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I. INTRODUCTION

ESEARCH on line broadening, though often
regarded as pedestrian and unlikely to lead to

new fundamental insights, is nonetheless inspired by a
vision. One dreams that in a distant star or in some
other inaccessible region filled with matter a few atoms,
perhaps hydrogen atoms, emit lines whose structure can
be analyzed in terrestrial labora, tories. These lines carry
in many cases information we have already learned to
understand: red shifts revealing masses, Doppler shifts
revealing motions, and sometimes Doppler widths
revealing temperatures. It is clear that in principle all
physical properties of the medium containing the
radiating atoms are somehow rejected in the line
structure, since they affect the forces between the
radiating atom and its neighbors, the distances over
which these forces are exerted, and the times during
which they act. One hopes, therefore, that when the
language of the spectral lines has been fully learned, a
radiating atom in a distant material environment can
serve as a noninterfering probe conveying significant
data regarding pressure, temperature, or, more gener-
ally, the distribution of molecular speeds, and states of
ionization in the surrounding medium. Such hope is
now far from fulfillment, and this article attempts but
a modest contribution to its realization.
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This survey is limited to a small part of the line-width

problem, a problem whose scope and complexity is not
widely appreciated and which has suBered perhaps
from an excessive optimism of authors who, on pro-
posing a partially successful simple model yielding to
mathematical treatment, have served enthusiastic
notices that the whole problem is solved. When, as
often happens, experimental observations fit the special
model, the matter is easily regarded as closed despite
logical difficulties, and it sometimes takes severely
critical appraisals to set the problem on the path of
progress again.

The part treated here is plasma broadening, a group
of eGects peculiar to lines emitted in a medium that
is strongly ionized but has no net charge. Hence we do
not consider the results of impacts between neutral
molecules, nor any of the theories suitable principally
for their description. Other review' articles 6ll this
need. In a plasma, the heavy positive charges and the
light electrons often require difkrent treatment, as the
following discussion shows. Attention is restricted to
emission because in ionized media absorption is not
often directly observable and the problems connected
with phenomena of reabsorption necessitate considera-
tions unrelated to the broadening agencies here re-
viewed. Nor are microwaves specifically included in our
work; optical lines are our chief concern.

Applications of the theory are found in four widely
separated fields of investigation: in astrophysics, gas
discharges, strong shocks, and flames or explosions.
Some practical urgency attaches to line-width studies
because of the importance which all of these researches
currently enjoy.

This introductory section surveys two very general
methods that have found application to plasma line-
broadening problems. One is called statistical theory;
the other is variously called impact theory, velocity
broadening or phase-shift broadening theory. They refer
to diferent models that cannot easily be compared.
Because of the intuitive di6erence of the models the
eGects they generate are sometimes regarded as separate
or even additive, and oversimplifications have appeared
as a result of this seductive fallacy. Statistical and
impact theories are certain limiting instances of a more
general theory, each having its own range of application,
and each losing its validity in a large domain of physical
conditions of interest to the experimenter. There are
also situations in which both theories apply and give
identical answers. But it happens that in plasma
broadening the integrity of the two methods is rather
better preserved than under almost any other circum-

~ (a) V. Weisskopf, Physik. Z. 34, 1 (1933); (b) H. Margenau
and W. W. Watson, Revs. Modern Phys. 8, 22 (1936); (c) A.
Unsold, Vierteljahresschr. astron. Ges. 78, 213 (1943); (d) S.
Ch'en and M. Takeo, Revs. Modern Phys. 29, 20 (1957); (e) R. G.
Breene, Revs. Modern Phys. 29, 94, 1957; (f) L I. Sobel'man,
Progr. Phys. Sci. (U.S.S.R.) 54, 551 (1954). (This paper contains
useful comments on the interplay between the Doppler effect and
interaction broadening, a problem not considered here. )

Fro 1 Depentience of
energies on interparticle
distance.

stances, the reason being that the heavy ions exert
long-range and slowly varying forces which satisfy the
statistical theory, whereas the light and swift electrons
are very often tractable by impact methods.

A. Statistical Theory' —'

A spectral line arising from a transition between an
upper level of energy E2 and a lower of energy E&, has
its normal (radian) frequency (E2—E&)/h. But E2 and
E& are not constants; they vary as a result of per-
turbations caused by other molecules, the "perturbers. "
In the presence of only one perturber the dependence
of E2 and E~ on the distance, r, between the centers of
the radiating and perturbing particle is given by the
well-known potential energy curves, of which a typical
set is drawn in Fig. 1. A transition occurring at a large
distance r~ has a normal cu, at r2, ~ is smaller and at r~
larger than normal. Thus to every r there corresponds
an cu(r) —= (E2(r) —E,(r))/fi and some co's are more likely
than others. In a statistical sense, the probability P(ru)
equals the fraction of configuration space in which
E2 Ei= duo or, mo—re precisely, that fraction times tie
Boltzmann factor, exp( —(E~(r) —E2(~))/kT). It n.
been customary to neglect the Boltzmann factor on the
supposition that it is practically 1 where P(co) is large.
This may sometimes lead to serious errors; yet we
assume it here.

In the presence of X perturbers, the frequency dis-
tribution I(&o) is still given by P(co), but configuration
space now has 3X dimensions, and

f'(cu) d&o =P ((u) d (co)

= (kr/V) t .
J

ri'r2' rg'dri dry. (1.1)

The integration extends over the restricted domain in
which

co—di0~+ co(ri, r2' ' 'rN) + 6)+Ad.
2 (a) H. Margenau, Phys. Rev. 40, 387 (1932); (b) 43, 129

(1933); (c) 44, 931 (1933); (d) 48, 755 (1935); (e) 82, 156 (1951).
3 M. Kulp, Z. Physik 79, 495 (1932); 87, 245 (1933).
4 (a) H. Kuhn, Phil. Mag. 18, 987 (1934); (b) H. Kuhn and F.

London, Phil. Mag. 18, 983 (1934).
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Usually, in application of statistical theory, additivity
is assumed for the contributions to co..

ra(r~ r~) =p (o(r~).

This is often true for large r, but never for small r,
where the main contribution to the interaction comes
from the exchange forces. In a plasma, Ace(r) for large r
is the difference in atomic energy resulting from the
Coulomb forces which are exerted by the passing ions
and electrons. Mathematical techniques for evaluating
the integrals in (1.1) involve the use of 8 functions
(Dirichlet's method) now so common as not to require
review (see Margenau" and Chandrasekhar').

fQ T

J((o T) ~ e'& "'&'dC=
~i(co—cu') T

Z(07 M )

If this were the only radiative act observed, the fre-
quency distribution would be

I
J(co,T) I'. The observed

line, however, is a composite of radiations from many
atoms radiating for diferent lengths of time, but with
a mean time equal to r, the reciprocal of the collision
frequency v.. The probability that a given atom radiate
for T seconds is 7 'e '. Hence the intensity at co is

This is the famous Lorentz "dispersion" curve whose
full width at half-maximum is 2v, on the radian
frequency scale. In this article the "half-width" co~

is defined as full width of the line at a height equal to
—, its maximum intensity. Formula (1.2), despite its
simplicity, meets with singular success in predicting
that a "pressure-broadened" line has a width propor-
tional to the collision frequency, and since

v, =nqv (1 3)

in terms of the number density of perturbers n, the
collision cross section g, and their velocity v, this width

~ S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).' H. Lorentz, Proc, Amsterdam Acad. Sci. 8, 591 (1906).

3. Impact Theory

An infinitely sharp line implies a radiating process of
infinite duration. Natural line width arises from the
fact that the upper state of the atom has a finite life
time, and can be obtained by carrying out a Fourier
analysis of the sinusoidal vibration for a finite time.
According to the reasoning of Lorentz, ' impacts of
perturbers shorten the lifetime below the natural dura-
tion and thereby increase the width of the emitted line.
Mathematical representation of this process is very
simple: Suppose an atom is allowed to emit radiation
of frequency co' between times 0 and T. Then the dis-
tribution of Fourier amplitudes is given by

turns out to be proportional to the pressure at a
constant temperature. Hence the name, pressure
broadening.

The meaning of an impact is clear only if the mole-
cules are rigid spheres, an hypothesis of the worst sort
for ions. Even for neutral structures, Eq. (1.2) is not
wholly satisfactory, for if used in conjunction with (1.3)
q must take on values quite diGerent from gas-kinetic
cross sections, usually larger values. To hide the dif-
ficulty a new phrase was coined; theorists began to
speak of oph cal cr'oss sections, to the delight of experi-
menters who now had a brand new quantity to measure.
The unpleasant fact is, however, that Lorentz' theory
in its simple form breaks down when the perturbers
are surrounded by force fields, i.e., when impacts are
c cSOft

Qualitatively speaking, collisions affect the radiative
process in two ways:

(1) Some actually terminate it, quenching the upper
state by transferring the energy of excitation pre-
maturely to another place. Precisely under what con-
ditions an impact will quench is not easy to say because
this process requires a delicate balance of energies
within perturber and radiator. But it is known that
quenching occurs, because it manifests itself in an
added line width cud a reduction in the total line
intensity.

(2) The other collision effect is a phase change in the
emitted radiation accompanying the detuning of its
frequency by a passing particle. If the phase change
connected with a collision is large enough the passage
will eR'ectively divide the wave train into two incoherent
ones, and this is tantamount to termination so far as
line width is concerned. In this case no change in
intensity accompanies this interruption because the
atom goes on radiating a similar line during each suc-
cessive free period. Lorentz did not distinguish between
quenching and phase-altering impacts.

Lenz and Weisskopf' incorporated the idea of phase
changes in the impact theory and achieved thereby a
measure of success in giving meaning to an optical
cross section, or an "optical impact radius. " In the
absence of perturbations, Weisskopf reasoned, co= con-
stant=co' and the phase is a linear function of t, or't.

