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INTRODUCTION

A S the temperature of a solid approaches 0 K the
simple Debye continuum model should be

applicable and the lattice specific heat calculated from
the elastic constants using this model should agree with
that measured by calorimetric techniques. Now that
accurate low-temperature specific heat and elastic
constant data are available, it is possible to compare
critically the values of the Debye characteristic tem-
perature 8, which these two methods yield. Usually, the
calorimetrically determined 8 is obtained from the slope
of the straight line in a plot of C/T Mrsus T where C
is the measured specific heat and T the absolute
temperature. Such a plot separates the contribution
of the electrons and is a straight line only if the lattice
specific heat varies with T' as predicted by the Debye
model. To determine 8 from the elastic constants
requires the calculation of the three sound wave
velocities as a function of direction in the crystal lattice
and then the averaging of the reciprocal of each velocity
cubed over all directions. It is possible to do this by
hand for hexagonal materials, but cubic materials
require a long and elaborate calculation which is
reasonable only if an electronic computer is available.
Kithout a computer the tables prepared by de Launay'
or the approximate methods developed by Quimby
and Sutton, ' and by Betts et ul. ' may be used.

Various models have been proposed to determine the
lattice specific heat in the temperature range where
the Debye model is expected to become inapplicable.
These models consider a discrete lattice rather than a
continuum and use measured elastic constants to define
the effective force constants which act upon any given
lattice point. Kith these force constants, the dynamics
of the entire lattice can be worked out and the specific
heat calculated.

This paper evaluates the diferent methods of calcu-
lating 8 from the elastic constants and compares the
resulting values with the results of calorimetric
measurements.

DETERMINATION OF Op

The necessary data for calculating the value of
Debye 8 at 0 K, hereafter denoted by Hp, are shown in
Table I. In this table, the low-temperature elastic

~ J. de Launay, Solid State Phys& s (Academic Press, Inc. , New
York, 1956), Vol. 2, p. 286.

~ S. L. Quimby and P. M. Sutton, Phys. Rev. 91, 1122 (1953),
P. M. Sutton, Phys. Rev. 99, 1826 (1955).' Betts, Bhatia, and Wyman, Phys. Rev. 104, 37 (1956}.

C11 C12 C44 C1$
O-1 (10~ p (g

C22 cm 2) cm~)
Elastic constants extrapolated from 4.2'K
Copper 1.7620 1.2494 0.8177
Silver 1.3149 0.9733 0.5109
Gold 2.0163 1.6967 0.4544
LiF 1.246 0.424 0.649
Magnesium 0.6348 0,2594 0.1842 0.2170
Zinc 1.7909 0.375 0.4595 0.5537

1.7696 0.3480 0.4589 0.528

0.6645
0.6880
0.6848

8.553
5.938
5,953

12.292
4.407
6.708

9.018
10,635
19.488
2.646
1.779
7.279

Elastic constants extrapolated from the 77 K region
Aluminum 1.230 0.708 0.3090
Lithium 0.1574 0.1333 0.1158
N aCl 0.5750 0.0986 0.1327
KBr 0.418 0.056 0.052

6.109 2,734
4.748 0.5471
4.619 2.241
2.854 2.S19

4 W. C. Overton and J. Gaffney, Phys. Rev. 98, 969 (1955).
5 J. R. Neighbours and G. A. Alers, Phys. Rev. Ill, 707 (1958).
6The first set of constants are from G. A. Alers and J. R.

Neighbours, J. Phys. Chem. Solids, 7, 58 (1958). The second set
are the recent measurements by C. W. Garland and R. Dalven,
Phys. Rev. 111,1232 (1958).' L. J. Slutsky and C. W. Garland, Phys. Rev. 107, 972 (1957}.' C. V. Briscoe and C. F. Squire, Phys. Rev. 106, 1175 (1957).

