect of the J=2»—1 transitions (with odd K)
is first order for M= ~1 and second order for M =0.

When the barrier is low" "' the Stark patterns of 1.he
lines with

~
m~ W3 are practically identical to those for

free rotation as the Van Vleck transformation oGers
only minor modifications to the wave functions. How-

Factor A'2/4 ap ap a4 aq

b(m)

b(2 )
b (3m.}
b(4 }

(N'/4) b (ex)

Threefold case

1 1 1 1 1

1 —1 1 —1 1
1 1
2 2

1 0 —1 0 1

1 2 2
—1

ap+a1 cos(2~/x)+a2 cos(4'/x)
+a3 cos(6m-/x)+

(N=3)!Cb(-) -b(3-}3
(9/8)P( ) —b(2 )j
—2V3P.„/m- =V3~e,:1&')/m

—9ni,,p &')/2''
+9@ge &2)/~2

—35m, &2)/m'

(&~i, &')+-'m p&'))/{%r')
—27@3m,1 &')/2~'

+243m. p&4)/2~4

—243vfi, ,
&

&4)/~4

1 1 0
1 0 1

1 —2 0
1 4 9
1 4 —18
1 4 0
0 0
1 —8 0
1 16 81
1 16 —162

1 1

0 1

4 —5
16 25
16 25
16 25
0 0

64 —125
256 625
256 625

e.~., (N /4)b(37r) = ap —yaI ——,'a2+a~ ——,'a4 —2ab and—[9',p&')/2H] =aI+4a2+9a3+16a4+25a5 1. .

In Fig. 7, the various Fourier coefficients are plotted
from s=10 to s=100 on a semilogarithmic scale, and
in Fig. 8, the coefficients of the power series in Eq.
(5-5) are given. From Eqs. (5-4) and (5-5) the con-
necting relations between these two types of coefficients
can easily be established. They are given in Table III.

TABLE III. The relations between the Fourier coe%cients and
the power series coe%cients Lsee Fqs. (5-4) and (5-5)j.
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Although these formulas were derived for the symmetric
top molecules, they are also applicable to the asym-
metric molecules with the necessary modification of
F and p.

Each of the coeflicients (except az) are very barrier
sensitive, as shown in Figs. 7 and 8. They approximate

a functiona, l form of the type As ~ exp( —Cgs). '0'1
Empirical formulas for the coeKcients in Eqs. (5-4)
and (5-5) determined by curve fitting are displayed in
Table IU. For the high barriers only the Fourier co-
e%cient ai is needed from which all the perturbation
coeS.cients of the PAN can be calculated. The domi-



872 C. C. LI N AND J. D. S%VALEN

L E

'L%

5
iM'E

ll %
% ILK)Q~ 4 Xu i

XVA
VXX X

I
9I
7
6
5

(0-4 4

2

"I4

X X~LX

9 X%9.6.~0~

IO 30 50 70 eO .
&o/ 90 TyQpoIOO'

&os ~os

V ww

Xi
Ay&

&4

20

I
9
8
7
6
5

io-~ '
3

L

~2s

I
9
S
7
6
5

)0~S 4

3

-&Ii

v~t
ss

+l4

I
9
8
7
6
5

106 4

3

20 40 60

S(0 H) T

v=0
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nance of a& is seen in Table IV by the fact that the
empirical constants 8 and C have all about the same
value for v=0. The small deviations are caused by the
low s values.

For low values of J, E, and p, the agreement between
the IAM and PAM is very good. The splittings of theJ= 1 energy levels are given as a comparison in Table V.
These results become identical if pX is small and the
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barrier is high. Under such circumstances Eq. (5-4) can
be approximated by the first two terms and sin(2or/3) pE
may be replaced by (2~/3) ply. A similar agreement be-
tween the IAM and PAM is found for the higher J
levels.

These connecting relations also indicate the limita-
tions of the two methods: the IAM is restricted to low
J because of computational difhculties, and the PAM
is restricted to low values of pE. If J and pK are large
and the asymmetry is small, a method of solution
similar to that used by Burkhard and Dennison on
methyl alcohol probably would be the best. If J, pE,
and the asymmetry are all large, both the PAM and
IAM involve a considerable amount of calculation. As
the barrier is lowered, more expansion terms in Eqs.
(5-4) and (5-5) are needed to determine the energy
levels.

V. Sample Calculation on the Spectrum
of Acetaldehyde (CHoCHO)

Some of the points previously discussed in regard to
the determination of the barrier height from the ob-
served spectrum are illustrated by considering acetalde-
hyde" as an example. The values of the parameters
obtained in this section difFer slightly from the reported
values by Kilb et al. ,

" because our calculation is not
performed to the same refinement as that of reference 38.

Four of the transitions reported in reference 38 for
the normal isotopic species are given in Table VI. The
estimated unperturbed frequency given in Table VI
was taken as 32 of the doublet separation from the A
line. For the 2~2+—1~» transition and the 2~~~1~p
transition, this procedure is not valid because of the
b~ term. Here the unperturbed position was estimated
from the A line alone. For the 2~2 ~ 1~~ transition two-
thirds of the ipse ~ Opp splitting was subtracted from the
A line; for the 2~~+—1~p transition three times this
amount was subtracted from the A line. This procedure
follows directly from the PAM (see Table I).

In order to evaluate the barrier height from the in-
ternal rotation splittings, the bond lengths and the bond
angles of the molecule must be known. These can best

TABLE IV. Approximate formulas (threefold case).
LogX =logA+B logs —C(s) &+Ds.

TABLE V. Comparison of the splitting formulas for an
asymmetric molecule with a plane of symmetry.

PAM

IAM

~Z(io1) =~B=Fp.»m, ('~.

(Q ~ (1))2 g 2

~Z(1„)=~C-
A —B

(Q ~ (1))2 g 2

AL(110) =AB+AC+ =Fp~hm„( ~+
A —B A —B

A —B

2~2
~F-(&o ) =~o+0'(~ —~o) =~o——p.'~o.

9
~P 2'

~~ (111) ~1—P'(o-t1 —~p) — =~p ——p '~p-
A —B 9 A —B

aZ(1„)=S,+
A —B

27r'
=~1——P'~p+

9 A —B
Connecting relations

pz 2 p»
2

P =—cP=—
7

pR p2

Fhm, ( ~=Flub=F(bg —b~) = (4/9)d o= 3Fa1,

27r 7r—Fhm, ('~ =—Ap= —Fa1,
9 3

( 2o-p ) 2oo
6&—&o=&oi coo——1 i= —Ao——po,

asap

2m 27r x
B1=+—S'Ln—p=+—p.~o=—p,Fa1——Fp,m, 1&'&,

VS 3 3%3 v3
=qm1(~= —2qP

be determined from the rotational constants of a number
of isotopic species of the molecule. 38 In this sample
calculation, however, we use an approximate assumed
structure for acetaldehyde. The various molecular pa-
rameters calculated from this assumed structure are
shown in Table VI.

A. IAM Calculations on Acetaldehyde

From Eqs. (3-56), (3-57), (3-28), and (3-4) we can
obtain the expressions for the splitting of the various
transitions. For the J=1p~+—Opp transition a splitting
of +3.0 Mc was measured. The approximate formula
for this transition is as follows:

—a1 0 20—80
—a1 1 36-100
—a1 2 60-100
—Ab 0 20-80
—)mp1&'&0 20—80
Happ(~~ 0 20—80
—mo1('& 0 20-80

0& 0 2080
mo&(P~ 0 20-80

0.1% 0.84469
0.1% 1.21631
0.1% 0.66776
0.3% 0.68248
03% 0.8338
0.3% 1.18418
0.3% 0.89533
0.3% 1.36463
0.3% 1.02871

Range
X o of s Error A

0.92376
1.89036
3.45716
0.85539
0.83347
0.87348
0.85530
0.86703
0.79882

0.89751 8.46X10 '
0.95594 20.55X10 4

1.09452 50.19X10 4

0.87703
0.87430
0.87918
0.87658
0.87825
0.87022

vg vE=Av=P (Ay 6o) = —0.22134&pP
= —(9/4)FabP'(0 22134)= —6.78.5bb Mc.

By equating this to 3.0 Mc, we obtain a value of—0.004422 for hb. From the formulas in Table IV, from
the curve in Fig. 7 for a~ (hb=+2a~/3), or from
references 3b and 104, the corresponding s value can
be determined. A value of 22.943 was obtained which
corresponds to a barrier height of 407.7 cm ' (1166
cal/mole). The calculations for the 2oo+—1pg follow in
a similar manner.
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TABLE VI. Parameters for acetaldehyde.

1. Spectrum
Estimated

unperturbed
frequency

19 263.3

Obs
frequency

19 265.3 (A)
19 262.3 (E)
37 464.6 (A)
37 687.2 (E)
38 512.3 (A)
38 506.4 (E)
39 594.9 (A)
39 362.5 (E)

ioI —ooo

37 462.6

38 508.4

39 588.9

202 1p1

11o

2. Rotational constants
C (A) 56.9 kMc
8 (8) 10163.2 Mc
A (C) 9100.0 Mc
The rotational constant notation in parenthesis refers to

reference 38.
3. Assumed molecular structure

dcH 1.09 A (methyl group) 108'15'
dec 1 54 120'
dco 1.21 120'
dcH 1.09 (aldehyde group)

4. Moments of inertia
I 55.553 amu A~ 55.553I„49.742 43.176
I, 8.890 15.086I 3.079 14.563

5. Internal rotation parameters
Xy 0.3910

0.9204
F 0.6931
P' 0.00583
p 0.31941

&HCH
&CCH
&CCO

I,
Icc
Ib.

F=236.9 kMc=17.77 cm '
6 =0.77866hp
Dg =0.212625 p

{27i-/3)PE =38.86oK

In the calculations of the barrier height from the
2~2~ 1~~ transition and the 2II &—1Ip transition, the bj.
term must also be considered. For the 2I~ and 2II
energy levels we have the following 2X2 matrix (formed
by the E and —X state) with the eigenvalues &X2.

ting in 2» ~ 1» transitions from Eq. (3-56) is then

Av=P'(62+260 —3hi)+bi terms
=378.01kb+ (X2—1594.8)—(Xg

—531.6).

By equating this to the observed splitting of —222.6
Mc we obtain a Ab of —0.003993 after successive ap-
proximations. This leads to a value of 23.56 for s and
418.7 cm ' (1197 cal/mole) for the barrier height. In a
similar manner the expression for the 2I~ ~ 1~p transi-
tion ls

6p =P (+2 61)+b1 terms
= —1759.0kb —(X2—1594.8)+ (Xg—531.6).

By equating this to the observed splitting of +232.4
Mc we obtain a hb of —0.00405. A value of 23.48 is
obtained for s and 417.2 cm ' (1193 cal/mole) for the
barrier height. These results are compared in Table VII
with the results obtained. in reference 38 and by the
PAM.

B. PAJI/I Calculations on Acetaldehyde

From Table II and Eq. (3-33) we can obtain the ex-
pressions for the splittings of the various transitions.
The equation for the 1p& ~ 0pp transition is

h hy'I
~.=~a =— ~~,(» = 138.74~~, (».

8x'- rI„'

By using the approximate formulas in Table IV or the
curves in Fig. 8 we obtain an s value of 22.95 and a
barrier height of 407.8 cm ' (1166 cal/mole). The
transition 2p2 ~ 1pj follows in a similar manner.

In order to obtain the splittings for the 2~2~ 1~~
transition and the 2~~ ~ 1]p transition it is necessary
to diagonalize two 2)(2 matrices because of the linear
terms in X. These matrices are

where

' 190 400kb 1594.8

1594.8 —190 400kb

' —151 040ppp+ 768(hvpI (

1594.8

and

1594.8
)

151 040Ppp —768(hop) "'

bl= (1/~3)&o»n(2~/3)pK= 190 400kb Mc

from Eq. (3-58);

—151 040poo+768(hanoi&'&

531.6

531.6

+151 040p0o —7680m q0
&"

&Asy= —
g (&—&)J(J+1)=-,' (1063.2)J(J+1),

from Eq. (3-59);
IAM PAM KLW (38)

TABLE VII. Barrier height in acetaldehyde by various methods.