This corresponds to a sharp line. If an appreciable
change Aq is added to this linear trend during a per-
turbation, that perturbation acts like Lorentz's impact.
Now

where DE(r) is the departure of the E curves in Fig. 1
from their final values. Writing e(r) for the second dif-
ference h(Eg —E&) and assuming DE2 to be so small

' (a) W. Lenz, Z. Physik 25, 299 (1924); (b) V. %'eisskopf, Z,
Physik 75, 28'7 (1932).
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that the perturber is deflected but very little from its
straight-line path, then, if it Qies by at a closest
distance p from the radiator and has a speed v,

observable Q, which is a function of momenta and coor-
dinates of some physical system, is represented in

quantum mechanics by a matrix with elements Q;, .
The classical intensity distribution within a line,

6y =A ' I ~(p'+ v~P) 'dt =6y (p, v) (1.5) 2(u4

I(s&) = p(t)e ' 'dt
3+c' ~

(1.6)

The added phase depends on p and v. An effective

impact, i.e., one which kills coherence, is an impact for
which Ap&~ po, a quantity presumably of order of
magnitude 1. Thus the relation Ay= qo divides all

impacts into two ideal classes, those which broaden
and those which do not. Since a smaller p leads in

general to a larger Ay, the relation Ay=go defines

a p, (v) below which all impacts broaden the line.
Therefore vp. '(v) plays the role of Lorentz' q and may
be introduced in (1.3) and (1.2). Here then is a quali-
tative reason why optical cross sections may diBer from

gas kinetic ones, and why they depend on v.

We shall often encounter the equation Ap= po as a
limiting condition separating the ranges in which dif-

ferent kinds of treatment are necessary. The precise
value of po never matters, but we assume it to be of
order magnitude 1 (or v/2, or even 7r) and call it the
critica/ phase. If Aq arises from single impacts, the
critical phase defines an optical radius or critical impact
distance p„which depends on v and on the form of e,

i.e., the law of interaction. Likewise, there results an
optical cross section mpp.

Numerous refinements of this theory have been
proposed. 'b' One of them is treated later in some detail
because of its success in applications even under circum-
stances in which its a priori validity is not evident (see
Sec. IV).

C. Relation Between Statistical and
Impact Theories

The two physical pictures underlying the treatments
in parts A and 8 of this section are so completely
unrelated that a decision as to their domains of validity
cannot be made on simple intuitive grounds. Attempts
to combine the results in phenomenological ways, by
merely saying that both are present independently and
thus "folding" one distribution into the other' ' have
had some success, t but lack fundamental justification.
It is necessary to fall back upon a mathematical
formalism more general than either treatment A or 8,
and to see under what conditions it reduces to these
species of description.

Such a formalism is available in the Fourier integral
for the line width, suitably generalized. ' "A classical

' {a) W. Lenz, Z. Physik 80, 423 {1933);(b) C. Reinsberg, Z.
Physik 111, 95 (1938); (c) E. Lindholm, Arkiv Mat. Astron.
Fysik 28B, No. 3 (1941); (d) H. M. Foley, Phys. Rev. 69, 616
(1946).

f This process is not the same as adding the half-widths.
P. W. Anderson, Phys. Rev. 76, 647 (1949).' S. Bloom and H. Margenau, Phys. Rev. 90, 791 (1953).

is such an observable involving momenta and velocities
of the radiating atom through the varying dipole
moment p, and the atomic frequency ~. The observed
value of Q for the state of the system which is repre-
sented by the statistical matrix S is

Q = trace(SQ).

Thus the quantum mechanical intensity distribution
(we omit the bar) is, because of (1.6),

I(cd) ~tracetS t dt's(t)e ' ' dt'p(t')e' ' ', (1.7)
[

where S, y(I), and p(t') are matrices, the latter two in
the so-called moving system or in "the Heisenberg
form" (see the following). From (1.7), statistical and
impact theories can both be derived as certain limiting
cases. ' "

The Hamiltonian H for the emitting atom is a
function of t because of the perturbations that broaden
the line. Introducing a time-development matrix U
which satisfies the Schrodinger equation,

i hU= IIU, (1.8)
then

p(t) = U pU,

p being the time-constant (Schrodinger) matrix p;,
= 1'rP,*(g„er„)iP,dr Now sup. pose the perturbers are
fixed in space. Then H does not depend on t and i1.8)
has the solutions Ui =expL( —i /)fiEt]i8 i, where Ei
is a stationary eigenvalue of H. This approximation is
too drastic and yields no line width; however, almost
as simple and quite significant is the answer obtained
by making the adhabatic hypothesis f..

The adiabatic hypothesis in its quantum mechanical
form says that, under conditions specified forthwith,
Eq. (1.8) has a solution of the form

Z
t

Ui„——exp ——
~ Ei(t')dt',

A~0

" (a) The procedure here follows H. Margenau and R. Meyerott,
Astrophys. J. 121, 194 (1955). See also: (b) H. Margenau, Z.
Physik 86, 523 (1933); (c) T. Holstein, Phys. Rev. 79, 744 (1950);
(d) M. Mizushima, Phys. Rev. N, 94 (1951); 84, 363 (1951);
(e) P. W. Anderson, Phys. Rev. 86, 809 (1952).

f. The word "adiabatic" has come to be almost meaningless
through unprincipled use in modern physics. This becomes evident
in Sec. IIB, where various specific senses of "adiabatic" and its
opposite, "diabatic" (or its atrocious, pleonastic synonym, non-
adiabatic), are discussed. In the present context, the meaning
should be clear from the discussion.
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where the Ei(t) are solutions of

Hli(t) =Ei(t)k&(t) (1.10)

Here l is the atomic state initially present, m some
other state. With (1.9) and (1.10) ti(t) takes a simple

form:

t'ai

exp L4'& (t)]
(1.12)

We now introduce this into (1.7) and assume that S
is diagonal, a form which can always be brought about
by proper choice of state functions. Then, after a few

steps (among them the replacement of the variables
t' t by r) th—ere results

I(o&) ~
~

~dre'"'C(r), (1.13a)

C(r) =p S;1ti;fo~' exp{ i[cp f(t+r)— '

(P f(t)])d't. (1.13b)

The function C(r), whose Fourier transform is the
intensity distribution, is called the correlation function;
its general features form the substance of an elegant
mathematical discipline called the statistics of time
series; hence, this manner of writing I(o&) is finding
increasing favor with theorists. Qualitatively, the
meaning of C is clear: y,f(t+r) and y;f(t) are certainly
equal when r=0; hence, C(0) is large. If w has a short
"memory" so that it quickly loses correlation with its
previous values, C(r) will fall off rapidly with r. It is
then something like a 8 function and I(o&) is broad. If,
on the other hand, p(t) remains correlated with itself
(in the absence of interaction there is a linear corre-
lation for all time: p= const t) during an appreciable
period, C(r) will differ from 0 for that period, and I(o&)
will be correspondingly narrow. One may indeed show
that the half-width of I(o&) is approximately the recip-
rocal of the half-width of C(r).

In arriving at (1.13), which is suggestive of the
starting point of the Lorentz theory, we have used only
the adiabatic hypothesis. Its correctness is tied to
inequality (1.11).

An analysis of the conditions under which that
inequality is true is given in the next section. We

an equation sometimes called the adiabatic Schrodinger

equation. The hypothesis is valid if, during the per-
turbation interval t, and for all states m,

(dH/dt') i
1

i
exp — (Ei(t")

"o E (t') —E„(t') I hJp

~ ~
—E (t")]dt" dt' «1. (1.11)

observe here primarily that (1.11) contains both the

nondiagonal element (dH/dt)i„and the energy differ-

ence Ei(t) —E (t); its validity depends on the relation

between them. The remainder of this section takes

(1.11) for granted and concerns itself with the manner

in which E&—E changes in time, for the applicability
of statistical and impact theories depends on the
behavior of that difference alone.

The statistical theory results if the difference changes

slowly. The quantity p may then be expanded in a
Taylor series

y(t+ ) = g (t)+ y'(t) +
and all terms in higher powers of r may be neglected.
The convergence here is generally good if only

q "(t) (r'/2) «1 for all values of t and those values of r
which matter in the integration of (1.13a), i.e., for
which C(r) &0. In (1.13b) we assume for simplicity
that only one atomic state i=1 was initially present
(S;=t&;i) and that only one ti&f', namely p», is of
appreciable magnitude. Then

C(r) cc ~e'&'"&'&'dt= J~ exp{—i[E2(t) Ei(t)]r/h—)dt;
J

hence,

I(o&) ~ ldre'~' I exp{—if(E2 —El)/h]r)dt

The integral over 7- now leads to a 8 function which is
diferent from zero only at those times t when or, the line

frequency under consideration, equals (E&(t) —Ei (t)]/h,
our former o&(ri r&r). By the rules of statistical
mechanics (ergodic theorem) these times have prob-
abilities equal to the fractional volume of configuration
space in which o&(ri r&) =co. The exact formal analysis
here involves ranges d~, near equalities and probability
densities, which we suppress, placing thereby a heavy
burden of infinities and zeros upon the proportionality
signs. With a little care the reader can supply these
purely mathematical details. In sum

I(o&) ~ 8[co o&(ri r~)]dr& dry (1.14)
J J )

and this is the P(o&) of Eq. (1.1).
An extension of the reasoning here outlined permits

proof of two propositions of interest in the use of the
statistical method. """

1. Far in the wings of a line, i.e., as 1o&
—o&'1~~,

(o&' is again the normal frequency) the statistical theory
is always applicable. The value of 1co

—o&'1 beyond
which this is true depends on the form of the interaction
and cannot be generally specified.

Later we have occasion to return to this proposition
(which we call for short the wing theorem) and therefore
give its more detailed proof, which closely follows
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Sobel man. Substituting Eq. (1.13b) into (1.13a) and We then obtain for the integral,
dropping the subscripts and the sum we have

Q e([q(1k)—k~1k] ~'(t )
—]

with the understanding, however, that this quantity
must be averaged over different collisions.