9 P. M. Sutton, Phys. Rev. 91, 816 (1953).' H. C. Nash and C. S. Smith, Bull. Am. Phys. Soc. Ser. II,
3, 123 (1958).

» W. C. Overton and R. T. Swim, Phys. Rev. 84, 758 (1951).» J. K. Gait, Phys. Rev. 73, 1460 (1948)."F.C. Nix and D. McNair, Phys. Rev. 60, 597 (1941);Phys.
Rev. 61, 74 (1942).

"W. B.Pearson, Can. J. Phys. 32, 708 (1954).» E. Gruneisen and E. Goens, Z. Physik 29, 141 (1924).'s A. Henglein, Z. physik. Chem. 11', 91 (1925).
'7 J. de Launay (private communication}.

constants of copper, ' silver, ' gold, ' zinc, ' magnesium, '
and lithium Quoride are extrapolated from measure-
ments performed at 4.2'K while those of aluminum, '
lithium, " sodium chloride, " and potassium bromide"
are extrapolated from measurements near 77'K. The
O'K atomic volumes and densities are calculated from
the lattice constants appearing in the ASTM card
catalog and the following thermal expansion measure-
ments: Nix and McNair" for the noble metals and
aluminum, Pearson" for lithium, Gruneisen and Goens"
for zinc, and Henglein" for potassium bromide and
sodium chloride. The data for magnesium and lithium
fiuoride are taken from the papers cited.

Table II lists values of 8p as calculated from the data
in Table I by various methods along with the results of
calorimetric measurements. The first column shows the
Hp obtained from de Launay's tables' using case 2 and
the Sterling central diBerence interpolation formula"
in two dimensions. A graphical interpolation may cause
the results to diGer by about 0.3'%%uo. These tables are

TABLE I. Constants of certain materials extrapolated to absolute
zero. The elastic constants are in units of 10'2 dyne/cmm. 0 is the
atomic volume and p the density at 0'K.
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TABLE II. Debye temperature at zero degrees Kelvin.

Silver

Gold

225 3 a
226.4 226.6 227.1 226.4 226.5 b

226 2 d

164.6 a
161.7 162.1 162,2 161.6 164.8 b

164.6 e

LiI' 734.4 734.6 734 734.1 737 f
743 g

Magnesium 385.4 385.8 406 h
403.3 i

302 3327.1 327.1
328.8

Elastic constants extrapolated from 77'K

Zinc

375 l
428.2 408

419 m
427.4 428.5" 428.7Aluminum

Lithium

KBr

NaCl

334.6 338.4 335.9 369

17).7 172.8 174

321.6 321 321.9 320

a See reference 19.
b See reference 30.' J. A. Rayne, Australian J. Phys. 9, 189 (1956).
d J.A, Rayne, Proc. Phys. Soc. (London) 69, 482 (1956).
e See reference 29.
f See reference 20.
I T. H. K. Barron and J.A. Morrison, Can. J. Phys. 35, 799 (1957).
h See reference 21.
' See reference 28.
1 See reference 22.
& The calculated value listed in reference 9 is incorrect. The corrected

value calculated by Dr. Sutton is listed above.
1 See reference 23.
m See reference 24.
n See reference 25.
o See reference 26.
& See reference 27.

based on a computer calculation and the values calcu-
lated should be exact except for errors introduced by
interpolation between the tabulated values. Since the
published tables apply only to cubic materials with
(Cff C$2)(2C44 there are no entries for potassium
bromide and sodium chloride nor for the hexagonal
metals. The second column gives the results obtained
from approximating the velocity function with a six-
term power series' and the third column shows the
results obtained if a six-term expansion in cubic
harmonics' is used. The latter expansion technique has
been applied to hexagonal materials by using spherical
harmonics" and was used to complete column three for
zinc and magnesium.

The IBM 650 digital computer of the Ford i4lotor
Company Research Department was programed to
find the average velocity function using 120 points
spread uniformly over the unit triangle for cubic
materials and using a one degree interval for the single
angle variable in hexagonal materials. The resulting

"See reference 3, p. 43.

Quimby Numeri-
and Betts cal inte- Calori- Refer-

de Launay Sutton et al. gration metric ence

Elastic constants extrapolated from 4.2'K
343.8 a

344.5 344.4 345.4 344.4 346.7
345.1 c

TABLE III. Changes in Debye temperature with
changes in elastic constants.