190 4006b

531.6

531.6

—190 400kb

and for the 1Ip and 1» energy levels we have the follow-
ing matrix with eigenvalues &) ~. 1p1—Opp

2p2 —101
21.—111
211+11p

BI
V, (av)

407.7 cm '
409.7
418.7
417.2—765 Mc
414 cm '

407.8
410.1
418.0
418.0—763 Mc'

408.9
b

417.3
419.0—760 Mcc

a The third-order correction included.Here, terms on ihe diagonal Which are common to both b No individual value was reported for this transition in reference 38.
states have been omitted. The e ression for the split- 'A si&old potential energy term was included. s e the footnote at thSP & end of Sec. 3 II.A3(b).
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Here the third-order terms have been included. The
expressions for the 2~2~ 1~~ transition and for the
2~1 ~ 1~0 transition from Table II are

Av= DB+ (Xo—1594.8)—(Xi—531.6) (2io+—1ii),
gv =358 (Xo——1594.8)+ ('hz —531.6) (2il +—1io).

E: P, ~P„P„~P„,P, —+P„
C, : P -+ —P, P„-+—P„, P, —+P„
C: P, ~ P„P„—+ —P„, P, —+ —P„
Cy. P, -+ —P, P„-+Py, P, ~ —P„

(6-1)

and therefore has the symmetry of the four
group Ipgg V.

When the effect of internal rotation is included, the
Hamiltonian is no longer invariant under the operations
given in (6-1) because of the cross terms between the
P's and p [e.g. , Eq. (2-25) or Eq. (2-37)] or between the
P's and functions of the angle a $e.g. , Eq. (2-29) or Eq.
(2-31)]. The group properties of the various types of
molecules are discussed in the following sections.

1. Nolecules with a planar frame Th.e—Hamiltonian
Eq. (2-31) or Eq. (2-37) (with Q, =O) is invariant
under the following operations:

By equating these to the observed splittings we
obtain the following parameters after successive
approximations:

poo=5.46X10 ' Q,woi"'= —824.7 IvIc

~~0&') = &.92X &O-' RB= 2.66 EIc
woo~ =8.10X10 o F(Qo/P) w~o~= 62.2 Elc.

From the curves in Fig. 8 or the approximate formulas
in Table IV, a value of 23.52 is obtained for s which
corresponds to a barrier height of 418.0 cm ' (1195
cal/mole). The results are summarized in Table VII.

6. SELECTION RULES AND NUCLEAR
SPIN STATISTICS

I. Selection Rule for Symmetric Molecules

The selection rules for symmetric molecules can be
derived easily from the wave function of the internal
rotor. Consider, for instance, the wave function ob-
tained from the IA3I

Ssa'se (8,q )e' "e " Prey (a) .

Since the orientation of the dipole moment is inde-
pendent of the angle 0., the usual selection rules for the
dipole radiation of a rigid symmetric rotor are appli-
cable, i.e.,

aJ=O, +1; aE=O.

In addition, it may be shown from Eq. (3-25) that the
transition moments are diferent from zero only when
Ao-= 0.

II. Selection Rules for Asymmetric Molecules

The selection rules for an asymmetric molecule in
the quantum number J is QJ=O, &i. This follows
from the fact that the total angular momentum for a
rotating molecule remains a good quantum number
even when internal rotation is present. The selection
rules governing the changes of the other quantum
numbers are more complicated. In general, these rules
can be derived by group-theoretical methods.

The general selection rules are derived from sym-
metry considerations. Application of these rules to the
cases of high barrier and low barrier are then discussed
in detail.

A. General, Selective Rules

The Hamilt:onian of a rigid asymmetric rotor is in-
variant under the operations

E:
C:

P*.*~P*.v, *, a~a(p~ p)~

P &P„P„—,~ P„„a~ —a(p—~ —p),
a~a+(2n/3)(p~ p) (6-2)

A (~A g, E~E.
Z. 1lf'olecules with no symmetry in their framework

For this class of molecules only the operations E, C&, C3'
leave the Hamiltonian unaltered. The energy states then
fall into the species A or E of the C~ group. Since the
dipole moment has the symmetry property of A, the
selection rules can be summarized as A~A, E+-+E.

3. Molecules with a frame of Co. symmetry (CHoNOo
type). "'—The group properties are of particular interest
because the cross term between P and p appears only
as pP, . The Hamiltonia. n is now invariant under the
following operations:

C:
C„:
C, :

Pz, v, z Pz, v, zq a a(p p)y

P ~P„P„,~ P„,„a~ —a(p —+ —p)—,
(6-3)P, ~ P„, P, ,~ P, , „a a(p —p)—, —

P, ~P„P,v~ P, „,a —+a(p —& p—).
Because of the sixfold symmetry, the Hamiltonian is

also invariant under the operation a —+ a+ (2n7r/6)

$$$$The operation P ~ —P„P„—+P„, P, ~ P„does not
alter the Hamiltonian but does change the commutation relations
between the three components of the angular momentum, so it ig
not considered to be a symmetry operation.

C3 ~ Pz 'jl z Pg p $7

a ~a+ (4or/3) =a (2or/3) (p—~ p) .

(The operations C&, and C&oo follow directly from
these operations. ) These symmetry operations satisfy
the properties of the group D3, and therefore the wave
functions have the symmetry of the species A &, A &, or E.

For this type of molecule the dipole moment lies on
the plane of the framework and has the transformation
properties of A.. The selection rules for the dipole
transitions are then"
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TABLE VIII. Character table for the point group Deh, .

2CI 3C~Ca Cc 2CcCo 3CItCI Ca 2Co 3CeCo CcCo 2CcCe 3CltCo

Ac 1 1
Bcc 1 1

Etc 2 —1

B~ 1 1

Bttc 1 1

Eoc 2 -1
Ao 1 1

Bco 1 1
Exo 2 —1

Beo 1 1

Bvo
EM 2 —1

1 1
—1 1

0 2
1 —1

—1 —1

0 —2
1 1

—1 1
0 2
1 —1

—1 -1
0 -2

1 1
1 —1

—1 0
—1 —1
—1 1

1 0
1 1

1 —1
—1 0
—1 —1
—1 1

1 0

1 1
1 1
2 —1
1 1
1 1
2 —1

—1 —1
—1 —1
-2 1
—1 —1
—1 —1
—2 1

1 1
—1 1

0 2
1 —1

—1 —1

0 —2
—1 -1

1 —1
0 -2

—1 1
1 1
0 2

1 1

1 —1
—1 0
—1 —1
-1 1

1 0
—1 —1
—1 1

1 0
1 1
1 —1

-1 0

These six operations are denoted by E, Ce, Ce'(C3),
C,'(C2), Ce'(Cem), and C,', where the operation Ce repre-
sents a ~ a+ (c/3). These six operations along with the
"four-group" operations form a new group of twenty-
four elements which is isomorphous to the point group
D6~. The character table of this group is given in
Table VIII.

The dipole moment for this model would ordinarily
be along the s axis. If this is the case, the transition
moment will have symmetry 8„.The selection rules
for dipole absorption will then be A,+-+8„, 8,+-+8„„
Eie~E1eq E2e~E2eq A 0~8eOq 8~8yOq E10~E10y
E20~E20.

B. Selection Rules for IIjgh Barrier

Molecules with a planar frame may be considered as
an example. The limiting rigid-rotor Hamiltonian be-
longs to the four-group. As the operation C, is common
to both the D3 group (of the torsional rotor) and the
four-group, the Ai species of the D3 group corresponds
to A and 8 in the four-group while the A2 levels of the
hindered rotor reduces to the B„or 8, levels of the
limiting rigid molecule. As shown before, the selection
rules for the rotational states associated with the non-
degenerate torsional levels are A 1~A2. In terms of the
transitions for the limiting rigid rotor these correspond
to A, 8 ~B„,B„which are indeed the selection rules
for a rigid asymmetric top molecule with dipole moment
on the ys plane. Hence, for the internal rotor with
high barriers the selection rules governing the transi-
tions between the rotational levels belonging to the
nondegenerate torsional levels (the pseudo-rigid rotor
lines) may simply be taken as those for the correspond-
ing rigid molecules.

In the case of degenerate torsional levels, according
to the general symmetry selection rule E+-+E, transi-
tions between all the E levels are, in general, possible.
This can be understood by considering the effective
rotational Hamiltonian for a given torsional level. For
the E levels the nonrigid-rotor terms, b~, tend to elimi-
nate the asymmetry and the transitions approach those
of a symmetric rotor. The eigenfunctions no longer
have the symmetry of the four-group, and the sym-
metry selection rules for the wave functions associated

even K —eima P aXS&Xdr(e iO)eiXX
even K

edd A —eima Q a S (g ~)eiliV
otld K

(6-4)

(6-5)

~****Recently CH3C—=CCH2Cl~' has been studied and re-
ported to have a low barrier.

with these symmetry species are not applicable. For the
case of high barriers and low E, it may be expected
that the transitions in the hindered rotor which are
forbidden for the limiting rigid rotor are usually weak.
However, if transitions involving higher E values are
observed, the effect of the internal rotation can now
exceed the asymmetry splitting even in the case of
relatively high barriers, and the spectrum becomes very
interesting. Consider the perpendicular type transition
(DE=&1) between two groups of four energy levels
corresponding to the A and E levels of a IC doublet.
At low values of E four lines are expected (two doublets)
similar to those shown in Fig. 4. As E increases, all
four E transitions are possible and six lines appear (two
A and four E). At high values of K the wave function
may be approximated by the symmetric top wave
function. When this is the case the two A levels of a
given E become nearly degenerate and the two A lines
merge into a single line. The two E levels, however,
remain separated because of the linear term P, in the
effective Hamiltonian Eq. (3-33), and two of the four
E lines now become forbidden so that for large values
of K one observes a group of three spectral lines —(one
A and two E). Such a transition from four lines (low 1C)
to three lines (for high IC) has indeed been found by
Herschbach and Swalen. " In the transition region be-
tween these two patterns all four E transitions are
observed. Those transitions forbidden in the limit of a
rigid rotor can be seen to increase in intensity at the
expense of the rigid-rotor lines until 6nally the triplet
pattern results (see Fig. 5).

C. Selection Rules for Lovo Barrier

So fa,r the only molecules which have been found by
the methods of microwave spectroscopy to have low
potential barriers to internal rotation are CH3NO2 and
CH3BF2*****,' our present discussion is confined mainly
to this class of molecules. The symmetry selection rules
have been given in Sec. A3. In order to apply these rules
to the analysis of the microwave spectrum it is necessary
to establish some correlation between the symmetry
properties and the rotational quantum numbers.