Let us redefine (o (without bothering to change notation)
to mean only the (&ariable part of the phase which is con
tributed by the perturbation We. then have for the second
integral

and, for I((o),

I((o) 11.Q e([r(tk) «1—()—1)(o(tk 1()][1t—111(tk) (p (t])]—]
kl

The average over all collisions causes the terms for
which k/l to cancel, and we find

g
—s [' ~+it](g+&)—P(g) id) The sum here can be interpreted as proportional to the

length of time during which

On interchanging the order of integrations, we have
ol

A(0= qr'(tk)

(o =(o'+ (o'—:]]k (LE;(tk) —Er (tk) ].

where Ace=~ —co'. We now set t+~=s in the second
integral and obtain

In the wings of the line, i.e., for sufficiently large 6(0
the contributions to

Thus I((o) is proportional to the time that the atom
spends in the perturbed condition with the energy
separation between levels given by Ace. This leads again
to Eq. (1.14) by arguments already presented; hence
the wing theorem.

2. If a spectral line is broadened by single impacts of
perturbers (low density) and t],t is the time during
which the passing particle moves a distance equal to
the impact parameter p, the statistical theory is applic-
able provided

~i(q LLtat)g]
fd~ At))1. (1.16)

Here co~ is the actual, measured half-width. Proof of
theorem 2 rests upon the assumption that for an
individual impact the perturbation can be written in
the form

come from intervals At& around the points tk, defined by
e1 (tk) =Bc' since in other regions the rapid oscillations
of the integrand tend to cancel. We can then write

e'(r k""dt=P ~ e"r ~""dt.
J ~ "~4

We next expand the exponent in a Taylor series about
t~ obtaining

q "(tk)
p e([«1k)—k~tk]

l expi (t tk)2
k (u dt's 2 I

(])"'(tk)
+ (t—tk)k+ ~ ~ dt

31

The important range of the integration, Atl„ is of the
order

v2[r)" (tk)] ]. -

If, in this range, the term proportional to (t—tk)' is
small, the integration can be extended to infinity. This
condition is

(1.15)

2

I((g) cc J~]k(kke ([~1 r12(1&ldt (1.17)

E2—E~ ——constr —,
where r is the distance between radiator and perturber
and o a small positive integer, so that 1t)(t) can be
constructed for any impact, If one then employs ine-
quality (1.15) noticing that, by virtue of (1.13a), the
half-width of C(r) is the reciprocal of the half-width
of I((o), a little algebra leads to formula (1.16).

This formula has been proved for individual impacts
only, and cog is the actual half-width of the line; in the
wing theorem, the value of cv beyond which the statis-
tical theory holds bears no general relation to the half-
width and differs in different situations.

Next, we demonstrate that (1.13) leads to the impact
results when the phase changes Aq occur suddenly and
are therefore separated in time. We use (1.13) later on
to obtain impact formulas more refined than those of
Lorentz or Weisskopf, following the work of Foley,
Lindholm, and others. At present we retrace the step
that led to (1.13) and write
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assuming again that the atom has only two levels. If
sudden impacts occur at times t=T;, and if these
impacts add amounts Aa; to the phase of the atom,

E2—Eg=A((u'+Q a,4(t, T;)j
so that

yu= y(t)=—co'/+A; for T;&~t&T;+~,

where T~&T2(T3 ~ and

Then the integral in (1.17) is

Tj+1
0 g em A g e i((a——sr ') td)

Tj

When the square of the absolute value of the sum is
taken, there will appear the terms

and, in addition, cross terms with factors e'&~~~&). If
the a; are unrelated, the sum of these will effectively
banish. The remaining summation in (1.16) extends
over different free times T,+&

—T,.= T and is equivalent
to the integration over T in Eq. (1.2). Under these
assumptions the Lorentz formula is therefore estab-
lished.

The wings of a line rarely follow the Lorentz formula,
whereas the central core often conforms to it. The
reason for this is not hard to see.

We spoke of sudden phase changes hp. In quanti-
tative terms, "sudden" means that the change in q (t)
occurring in the integrand of Eq. (1.17) as the result
of a collision is limited to a time interval At small
compared to the period of the other exponential factor
of the integrand, i.e.,

Dt «2x /~.

Unless the collisions overlap completely (long-range
forces, high density of perturbers) this inequality is
satisfied for sufficiently small co, that is to say, near the
center of the line. This result might be called the "core
theorem" in contradistinction to the wing theorem. The
former says that the core of a line "results from
impacts, " while the latter claims that the rings "are
statistical. "

These considerations allow these qualitative in-
ferences: impact theories describe lines at high tem-
peratures and for sudden perturbations, i.e., at low
densities; statistical theories meet success at low tem-
peratures and for heavy perturbers, especially at high
densities where many interactions coincide and produce
small net fluctuations of energy at the radiating atom.

To account for the contour of a given spectral line

when neither impact nor statistical theory can be fully

trusted, the center of the line can usually be interpreted
as resulting from impacts, the wings as statistically
broadened. More is said about this in Sec. IV.

We should comment on the consequences of Eq.
(1.7) when the adiabatic hypothesis cannot be made,
that is, when condition (1.11) is violated. This con-

tingency is most likely to arise when the spacings,
E~—EI„are small, hence in the microwave region, and
under other more special circumstances. The story is
then somewhat involved: the best account of it is to
be found in Anderson's article. '

In the plasma situation the statistical theory promises
a satisfactory description of the ion effects, and it
would seem that impact theories might be suited to
treat the swift electrons. But in this latter task, unfor-

tunately, a fundamentally new problem arises. All

theories here surveyed require the use of a potential
energy of interaction e, which is a function of the per-
turber position. Basically, then, they assume that the
perturber has a classical path. This is not true in

general for electrons, whose position is quite diffuse
when the speed is definite because of the uncertainty
principle. To operate with an c(r) may therefore be
meaningless, and a new approach is needed. In the
next section, we offer qualitative arguments designed
to permit some discrimination of conditions under which
classical path theories are useful, and related con-
siderations.

II. CLASSICAL-PATH HYPOTHESIS AND
CRITERIA FOR ADIABATICITY

A. Classical Path

Essential to the foregoing analysis of spectral line
broadening are two assumptions: first, that the per-
turber has a classical path, i.e., is a point particle with
spatial coordinates that are functions of the time; and,
secondly, that adiabaticity prevails, so that the per-
turber disturbs (without mixing) only the two states
between which the system is radiating. The lack of a
completely general workable approach to the broaden-
ing problem confers a good deal of importance upon a
knowledge of the conditions under which such assump-
tions hold. As instances of treatments where these
assumptions are not invoked we note the quantum
theories of Jablonski" and of Kivel, Bloom, and
Margenau"; another example is the theory of dielectric
relaxation of Debye, " which treats the broadening
induced by reorientation transitions in the radiator
during collisions. The broadening mechanisms pertain-
ing to these latter theories are quite different from
those discussed in Sec. I.The two classes of results arise
from opposite extremes in the physical model for the

» A. Jablonski, Phys. Rev. 68, 78 (1945).
"Kivel, Bloom, and Margenau, Phys. Rev. 98, 495 (1955)." (a) P. Debye, Polar Moleclles (Chemical Catalog Company,

Inc. , New York, 1929), Chap. V; (b) J. H. Van Vleck and V.
Weisskopf, Revs. Modern Phys. 17, 227 (1945).
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r(~) = (f2+v'f')&, (2.1)

which requires exact specification of both its position
and velocity at each instant of time. For this is to be
meaningful the uncertainties in these quantities, as
derived from quantum considerations, must be small
in comparison with their actual magnitudes.

Numerous authors base their use of (2.1) on the
magnitude of the angular momentum involved in a col-
lision, "~" relying on the correspondence principle to
validate classical analysis for large orbits. If L is the
angular momentum of the perturber with respect to a
radiator at rest, then, L=lh. For large values of the
integer l we may identify L with mrXv, which during
the collision may be taken to be =mrv.

The relation above in the form

harv= lk

and the uncertainty principle,

mdiv= A,

yield on division

(hr/r) iDv/v) =1/l, (2.2)

and this is much smaller than 1 if l is large.
Equation (2.2) implies that for sufficiently large t any

specified relative accuracy in r and v can be accom-
plished without violating the uncertainty principle, i.e.,
without need for abandoning the assumption of a
classical path. For example, if i=100 we may choose
the orbit of the perturber such that hr/r=Av/v= 1/10,
which ratios represent an acceptable percentage ac-
curacy in the specification of these parameters. '

The preceding argument leaves many detailed ques-
tions unanswered. Let us consider the problem with a
measure of skepticism which, fortunately, will later
prove excessive. For the process of collision broadening

"(a) L. Spitzer, Phys. Rev. 55, 699 (1939); (b) E. Lindholm,
Arkiv Mat. Astron. Fysik 32A, No. 17 (1945}.

interaction. We now formulate some simple criteria for
the validity of the description of Sec. I. Special con-
sideration is given to the interaction of a radiating
hydrogen atom with electrons and protons.