Numerical
integration 1.005 C&t 1.005 C&g 1.005 C44 1.01 Cti

Aluminum 428.2 429.2 427.7 428.8
Gold 161.6 162.7 160.7 161.8
Zinc 327.1 327.3

values of 80 are given in the column headed "Numerical
integration. " The two entries for zinc are calculated
from the two available sets of 4.2'K elastic constants'
in Table I. Increasing the number of points considered
in the unit triangle to 933 increased the value of 80 for
copper by 0.17'K or 0.06% and decreased the eo value
for lithium by 0.49'K or 0.15%. Since the values from
a 120-point calculation difI'er so slightly from the results
of the longer calculation, and since these difFerences are
much less than the errors expected from errors in the
elastic constants, it is felt that the 120-point calculation
with its consequent saving in computer time is sufFi-

ciently accurate.
Table II shows that all the foregoing methods for

calculating 80 from elastic constants are essentially
in agreement. In every case the difterences are less than
one percent. The columns headed "de Launay" and
"Numerical integration" are results of essentially the
same calculation and should agree closely, as they do.
The differences between these columns are indicative
of the errors introduced by interpolation and by the
method of numerical integration. The large difI'erence

apparent for aluminum is presumably due to our slight
extrapolation of de Launay's tables to cover the
particular values of elastic constants for this metal. For
lithium, the large difference (1.3'K) is not due to the
inadequacy of the 120-point division of the unit triangle,
but to some other unknown cause.

Roughly the ease of calculation of Ho by any one
method is in the same order as the columns in Table II.
If one uses graphical interpolation, the method of
de Launay is outstanding in its simplicity. Although the
two series methods are about equally involved, it is
our experience that the value of 80 resulting from the
method of Betts and co-workers is apt to be more
nearly mistake-free, probably because the individual
steps can be checked separately.

Since some cubic materials and all hexagonal ma-
terials fall outside the range of de Launay's published
tables and since the series methods are probably
poorer approximations, we take the column headed
"Numerical integration" to be the best values of 80
calculated from elastic constants.

The uncertainty of these values is determined by the
absolute accuracy of the elastic constants. Kith the
computer program setup it is a simple matter to deter-
mine how sensitive the final 80 value is to errors in
each individual constant. Table III shows the values of
80 for aluminum (low anisotropy) and for gold (average
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anisotropy) which are obtained by numerical inte-
gration if only one elastic constant is increased by 0.5%.
A 0.5% change in elastic constants causes 80 to change
by less than 1%.Also listed is the 80 value obtained for
zinc when the elastic constant C» is increased by 1%.
This particular constant is difFicult to measure ac-
curately so it is encouraging to observe that Hp is not
very sensitive to its uncertainties. From pulsed ultra-
sonic measurements, the absolute values of the measured
elastic constants are estimated to be in error by about
one-half percent. Since the errors in Hp are about the
same size as the errors in the elastic constants, the
calculated Debye temperature may be expected to be
accurate to about one percent. This conclusion is
supported by the fact that the Hp's calculated from the
two sets of low-temperature elastic constant data
available on zinc differ by only 0.7%.

COMPARISON OF Sp %'ITH CALORIMETRIC RESULTS

The last column in Table II gives the values of Hp

determined from specific heat measurements'~" in the
1 to 4'K temperature range. Included are several as yet
unpublished results"" as well as a new calculation, ~
using the 1955 temperature scale, of data already in the
literature. ' These values have been obtained by fitting
the data on a C/T versus T' plot with a straight line
by the method of least squares. The slope of this line
defines the calorimetric Hp. Small differences in the
numerical value of the calorimetric and elastic Hp's may
arise simply because the elastic constant line is not the
best least squares fit to the data. Thus the best way
to compare the two results is to plot the calorimetric
data and superimpose on it the line defined by the
elastic constants. Since only the slope of the line is
defined, it must be forced to pass through the calori-
metric data at some point and disagreement is then
apparent if the line and the data diverge.