1. Limiting free rotator The Hamilton. —ian and the
energy levels were discussed in Sec. 4. Since the quan-
tum number es is diagonal, the wave function can be
expressed as a product of e™and a function of 8, 4,
and p. This function may be determined from the
transformation matrix which diagonalizes the energy
matrix in Eq. (4-13). An inspection of the structure of
this ma, trix reveals the fact that a typical wave function
ha.s one of the following forms:
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where Szx~(8, rp)e'x" denotes the symmetric top wave
function and the summation in K in Eqs. (6-4) and
(6-5) extends only from —J to J.As explained in Sec. 4,
each energy level with m/0 is doubly degenerate. This
double degeneracy occurs because the energy matrix
Eq. (4-13) remains unchanged when m and It are re-

placed by —m and —E. Now those energy levels where
m is a multiple of three (and not zero) are associated
with the pairs of symmetry species: A., B..; Ap, B p,

.
B „B„„orB~, B„p. Here each pair constitutes the
double degeneracy which would be split by a barrier.
Those energy levels where m is not a multiple of three
are associated with the symmetry species: Ey., E2&, Eyp,

Elp. Here the degeneracy is not split by the barrier.
Consideration of the C, operation (x ~x+s) shows

that the wave function Eq. (6-4) remains unchanged,
but the wave function Eq. (6-5) changes sign. For the
Cg' operation (a~ n+~) both Eq. (6-4) and Eq. (6-5)
remain unchanged if m is even but change sign if m is
odd. With the aid of the character Table VI, the sym-
metry properties of the energy levels characterized by
diferent m and E may be summarized as follows:

ss (1PT QO)

~ cy Bzdp +1c
Bxd) Bogy E2c
~0 B 0 +10
B 0, Byo, &0

even
even
Odcl

OCld

even
odc1
even
OC1Cl

The selection rules for m and E are such that the parity
is not changed. For the quantum number m the selection
rule is even more restricted in the case of free rotation.
Since the dipole moment is independent of 0, and neither
wave function Eq. (6-4) nor Eq. (6-5) involve states of
difI'erent m, we have the selection rule 5m=0. For the
E quantum number, the selection rule is AE=O, &2,
~4, etc. Here E is nearly a good quantum number and
the transitions with DX=O will in general be stronger
than those with hE= &2, &4, etc. These latter types of
transitions result from a mixing of the E levels in
Eqs. (6-4) and (6-5). Note, however, that the Wang
functions are no longer the appropriate zero-order wave
functions because of the linear term in E on the di-
agonal of the energy matrix.

The discussion presented above pertains to the energy
levels with m/0 only. When m=0, the exponential
factor e' in Eqs. (6-4) and (6-5) and also the linear
term in E in the energy matrix disappear. The secular
equation degenerates into that of a rigid rotor. Since
the expressions in Eqs. (6-4) and (6-5) with m=0 are
invariant under the operation C6' and t 3, the energy
levels with m=O have the symmetry properties of A„
B „B„„orB„.The selection rules for the transitions
with this series of energy levels are identical to those
for a rigid asymmetric top, i.e., A,~B,.and B,~B„,.

Z. Ime barrier. —As explained in Sec. 4, the addition
of a small barrier term —,'Vo(1 —cos6a) to the Hamil-
tonian of a free internal rotor does not greatly alter the
spacing of the rotational energy levels except for the

ones with m equal to whole multiples of three. The
nondiagonal elements in m may be removed by a Van
Vleck transformation so that the secular equation can
be factored approximately into blocks corresponding to
diferent values of m. The basis functions for this eGec-
tive energy matrix (for m/3n) are then

(e'" +ae'&~+" +be'~" '&~+ )Sjx~(8,y)e' " (6-6)

(6-7)

To the zeroth-order approximation these functions may
be expressed as

SJKM(8, p)e &8 SJ XM(8, w)e ". (6—g)

These two linear combinations have the symmetry
property of the A p and B,p when E is even; and B p and
B„ofor odd K. In the case of the example in Eq. (4-21)
the energy eigenfunctions arising from the secular Eq.
(4-23a) have the symmetry of B,o while those corre-
sponding to the determinant Eq. (4-23b) belong to Aq
species. The approximate wave functions for these four
states are

+++=aEW(1,3)+0(—1, —3)3
+bE4 ( 1, 3)+0(1, —

++-= —bE&(1 3)+0(—1, —3)j
+os(—1, 3)+4 (1,

+~=El(1,3) —0(—1, —3)j
+dEiP( —1, 3)—P(1,

+—= —dEW(13) —4(—1, —3)j
+~L4 (—1, 3)—P(1

—3)g,

(6-9)

—3)g

-3)j.

The coeKcients a and b do not depend critically on E.
The final composite wave functions are taken as linear
combinations of such basis functions. The structure of
the secular Eq. (4-19) again is such that the basis func-
tions of odd and even E do not combine in forming the
final wave function. Furthermore, since the coeKcients
a, b are usually very small, one may still use m as the
labeling index for the energy states. The selection rule
for m is 5m equals a whole multiple of 6. Since the
d,mQO transitions are weak and usually beyond the
microwave region, the selection rules for the dipole
transitions may be given approximately as Am=0,
QE=O, AJ=O, &1.Here again it is assumed that E is
nearly a good quantum number. Remembering that
each energy level characterized by (m, K) is degenerate
with the one by (—m, E), one m—ay easily show that
the selection rules hm=6n (e being an integer) are
equivalent to those derived from the symmetry
consideration.

For m=3 (or whole multiple of three) the solution
of the secular equation becomes more complicated as
discussed in Sec. 4 II. As an example the block in the
secular equation corresponding to J=i, m=3, odd E
was given in Eq. (4-21). This secular equation can be
factored by choosing as the basis functions the type of
linear combination given in Eq. (4-22) i.e.,

P(K, m=3)ag( —It, m= —3).



C. C. LI N AN D J. D. S WAL EN

III. Nuclear Spin Weight

To obtain the relative intensities of the components
of the internal rotation multiplets (such as the doublet
for the high barrier case), the correct combinations of
nuclear spin functions P, with the internal torsional
function P& must be found. The method for finding such
appropriate nuclear spin functions has been given by
Wilson. "' This procedure will be applied to the various
types of nonsymmetric molecules.

A. Molecules saith .Vo Symmetry

By following Wilson, " we observe that for the pro-
tons in the methyl radical, the group of permutation
operations which are equivalent to the internal rota-
tions of the molecules is isomorphous with the group
C3, as is the group derived from the internal rotation
operations. For CH3 there are eight nuclear spin func-
tions which can be schematically represented by speci-
fying the quantum number m, for each nucleus as
follows:

1
2
1
2
1
2
1
2

1
2
1
2
1
2
1
2

1
2—
2 etc.1

—
2 etc.
1
2

(one)
(three)
(three)
(one)

These eight spin functions form a reducible representa-
tion of the C3 group. The characters of this representa-
tion are y(E) =8, g(C3) =2, x(CP) =2. This reducible
representation then belongs to the species 4A+2E~
+2E2.' The over-all wave function must be antisym-
metric to the interchange of protons, i.e., of species A

Here the first and second number inside the parentheses
of the functions refer to the values of E and m, re-
spectively. For CH3NO2 the di6'erence between the two
diagonal elements in Eq. (4-23a) and Eq. (4-23b) are
roughly ten times greater than the oG-diagonal terms;
so the ratios of the coefficients a, b, c, and d in Eq.
(6-9) may be estimated by perturbation methods as

~
a/b

~

= (c/d
~

=10. One may construct four approxi-
mate wave functions similar to Eq. (6-9) for the states
with J= 2, m= 3, and odd E.The coefficients a, b, c, etc. ,
here are somewhat different from those in Eq. (6-9),
but the ratios of these coefficients are still of the same
order of magnitude as those for J=1. In accordance
with the symmetry selection rules A~B„B~B„,
o~o, e~e, derived previously, there are eight possible
transitions for J=2~1,m=3 with odd E. Among
these eight lines, four are much more intense than the
others, and indeed only the four strong lines are ob-
served in the microwave spectrum. These transitions are

4++~%++, 4+ + 0+, 0 +~% +,

Similar results are also found in the microwave spec-
trum of CH3BF~.

The selection rules for the transitions involving the
energy levels with vs=0, are A,+-+B„,and B„~„,.

with respect to the operations of C3. Since the non-
degenerate torsional function is of species A, the
symmetry of the composite wave functions is

(4A+2E&+2E2) =4A+2E~+2E~,' therefore, the sta-
tistical weight is four. For the degenerate torsional
sublevel the reducible representation formed by the
total wave function is (E&+E2) (4A+2E&+2E2) =4A
+6E&+6E2. Consequently the members of a torsional
doublet (in the case of high barriers) of a particular
rotational transition should have equal intensity.

The twenty-seven nuclear spin states for a CD~
group form a representation of species 11A+8Ei+8E2."
Thus the nondegenerate levels yield A . (11A+SE&+SE2)
=11A+8E~+8E2, whereas the degenerate levels give
rise to (E~+E2) (11A+SE,+SE&)= 16A+19E&+19E,.
The relative intensity of the two members of a doublet
is therefore 11/16.

This discussion is also applicable to the molecules
with a planar frame such as acetaldehyde.

B. CH3NO2 Type iVolecules

The method outlined in the previous section may also
be applied to find. the statistical weights of the de-
generate and the nondegenerate levels for this type of
molecule. When the barrier is low the separation be-
tween the nondegenerate level and a degenerate level-
say between a level with m=0 and one with m=1—is
of the order 2Fm which may be comparable to kT.
Hence the relative intensity of the various members of
the multiplet arising from the internal rotation is not
simply equal to the ratio of the statistical weights.
Rather, the Boltzmann factor must be taken into
consideration.

In addition, for the case of CH2NO2" the wave
function must be even with respect to the interchange
of the two oxygen (I=O). This operation is C,C63. Thus,
only the levels with symmetry properties of A„B...
EI„Bo, B„o,E~o' ' can exist in CH3NO2". For CH3BF2
these species will have one-third the statistical weight
of the others because of the fluorine nuclear spin (I= ~~)

and the requirement of antisymmetry for exchange of
the two fluorine nuclei "'"

7'. VIBRATION- TORSION-ROTATION INTERACTION

The methods for the determination of the potential
barrier described in Secs. 3 and 5 utilize the splittings
between the same rotational transitions corresponding
to the two ground torsional levels. These methods,
however, fail when the splittings of the rotational lines
vanish as in the case of symmetric tops (see Fig. 4) or
fall below the limit of resolution of the spectrograph for
very high barriers. The latter difficulty may be over-
come, at least partially, by measuring the splittings of
the rotational lines in the excited torsional levels
(satellites) which are considerably larger than those in
the ground torsional state. Because of the inAuence of
the molecular vibrations on the internal torsion and the



I NTERNAL ROTATION AN D MICROWAVE SPECTROSCOPY 879

over-all rotation, these satellites are shifted from the
"main lines" (the lines associated with the ground
torsional state). Furthermore, the splittings of the
satellites sometimes contain sizeable contributions from
the effect of molecular vibration (cf. Sec. 5 II) as
well as the internal rotation. With a careful analysis
of the interaction of vibration, torsion, and over-all
rotation, it is possible to determine the barrier height
either from the splittings of the satellites or from the
shifts of the satellites from the main line. The latter
procedure is particularly significant because it is
applicable to symmetric top molecules.

Besides the frequency shifts, the intensities of the
satellites are decreased by the Boltzmann factor. From
the intensity ratios between the satellites and the main
line, one can calculate the energy differences between
the ground and excited torsional states from which the
barrier height may be determined.

In the present section two methods —the satellite
frequency pattern and the relative intensities —for de-
termining potential barriers are presented. Neither of
these methods gives as accurate results as the "splitting
method" described in the previous sections. Therefore,
these methods are used only when the splitting method
fails to yield the barrier height or when an analysis of
the torsional satellites is desired to study torsion-rota-
tion interaction.

I. Satellite Frequency Pattern

In the discussion of the theory of internal rotation
in Sec. 2 the effects of molecular vibration have not
been considered. This is justified if the torsional fre-
quency is well below the frequencies of the other
vibrations. Since the moments of inertia do not depend
directly on the torsional normal coordinate, the only
way the torsional mode can affect the moments of
inertia is by means of higher-order interactions via the
other vibrations of the molecule. 4' When the nonrigidity
of the two halves of the molecule is taken into account,
some interesting results are obtained. Consider first the
symmetric molecules such as methyl silane, CH3SiH3.
Classically, as the CH3 group oscillates about its equi-
librium position, the centrifugal force produces a slight
change in the molecular dimensions. Because both the
angular velocity and the potential energy are functions
of the internal angles 0., the instantaneous configuration
of the molecule depends also on a. The rotational con-
stant B determined from the microwave spectra is
actually related to the average value of the reciprocal
of the moment of inertia for a given torsional and
vibrational state. One would expect that the rotational
constants and thus the rotational lines associated with
the different excited torsional states would be shifted
by diferent amounts (even for the case of a symmetric
top). From the pattern of these lines one can then de-
termine the height of the potential barrier. Further-
more, this type of internal torsion-vibration interaction

also gives rise to an additional splitting of the pairs of
lines associated with the 2 and E sublevels of a given
torsional level; but as shown by Kivelson, 4' such a
splitting for the ground torsional state of CH3SiH3 is
less than 0.05 Mc which is experimentally unobservable.