Quantum mechanics yields an accurate account of
atomic phenomena, and, through the uncertainty
principle, also defines the limits of classical mechanics.
This principle focuses attention on our inability to
describe certain details of an event, such as the collision
between two systems, without introducing finite dis-
turbances in the parameters necessary for such de-

scription. When these disturbances compete in mag-
nitude with the events one wishes to investigate, the
event imagined cannot be observed in the degree of
detail demanded, for then a classical picturization is

without basis, and we must use quantum mechanics.
Classical-path theories assume that the distance of

separation r between the perturber and the radiator is

expressible as

to be tractable by means of a classical path we must
require that the inequality

(hr/r) . (d,v/v) «I (2.3)

holds throughout the time of any collision and for all

impact radii of importance. When the classical path is
derived properly as the limiting form of a quantum
mechanical description these requirements lead to rela-
tions more specific than (2.3), relations which depend
upon the mass of the perturbers, the density and tem-
perature of the gas, and the type of interaction which

pertains to the problem.
Collisions with large angular momenta, as shown by

Eq. (2.2), can be described classically; this means that
the perturbing particles correspond to wave packets,
well localized both in coordinates and momentum, the
limits of this localization being Ar and Av. We now

imagine a wave packet with a mean spatial extension a
and a mean momentum mv, this latter quantity being
equal to the actual momentum of the classical particle.
In addition, we let r be the distance between the radi-
ator and the center of the packet; it therefore corre-
sponds to the collision distance previously denoted by
the same symbol. For the validity of the classical
description we demand that

a&r, (2 4)

the ultimate limit of the classical description being a=r.
In all applications of the theory the interaction is

taken to be vanishingly small outside of a finite region
of space, the linear dimension of which is designated by
d. Physically, this distance represents the extent of
penetration of the field of the radiator into its sur-
roundings. For the case of a neutral plasma this distance
is the Debye length"

d = 6.90 (T/n) *', (2.5)

where d is given in centimeters, T in degree absolute,
and n in cm '.

We consider the interaction region to be a cube of
dimensions d, oriented for convenience with an axis
parallel to the perturber's path. The time during which
the perturbation is in eGect, 7.„, is then of the order of
d/v, a constant for all values of r up to approximately d,
beyond which distance it vanishes.

In a classical description of the passage of the per-
turber through the interaction region, the collision time
must be shorter than the time during which the per-
turber diGuses quantum mechanically through the
distance r. This diffusion results from the initial
localization of the packet and proceeds with a velocity
of the order of h/ma. It is therefore necessary that

r (k/m /))a) d/v. (2.6)

Because of (2.4) this inequality must hold for, a=r;
"L.Spitzer, The Physics of Fully Ionized Gases (Interscience

Publishers, Inc. , New York, 1956).
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hence, we get from (2.6)

a» (dh)', (2.7)

where X is the mean de Broglie wavlength of the per-
turber, ft/mv.

Applying this basic inequality to the most distant
collisions with least momentum uncertainty for which
r=d=a, we obtain a))X, which (since a=r) is nothing
more than the condition that l»1. Thus, the criterion
(2.7) reduces to the conditions that the angular mo-
mentum be large when applied to the most distant
collisions; in general, (2.7) is more restrictive than l»1.

In addition to the condition that the passage of the
perturber through the interaction region retain its
meaning in view of the di8usion of wave packets, we

might also require that the interaction itself be classical
in terms of precise momentum exchanges.

The interaction energy between the perturber and
the radiator is V(r) in the classical description. This
can usually be expressed in the form

4p= V(p)/v«k/a (2.9b)

holds, the momentum uncertainty in the system far
exceeds the momentum exchanges of the classical
description, and the spread in momenta must be incor-
porated into the description of the perturber (or, what
is equivalent, the spatial spread of the packet must be
taken into account). Then the classical picture of a
collision breaks down.

From (2.9a) using the more accurate expression for
Ap, from Eq. (2.8), we have

if we require that all momentum (and thereby all
corresponding energy) exchanges between the perturber
and the radiator exceed this neglected uncertainty. The
classical picture therefore holds only when:

Ap= V(p)/v»it/a. (2.9a)

This places an upper limit on the magnitude of p for
which the interaction may be treated classically.

When the opposite inequality

p«a.p.(a/p)"' ", (2.10)

C, being some constant. The momentum exchange for
the collision is then

t

6p = — 7V(t) dt.

where n, = (o—1)'t&' '& is of the order of unity, as seen
in the correlation of 0- with n below:

o-=2 3 4 6
n.= 1.00 1.41 1.44 1.38

other quantity of interest in this connection is the Since a& r for all r durin the collision and r can take

phase c ange per co ision on the value p, (2.10) seems to imply

p ena pc. (2.11)

In both these integrals we replace dt by dx/v and V(t)
by C, (p +v't') ' '. The integrations should then extend
fron~ —d/2 to d/2, but a sufficient approximation
results when they are performed from —~ to +~.
Curvature of the path is neglected in this procedure.
Elementary calculation yields

This is essentially the condition hp» i. We conclude
that only collisions within the optical radius are
amenable to a classical-path treatment and all those
which occur outside of p, must be treated by means of
quantum mechanics. We return to this somewhat sur-
prising conclusion at the end of this section.

Letting a=p as the least stringent condition for the
classical path we obtain in place of (2.10)

and

o C, I'P(o+1)/2g V(p)
gp

vp' FL(a+2)/2] v

C. FL(o —1)/2j

Avp' ' I'(o./2)

a&(n p, . (2.12)

(d)E) 1«p, . (2.13)

The validity of the classical description for collisions
within p, is also contingent on the enforcement of (2.7).
On combining (2.7) and (2.12), there results on elimi-
nating,

The critical impact distance p, is that value of p for
which Ay=i (see the end of Sec. IB). Solving this
equation for C in terms of p, and inserting in Ap, we
find

(2 g)

To regard the perturber wave as a classical particle
is to neglect its momentum uncertainty ft/a. The same
uncertainty is thus introduced also in the states of the
radiator system during and after the collision. The
validity of the classical interaction is certainly assured

This condition for the validity of the classical path is
electively independent of the actual size of the wave
packet describing the perturber. Margenau and Kivel'7
actually computed the dimension of a one-dimensional
packet (see Eq. (2.23)] and required it to be less than
the size of the radiator. In this way they found that
the width of the Lyman-n line of hydrogen may be
computed classically at T=6000'K if the perturber
mass )10 "

g, which is true for protons but not for

"H. Margenau and B. Kivel, Phys. Rev. 98, 1822 (1955).
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TABLE I. Broadening of H by first-order Stark effect. Tem-
peratures for protons and electrons heine which the classical-path
treatment holds, for various values of the density.

TABLE II. Broadening by second-order Stark effect. Tem-
peratures for protons and electrons below which the classical-path
treatment holds, for various values of the electron (ion) density.

(cm 3)

iOI'
10'4
10's
10's

(oK)
(protons)

4X 10'
4X 10'
4X 10s
4X 10'

( K)
(electrons)

50
500

5000
50 000

n
(cm a)

101%

10'»
1016
101s

( K)
(protons)

10'
1010
1016
1018

('K)
(electrons)

0.1
100
10'
10'

electrons. All this is in keeping with the present result,
which is derived in a more general way.

After substituting (2.5) along with the definitions of
X and p, into (2.13) one 6nds

+/(o 1) L~ (C /gg))2/(r —1)

e&Mt+"& '& 6.90k(3k) t+"' " (2.14)

where v, the perturbers' velocity, has been taken to be
its rms value

n= (3kT/M) &,

M is the mass of the perturber, either a proton or an
electron, and the y, are numbers of order unity (e.g. ,

y2= n.).
This result has the advantage of containing no

reference to p, which has no experimental meaning.
However, inequality (2.14) is a sufficient condition
which is in some instances too severe. For hydrogen,
the first order Stark effect (rr=2) involves"

where n' is the principal quantum number of the
excited state of the radiating atom and m is the electron
mass. This is a suKcient approximation. Accurately,
m'(n' —1) should be replaced by At'„such tha. t¹=4.5, E4=9.9,

Hence (2.14) becomes

Xg= 23.6, E6=31.8.

T (s.C2)'

e&M& 6.90k'(3k) &

' A. Unsold, I'hysik der Sterrratmospharee (Springer-Verlag,
Berlin, Germany, 1955), second edition, p. 321.

For the first Balmer line (H, I'=3), the inequality
(2.14) gives Table I. For the higher Balmer lines the
temperatures appearing here are multiplied by the
factor (n'(n' I)/6$', —n')3 Hence, for t.he higher
series members the classical-path treatment is valid
over a greater temperature range. This increase has

practical significance only for the electrons, since they
alone are severely limited by the values of the tern-

perature. For a pure hydrogen plasma, thermal ioni-

zation begins at about 7000'K, so that appreciable

broadening by electrons and protons does not occur at
temperatures below this value. Thus much of Table I
is purely academic.

For a typical second-order Stark effect in the optical
region (0=4) C&A '=2X10 "esu. Here we obtain from

(2.14) T'"«n"'M""(y4C4/k)"'(3k)"'/6. 9A and y4= x/2.
This leads to the values of e and T shown in Table II.
Table II shows that electrons may be treated classically
for n& 10"cm—' in the second-order Stark effect, while

protons and heavier ions always permit such treatment.

B. Criteria for Adiabaticity

We now transfer attention to the radiating system.
Perturbation of its states can be treated adiabatically
when the inequality (1.11) holds. The state of the
system is then maintained throughout a collision except
for its alteration through the radiation process. There
are two cases of interest: (1) the states of the unper-
turbed radiator may be classified into groups of de-
generate states and (2) the states of the unperturbed
radiator are all nondegenerate. In case 1, two questions
can be asked: (1a) Does the perturbation cause transi-
tions between two states containing within the same

group of degenerate levels? (1b) Does the perturbation
cause transitions between a degenerate state in one
group and a degenerate state in another group separated
from the first by a finite energy' The perturbation may
well be adiabatic in the sense of ib, diabatic in the
sense of 1a. In this section, we treat only case 1a,
leaving ib, which is more dificult, for the most part
until Sec. V. Only a brief qualitative remark concerning
1b is presented at the end of this part of Sec. II.
Existence is assumed of a finite perturbation time r~,
the rate of change of the perturbation dV/dt being dif-

ferent from zero only during that time which, as we

have seen, is of the order d/v. In addition, we here

treat single impacts only.
For case ia the energy differences of the instan-

taneous states appearing in the condition for adiaba-
ticity are due solely to the perturbation itself, since all
other states of the radiator may be ignored because of
their much larger energy separations.