Rather than plot a separate C/T versus T' graph for
each material listed in Table II, the calorimetric data
have been normalized to allow several sets of data to be
presented in one graph. This is shown in Figs. 1 and 2

"Corak, Garfunkel, Satterthwaite, and Wexler, Phys. Rev. 98,
1699 (1955}.

~ D. L. Martin, Phil. Mag. 46, 751 (1955)."P. L. Smith, Phil. Mag. 46, 744 (1955).~ G. Seidel and P. H. Keesom, Bull. Am. Phys. Soc. Ser. II, 3,
17 (1958).By assuming that 8 is temperature dependent beta een
1 and 4', Seidel finds that a least squares fit to his data would
give 8p=309'K. We are indebted to Mr. Seidel for communi-
cating this result to us. See also Phys. Rev. 112, 1083 (1958).~ Howling, Mendoza, and Zimmerman, Proc. Roy. Soc.
(London) A229, 86 (1955).

2' J. A. Kok and W. H. Keesom, Physica 4, 835 (1937).2' L. M. Roberts, Proc. Phys. Soc. (London) E70, 744 (1957).
~6Barron, Berg, and Morrison, Proc. Roy. Soc. (London) 242,

472 (1957).
'Morrison, Patterson, and Dugsdale, Can. J. Chem. 33, 375

(1955).
~ J. Rayne, J. Phys. Chem. Solids (to be published}.~ J. E. Zimmerman (unpublished data, 1958).~ J. Skalyo and A. Arrott (to be published). These results are

based on the data of reference 19 but are recalculated using the
1955 temperature scale and a least squares fit to the data.

1000

800

I

700

I
600

E

soo
O

aoo

~l
e

300

200

100

3

(+)
Sxt0

FIG. 1. Comparison of the specific heat calculated from Debye
theory (solid lines) with the measured specific heats of cubic
materials.

3' C. S. Barrett, Acta Cryst. 9, 671 (1956).

where C8/T is plotted against (T/8)'. On such a,

plot vertical lines are lines of constant T/8. If the
specific heat data are described by the sum of a
linear and a cubic temperature term then, in a plot like
Fig. 1, the data will define a straight line with an
intercept of y8 (where y is the coefficient of the linear
term) and a slope determined by the ratio of the
normalizing H to the H which best fits the data. In
constructing these figures, the values of normalizing H

were taken from the numerical integration column of
Table II. The lines are drawn with the slope predicted
by the Debye theory and so as to fit best the lower end
of the data. We have chosen not to plot data in which
there are good reasons for the large and clear di6'erences
between the calorimetric and elastic Hp's. These are
sodium chloride, " aluminum, "" lithium, " and po-
tassium bromide. " For sodium chloride and alumi-
num the specific heat data are quite scattered and can
easily be described with the elastic Hp. For lithium the
lines defined by the elastic data and the calorimetric
data diverge completely, but this is probably owing to
the presence of a crystal structure change" between
77'K where the elastic constants were measured and
4 K where the specific heat was measured. In the case
of potassium bromide the calorimetric measurements
extend only to temperatures of the order of 8/50 which
is not low enough for a valid comparison.

Figure 1 shows the plot of C8/T versus (T/8)' for the
specific heat measurements of the noble metals" and
lithium ftuoride. " It is apparent that the elastic Hp

defines a straight line which describes the calorimetric
data for copper, silver, and lithium fluoride to within
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FIG. 2. Comparison of the specific heat calculated from Debye
theory (solid line) with the measured specific heats of hexagonal
metals.

the experimental scatter of the data. For gold, the
elastic line is clearly not the best straight line fit to the
data. This diGerence is just outside the experimental
errors arising from elastic constant errors. It may be
that simple Debye theory is not appropriate over the
whole temperature range given in the figure in which
case the elastic constant line should fit the data only
below a certain temperature. From this point of view,
it may be concluded that the elastic 8p and Debye
theory successfully describe the calorimetric data
below temperatures of approximately 8/60.