The quantum-mechanical treatment can be carried
out in this way: The Hamiltonian, including the rota-
tion, internal torsion, and vibration ttftf according to
Kivelson """is written as

H=-', Q;,Ii;,P;P,+Hr+P. , (7-1)

The first term lV. , the vibrational energy, represents
merely an additive constant and can be safely dropped.
If only the splittings of the rotational lines in various
torsional states are desired, then the terms independent
of the rotational quantum numbers can be neglected.
Finally, the terms corresponding to the ordinary cen-
trifugal distortion effect can usually be ignored. By
using Eq. (7-2) as the Hamiltonian, Kivelson~ calcu-
lated the effective rotational constant 8 for a symmetric
rotor and arrived at the equation

8„=B,+F„(Kn~
~

1—cos3n
I Kra)+G (Kiia

I
p"

I
K~0)

+L,K(Kii&r
~
p'~Ksa), (7-3)ffff)

where p' is the angular momentum associated with the
torsional motion as defined in Eq. (2-8), 8„ is the ef-
fective rotational constant averaged over the vibra-
tional functions, and F„G., and L„are empirical con-
stants which depend on the interaction of the vibra-
tions and the internal torsion. It is now possible to
modify Eq. (7-3) slightly in order to see clearly the
difference between this expression and the familiar one
for ordinary vibrations. The torsional equation in
reduced form is

9s
p"+—(1—cos3a) P»„(9/4) b..Pir., (7-——4)

8

)taft Here the word "vibration" means all the internal modes
of motion other than the hindered rotation.

fffff Kivelson~ used the quantum number m for Kvo and II&
for p'= p —pP, .

where P; is the component of the total angular mo-
mentum along the i principal axis, p;; is the ij com-
ponent of the inverse of the instantaneous inertia
tensor and Hz and H, represent the part of the Hamil-
tonian connected with the internal torsion and vibra-
tion, respectively. A Van Vleck transformation" similar
to that used by Howard and Wilson" is applied to
remove the nondiagonality in the vibrational quantum
number e. The results may be expressed approxi-
mately as

&=W.+2 Zv(~l~', l~)P'P, +(~l&rl~)
+g, '](n[-', P,,p;,P,P,+Prtn') ]'(W„—W„)—'. (7-2)
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In this equation the kinetic and potential energy may be
identified

(T)= (Er o
i
p"

i
Evo)

9s
(V)=—(Italo.

i
1—cos3a i It vo).

8

For K=O Eq. (7-3) becomes

8„,=8„+F,'(V)+G„(T),
where

F,'= SF./9s;

01

8..=8.-p (»-p.L(T&-(V&3,

=8„—(9/4)Pgb, . Pgx... —
where

(7-5)

(7-6a)

(7-6b)

8„8,—ar (v+—,), (7-7)-"
where

ar = (9/2) (s) &p&.

For the J= 1 ~ 0 transition of CH3SiH3 Kivelson found

F„=—65.322 Mc and G,= —0.8824 Mc,

s=30.22 (a=17.0=its),
and therefore F,'= —1.9212 Mc, P&=+1.4018 Mc, P2
= —0.5194 Mc, and n~=+34.68 Mc. For an ordinary
vibration, the constant a is of the order 8,'/a& which
is 22 Mc. Consequently, we see that this analysis is
very similar to that for ordinary vibration rotation
interaction; only the extreme departure from har-
monicity must be corrected by the P2 term.

Kivelson's method of analysis has also been ex-
tended to include asymmetric molecules~ ~" and the
Stark e6'ect.4" Application of this theory has been
made in the study of the vibration-torsion interaction
of methyl alcohol, " methyl mercaptan""' and pro-
pylene oxide" (cf. Fig. 6).

Hecht and Dennison" have also investigated the
nonrigidity eGects in methyl alcohol. In addition to the
centrifugal stretching, these authors point out that the
effect of Coriolis force (from the internal motion) on
the distortion of the equilibrium configuration of the
molecule should also be considered. While the OH
group executes the internal torsion, the Coriolis force
arising from the end-over-end rotation of the entire
molecule causes the hydrogen atom to rock back and

p = l (G.+F—.'), a-=(T&—(V»

p, = ,'(G, F„'),——(»=—(T)+(V)= (9/4) b,.
Now for harmonic vibrations

(T&=(V»

and the asymptotic form for b, as s~ ~ is b„2(s)l
X (v+-', ). It follows that

forth on the COH plane. The eBect is to produce a
change in the average moments of inertia (over one
external revolution) which, analogous to the distor-

tion by centrifugal force described in the beginning of
this section, depends on the torsional state. Hecht and
Dennison" also take into account the fact that the
height of the barrier is a function of the molecular di-

mension. ~ Inasmuch as the origin of the barrier is not
clearly understood, the dependence of the barrier height
on the displacements of the atoms cannot be calculated
in any simple way; it can best be described in a para-
metric form as

V= V,L1+P;;b„+ ] (7-g)

where the bg; are the displacements of the atoms. A

rigorous theoretical treatment which takes into con-
sideration the eBects of centrifugal and Coriolis forces
on the average rotational constants as well as the change
of potential barrier height could become very lengthy
because of the large number of normal vibrations which

could eGect the moments of inertia through Coriolis
interaction. Hecht and Dennison" carried out the calcu-
lation in two steps. They first examined the interaction
between the rotation and the normal vibration in which

the 0—H bar moves in its own plane relative to the
methyl group. In other words, they used a relatively
simple model for CHSOH which has five degrees of
freedom —three for over-all rotation, one for internal
torsion, and one for the O—H rocking. All the other
modes of vibration were considered to be frozen. In
the second step the remaining normal vibrations were
introduced as perturbation and the e6'ects of these
additional terms on the energy levels were investigated
with the aid of appropriate approximations. As the
vibrational frequencies of methyl alcohol can be ob-
tained from the vibrational spectrum, and the potential
barrier height has been determined from the rotational
transitions in the ground torsional states, the only
parameter that needs to be introduced is the one which
describes the variation of the potential barrier height
with respect to the vibrational coordinate. Hecht and
Dennison" have been able to explain quantitatively
some thirty splittings of lines of normal methyl alcohol
and five other isotopes using only six empirical
parameters.

This treatment can, in principle, be applied to deter-
mine the potential barrier of symmetric top molecules
for which the methods described previously (PAM and
IAM) fail. However, the force constants for most of
the symmetric top molecules are usually not known to
a sufhcient degree of accuracy and therefore it becomes
necessary to introduce several empirically determined
parameters. A reliable result on the barrier height is
obtained only if a suKciently large number of lines in
the excited torsional levels can be observed.

Recently, Swan and Strandberg'" reanalyzed the
results on methyl alcohol considering vibration rotation
interaction more completely. By using the observed
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infrared vibrational spectrum for the normal frequencies

they diagonalized the vibration-rotation-internal rota-
tion matrix, i.e., they attempted to calculate the em-

pirical constants Ii„, G„etc., from the vibrational wave
functions. As Hecht and Dennison point out, this pro-
cedure can, at present, only be used to verify constants
but not calculate good values for them. This is borne
out in Swan and Strandberg's results in which the
quantitative fit of the calculated frequencies to the
observed is only fair. Nevertheless, this type of calcula-
tion is valuable, and with improved wave function and

energy values a better quantitative agreement on
molecules might be obtainable.

7 /I —
(g /g )ed Eg/k T (7-9)

where go and gI are the statistical weights of the ground
and the excited torsional states and dE is the difference
in energy between these two states. Since the ratio of

gI and go can be determined from group-theoretical
consideration, a measurement of the relative intensities
between a rotational line and its satellite gives the tor-
sional frequency which, with the aid of the Mathieu
tables, ""' leads to a determination of the potential
barrier. Where there are uncertainties as to the ratio
of the statistical weights of the two levels, the rela-
tive intensity can be measured at several different
temperatures.

One of the first molecules studied by this technique
was CH3CF3, ' The barrier heights of a number of
other molecules obtained by this procedure are sum-
marized in Table X. The main virtue of the intensity
method lies on its simplicity and its applicability to the
case of very high barrier in which the splitting between
the A and E lines are undetectably small. However, the
experimental error involved in the relative intensity
measurement is rather large —usually 10 to 20%%uz or
even higher. It is therefore not surprising that some of
the resulting barrier heights obtained represent little
more than estimates.

Baird and Bird' studied the problem of the measure-
ment of relative intensities in the microwave region.
They propose a procedure by which one can obtain an
improvement in accuracy and reproducibility of the
intensity ratio. Unfortunately, their technique or one
comparable has generally not been used in the work
reported in Table X. Recently, Verdier and Wilson'"
obtained more refined measurement on the relative
intensities for the spectral lines of CH3CHO and
CH3CH2F using a Stark-modulated cavity. Their re-
sults on the barrier height compare favorably with
those obtained by the "splitting methods" (see Table

II. Intensity Method

The ratio of the intensity (Iy/Io) of given rotational
transitions in the first excited torsional state to the
ground torsional state is equal to the relative population
in the two torsional states, i.e.,

IX). They point out some limitations of the intensity
method.

First, the quantity measured is usually the ratio of
the peak absorption heights. The absorption coefficient
of a line at its center for a Van Vleck-Weisskopf line
shape is given in Eq. (7-10)"':

a(vo) = (16s no~~„~'var)/3kcT, (7-10)

where no is the number of molecules per unit volume in
the lower level of the transition, p „ is the matrix ele-
ment of the dipole moment between the upper and the
lower level, and v is the mean interval between colli-
sions. In order to compare the peak absorption co-
efficients of two lines vo, p „,7-, and T must be the same,
otherwise any difference will contribute to a correction
term in the intensity ratio. The temperature T will
undoubtedly be the same for the two lines. The correc-
tion for the difference in vo can be made easily. How-
ever, the two are usually so nearly equal that this cor-
rection is negligible. The transition moment p „may
be different, because the asymmetry parameter could
change from the ground to the excited state. For cer-
tain transitions in nearly symmetric tops, p „may be
quite sensitive to a small change in the asymmetry
parameter and in such case an appropriate correction
in Eq. (7-10) should be applied. The variation in r
between torsional levels should normally be within the
limit of experimental accuracy.

The second difficulty which might arise is that the
A and E lines are not resolved, and yet the separation
between these lines is about the same order of magni-
tude as the line width; the measured peak intensity
then does not correspond to Eq. (7-10). For example, it
may happen that the A and E lines are resolved in the
excited torsional state but overlap (with only one peak)
in the ground state. In this case serious error would re-
sult if a correction were not applied to the measured
intensity ratio. In order to correct for this effect, one
can measure the integrated intensity of these lines in-
stead of the peak value. The integrated intensity of the
resolved A or E line is then one-half of that of the com-
posite line. Alternatively, if the splitting of the un-
resolved doublet is calculated from theory, then a rela-
tion between the actual and apparent peak absorption
can be derived by adding two Van Vleck-Weisskopf
shaped lines separated by a frequency equal to the
splitting of the doublet.

8. EXPERIMENTAL RESULTS

Table IX gives the experimental values for the barrier
heights determined from frequency measurements of
the microwave spectra. If more than one value is
available in the literature, the best value according to
our opinion is reported. ggf

)gg The major references on each molecule are listed and the
one which gave the best value for the barrier as shown in Table IX
is underlined.
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TAaLE IX. Barriers by the frequency method.