As the simplest example, we consider a radiator whose
excited initial state has a two-fold degeneracy, and this
degeneracy is removed in the first order of the per-
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turbation theory. The adiabatic condition then becomes tion, condition (2.16) takes the form

t
+" d/d&'

I
Vg2(&')

I

2I v»(~')
I

1
~ tl

Xexp —— 2I V»(t") Idt" dt' «1, (2.15)

where Vq2(t)=(1I V(t) I2), the indices 1 and 2 desig-
nating the two states in question.

The phase shift between the states is given by

pt
5y(t) = —

I
v»(t')

I
dt'.

When Ihp(t) f)&1, there have been many oscillations
of the exponential part of the integrand in (2.15) at
time t. These oscillations cause the integral to be quite
small provided that

(n) (d/dh)
I
V»(t) I/I V~2(t) I

is a slowly varying

d p»i. (2.17)

1 t~fd—v,„(t)
IEg' —E 'f ~ L.dt' )

Xexp — (EP E„')t—' dt' —«1. (2.18)

Hence, in the presence of degeneracy, collisions which
fall within the optical radius are adiabatic, others are
diabatic. This result has been derived by Spitzer" in
more detailed calculations for the L line.

In the absence of degeneracy, case 2, the energy dif-
ferences (E~ E„) —are much larger than those which
were considered in case 1. We may thus take Et—E
=Et'—E ', where E~' and E ' are the unperturbed
states of the radiator. With this understanding, ine-
quality (1.11) reads

of
I V»f for the whole perturbation,

function of the time during an average period of the Here it is convenient to distinguish between slow and
fast collisions with respect to the oscillatory period

oscillation h/2(f V»f) I
where (Iv»f) is a time average &/IEP E~'I F«sow «» 's'ons~ n&&&/I@'

Integrating (2.18) by parts and making use of the
fact that V(& ~)=0 we have

I v»(I) I«/" I;)'
1 f+"

A~ „
z

V~„(t') exp — (E~' E„')—t' dt' —&&1. (2.19)
h

RIll
(P) the perturbation time is much greater than

A/2( I
v„

I ).
The first requirement n reduces to the second P when

the classical-path procedure is used. In that case

V (t) =C»/(p'+e'8)—", r„&l & T /2
=—0, l~l & ./2

and (d/dg) I V»f/I Vqm
f

= (—nu g)/(p+@ P). We wish

this to vary slowly within an interval of the order of
A/( I

V» I). This can occur only when It I »0/(I V»
I ).

To maintain condition n, therefore, the contribution of
(d/dt) ln

I V~2I coming from small It I
must be inap-

preciable, and this requires that r~&&h/(I V» I), which
is condition P. The two conditions are not independent.

When the degree of degeneracy is greater than 2,
E~ E is no longer to b—e identified with 2I Vq I, but
it is still of the same order of magnitude. The result
just obtained is therefore quite general in degenerate
situations, and we must depend entirely on long, slow
collision processes for the validity of the adiabatic
assumption. Our criterion for adiabaticity in case 1a,
when written in a more general way, is, therefore,

A '(IEg E l)r„»1. —(2.16)

But 5 '((E&—E )) is the average frequency shift of the
initial state during the collision. Neglecting the fre-
quency shift in the lower state of the radiative transi-

Therefore, when V& (t) varies insignificantly over the
period fl/

I
EP E'I the ineq—uality (2.19) will certainly

be true provided r~&&A/
I
EP E'I, which is—our

premise. This assumption about V~ holds for times
such that Itf)A/IEP E'I and th—at the adiabatic
criterion reduces merely to r„»h/IEP E„'I. Hence, —
all slow collisions are adiabatic.

For fast collisions, r„«h/IEP E'I, and we m—ay
take the exponential appearing in (2.18) equal to
unity. This yields, upon integration of (2.18),

(~)—vi ( ~) I/I—EP—E 'I &1,

and the quantity on the left is always zero. The adia-
batic criterion is therefore satisfied also when the
perturbation time is short, provided the radiator has
large energy separations.

Thus both very slow and very fast collisions are
adiabatic when degeneracy (or near degeneracy) is
absent in the levels concerned. In the case of degeneracy
only the slow collisions are adiabatic. In this latter
instance the condition for adiabaticity is similar to one
of the conditions for the classical-path approximation,
namely 6p))1.

Under the subject of degeneracy, case 1a, special
attention must be given to space quantization, the fact
that diGerent orientations of the total angular mo-

"L.Spitzer, Phys. Rev. 58, 348 (1940).
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mentum vector correspond to the same energy of the
radiating system. The meaning of the term adiabatic is

a little confusing in this case, as the following con-

sideration shows.
Suppose the atom is radiating in a 'I'~ state, and

assume first that an external magnetic field is present.
The orientations in space for which m= —1, 0, 1 will

then have slightly di6erent energies. The passage of a
perturber past the atom is said to be adiabatic if the
interaction with the perturber does not transfer the
radiator from one m value to another or, classically
speaking, if the radiator s orientation remains fixed in

space during a perturber passage. If we retain this
meaning of the word adiabatic even in the absence of
an external field, then an adiabatic perturbation is one
which does not succeed in turning the radiator about,
or in altering the value of m.

The interaction between the radiator and the per-
turber depends on the value of a quantum number vn.

However, this m is not identical with the foregoing,
which refers to some fixed direction: the interaction
depends on space quantization with respect to the line

joining radiator and perturber, and this line moves in

space as the latter flies by, turning through an angle
of 180' during a complete passage. We call the space
quantum number relative to this moving line, m'.

Adiabaticity with respect to m' is clearly difI'erent from
the former version because it implies rotation of the
radiating atom. Spitzer, "Lindholm, "and Unsold" use
the term in the latter sense.

For the present problem this choice is more appro-
priate because in the derivation of our criterion we have
taken ~Ei Eg~ to be

~

—Vi. ~, and this implies that the
radiator is in a state for which the linear combination
of m eigenfunctions changes in time while m' remains
fixed. With this understanding, inequalities (2.15) and
(2.16) tell us under what conditions m' is una, ltered by
an impact.

But if m' is not changed, so that the impact is
adiabatic in the second sense, then, since the radiation
has to be analyzed in a fixed coordinate system (the
spectrograph does not revolve about the radiating
atom), an adiabatic impact corresponds to a phase
change of magnitude m. This seems to imply that simple
impact theories, like those of Lorentz and Weisskopf,
which ignore phase changes resulting from this rotation
but consider phase changes of magnitude m produced by
dynamic eGects as singularly important, contain grave
errors. Distant impacts, for example, are not counted
in these impact theories; yet they should produce a
phase change x if they are adiabatic in the second sense.
Physical intuition argues that this cannot be. The
resolution of this apparent dilemma is simple: criterion
(2.16) shows clearly that distant impacts are not adi-
abatic in the second sense. This means they do not

~ E. Lindholm, dissertation, Upsala, 1942.

succeed in swinging the radiator around. They are
adiabatic in the first sense.

This problem, which is practically of minor im-

portance but presents points of fundamental interest,
is considered carefully by Spitzer. "He shows how the
impact theories manage to obtain a reasonable result

by compensating errors, the errors being an unwar-
ranted claim of adiabaticity and a neglect of the
rotation efI'ect. Further light is shed on the "rotation
problem" by an analysis" having an entirely different
aim, but which indicates nonetheless how and why the
Lorentz theory takes correct account of the change in
orientation of Debye dipoles induced by collisions.

Before concluding the analysis of adiabatic conditions
we take a brief look at case 1b and inquire how one
should deal with transitions between one set of degen-
erate states and another set, separated from the first

by a finite energy interval. Suppose that for transitions
between any two states of the initial set and also the
final set,

Acp«1.

Then the perturbation is diabatic with respect to the
(perturbed) degenerate states. In that case a consid-
eration of Unsold" makes it appear plausible that an
optical transition between the two separated level sets
can be handled as though each were nondegenerate.
The reason is that within the limit of the uncertainty
principle the degenerate levels do form a single level
even after they have been split by the perturbation.

To see this we remember that the adiabatic hypoth-
esis for transitions between the originally degenerate
states of one energy level breaks down when the reverse
of (2.16) is true, vis.

iE —E
i

„fi '«1.
This implies that the energy uncertainty in the

system, of the order of fi/v. ~, exceeds the discrete energy
shifts due to the instantaneous perturbation

~

E~—E~~.
The states which are split by the field are therefore not
revealed individually through radiation processes in-
volving them since they overlap in energy by large
amounts and form what amounts to a single dift'use

energy band.
The use of the impact theory when coupled with the

suggestion of Unsold is roughly equivalent to a pro-
cedure which takes account of the difITuseness in energy
of these states by solving the time-dependent per-
turbation equations for the probabilities of states
formed through quantum transitions that are caused
by the collisions. Foley'~ and Kolb'-' have done this
using the classical-path assumption, while Kivel, Bloom,
and Margenau, " and also Landwehr" have carried
through the calculation without this assumption.

"J.H. Van Vleck and H. Margenau, Phys. Rev. 76, 1211
(1949).

~ A. Kolb, Thesis, University of Michigan, 1957.
~ G. Landwehr, Thesis, Yale University, 1956 (unpublished).
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In conclusion we call attention to an early calculation
by D. Blochinzew~ who investigated the transition from
diabatic to adiabatic behavior of an atom perturbed by
a harmonic electric field, Ep cosset.

C. Construction of Wave Packets

K and It', is taken to be

~K, K PK~K, K

(2m.mk T) *'

P„=
V*'

exp—
2mkT

(2.20)

Since the classical-path assumption (Sec. IIA) is not
always easy to justify for electron-broadening appli-
cations, we discuss this problem in quantum terms.

How can the state function of the perturbing electron
be constructed? Inequality (2.9b) is the necessary con-
dition for success of the Born approximation, which is
so useful in scattering theory. But (2.9b) is normally
satisfied for the plasma electrons, and as (2.9a) leads
to (2.10), so (2.9b) leads to its contrary which can
roughly be written p))p, . Therefore, when densities are
very low and encounters as close as the critical radius
are rare, conditions under which one ordinarily employs
a plane wave in describing the perturbing electron seem
to be satisfied. Nevertheless, the plane wave description,
which has received extensive use in problems where
collimated beams of particles are directed at scattering
centers, is inappropriate to our problem for several
reasons.