The disagreement between calorimetric and elastic
Hp's is more explicit for the hexagonal metals since both
cases examined show large deviations. Figure 2 shows
a CH/T versus (T/8)' plot of the specific heat measure-
ments on magnesium" and zinc." Superimposed on
these data are the straight lines predicted by the elastic
constant measurements with the lines chosen to pass
through the data at the low-temperature end. It is
obvious that the line based on elastic data is not the
best straight-line fit to the data and that a good
description of the data occurs only below temperatures
of about 8/150 where we have required it to fit. In
these cases, the elastic constants would have to be in
error by about 4% in order to account for the difference
in results. Such a difference is far outside experimental
error for all the constants except CI3. Table III shows
that if this one constant is changed by 1%, the value
of 8 is only changed by 0.1% which makes it unlikely
that the inaccuracy of C» could account for the dis-

crepancy in 8 values. It may be argued that the true
Debye region has not been reached for these hexagonal

metals even though the temperature is below 8/100.
However, the magnesium specific heat data does fall
on a straight line which indicates that it can be well
described with a T dependence. The zinc data deviate
slightly from a T' law and Seidel" has made a least
squares fit to his heat capacity data assuming a tempera-
ture dependent 8. From this he extrapolates to T=O'K
to obtain a value of Ho=309'K which is still 5% below
the elastic constant value.

TEMPERATURE DEPENDENCE OF 8

The previous section has shown the degree to which
Debye theory describes experimental specific heat
measurements near absolute zero. In order to calculate
the lattice specific heat above T=O using elastic
constant data, it is necessary to modify Debye theory
to include eBects which arise because the solid is not
a continuum but a lattice of discrete atoms. This
requires considering a model in which the solid consists
of mass points held in equilibrium by forces which are
expressable in terms of the elastic constants. For
convenience, the results of these modifications are
usually expressed in terms of an effective 8 which can
be compared with the Debye 8. This modified 8 is
expected to vary with temperature and its temperature
dependence can be calculated assuming a particular
force constant model. From this, the lattice specific
heat can be determined and compared to the calori-
metric measurements in order to judge the validity of
the model chosen. It is also possible to calculate a
calorimetric 8 from specific heat measurements and
compare it with the modified 8 predicted by the lattice
theory. But unless very precise calorimetric measure-
ments are used, the resulting values of 8 may show
considerable scatter and make a judgment of the
theoretical model very diRicult. Ke have chosen to
compare the specific heat values themselves since these
are of more technical interest and since it is then
obvious how much error can be expected from using
elastic constant models to estimate lattice specific
heats.

Figure 3 shows the experimental data for copper, "
silver, " and gold'4 plotted as C/T versus T'. The solid
curves labeled D show the variation of the specific
heat predicted by the unmodified Debye theory which
has the constant value of H=Hp. Gold, which shows
deviations from the elastic constant 8p at temperatures
of 8/60, follows this theory to remarkably high tem-
peratures (T 8/7) even though silver and copper
deviate considerably from it at temperatures of the
order of 8/20. The curves marked L are based on the
model of de I.aunay' who assumes a central force
connecting nearest and next-nearest neighbor atoms

~ W. F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63, 1897
(1941).

'3 Meads, Forsythe, and Giauque, J. Am. Chem. Soc. 63, 3902
(1941).

34 T. H. Geballe and W. F. Giauque, J. Am. Chem. Sac. 74,
2368 (1952).
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and a third force arising from the compressibility of
the electron gas. This model does not describe the
lattice specific heat for gold and copper over the tem-
perature range in which data are available but seems
to describe the silver data up to temperatures of approxi-
mately tt/10.

The curves marked II are the predictions of the model
of Horton and Schifp' which are based on assuming
a three-force constant noncentral interaction between
nearest neighbor atoms only. This model is in better
agreement with the measurements for copper and gold,
but not enough to be significant. None of the models
gives a really satisfactory description of the specific
heat in the range where measurements are available.
However, this apparent failure may not be serious
since these theories are expected to apply only up to
temperatures of e/20 and the available data do not
cover this range. A critical evaluation of the models
must wait for accurate specific heat data between 4
and 15 K.