Compound

Threefold barriers
Methyl alcohol

Methyl amine

Methyl mercaptan
Acetic acid
Acetaldehyde
Acetal fluoride

Acetal chloride
Acetal cyanide
Methyl formate
Ethyl bromide

Ethyl chloride

Ethyl Ruoride

1,1 diQuoroethane

Methyl silane

Methyl fluorosilane

Methyl difluorosilane

Methyl germane
Methyl aliene

Propylene
1-Buoropropylene
2-Ruoropropylene
Propylene oxide

1-chlorobutyne 2

Vinyl silane

Ethyl iodide

Sixfold barriers
Nitromethane

Methyl boron diQuoride

Two threefold barriers
Acetone
Dimethyl ether
Dimethyl silane

Twofold barriers
Hydrogen peroxide
Phenol

Formula

CHBQH

CHBNHB

CDBNHB
CHBSH
CHBCOQH
CHBCHO
CHBCOF
CHBCOC1
CHBCOCN
HCQOCHB
CHBCH28r
CHBCH2C1

CHBCHgF
CHBCHFB
CHBSiHB

CHBSiH2F
CHBSiHFg
CHBGeHB
CHBCH=C=CHB
CHBCH =CHB
CHBCH =CHF
CHBCF= CHB

CHBCH —CHB

0
CHBC —=CCH2C1
CH2CHSiHB
CHBCH2I

CHBNOB

CDBNOB
CHBBF.

(CH,),CO
(CHB),0
(CHB) 2SiHB

H20B
C6HBQH

y (cm-t~

374.8

691.1

684.7 a 2

444 a 10
169
406
378
472
444
416

1248
1245
1158
1112
558 w 17
595
545
439
433
556 & 2

692 & 6
752
848
895 & 25

&30
523 & 18
839

2.11
1.82
4.82

266 & 20
950 & 50
582

113
1100 +100

V (cal/mole)

1070

1976

1958
1270
483 a 25

1150 & 30
1080
1350
1270 & 30
1190 ~ 40
3567 % 30
3560 & 12
3306
3180
1595
1700 &100
1560
1255
1239 & 25
1589 & 6
1978 ~ 17
2150 ~150
2424 ~ 25
2560 & 70

&100
1495 ~ 50
2400

6.03~ 0.03
5.19m 0.03

13.77m 0.03

760
2720
1665

323
3140

Method

IAM
PAM

nonrigidity
experimental

IAM
experimental

IAM
IAM
PAM
PAM
PAM
PAM
PAM
PAM

IAM 1st
IAM 1st
PAM 1st
PAM 1st
nonrigidity

PAM
PAM
PAM
PAM
IAM
IAM
PAM
PAM
PAM
IAM

PAM
PAM

low barrier
low barner
low barrier

PAM
PAM
PAM

IAM

References

8, 32, 77
98
21, 77, 103
10, 12, 28,
30, 109, 110
31, 78, 79
28, 56-58
88-91
59, 46
49, 50, 35
105
38
80
93
52
11b
66a
66a
22
22
42
39
81a
102
53a
63
62
92
81c
101, 27

53b
8id
33c

106, 107
107
75

100
33b
81b

70, 71
50b

As discussed in Secs. 3, 4, and 5, the ratio V~/P is
determined from the analysis of a microwave spectrum.
In general, this ratio can be determined to an accuracy
of two percent or better. Uncertainties in the molecular
structure and limitations in the approximations are the
two main sources of error. The spectra of molecules with
lower s values are influenced to a much larger extent
by the internal rotation and usually these can be
analyzed to give somewhat more accurate values for the

ratio Vq)Ii. Structural errors, in regard to the reduced
moment of inertia of the methyl group, cause a large
share of the error in the barrier. In our opinion, the
barrier heights reported in Table IX are accurate to
somewhere between 2%%uo and 5%%u~.

The spectra of methyl alcohol and methyl amine
have been studied very thoroughly in the microwave
region. Furthermore, a considerable amount of work
has been done on their theoretical interpretation using
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the IAM given in Sec. 3. To a lesser extent methyl
mercaptan has also been studied. These three molecules
are of the class of an intermediate barrier molecule with
slight asymmetry. Mainly the perpendicular (AE'= &1)
Q branch lines (i1J=O) have been analyzed for the
barrier height. The effects of the asymmetry and the
off-diagonal internal rotational matrix elements are
calculated by second-order perturbation. Methyl amine
has the additional complication of inversion similar to
ammonia.

Also the J=1~ 0, E=O transition has been analyzed
for methyl alcohol" ""' including the effects of non-
rigidity. The splittings of the internal rotation doublets
are caused by the rigid internal torsion as well as the
molecular vibration, but the division between these two
effects is not known accurately since it depends rather
critically on the structure of the molecule. Slight shifts
in the methyl group axis affect this division. With six
empirical constants a good agreement between the
theory and experiment was obtained for the frequency
shifts of the excited states transitions for a number of
isotopes of methyl alcohol. Nishikawa" obtained a good
fit of the spectrum with only the three symmetric top
constants. Attempts have been made'" to calculate
these "empirical constants" from the vibrational wave
functions and qualitative agreement between the calcu-
lated and observed values has been obtained.

The results of the barrier height of methyl alcohol
and methyl amine obtained by various methods are all
in good agreement. However, for methyl mercaptan the
situation is somewhat confusing. Intensity work by
Solimene and Dailey" gave a value of 371 cm '. Kilb"
determined a value of 246 cm ' by rigid hindered theory
(PAM to second order) on the j=1+-0 transitions of
a large number of isotopic species measured by Solimene
and Dailey. "Kojima and Nishikawa first obtained a
barrier" of 280 cm ', but subsequently they revised
their value' to ~ ~ cm—' Also the J 1 ~ 0 lines of
isotopic species C' H3SH) C H3SH) C D3SH) and
C"H3SD were analyzed by the symmetric top non-
rigidity theory. According to Kojima and Nishikawa
the J=1+—0 of C"H3SD was incorrectly assigned by
Solimene and Dailey. The results of Kojima and
Nishikawa" are probably more accurate because their
analysis was carried out to a higher order of
approximation.

The molecules acetaldehyde (CH3CHO), acetyl
fluoride (CHSCOF), acetyl chloride (CH&COC1), acetyl
cyanide (CH&COCN), propylene (CH3CH=CH2), 1
fluoropropene (CH3CH = CHF), methyl aliene (CH3CH
= C= CH2), methyl silane (CH3SiH3), methyl fluorosi-
lane (CH~SiFH2), and methyl difluorosilane (CH3SiF2H)
are examples of molecules with relatively high barriers.
A pseudo-rigid rotor splitting was used to determine the
barrier height. In some cases transitions up to J=12
were analyzed using the PAM. Also in the near sym-
metric top molecules the first-order (nonrigid rotor)
terms produced a large effect. This was especially true

in acetaldehyde'8 (see Sec. 5) and methyl silane, mono-,
and di-deuterated. "Methyl silane has been analyzed
by nonrigidity theory4' and all of the determined
barrier heights agree very well with one another.

The barrier heights in ethyl fluoride, -" 1,1-difluoro-
ethane" ethyl chloride" and ethyl bromide"~ were
determined by the splittings in the first excited tor-
sional state since the ground state splittings were too
small to observe. To a good approximation the splittings
of the satellites of the first excited torsional state are
caused entirely by the hindered rotation (but not the
molecular vibrations) because of the high barrier.

In propylene oxide" the barrier was determined by
the splittings in the ground and first two excited tor-
sional states. The agreement is exceedingly good in-
dicating the validity of using excited state splittings
for the determination of barrier heights in molecules of
high barriers. No effects of a V6 potential were observed.

Acetic acid"' is a molecule with an intermediate
barrier and large asymmetry. Unusual difhculty was
encountered in the analysis, but, by using the PAM
to fourth order, Tabor was able to assign a number of
higher J lines. The assignment was one of the more
difFicult aspects of this problem. The IAM would have
been very difFicult to use in this particular case because
of the relatively high J transitions necessary for its
analysis.

Low barriers have been observed in nitromethane
and methyl boron difluoride. Here the m=3 lines give
an accurate determination of the barrier height. In the
low barrier problem the initial assignment is quite
dificult and an extensive searching of the lines is
needed. The accuracy of these barrier heights is ex-
ceedingly good and generally better than that in the
high barrier case. This results from the wide splittings
of the order of 1000 Mc as compared with small split-
tings of a few Mc of the high barrier problems. The very
low barrier obtained in these two cases for a sixfold
potential seem to indicate that the ratio of V3 to V6 is
generally of the order of 100. 1-chloro butyne-2 is
another molecule with a low barrier which has been
recently studied. "b Only an upper limit of the barrier
height has been obtained.

The barriers have been determined for a number of
molecules by the intensity method of Sec. 7. These are
listed in Table X. Generally, an error of 10 to 20% can
by assigned to these determined barrier heights. It is
interesting to compare some of the results in Table X
with the more accurate values of Table IX. Ethyl
bromide""'~ is 21'% low; ethyl chloride'" '" 4.5% low;
ethyl fluoride'" is in agreement; and 1,1-difluoroethane"
is 12% high. By taking into account a 5% error in the
values in Table IX, we can see that 10—20% error in
the values of Table X is quite realistic.

It is interesting to compare the results of the barrier
heights obtained by microwave spectroscopy with those
from other means, particularly the thermodynamic
methods (see Sec. 1). While detailed examinations of
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TABLE X. Barriers by the intensity method.

Compound Formula V (cm 1) V (cal/mole) References

Acetaldehyde
Ethyl bromide
Ethyl chloride
Ethyl cyanide
Ethyl fluoride

1,1 Difluoroethane

1,1,1 Trifluoroethane
Methyl mercaptan
Methyl silane

Methyl trifluorosilane
1 Trifluoro butyne-2
Isobutane
t-Butyl fluoride
Trimethyl phosphine
Trimethyl amine

Methyl germane

CHIC HO
CH3CHqBr
CHICHgCl
CH3CH2CN
CH3CH2F
CHgCHFg
CHICF3
CH3SH
CH3SiH3
CH~SiFg
CHR —C=—C —CFB
(CH3) 3CH

(CH3) 3CF
(CHg) 3P

(CHB) BN

CHgGeH3

386
980

1190
1150%100
1160
1250+200
1200
371& 43
460m 80
420

(100
1360
1500
910

1530

585

1103m 60
2800%500
3400+600
3280a290
3310&210
3570a580
3480
1060~120
1315
1200

&300
3900
4300
2600
4400

1673

iii
115, 116
112, 114
54
iii, 51
94
14, 72
95
60
72, 73, 87
3, 4a, 61
65
65
65
64

4b

the thermodynamic results are beyond the scope of
this paper, it may be stated that the barrier heights
determined by the splitting methods are usually more
accurate than those obtained from the thermodynamic
properties of the molecules. On the other hand, the
intensity and thermodynamical methods yield results
of comparable accuracy (ten to twenty percent uncer-
tainty). With careful experimental measurements and
in favorable cases, this error may be somewhat lower
for both of these methods. In the absence of any fre-

quency work on a given molecule, a careful investigation
of the specific experimental difBculties is required in
order to decide whether the thermodynamic results or
the microwave intensity results are more reliable.

In addition to the barrier heights, the equilibrium

configuration has been obtained for a number of mole-
cules listed in Table XI. These equilibrium configura-
tions are valuable because they supply additional in-

formation which, besides the barrier heights, any theory
of the origin of barriers must explain. Ethyl chloride

monodeuterated'" was the first molecule in which the
staggered con6guration was confirmed by microwave
spectroscopy. The tunneling rate is much slower than
the measurement time in the microwave region so the
two di6'erent configurations are observed: the deuterium
gauche and trans to the chlorine atom. Each of these
was observed. Even with only an approximate structure
these observed rotational constants would be incon-
sistent with an eclipsed configuration.

Finally, a few molecules have been studied recently
with two internal rotors. Although the theory, an ex-
tension of the work of Sec. 3, is not covered here t see
references 84, 40, 100, and 33 (b)j, the results on acetone,
dimethyl ether, and dimethyl silane are given in
Table IX. The theory of internal rotation for molecules
with an asymmetric internal rotor is not covered in this
review, but two molecules, hydrogen peroxide, " and
phenol, " have been studied and analyzed approxi-
mately as a symmetric top. References 6, 9, and 86 give
some of the theoretical work.