First, we are here concerned with a single electron
encountering the radiator, or, as the density is increased
sufficiently, with a number of electrons statistically
distributed in momenta and acting simultaneously on
the radiator. The single electron hardly acts like a plane
wave because the latter is stationary throughout the
radiation time, and where in reality the electron has a
spectrum of momenta the plane wave possesses a single
value. Furthermore, the plane wave does not yield any
momentary asymmetry in the charge distribution about
the radiator, a situation which practically eliminates
the possibility of a Stark effect."' As a description of
the many-electron perturbation the plane wave has
similar disadvantages for the treatment of broadening,
except that in this case the assumption of stationarity
of the perturbation is more acceptable. At large den-
sities one would expect the fluctuations in the per-
turbation to be small and the plane wave picture to
become more accurate.

In stellar atmospheres where n=10"/'cc, the critical
radius is only about 10 4 times the Debye cutoff at
temperatures between 5)&10' and 10' 'K. Thus we
might expect something like single impacts by the
electrons, and strong objections to the use of a plane
wave for the electron must arise. For such cases
Margenau and Kivel" employed a wave packet state
function. For simplicity, they construct wave packets
in one dimension and determine the width of the packet
from the condition of thermal equilibrium.

The quantum-statistical density matrix for the system
in a volume V and for states labelled by wave numbers

'4 D. Blochinzew, Physik. Z. Sowjetunion 4, 501 (1933).

and the wave packet is defined by

(2.21)

Correspondence is established between the description
(2.20), which is a stationary mixed case, and (2.21),
which is a nonstationary pure case, by equating expec-
tation values for the momenta

(2.22)

This procedure yields the amplitudes but not the
phases of the coefficients C(~,t) Thes. e are chosen on
the basis of a physical argument. If the collision occurs
at the time t=0, then because at this instant the elec-
tron involved in collision has a maximum energy uncer-
tainty, the packet should have its minimum concen-
tration about the radiator at that time. But min-
imum concentration means equality of all phases, i.e.,
P„=C(~,0)'. From (2.22) and (2.21) one then finds (upon
carrying out the summation over ~ as an integration)

lk(x, 0) &expL —mkTx'-/k'j (2.23)

which represents a Gaussian probability packet whose
width is equal to k/(2mkT)'*. This is precisely the mean
momentum of the ensemble described by (2.20), and
the digusiott velocity of this packet is, satisfying enough,
the root-mearI;sqlare ~eloci ty of the ensemble. The action
of such an electron is to squeeze itself about the atom
at the instant of collision and then to diffuse away
again after the impact time. More general wave packets
of this type, centered about points distant from the
radiator and having finite mean momenta, so that they
move bodily and diffuse, are even better representations
of the electron which may be of assistance in broadening
calculations. A paper by the present authors" shows
how the classical formula for Stark broadening arises
out of a wave packet treatment as the wave packets
become more and more concentrated.

D. Summary and Appraisa1

Section II has dealt with rather basic and intricate
matters, and has led to some slightly surprising con-
clusions which, if true, restrict the validity of classical
approaches more severely than might have been antici-
pated. It may also seem amazing that inequalities of
the form Ap& 1 and Ay&1 decide so many different
issues. The first defines the range of validity of the
classical-path description as well as the domain of
adiabaticity (in the case of degeneracy). We also meet

"H. Margenau and M. B. Lewis, Phys. Rev. 106, 244 (1957).
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it again in Sec. IV, as a criterion for the correctness of
statistical theories.

The typical structure of the arguments used in this
chapter is the following. We carefully specified condi-
tions under which certain conclusion (e.g. , "The classical
path is a valid assumption") are true. Then we said,
quite without logical justification, that when the con-
ditions are violated the conclusion will not be true. All

we should have said is that we did not prove it to be
true. We did not investigate the conclusions of more
general conditions, and have, therefore, no assurance
that more general premises will not lead to the inter-
dicted conclusions. Hence all inequalities here en-
countered are permissive, are sufficient conditions, and
mean to say that, under their terms, the type of de-
scription in question is certainly adequate. They do
not strictly rule out the possibility that the description
may be appropriate even when the inequality fails. The
logic outlined is not peculiar to our treatment but
characterizes most of the arguments found in the
literature. They provide guides, but no 6nal solutions.

Fortunately, the criterion derived for classical-path
description is at times too limited. But there is no way
of discovering this, or of assuring it, short of proceeding
with more general premises. This means actually
starting with quantum theory in the initial phases of
the calculation to show that such treatment does, in

fact, yield the same results as the classical-path de-
scription.

IG. HOLTSMARK THEORY

A. Review of Conventional Treatment

The oldest and, within its limits, most successful
theory of line broadening by the particles of a plasma
is Holtsmark's; it treats the diffusion of intensities
within a line as jtf each part of the line arose from a
Stark eGect caused by the electric 6eld associated with
a temporary configuration of the moving ions. Most of
the older review articles and newer texts deal with this
theory in considerable detail; we, therefore, merely
sketch its features and develop as much as is needed for
present purposes.

A simple approximation gives the frequency distri-
bution at large distances from the line center extremely
well. This takes into consideration only close binary
encounters between the radiating atom and one ion,
leaving out of account the numerous —and therefore
highly probable —collaborative but weaker perturba-
tions of many ions further away. Thus it falsi6es the
center but describes adequately the wings of the line.
We call this approximation the binary form of the
Holtsmark theory and present it as follows.

Selecting the radiating atom as center, we describe a
sphere of radius r about it. Denote by P'(r) the prob-
ability that there is at least one ion within it. To obtain
P(r) we first focus attention on its complement P (r),
namely, the probability that there shall be no particles
at all within r. Clearly, P(r) =1—P (r). By the laws

of combination of probabilities

P (r+dr)=P (r) p, (3.1)

dP (r) = 4s.nr2 exp[ —(4'/3) nr']dr (3.2)

It is also apparent that this is the nearest ion, for the
factor 4mnr'dr expresses the indiscriminate likelihood of
the presence of an ion between r and r+dr, while the
factor exp[—(4~ /3)nr' 1]conjoins it with the condition
that there be no ion zvithin r. The latter factor is often
insignificant numerically and is sometimes omitted;
however, it is necessary if I' is to be correctly nor-
malized. Equation (3.2) leads to JoxdP(r) =1—e-~~1
if R is the volume containing S=e(4+/3)R' particles,
whereas fpa4nnr'dr= X.

Introducing the abbreviation

(4s./3) n= ro~.

Equation (3.2) may be written

(3.3)

dP(r) = exp[ —(r /r, )' ]d(r /r )o'. (3.4)

The distance ro thus defined is the radius of a sphere
whose volume equals the mean volume per ion; it is a
little smaller than the mean distance between ions, n &.

Equation (3.4) is the probability distribution in r.
Since a given r defines an electric field, F, and an electric
6eld defines a frequency displacement via the Stark
effect, that equation also represents the distribution of
the last two quantities. F is given by F=Ze/r; so sub-
stitution r'=Ze/F in (3.4) converts it to a probability
distribution in Ii

dP(F) =exp[ —(Fo/F) t]d(Fo/F) ~

= (3/2F) (Fo!F)t exp[—(Fo/F)~]rIF. (3.5)

Here FO=Ze/r02, and the minus sign was inserted in
order that the normalization be correct relative to Ii,
not Fo/F. That is to say, the normalization is such that

F-~
dP(F) =1.

0

where p is the probability that there be no ion between
r and r+dr. But we know p: it is 1 less the probability
for the presence of particles, one or more, within the
shell dr. Hence, if n is the number density of ions,

p = 1 47m—r'dr (47r—nr'dr)'

and the powers of dr beyond the first, which represent
the probabilities for the occurrence of 2, 3. - particles
in dr, can be omitted for sufficiently small dr. Thus Eq.
(3.1) takes the form

P (r)+P '(r)dr=P (r)[1 4nnr2dr]—,

whence on integration P (r) =C exp[ —(4s./3) nr']. The
constant C must be adjusted so that P (0) =1 and is
therefore 1. Hence P(r) =1—exp[ —(4rr/3)rIr']dr and
the probability that the shell contain at least one ion is
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In the hneor Stark eBect,

Der =sF,

s being a constant. Writing Acpp ——sFp, Eq. (3.5) leads to

0.4

03

dP(h )=—exp —
I I dI
&Aco) . (aco)

3 fAcopp & (Bedog t

I
exp

23,co Loco) I

Acorn
FIG. 2. Graph of W(P)
vs P. See Eq. (3.11b).

O. I

By the fundamental assumption of the statistical theory
dP(hop) is identical with the intensity distribution:

Hence,
dP(lcd) = I(lcd)d(hco) (3.7)

3
I(~~)=

I I
exp —

I I (3 g)
26pp ( taco)

In the quadru&'c Stark effect,

~co= tF', ~coo= tFo',

t being another constant. When this is substituted in
(3.5) we obtain, again with the use of (3.7),

3 (scop) & t'scop) '
I(~~)=

I I exp I I (3»
45co ( 6co J

F=
I Z, F;I. (3.10)

The "normal" frequency Acro, though denoted by the
same symbol, has different values in the linear and the
quadratic Stark effect.

The foregoing elementary considerations, which yield
the binary approximations to the intensity distribution
Eqs. (3.8) and (3.9), have been superseded by the work
of Holtsmark, "Verwey, "Schmaljohann, "and others,
who included the cooperative effect of many ions. Their
results are most easily derived by a method introduced
by Markoff, a good presentation of which is available
in a review by Chandrasekhar' while its application to
other line-width problems is to be found in reference 2e.
The treatment under review ignores the Boltzmann
factor which attaches to the configuration probability
of the moving ions. Effects of this simplification are
considered later.