A model applicable to hexagonal metals has been
calculated by Garland and Slutsky. " Using central
forces between the first three nearest neighbors and a
force due to the compressibility of the electron gas they
find that 8 decreases with increasing temperature but
not as rapidly as is observed. They also find that zinc
with its high c/a ratio cannot be described well with
their model and do not attempt a comparison with the
specific heat values.

CONCLUSIONS

For the cubic materials considered, the value of 80
calculated from elastic constants measured at 4'K
by direct numerical integration is in very good agree-
ment (except possibly for gold) with the low-
temperature specific heat measurements. The tables of
de Launay yield results which agree with the integration
to within the accuracy of reading the table and is by
far the easiest to apply. The two expansion methods of
Betts et al and of Quim. by and Sutton appear to give
tto accurately to 1%%uo even for the most anisotropic
case but the method of Quimby and Sutton seems
laborious and more susceptible to mistakes. Considering
the differences in the results of the series approximation,
and the errors in interpolation and extending de
Launay's tables, we advance the values listed under the
Numerical integration column in Table II to be the
best available values calculated from elastic constants.

Since the lattice specific heat predicted by Debye
theory from elastic constants is consistent with the
calorimetric measurements to the extent shown in
Fig. 1, it seems possible to conclude that the simple
Debye model of lattice heat capacity is a very good
approximation at low temperatures in cubic substances.
In materials where the lattice specific heat cannot

"G.K. Horton and H. Schiff, Can. J. Phys. 36, 1127 (1958)."C. %V. Garland and L. J. Slutsky, J. Chem. Phys. 28, 331
(1958).
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Fio. 3. Comparison of the specific heat calculated from several
different models with the measurements in the 15 to 30'K range.
The curves marked D are based on Debye's continuum model
while those marked L and H refer to the lattice models proposed
by de T.aunay and by Horton and Schiff, respectively.

clearly be separated from other contributions (i.e. ,
when there are large electronic specific heats, low-
temperature phase transitions, or magnetic interactions)
the elastic constants can be used to define the lattice
contribution without introducing appreciable error.

For the hexagonal metals and gold there seems to be a
definite difference between the calorimetric 80 and the
elastic constant value. The reason for this is not certain.
It is not likely that errors in elastic constants will
account for the difference. Furthermore, for zinc two
independently measured sets of elastic constants result
in nearly the same 80 value. It is possible that small
systematic errors in the specific heat measurements or
uncertainties in the temperature scale would account
for the difI'erence.

It may be that temperatures of tt/60 are not suffi-
ciently low for the simple Debye model to apply to
these metals. This may imply that dispersion of the
elastic waves is an important eGect at these tempera-
tures. Simple reasoning indicates that for an isotropic
medium deviations down from the straight line in a
C/T rs T''plot are a result o-f an upward bending of the
co(k) curve and conversely for an upward deviation.
Although not strictly applicable to anisotropic media,
such reasoning would indicate that the ca(k) curve
for gold and magnesium tends to bend upward away
from the Debye approximation while for zinc it bends
downward. However, examination of Figs. 1 and 2
indicates that the data need not be considered as
"curving away" from the theoretical straight line since
it can be fitted by a straight line of diferent slope. Thus
the dispersion must be of a rather special nature.

There may be effects which modify the measured
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elastic constants and could therefore cause the observed
differences. If dislocations contribute to the measured
elastic constants, the resulting value of Hp would be
lower than the calorimetric value. This might be the
case for gold and magnesium, but the deviation for
zinc is in the other direction. Furthermore, the excellent
agreement for copper and silver must then be considered
as somewhat fortuitous.

It has been predicted" that the calorimetric Hp should
be larger than the elastic Hp because the measured elastic
constants include a contribution due to a relaxation
mechanism of the electrons. The available low-tempera-
ture elastic constant data do not indicate any such
relaxation mechanism of the required magnitude and
the values of Hp which are predicted are in good agree-
ment with the calorimetric Hp's for metals with pre-
sumably the same free electron structure as gold.