9. CONCLUSIONS

Compound

Acetaldehyde

Acetyl chloride

Acetyl cyanide

Acetal Quoride

Propylene

Ethyl chloride
Methyl silane

Methyl fluorosilane
1,1-D16uorosilane

Formula

CH2DCHO
CHDsCHO
CHRDCOC1
CHD2COC1
CH2DCOCN
CHD~COCN
CHRDCOF
CHD~COF
CHRDCH =CHR

CH2D —CH2C1
CHsD -SiHyD
CHsD —SiHDs
CHgD —SiH2F
CHsDSiHFa
CHDaSiHFa

Con6guration

Methyl group eclipses 0
and staggers H
Methyl group eclipses 0
and staggers Cl
Methyl group eclipses 0
and staggers CN
Methyl group eclipses 0
and staggers F
Methyl group eclipses
the double bond and
staggers H
staggered
staggered

staggered
staggered

TABLE XI. Equilibrium configuration.

Refer-
ence

93

80

26
113
39

Sla
25c

After the various discussions on the interactions of
internal rotation and over-all rotation, one naturally
questions what causes these potential barriers and
whether the values reported in Sec. 8 can be explained
quantitatively in terms of the electronic structure of
the molecules. Furthermore, can unknown barrier
heights be predicted satisfactorily? Numerous attempts
have been made (see Bibliography —Theoretical and
Empirical Methods of Barrier Height Estimation) to
provide answers to these questions, but the results do
not seem very encouraging. This is understandable
since the potential barrier represents only a very small
fraction of the binding energy of the molecule. It seems
highly impractical at this time to make any serious
attempt to evaluate the barrier heights by the direct
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and rigorous approach, i.e., from the difference in energy
of the entire molecule for the two extreme configura-
tions corresponding to the eclipsed form (a=60') and
the staggered form (e=0').

In order to oGer a simple picture for the nature of
the hindering potential, various mechanisms such as
Van der Waals forces, '""' direct electrostatic inter-
actions, "'"'" overlap, and exchange force,"' have been
proposed for the intramolecular interaction. Recently,
Wilson"'"' has made a critical examination of these
various hypotheses and found that none of the existing
theories can account for the experimental results of the
barrier heights of the various molecules. He "' suggests
that the potential barrier could be an inherent property
of the axial bond itself and that it is is not due to the
direct forces between the attached atoms to any great
extent or to the electronic distribution in the attached
bonds which are at any considerable distance. Pauling, '"
on the other hand, hypothesizes that exchange inter-
actions of the electrons in the attached bonds, as deter-
mined by the overlap of these attached bonds which
extend in the direction of the axial bond toward one
another, are responsible for the potential barrier. By the
use of higher orbitals, d a,nd f, he makes a rough esti-
mate of this nonbonding interaction which is in the
right order of magnitude for the observed potential
barriers. Although the absolute values are only for-
tuitous, a number of interesting relative values are
presented. From his hypothesis, unshared electron pairs,
which do not hybridize with the f orbitals, would not
contribute to the potential barrier, i.e., methyl alcohol
would have a barrier approximately one-third of that
in ethane and methyl amine would have a barrier
approximately two-thirds of that of ethane. Another
interesting point is the existence of the very low barriers
in molecules such as nitromethane. A sixfold barrier
would require i orbitals with an azimuthal quantum
number l=6. Because of the large promotional energy
these probably would not contribute much to the
hybrid bond orbitals and hence we would predict a
low barrier.

Which of these various mechanisms, or combination
of mechanisms, correctly accounts for the potential
barriers measured in molecules is still unanswered. It is
hoped that this review will stimulate further research
toward the understanding of the origin of the potential
energy hindering internal rotation. Nevertheless, from
the viewpoint of molecular dynamics, the problem of
internal rotation in molecules, i.e., the effect of the
internal rotation on the energy levels, is quite well
understood. The agreement between the theory and the
observed spectra, including all the fine details, is par-
ticularly outstanding. Furthermore, the study of the
microwave spectra oGers a method, which is by far the
most accurate at the present time, for determining the
height and the shape of the hindering barrier.

r, = g+-o;.

The kinetic energy can be written as

(A1-1)

T =-', P,m;(Br,/Bt) (Br,/Bt)
+-', P,m, (Br,/Bt) (Br,/Bt). (A1-2)

By remembering that

(Br/Bt) =~Xr,, (Br;/Bt) =caXr;+(Bn/Bt)Xo;,

where co is the angular velocity of the over-all rotation
of the molecule, one can rewrite (A1-2) in the form of

T= ', Q,m, (s)X—r,)'+-,' P,m, [(~Xr;)+(Bn/BtXo;)]'
=-,' P,mg[ra~QP —(6) r,)']+-', Pgm, [r,'co' (aa r,)—']

+-', P,m;[oPa' —(o;.Be/at)' ]
+P,m, (~ Xr,) (Be/BtXo;). (A1-3)

The 6rst two terms obviously represent the kinetic
energy of the over-all rigid rotation of the molecule
with angular velocity ~, and can be written as ~~+ I ~
where I is the usual inertia tensor of the entire molecule.
The third term may be expressed as ~I a' where I is
the moment of inertia of the top about its own axis of
symmetry. The last term may be simplified as

P, m(u Xr,) (Bn/BtXo;)
=Z m~([(t, +o) o 7(~ Be/Bt)
—(~ o,)[(0+o,) (Be/Bt)5}

=Q,m, [og(~ Be/Bt) . (~ o;)—(o,"Bn/Bt)]. (A1-4)

FIG. 9. The posi-
tion vectors of typi-
cal atoms in a mole-
cule with an attached
internal rotor. The
0 position and C po-
sition represent the
centers of mass of
the whole molecule
and the internal ro-
tor, respectively. The
vectors r; and r, are
vectors from the cen-
ter of mass 0 to
typical atoms in the
frame of the mole-
cule and the internal
rotor.

APPENDIX 1

Derivation of IGnetic Energy and
Angular Momentum

In Fig. 9, 0 and C represent, respectively, the center
of mass of the entire molecule and of the top alone. Two
vectors r; and e; are drawn to a typical atom in the
top from the respective centers of mass 0 and C. The
position vector (with 0 as origin) for an atom in the
framework will be denoted by r;. If g denotes the vector
from 0 to C, one can readily see that
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The last step follows from the relation

P,m,e;=0.

By using a coordinate system attached to the top with

the s axis along the axis of symmetry, and the origin
located at the center of mass of the top, one has

A

(r, =x,z+y,j+z; k,
and

This defines an infinite set of homogeneous equations.
In order to have a nontrivial solution it is necessary
that the determinant of the coefficients vanish. This
infinite determinant can be factored into 3 diferent
subdeterminants, one for each a value. Koehler and
Dennison's have shown that Eq. (A2-1) leads to a con-
tinued fraction. This can easily be seen by dividing the
recursion relation Eq. (A2-1) by 2,„+..

P,m, x,z, =P,m, y, z, 0=

Equation (A1-4) then takes the form of

Q, m, [(xP+y,'+ zP)(a) Be/Bt)
—(co,x,+cd„y,+co.s,)s, i

Be/Bt) ]
=P,m, [(x,'+y, '+z,') (~ Be/Bt) —. cd,z, 2

I,Ba/Bt
( ]

=P, m(x, '+y')(aa Ba/Bt) =I (a) Be/Bt)

The kinetic energy finally becomes

A 3 (k+1)+cr A 3 (k—1)+(r= (Mc—X)—
A 3k+, A 3k+,

and inverting

A3k+.

A 3 (k+1)+e

(A2-2)

T= ', u+ I u+ ,'I-u'+I -(a) Ba/Bt) (A1-.3)

The classical angular momentum is given by

P =Pm, (r;XBr /Bt)+P,m, (r, XBr,/Bt)

=P,m;[r;X (a)Xrc)]
+P,m, [r;X f (~Xr;)+(Be/BtXe,))]

=P;m;[r, X (~Xrc)]++,m, [r,X (a) X r,)]
+Q,m, [r)X (Be/Bt Xe;)] (A1-6).

The first two terms stand for the angular momentum
of the over-all rigid rotation of the entire molecule
which can be written as I ~. In order to simplify the
last term, use is made of the fact that e; is a vector
measured from the center of mass of the top and that
the axis of the top is a principal axis of the top. It
follows that

Pm, [r,X (Ba/Bt Xe,)5
=Pm, [((()+e,) X(Be/BtXe, )]
=Pm, [e,X (Be/Bt Xa,)]
=Pm [rPBa/Bt (e,"Be/Bt)lr ]-
=Pm, [0P k

(
Ba/Bt

(

—sf k I Be/Bt
( ]=I Ba/B t.

Equation (A1-6) then reduces to

also

A 3(k—1)+o
Mk —P—

A 3k+.

A3k+.

A 3 (k—1)+(r
M, —Z—

M

Mk+1
—X—.

By substituting bs,ck into Eq. (A2-1), one obtains a
continued fraction equation,

X =Mk —Gk+,+—Gk,—. (A2-3)

A trial value of P is substituted into G+ and G leading
to a first approximation of X. Hy successive iteration a
consistent value of the eigenvalue, X, is obtained, The
continued fraction does not always converge very
rapidly and can even diverge. The use of a Newton
Raphson approximation" is recommended to avoid
this difTiculty. By letting

fP)=My —X—Gc„)+(l()—Gc ) (l() =0,
and expanding at the nth approximation of the eigen-
value (denoted by X"), one obtains

P= I s)+I.Ba/Bt.

APPENDIX 2

Continued Fraction

The substitution of Eq. (3-9) or Eq. (3-23) into Eq.
(3-3) or Eq. (3-16), followed by the multiplication by
e '(3~ ) and integration leads to a recursion formula
among the A' s:

Then

f(l() =f(tc")+ (X—l(")f '(X")
= X"+'—l("+ (lc —X")f '(l(") =0

yn+1 gn
X =X "+—f'(~")

where
f'P ")=1+G~+|+'[1+Rp+'(1+ )]

+G) —1 '[1+Gk 2 '(1+ )].

(A2-4)

33(c ))+.+(X—Mc)23c~.+A;c(c~))~.——0, (A2-1)

where
4) sq 16

Z=-i b
i

and bI.=—(—3k—+~)2
s( 2) 9s

Since the G's are determined in the calculation of the
eigenvalue, the derivative f'(lc") is readily calculated.
Care must also be taken to insure that the initial ap-
proximation is not separated from the desired eigen-
value by a pole. A pole occurs between each eigen-



I NTERNAL ROTATION AN D M I CROKVA VE SPECTROSCOPY 887

value. If one exists between the first approximation and
the desired root, the continued fraction converges to
the adjacent root.

With the desired eigenvalue determined, a substitu-
tion into Eq. (A2-1) leads to a recursion relation be-
tween the A' s. By solving these relations and normaliz-
ing, one obtains the eigenfunctions. These eigenfunc-
tions are used to determine the matrix elements and
integrals for the IAM and PAM if the approximations
given are not sufficiently accurate. The eigenfunctions
are tabulated for the periodic solutions. '"" For the
nonperiodic solutions 0- is replaced by o-+pE in all the
previous expressions.

APPENDIX 3

Tabulations Related to Mathieu Equations

The most recent and complete tabulations are listed
in Table XII. References 36 and 104 are the most useful

TAar, E XII. Mathieu function tabulations.

Reference
Period

in x

Mathieu Functionsa o ~, 2~

Kilb'd e

Stejskal&
Blanch and Rhodeso'
Pexton&

37r
%&3'
1r, 2x
4'

Range
in V

0(1)S
9(1)14
0(1)5
0(1)4
0 (1)15
0(1)9

Range in s

0 (1)100b
0(2)100
2 (1)30(2)52 (4) 100
100(15)205
100b
1 (1)40

Accuracy

1X10 o

1 X10-&o
1)(10 7

1X10 o

1X10 o

a See reference 104.
b A close tabulation is given for the low s values.
o Eigenfunctions are also tabulated.
& Copies are available from E. B.Wilson, Jr., Department of Chemistry,

Harvard University. Herschbach's tables are also available.
6 See reference 36.
& See reference 96.