The field F, which appears in Eq. (3.5), must here
be written as a vector sum when it is compounded from
the fields of many ions in different places:

0
0 I 2 3 4 5

P

it yields
dP(F) =W(P)dP; P=F/Fo, (3.11a)

This is very nearly the same as the limit of Eq. (3.5),

dP(F) dF 3 (Fog t
lim

dF dj9 2 4F)

as asserted earlier.
These statements are not quite correct. In the binary

theory Fo was defined as

Ze/rp' =ZeL(4or/3) rtf& = 2.60eZe&.

The many-ion calculation involves a slightly diBerent
parameter,

Fo= 2.61Zen&,

but the change is so small that its importance is quite
academic, so we do not trouble to alter notation because
of it.

From Eqs. (3.11) we pass to the frequency distribu-
tion in the same way as before. In the linear Stark
effect Aco/scop= F/F p=P, and since in general

((4/3or)P'(1 0 463P—'+.0 1227P4 . )
W(P) = (3.11b)

I1.496P «(1+5.107P &+14.93P '+ . ).
The two alternate expressions are useful for small and
large values of P, respectively. Near P=3, both series
converge slowly. According to Schmaljohann and
Unsold W(3)=0.175; W(3.5) =0.122. In Fig. 2, the
function W(P) is plotted, showing that

fF qt
»mW=1. 496P '=1.496I —

I
.

y-+oa (F j

The analysis leading to (3.5) must be carried out in a
configuration space of 3X dimensions. In place of (3.5),

'6 J. Holtsmark, Ann. Physik 58, 577 (1919); Physik Z. 20,
162 (1919);25, 73 (1924)."S.Verwey, Dissertation, Amsterdam, 1936."P. Schmaljohann, Staatsexamens-Arbeit, Keil, 1936. For
comments on this and reference 27, see reference 18, p. 308 8.

I (hco) d(hop) = W(P) dP,

I(hco) = W(hco/scop) (1/scop).

In the qradratic Stark egect

(Ace/scop) & =F/F o P,
——

(3.12)

(3.13)
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and Eq. (3.5) gives

I (hp)) = W[(dpi/Apip) '*] —', (scop Acp) *'. (3.14)

The connection between the preceding considerations
and what was described in Sec. I as a statistical theory
is not altogether clear. For here, we calculate the prob-
ability of fields and make the passage to an intensity
distribution via the Stark effect, whereas the statistical
quantum theories fix attention upon the probability of
a given energy perturbation e, a scalar quantity, and
identify this probability with the line intensity at Abc'.
Equivalence of the two procedures is intuitively
expected. Margenau and Meyerott, "' who made a
quantum mechanical calculation using the binary ap-
proximation for the L line of hydrogen, indicate how

the equivalence comes about mathematically. Among
other things p is not the sum, P; p; for individual
perturbers but is composed very much like I" from the
vectors F;; hence the Holtsmark theory does not
depart from the statistical pattern.

This treatment includes the e6ect of the nonuni-
formity of the Stark field produced by ions. In the
ordinary theory of the Stark effect, F is treated as a
constant, whereas the ions produce a field which
depends on r, the dependence being greater the smaller
r. In general the nonuniformity eft'ect is small, increasing
in magnitude with ion density, W(P) as given by
(3.11b) no longer has the asymptotic form 1.5 p ', but
1.5 (P i+2P 'a'/rp), a' being the radius of the lower
atomic state (first Bohr radius for I. ) The nonun. i-
formity also causes shifts and widths in Stark com-
ponents which do not show a first-order eGect, the
"forbidden" half-widths being of the order a'/r tpimes

the regular Holtsmark widths.

B. EBect of Perturber Interactions

In part (A) of this section the probability of a given
ion configuration was taken to be proportional to the
volume of configuration space assignable to it, the
Boltzmann factor exp[ —V(ri, rp ~,rp)/kT] being
neglected. This factor confers smaller weight upon con-
figurations in which several ions are close together and
therefore reduces the probability that many ions shall

0.5-

0.4

0.2

O. I .

00

FrG. 3. Graph of W{P) for different values of b.

be situated near the radiating atom. Hence the
Holtsmark theory overestimates the likelihood of strong
perturbations and therefore the intensity in the wings
of a line.

An accurate calculation with inclusion of the Boltz-
mann factor has not been made. Broyles" considers the
problem most carefully, but his results are relevant
primarily for the case where the radiator, too, is ionized
and repels the perturbing ions by a Coulomb field of
its own. His results are examined in the next section.
Here we summarize a contribution by Ecker, ' which
deals directly with the problem. He relies upon the
Debye-Huckel screening mechanism to provide a semi-
quantitative solution, which introduces the electrons as
well as the ions into the picture.

In the presence of a cloud of ions and electrons the
Coulomb field produced by an ion is given by

F= («r/r') [(1/r)+ (1/D)]e "'

as may be seen by differentiating the expression for V,
Eq. (5.4). According to (5.5),

D = [kT/47rnM'(1+ Z') ]'*

Analysis of the line-broadening problem even with
this simplified potential remains formidable; Ecker
chooses as an approximation to F the form)

Ze'r/r' if r (D
if r~& D.

Machine computation by the method of part (A) leads
to a dependence of the line shape on the parameter

8= (4prD'/3)m,

whose physical meaning is the number of ions within
the Debye radius D. Clearly, if D ~ ~, the result must
agree with Holtsmark's. Figure 3 shows the results of
Ecker's calculations for three values of 5. The expected
efI'ect, reduction of the intensity in the wing is clearly
in evidence.

In principle, a further correction must be made in
the Holtsmark distribution. The Debye-Huckel cutoB
modifies the efI'ective field at large r. For small r, the
Coulomb field breaks down because of atomic screen-
ing, the potential going to a finite value as r ~ 0. The
theory of this effect is easily developed3' and predicts a
Battening of the Holtsmark curve far from the center
of the line. In the region affected, the frequency is pro-

~ A. A. Broyles, Phys. Rev. 100, 1181 (1955).~ (a} G. Ecker, Z. Physik 148, 593 (1957};{b}149, 254 {1957);
(c) Z. Naturforsch. 12, 346, 517 (1957).

$ A calculation of the shielding correction which avoids this
cutoff was made by H. Hoffman and O. Theimer, Astrophys. J.
127, 477 (1958). Ecker (private communication) has performed
a careful machine calculation based on the correct potential and
obtains results in substantial agreement with his former approxi-
mation and differing from those of Hoffman and Theimer."H. Margenau, Progress Report AF-18 (603)—15, January
1958.
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C. Treatment for Radiating Iona

The analysis leading to Eq. (3.5) is further defective
in assuming no potential energy between the moving
ions, and none between the radiating atom and the
ions. The former is always present but has ordinarily
no very profound eRect on the frequency distribution.
The second potential energy is present when the radi-
ator itself is ionized; in that case its eRect is more
important. Attention has been called to these short-
comings by Mayer" and Broyles, " whose interest is
primarily in highly ionized exploding plasmas where the
ions themselves emit the lines. A completely adequate
theory of these eRects is not at hand. We develop here
first the binary approximation to the many-ion analysis
and compare the results with Eq. (3.4). (Our develop-
ment completes somewhat the treatment of the afore-
named authors who omitted the condition that there
be no ion within r and obtained an unnormalized dis-
tribution. )

The perturbing ion of charge Z2e will repel the
radiating ion of charge Z&e with the Coulomb energy
Z jZ2e /r The f.ormer p will then be 1 4sne "'—r'dr, —

provided
a= (Z~Z2e')/(kT).

In place of (3.2) we obtain

(3.15)

dP(a, r) =47m exp[( —a/r) —4n.nA(a, r) jr'dr, (3.16)

where

portional approximately to P ', not to P '. But this
region lies so far outside the measured range of line
widths (hundreds of angstroms for the Balmer lines,
as a simple estimate, based on the assumption that the
breakdown radius is of atomic dimensions, shows) that
this correction is at this time academic.

hand, ro ——0.62n &. The last results, then, begin to be
useful at values of r in the neighborhood of 1/4n & and
remain so for smaller radii. At this critical distance,
Eq. (3.18) becomes

7r 4s- ( 1
S=exp 4an:—+ —~a' '5

I l (3 19)
48 3 l 4an&)

The terms in the exponent become important when
an&=1. This is the condition for equality of mean
kinetic energy and Coulomb energy at the mean distance
of separation of the ions.

If 4an&=0 1, S. =e~", the value of $(10) being 845.
For 4an&=1, S=e~ '" (since 5(1)=0.258), and for
larger values of 4an& only the term exp( —4an&) of S
remains, the others being negligible.

In the light of these numerical results we consider
two cases, first the perturbation of singly ionized helium
atoms by protons in a star or a discharge plasma. Here
Z&=Z2=1. The condition that the binary approxima-
tion be significant, namely r&0.620 &, is easily com-
patible with the requirement that r be greater than a
helium ion, r&5)&10 ' cm, since these inequalities
merely imply n&10'4 cm '. But to have S appreciably
smaller than 1, un& must be near 1. This means that
T=(e'/k)n&=1. 7X10 'n& 'K, which can occur in a
shock front or in an arc.

The situation is quite diRerent for atomic explosions.
At amosphere of iron ions, each with Z=23, and with
T= 10' 'K implies u= 8.4&(10 cm. At normal density

IOOO

A(a, r)= i e '"r'dr. (3.17)

Hence, the ratio of (3.16) to the Holtsmark distribution
(3.4) is

S=dP(a, r)/dP(0, r)
=exp( —(a/r)+4sn[A(0, r) —A(a, r)]I. (3.18)

The function A(a, r) is easy to calculate; it may be
written

F (4)

O. l IOO

(3.18a)
O.OI IO

the function Q is plotted in Fig. 4. Clearly,

A(0, r) =r/3.
For the binary approximation to be valid, the ratio

(ro/r)'=P must be greater than about 7. On the other O.OOI
0

I

2 0 IO
~ H. Mayer, Los Alamos Scientific Laboratory Report LA-647,

1947. FIG. 4. Graph of F (&) vs &. See Kq. (3.18a).
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n=10~ cm~ and the condition upon r is r&10 s cm.
Because of the small size of the iron core this leaves a
considerable range in which the binary approximation
is correct. Indeed at r=i/4ri i, for which (3.19) was
computed S=10 ", indicating that the Holtsmark
formula is enormously in error.