The attempts to describe the specific heat at tem-
peratures where Debye theory fails by using a lattice
model are satisfying only in a qualitative way, but are
unsatisfactory in predicting the detailed temperature
dependence of 8. However, before a critical comparison
can be attempted, accurate specific heat measurements
must be made in the 4' to 20'K range.

ADDENDUM

Since submitting this article, more elastic constant
and calorimetric data have become available. Calori-
metric measurements by Phillips" down to 8/1000

TABLE I. Additions.

C» &t2 C44 0 '

Elastic constants extrapolated from 4.2'K
KCl 0.483 0.054 0.0663 3.294
Nickel 2.612 1.507 1.317 9.206
Elastic constants extrapolated from 77'K
KI 0.338 0.022 0.0368 2.321
Thorium 0.780 0.482 0.513 3.058

Refer-
ence

2.038 a
8.968 4

3.197 a
11.787 c

' M. H. Norwood and C. V. Briscoe, Phys. Rev. 112, 45 (1958).
b Alers, Neighbours, and Sato (to be published).' Armstrong, Carlson, and Smith, J. Appl. Phys. 30, 36 (1959).

"J. L. Warren and R. A. Ferrell, Bull. Am. Phys. Soc. Ser. IT,
3, 226 (1958).

"N. E. Phillips, Proceedings of the Fifth International Con-
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TABLE II. Additions.

de Launay

Elastic constants extrapolated
KCl 236 3c
Nickel 476.3

Elastic constants extrapolated
KI 130.9'

Thorium

Numerical
integration

from 4.2'K
237.1
476.2

from 77'K
131.5

164.2

Calori-
metric Reference

235.1
441

132.3
128
170

a See reference 40.
b J.A. Rayne and W. G. Kemp, Phil. Mag. 1, 918 (1956).' These values were calculated using tables prepared by J. de Launay

which are to be published in J. Chem. Phys.
d See reference 39.
e P. L. Smith„Proc. Conf. de Phys. des Basses Temp. , Paris, p. 283 (1955)

ference on row Temperature Physics and Chemistry (University of
Wise. Press, Madison, Wisconsin, 1958), p. 414.

~ W. W. Scales, Phys. Rev. 112, 45 (1958).
~ Barron, Berg, and Morrison, Proc, Roy. Soc. (London) 242,

478 (1957).

(0.3'K) gives 8O=426' for aluminum which compares
favorably with the calculated value of Hp=428. 2 shown
in Table II. New calorimetric measurement on LiF"
down to 8/80 give 80= 722'K which is in disagreement
with the calculated value in Table II. However, these
latter calorimetric data are somewhat scattered and,
in fact, can be reasonably well described by a line
corresponding to 8p= 734.1'K.

Other new data are shown in the added tables.
Additions to Table I shows the recent elastic constant
data. The values of atomic volume and density are
taken from the reference cited. Additions to Table II
shows the resulting calculated values of Hp.

As before, the calculated values of Hp are in good
agreement with each other. The results of calorimetric
measurements are also listed. For thorium, although
the calorimetric Hp seems to be in disagreement, the
calorimetric data up to 8/50 is well described by
choosing Hp = 164.2'K. The calorimetric and elastic
constant values for nickel are apparently in disagree-
ment but the calorimetric data are quite scattered so
that critical comparison is not possible.

For the two alkali halides listed, the calculated and
calorimetric values are in apparent agreement. How-
ever, on a plot like Fig. 1 the elastic constant line
through the origin does not fit the calorimetric data,
which extends down to almost 8/100. Dispersion effects
can explain this failure as shown by Barron, Berg, and
3iIorrison~ who obtained the values of Hp listed above
by extrapolating calorimetric data to T=0. This result
indicates that deviations from the Debye approximation
occur at relatively lower reduced temperatures for the
alkali halides than for the cubic metals. If dispersion
is to account for the discrepancies in the hexagonal
metals, it must be concluded that the Debye approxi-
mation is inapplicable at reduced temperatures much
lower than those which are suitable even for the alkali
halides.