See reference 5.
h Tabulated in terms of t 0(0.002)0.1 where s =1/to.
& Tabulated in Li and Pitzer reference 55. Notation: 48 =s, 8o =b —$s.

amu

APPENDIX 4

Notation

IAM "a" coordinate axis
expansion coef5cients
low barrier diagonal elements

~
m

~

=3
Fourier coefficient in potential energy
Fourier coe%cient in IAM internal
energy
atomic mass units

and complete for the threefold potential case. Also, by
the use of Kq. (3-29) and these tables, the eigenvalues
for s&30 for other periodicities can readily be deter-
mined. A number of older references are given in
reference 104.

Recently, Herschbach" tabulated the matrix elements
p, p2, p', cos6n, the perturbation sums to fourth order
for use in the PAM, and the Fourier coefficients for
use in the IAM." Herschbach gives a complete intro-
duction explaining the use of the tables to solve the
internal rotation problem. These tables are of great
assistance in the computation for barrier problems.

A, A„A„„A
A 3k+o &

A gk+~

A

b, be, bo, b;, b (IVY).
B, Bb, B„,B„
B,
B, B,By, B,

C, C„C...C,
C2, C3, C6, C,
d

dk

Db„D;;

De, Do

D'(P) z,x

E
E(e)
Egg~
E„,E~„

f
E(JKMra. )

Gk+, ~k

symmetry species in C3 group
rotational constants

wave function expansion coefficients

Angstrom unit

IAM "b" coordinate axis

expansion coe%cients
low barrier off-diagonal element

~

m
~—3

Mathieu eigenvalues

rotational constants

equilibrium rotational constants

symmetry species
IAM "c"coordinate axis
Fourier coefficient of Mathieu's func-
tion

rotational constants
rotational symmetry operations
reducing factor, r, times (I,I„I,)
Fourier coefficient of Mathieu's func-
tion

interatomic distance from atom X to
atom V

Hamiltonian cross terms between
components of the total angular mo-
mentum

Fourier coefficients of Mathieu's
function

rotational transformation matrix ele-
ment

symmetry species, degenerate

energy

reduced rigid rotor energy
rotational energy
torsional energy: PAM and IAM
total energy: rotation and torsion
Mathieu parameter (Floquet's theo-
rem)

IAM approximate integral function
continued fraction function of the X
eigenvalue

reduced rotational constant of the
internal rotor
nonrigidity potential energy expan-
sion coefficient

statistical weight factors
correction terms in the PAM rota-
tional energy

nonrigidity kinetic energy expansion
coe%cien t
continued fraction terms
Planck's constant divided by 2w
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H, Hp

Hg
Hz

H,

Hg

H„,

I, Ib, I., I~~, Ibb

I„,Ig, I, I„,I„
I

k

k+, k

L'v

M~,.(n)

M(x)
Mc
MI,

N

Pg (P„Pb,P„P;,P

p ig
g

P~..(a)

Hamiltonian

couphng term j.n Hamiltonian

rotational Hamiltonian

torsional Hamiltonian

vibration Hamiltonian, harmonic os-
cillator function

asymmetry term in Hamiltonian

rotational Hamiltonian for the eo.

torsion state
unit vector
moment of inertia tensor

moments of inertia

moment of inertia of the internal
rotor about its symmetry axis

products of inertia

unit vector
quantum number of the total angular
momentum

Boltzmann's constant

unit vector
correction terms in the PAM rota-
tional energy

quantum number of the total angular
momentum along the molecular z axis

free rotation quantum number

nonrigidity angular momentum ex-
pansion coeKcient
free rotation quantum number

mass of the ith atom

quantum number of the total angular
momentum along the space axis

IAM nonperiodic torsional function

Mathieu function

megacycles/second

continued fraction term

periodicity of the hindering potential
internal angular momentum

PAM matrix element of the internal
angular momentum

I„P„P„,P,) the gth components of the
angular momentum

the gth component of the total angu-
lar momentum vrith the independent
variables i and j constant

IAM torsional function for a sym-
metric molecule

PAM Hamiltonian term

IAM torsional fun«t;ion for an asym-
metric molecule

reducing factor

r;, r;
r„rb, r„r,, r„, r,
S

Si
S2

Se, So

Sgx~I(S, p)e' "
T
T
Z&,.(n)
V

V(n), V~, Va, Vg,

xv 0'

~+JK

DE(Jrc ps+, )

Kt a.
K'v'e

position vector of the ith (j) atom

position vector components

reduced barrier height

rotational transformation matrix

asymmetric transformation matirx
Mathieu functions

syDUnetric rotor function

kinetic energy

temperature

PAM torsional function

torsional quantum number

V~2 potential energy (subscript de-
notes periodicity)
PAM perturbation terms

rigid rotor energy

x principal axis

nonrigidity term

y principal axis

z principal axis

internal angle

direction cosine of p to z principal
axis

internal angular velocity
6rst term in the vibration rotation ex-
pansion of the rotational constant
direction cosine of y to y principal
axis

nonrigidity expansion terms

IAM splitting of internal sublevels
for E=O
IAM splitting of internal sublevels
for Eth level

internal rotational splitting of the
J, E rotational level

internal rotational splitting of the
JK &K+~ rotational level

asymmetry splitting of E and —E
rotational levels

nonrigid-rotor internal rotor split-
ting
IAM integrals

displacement coordinate
Eulerian angle

asymmetry parameter
eigenvalue of a secular determinant
direction cosine of the internal rotor
to the g principal axis

dipole matrix element

frequency

dot product of the total angular mo-
mentum vector and the vector p
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(a) direction of the internal axis such

that the internal angular momentum
vanishes

(b) position vector of the center of
mass of the top from the center of
mass of the whole molecule (Ap-
pendix 1)

component of y along the g axis

torsional sublevel quantum number

e&' position vector of a top atom from
the center of mass of the top (in-
ternal rotor)

j mean life time

q, 4 Eulerian angles

Eulerian angles

wave function

6) total angular velocity vector
co, (coo, rug, co., ru, co„,co.) component of the total angular

velocity along the g axis

APPENDIX 5

Comparison of the Notation of Various Authors (Grouped Where Possible)

Present
notation

(&)

Ãy~

+Ksirs +sd
aE(J~ IX+&)

&a

p

pulp
s

M~ (a), IJr (a),
g „(),v,.()

A, B, C, CI, D
C2

(C~/C)*
(BC,—D)

(BC—D')

k

~Zrn
(Jx,~+,), z

Pfl
p~

sinP~P
~t

Z~,„(x)
n

I. Iuv I-
Ij

A, B, C, Cg, I g

Cg

X

(BC —D )

(BC—D)

I p

P
x

z,/x

I~s Ivs I
I
(p)

o(A,E), a

—2p~
1+4' p

aA, aW
I g

p

U„{n)

a Dennison, Koehler, Burkhard, Ivash, Hecht, Lide, and Mann.
b Gwinn, Myers, and Tannenbaum.
a Itoh.

d Wilson, Lin. Lide, IQlb, Swalen, and Herschbach.
e fK+r —o =1 (mod 3)).

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the helpful comments
and suggestions given by a large number of our friends
and associates. We are particularly indebted to E. B.
Wilson, Jr., D. R. Herschbach, R. W. Kilb, V. W.
I.auric, I. C. Krisher, and T. N. Sarachman for their
criticism and encouragement on this paper. We also
wish to express our appreciation to D. G. Burkhard,

A. E. Douglas, K. T. Hecht, H. E.Hoffman, T. Kojima,
K. S. Pitzer, R. M. St. John, and M. W. P. Strandberg
for many helpful discussions and correspondences con-
cerning various parts of this review. Our thanks are
also extended to AIrs. J. E. Locke, Mrs. V. S. Blohm,
and particularly Mrs. Mary Swalen for typing the
manuscript.

BIBLIOGRAPHY

E. R. Andrew, NNclear Magnetic Resonance (Cambridge University Press, New York, 1955).
D. H. Baird and G. R. Bird, Rev. Sci. Instr. 25, 319 (1954).' Bak, Christensen, Hansen-Nygaard, and Tannenbaum, J. Chem. Phys. 26, 241 (1957)."Bak, Hansen, and Anderson, J. Chem. Phys. 21, 1612 (1953).

4b A. I. Barchukov and A. M. Prokhorov, Optika i Septroskopia 4, 799 (1958).
G. Blanch and I. Rhodes, Wash. Acad. Sci. 45, 166 (1955).

6 D. G. Burkhard, J. Chem. Phys. 21, 1541 (1953).

SUBJECT'

T NMR
TX Intensity measurements
X CHIC=—CCFI
X CH3C=CCF3
IX CH3GeHB
T Mathieu, high s
T Asym. -asym.



890 C. C. LIN AND J. D. SWALEN

~ D. G. Burkhard, Trans. Faraday Soc. 52, 1 (1956).
D. G. Burkhard and D. M. Dennison, Phys. Rev. 84, 408 (1951).
D. G. Burkhard and J. C. Irvin, J. Chem. Phys. 23, 1355 (1955).
D. K. Coles, Phys. Rev. 74, 1194 (1948).». B.L. Crawford, J. Chem. Phys. 8, 273 (1940).
R. F. Curl, Jr. J. Chem. Phys. 30, 1529 (1959).
B. P. Dailey, Phys. Rev. 72, 84 (1947).

'3 B.P. Dailey, Ann. N. Y. Acad. Sci. 55, 915 (1952).
Dailey, Shulman, and Minden, Phys. Rev. 75, 1319A (1949)~

'~ T. Das, J. Chem. Phys. 25, 896 (1956)." T. Das, J. Chem. Phys. 27, 763 (1957).
H. S. Gutowsky and C. H. Holm, J. Chem. Phys. 25, 1228 (1956).
J. O. Halford, J. Chem. Phys. 18, 444 (1950}." J. O. Halford, J. Chem. Phys. 26, 851 (1957)." K. T. Hecht and D. M. Dennison, J. Chem. Phys. 26, 31 (1957).
K. T. Hecht and D. M. Dennison, J. Chem. Phys. 26, 48 (1957).
D. R. Herschbach, J. Chem. Phys. 25, 358 (1956).

T
T
T
X
T
X
X

IAM
CH3OH IAM
Asym. -asym.
CH&OH
PAM
HCOOCH3 PAN
CH3OH

Review
XI
T
T
TX
T

CH3CF3
Mathieu
Mathieu
NMR amides
Mathieu

T
T
TX

IAM
CH&OH nonrigidity
Excited states CH3CH~F
and CHSCHF2
MathieuD. R. Herschbach, "Tables for the Internal Rotation Problem, " Department of Chemistry,

Harvard University (1957)." D. R. Herschbach, J. Chem. Phys. 27, 975 (1957)."' D. R. Herschbach, J. Chem. Phys. 27, 1420 (1957)~

D. R. Herschbach, J. Chem. Phys. 31, 91 (1959).
~' D. R. Herschbach (private communications).

'6 D. R. Herschbach and L. C. Krisher, J. Chem. Phys. 28, 728 (1958).

Mathieu
IAM-PAM connection
PAM theory

T

T
TX
X Equilibrium con6guration

CH2DCHCHg
CHICH —CH2 PAM

0
CH3OH and CHINHq
Vibration and rotation
spectra
CHIOH
CHgNHg IAM
CH3OH IAM
CH3OH
(CHI) 20
C2H5I
Van Vleck transformation

D. R. Herschbach and J. D. Swalen, J. Chem. Phys. 29, 761 (1958). TX

CHISH PAM
Mathieu

Asym. -asym.
CHsCHO PAM
CHISiH3 PAM
Compound rotation
Asym. rotor
CHISiH3 nonrigidity
Nonrigidity
Nonrigidity
Stark eGect
Errata
CD3NDg IAM
Centrifugal distortion
IAM
CHBSH IAM
CHgSH IAM
C6HsOH
CH3CH2F intensity
CHSCOCN PAM
CH~GeH3 PAM
CHSC=—CCH2C1
CH3CH2CN
IAM Mathieu
CHSNHg
CH3NH2
CHgNH2
CDgND2 IAM
CH3SiH3 intensity
CH3CCCFg
CH3CHCH2 IAM
CH3CHCCH2 IAM
(CH,),N
(CH ) X (X= CH, CF,
and P)
Excited states IAM
CH3CH~Cl, CH3CH2Br

X

T
T
T
T
T
T
T
T
TX
TX
X
X
TX
X
X
IX
T
X
X
X
TX
X
T
TX
TX
TIX
XI

42 D. Kivelson, J. Chem. Phys. 22, 1733 (1954).
4' D. Kivelson, J. Chem. Phys. 23, 2230 (1955}.
44 D. Kivelson, J. Chem. Phys. 23, 2236 (1955).
4~' D. Kivelson, J. Chem. Phys. 26, 215 (1956).

D. Kivelson, J. Chem. Phys. 27, 980 (1957).
D. Kivelson and D. R. Lide, Jr., J. Chem. Ph ys. 27, 353 (1957).
D. Kivelson and E. B.Wilson, Jr., J. Chem. Phys. 20, 1575 (1952)." J. S. Kohler and D. M. Dennison, Phys. Rev. 57, 1006 (1940).
T. Kojima and T. Nishikawa, J. Phys. Soc. Japan 10, 240 (1955).

'O' T. Kojima and T. Nishikawa, J. Phys. Soc. Japan, 12, 680 (1957)."b T. Kojima (private communication).
J. Kraitchman and D. P. Dailey, J. Chem. Phys. 23, 184 (1955).

~' L. C. Krisher and E. B. Wilson, Jr. (to be published).
'3~ V. W. Laurie, J. Chem. Phys. 30, 1210 (1959).
~~b V. W. Laurie and D. R. Lide, Jr., Bull. Am. Phys. Soc. Ser. II, 3, 415 (1958)." R. G. Lerner and B.P. Dailey, J. Chem. Phys. 26, 678 (1957)." J. C. M. Li and K. S. Pitzer, J. Phys. Chem. 60, 466 (1956)~

D. R. Lide, Jr., J. Chem. Phys. 20, 1812 (1952).
D. R. Lide, Jr., J. Chem. Phys. 21, 5/1 (1953).
D. R. Lide, Jr., J. Chem. Phys. 22, 1613 (1954)~

D. R. Lide, Jr., J. Chem. Phys. 27, 343 (1957).
D. R. Lide, Jr., and D. K. Coles, Phys. Rev. 80, 911 (1950).
D. R. Lide, Jr., and D. Kivelson, J. Chem. Phys. 23, 2191 (1955).
D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys. 27, 868 (1957).
D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys. 27, 874 (1957)." D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys. 28, 572 {1958).
D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys. 29, 914 (1958).

' D. R. Lide, Jr., J. Chem. Phys 30' 37 (1959}. X

W. D. Herschberger and J. Turkevich, Phys. Rev. 71, 554 (1947). X
G. Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc. , Princeton, New T

Jersey, 1945)." Hughes, Good, and Coles, Phys. Rev. 84, 418 (1951}. X
» T. Itoh, J. Phys. Soc. Japan 11, 264 (1956}, T

E. V. Ivash and D. M. Dennison, J. Chem. Phys. 21, 1804 (1953). T'" Ivash, Li, and Pitzer, J. Chem. Phys. 23, 1814 (1955). T"b P. H. Kasai and R. J. Myers, J. Chem. Phys. 30, 1096 (1959). TX"' T. Kasuya and T. Oka, J. Phys. Soc. Japan 14, 980 {1959). X
'4 E. C. Kemble, Iigndamental Principles of Quantum Mechanics (McGraw-Hill Book Company, T

Inc. , New York, 1937), p. 394.
R. W. Kilb, J. Chem. Phys. 23, 1736 (1955). T
R. W. Kilb, "Tables of Mathieu Eigenvalues and Eigenfunctions Mathieu for Special Boundary T

Conditions, "Department of Chemistry, Harvard University (1956).
R. W. Kilb, thesis, Harvard University (1956). T
Kilb, Lin, and Wilson, J. Chem. Phys. 26, 1695 (1957). T
R. W. Kilb and L. Pierce, J. Chem. Phys. 27, 108 {1957). TX
J. E. Kilpatrick and K. S. Pitzer, J. Chem. Phys. 17, 1064 (1949). T
King, Hainer, and Cross, J. Chem. Phys. 11, 27 (1943). T



INTERNAL ROTATIO'4 AND M ICROKAK E SPECTROSCOPY

'"'" I). R. I ide, Jr. (to he published).
C. C. Lin, Amer. J. Phys. 26, 319 (1958).
C. C. Lin and R. W. Kilb, J. Chem. Phys. 24, 631 {1956).
H. Margenau and G. M. Murphy, Mathematics of Physics and Chemistr

Company, Inc. , Princeton, New Jersey, 1943).
J. T. Massey and D. R. Bianco, J. Chem. Phys. 22, 442 (1954).
J. T. Massey and R. W. Hart, J. Chem. Phys. 23, 942 (1956)~

H. Minden and B. P. Dailey, Phys. Rev. 82, 338A (1951).
Minden, Mays, and Dailey, Phys. Rev. 78, 347A (1950).

'4 R. E. Naylor, Jr., thesis, Harvard University (1955).
R. E. Naylor, Jr. and E. B.Wilson, Jr., J. Chem. Phys. 26, 1057 (1957)~

H. H. Nielsen, Phys. Rev. 40, 445 (1932).
T. Nishikawa, J. Phys. Soc. Japan 11, 781 (1956).
T. Nishikawa, J. Phys. Soc. Japan 12, 668 (1957).
Nishikawa, Itoh, and Shimoda, J. Chem. Phys. 23, 1735 (1955)." L. Pierce and L. C. Krisher (to be published)."L.Pierce, J. Chem. Phys. 29, 383 (1958).
L. Pierce, J. Chem. Phys. 31, 547 (1959).'" L. Pierce and J. O'Reilly (to be published).

81~ L. Pierce and J. O'Reilly (private communication).
K. S. Pitzer, J. Chem. Phys. 14, 239 (1946).
K. S. Pitzer, Discussions Faraday Soc. 10, 66 (1951).
K. S. Pitzer and W. D. Gwinn, J. Chem. Phys. 10, 428 (1940).
W. D. Phillips, J. Chem. Phys. 23, 1363 (1955).
Donna Price, J. Chem. Phys. 9, 807 (1941); 10, 80 (1942).
J. Sheridan and W. Gordy, J. Chem. Phys. 19, 965 (1951).
K. Shimoda and T. Nishikawa, J. Phys. Soc. Japan 8, 133 (1953).
K. Shimoda and T. Nishikawa, J. Phys. Soc. Japan 8, 425 (1953).
Shimoda, Nishikawa, and Itoh, J. Phys. Soc. Japan 9, 974 (1954)~

Shimoda, Nishikawa, and Itoh, J. Chem. Phys. 22, 1456 (1954).
S. Siegal, J. Chem. Phys. 27, 989 (1957).
K. Sinnott, Bull. Am. Phys. Soc. Ser. II 1, 198 (1956).
N. Solimene and B. P. Dailey, J. Chem. Phys. 22, 2042 (1954).
N. Solimene and B. P. Dailey, J. Chem. Phys. 23, 124 (1955).
E. O. Stejskal and H. S. Gutowsky, J. Chem. Phys. 28, 388 (1958).
M. W. P. Strandberg, Mi'crowave SpectroscoPy {Metheun and Company," J. D. Swalen, J. Chem. Phys. 23, 1739 (1955)~

J. D. Swalen, J. Chem. Phys. 24, 1072 (1956).
J. D. Swalen and C. C. Costain (to be published).
J. D. Swalen and D. R. Herschbach, J. Chem. Phys. 27, 100 (1957).

y (D. Van Nostrand

Ltd. , London, 1954).

102

103

104

106

106

107

108

109

110
111

112
113

114

116

116

117

118

119

120

121

' T, theoretical paper; X, experimental paper; I, intensity method.

J. D. Swalen and B. P. Stoicheff, J. Chem. Phys. 28, 671 (1958).
P. R. Swan and M. W. P. Strandberg, J. Mol. Spectroscopy 1, 33 (1957).
Tables Relating to AIathieu Functions (Columbia University Press, New York, 1951).
W. J. Tabor, J. Chem. Phys. 27, 974 (1957).
Tannenbaum, Johnson, Myers, and Gwinn, J. Chem. Phys. 22, 949 (1954).
Tannenbaum, Myers, and Gwinn, J. Chem. Phys. 25, 42 (1956).
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill Book Company, Inc. ,

New York, 1955).
Venkateswarlu, Edwards, and Gordy, J. Chem. Phys. 23, 1195 (1955).
P. Venkateswarlu and W. Gordy, J. Chem. Phys. 23, 1200 (1955).
P. H. Verdier and E. B. Wilson, Jr., J. Chem. Phys. 29, 340 (1958).

R. S. Wagner and B.P. Dailey, J. Chem. Phys. 22, 1459 (1954).
R. S. Wagner and B. P. Dailey, J. Chem. Phys. 23, 1355 (1955).

R. S. Wagner and B. P. Dailey, J. Chem. Phys. 26, 1588 (1957).
Wagner, Dailey, an Solimene, J. Chem. Phys. 26, 1593 (1957).
Wagner, Solimene, and Dailey, J. Chem. Phys. 23, 599 (1955).
E. Wigner, Gruppentheorie (Vieweg and Sohn, Braunschweig, 1931).
F.. B. Wilson, Jr., J. Chem. Phys. 3, 276 (1935).
E. B. Wilson, Jr., Chem. Revs. 27, 17 (1940).
E. B. Wilson, Jr. and J. B. Howard, J. Chem. Phys. 4, 260 (1936).

Wilson, Lin, and Lide, J. Chem. Phys. 23, 136 (1955).

gT

T
TX
T

(CH3) 3As
Classical internal rotation
CH3CHO PAM
Newton Raphson

TX
T
XI
XI
TX
TX
T
T
TX

TX
TX
TX
X
X
T
Review
T
NMR
T
XI
X
X
X
X
X
TX
X
X
T
T
T
T
TX
TX

TX
T
T
TX
TX
TX
T

+7

X
TXI

XI
X

XI
XI
XI
T
T
T
T

CH3OH
CH3OH
Cavity spectrometer
CH3CHOy CH3CH2F
CH3CH2Cl
CH2DCH2CI
configuration
CH3CH2C1
CH3CH2Br
CH3CH2Br
Group theory
Symmetry
PAM Mathieu
Vibration rotation
interaction
PAM

H202

CH3CF3) CH3SiF3
CH3SiF3
CH3BF2
CH3BF2
IAM sym.
CH3OH IAM nonrigidity
CH3NH2 IAM
CH3NH2
CH3COF PAM
CH3SiH2F PAM
(CI-I,),SiH2
CH3CFCH2 PAM
CH2CHSiH3 PAM
Asym. -asym.

IAM
CH3CON (CH3) 2

Asyrn. -asym.
CH3SiF3
CH3NH2
CH3NH2
CH3NH2
CH3NH2
CH3CHCHF PAM
CH3COC1 PAM
CH3CHF2 intensity
CH3SH intensity
Mathieu and NMR
Microwave spectroscopy
CH3OH PAM
Approx formula PAM
(CH3) 2CO PAM
CH3CH —CH2 PAM

0
CH3SiHF2 PAM
CH3OH
Mathieu
CH3COOH PAN
CH3NO2
CH3NO2
Microwave spectroscopy
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