We now treat the many-ion problem" using the
following model: the free electrons form a uniformly
smeared out negative charge, and interactions are

considered only between the radiating ion and the
plasma ions; interaction between plasma ions them-
selves is ignored. This method avoids some uncertainties
inherent in the approximations using the Bohm-Pines
approach (see the following), for the approximations
are clear in their physical meaning and the analysis is
otherwise exact.

With this model, the probability P(F) for an electric
held Ii is given by

F(F)=
f exp( —aP; yr; ')5(F—P; ~Q~r;/ra)dri dr~

J
(3.20)

where a is defined by Eq. (3.15). Equation (3.20) can where

be written in a more convenient form, best obtained
through use of Chandrasekhar's method. ' As before,
we denote by W(P) the probability of finding a field of
strength f3=F/Fo Lsee Eq. (3.11a))

!xq &- )xy ~

I„(P)= I exp —
(

—
( x~

—
( sinxdx. (3.24)

Ep& (p)

It is seen that (2/xP)IO(P) is the Holtsmarlt dis-
tribution, to which Eq. (3.24) reduces in the limit,
2'-+ ao (P ~0).

The integrals in Eq. (3.24) can be expanded in a
series and evaluated for P &~3 and P ~& 6. The range from
3 to 6 is difhcult because of the slow convergence of the
series. The coeKcients of the hrst two terms in Eq.
(3.24) are listed in Table III.

Case 2:a»1, P«a.
For this case, g is expanded in an asymptotic series

iny:

Fo= 2.61Z2en&.

Iio is the quantity introduced previously and repre-
sents essentially the held produced on one ion by an-
other ion at the average spacing between ions, and n
is the number density of ions. Then

fx)~-
W(P)=—t exp —

~

—
~

r! x sinxdx,
~pJo Epj

(3.21}

15 (2) & ~"
des '"(z—sins)

8 (s) ~0
15 p2y &11 4! 8!

i!=—
I

—
) ]

y&a '—y—&a—'—+ y—'"a —' —[—. (3.25)
4 Es) &3! 5! 7!

X-p -«'I —
I (3 22)

l x~ If only the first term is retained, one finds
and a=

I Zie(Z2e) &(kT)]Fo~.
In the limit of large P, the leading term in Eq. (3.21)

is the same as that of the binary theory given before
)see Eq. (3.16)]. W(P} can be computed directly from
Eqs. (3.21) and (3.22). However, for certain ranges of
a (a«1 and a»1) the form of W(P) can be simplified.

Case I:a«1, aP&«1.
In this case r! can be expanded in the ratio y=x/P:

p = i—c&ny-~+c~'y-& (3.23)
where

15)~q~ 5
cl ——

~ c2=—.
16 IL2J 4

a'P' exp( '!3a( ~2) '/—5)
W(P) =

2s.iL(5/8)(2/s)&)&

a&P' exp' —0.Sate']
(3.26)

1.25

Equation (3.26) is identical with a formula proposed
by Mayer"- on the basis of a difterent, simpler physical

TABLE III. CoeQIcients of the 6rst two terms of Eq. (3.24) .
Values of (2/~p)I0(p) from reference 5.

W(P) then becomes

2
W(8) =—Ia(P)+aciIi(P)

7r

l(ci2
+a

I I2(p) —c2I~(p) i+
~ M. B. Lewis and H. Margenau, Phys. Rev. 109, 842 (1958}.

0.1
0.6
1.0
2.0
3.0
6.0
8.0

10.0

(2I P)io(P)

0.004225
0.129598
0.271322
0.33918
0.176
0.02417
0.01038
0.00556

(2/~P) C1I1 (P)

0.00745
0.21264
0.3860
0.1791—0.08707—0.0507—0.0273—0.0168
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model. Why the two models lead to the same result is

not clear.
Broyles" has proposed another way of computing

the probability P(F) of finding an electric field of mag-
nitude F at a radiating ion in a plasma. He uses the
method of Pines and Bohm'4 to separate the potential
energy and the electric field into a short and a long-

range component.
The work is based on a model in which the free

electrons are represented as a uniformly smeared out
negative charge. The following units are used: unit
length is the radius of a sphere whose volume is the
volume per ion ro, unit field strength is Fo, and unit
energy is that of two ions separated by unit distance,
and the temperature is expressed in the above energy
units.

The probability density for occurrence of a field g is

)see Eq. (3.11a) for definition of P] in analogy to Eq.
(3.20),

exp( —V/8)8(g —P, r;/ro')dri dr~

P(5) =-
f

exp( —V/8)dr, dryj
(3.27)

provided V is the potential energy, and 8 the Dirac
"function. "On using the Dirichlet representation for 8

one obtains

Since P(I1) depends only on the magnitude of (1 we have

W(P) =4rP'P(g) (3.29)

We now employ the Pines-Bohm method to split the
potential energy and the electric field into short and
long-range components. The ioe charge density p; is
written as

P(g)=(2s) ' T(l) exp(ig 1)dl,

(3.28)

t expL —(V/8)+il P, r~/rP]dri dr~

T(l) —=

jl .
J exp( —V/8)dri dry

where the prime indicates the omission of k=0 from
the sum in order that the net charge be zero. The
potential and the electric field when expressed as
functions of k can each be written as a sum of two
terms, one for high and one for low values of k. The
high k terms are functions of the individual r; and are
referred to as the particle or short-range part, the low

k terms are expressible as functions of the p(k) and are
called the wave or long-range part of the respective
quantity. With this separation, T(l) can likewise be
approximated in consistent fashion; it becomes a
product of T (wave parts) and T„(particle part). The
wave part can easily be evaluated; the particle part is
approximated by Broyles in two ways:

(1) Short-range central interactions (SRCI). In this
approximation only the interactions between the radi-
ating ion and the perturbing ions are retained, the
interactions among the perturbing ions being neglected.
This approximation is similar to the one in the previous
section, except that it was there applied to the full
Coulomb interactions of the ions whereas it is here
restricted to the short range components which arise in
the Bohm-Pines method.

(2) Short-range nearest neighbor (SRNN) interac-
tions. Interactions are considered only between the
radiating ion and its nearest neighbor.

Broyles" has employed his method for iron ions at
normal densities, with a charge of 23 electron charges
at a temperature of 1 kev, a case already considered
earlier in this section. This corresponds to 8=0.186.
Under these conditions, n as de6ned in the previous
part of this section LEq. (3.22)] has a value of 5.5.
It is therefore possible to use Eq. (3.26) for P«5.5. The
error attending the use of Eq. (3.26) is less than 10%
for P=1 and decreases for decreasing P. Table IV
compares Eq. (3.26) with Broyles' SRNN for 0.3~&P
& 1.5 A more detailed comparison is given in Fig. 2 of
reference 29. The curve marked "simple harmonic
oscillator" is the result of Mayer's calculation and is
identical with Eq. (3.26).

A separate publication by Broyles" deals extensively
with the approximations involved in using the Pines-
Bohm method for this problem and devises an improved
procedure" which is applicable for 8&~0.6. It is con-
cluded that P(g) is rather well determined by the
SRNN approximation for 8 ~& 0.6.

TAmz IV.

p, = P, 8(r—r, ). (3.30)
Eq. (3.26) a =5.5 Broyles' SRNN; tt =0.186

But the total charge density p can be expanded into a
Fourier series (unit volume per particle) to give

p= Pq' p(k) exp(ik r), (3.31)
with

0.3
0.5
1
1.5

0.69
1.25
0.64
0.04

0.63
1 ~ 13
0.66
0.)47

p(k) = 2, exp(-ik', ),
'4 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

'~ A. A. Broyles, Phys. Rev. 105, 347 (1957).
36A. A. Broyles, Atomic Energy Commission Report R.M.—

1682.
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IV. REFINED IMPACT THEORY. FUSION OF
IMPACT AND STATISTICAL THEORIES

A. Impact Theory

A consistent and ingenious development of the
impact method was carried out by E. Lindholm '"
who was preceded in several important respects by
%. Lenzs' and G. Burkhardt. "In deriving Lindholm's
results we use recent stochastic methods.

Let us return to Eq. (1.13), which represents the true
line form, provided only the adiabatic hypothesis holds
[see formula (1.11)j. The immediate problem is to
calculate the correlation function C. To strip it of
irrelevancies, we continue to suppose that the radiator
has only two states, and that only one of these is
occupied: S~——1, S2=0. We also omit subscripts. Then,

P, (k) that k collisions have taken place in r, by

k ( k

P,(.)=ZP, (k) Z nP(. ) bl.-r.;! «4)
k=0 1 2 ~ ~ ~ k j=l E j=l )

and
P, (k) = (rV.)ke ""/k—!, (4.3)

which is Poisson's law. As before, v. is the collision
frequency P(&p, ) the probability for the occurrence of
a phase change of magnitude q;, and 8 is the well-
known Dirac "function" which may be replaced by its
Dirichlet representation

( k l 1 f." -
(

b! k' & vp I= i[ dyexp iy! p —p k, ! . (4.6)
2~J ( i i

The symbol pz z...k is meant as a summation over all
(41) s)z, (()z, , kpk in every factor that follows it. With the

aid of (4.5) and (4.6), one may write Eq. (4.4) in the
form

C(r) —zzz) e i [zc( f+c) cp(o ]d[
—QO

e VcT r"
P, (v)= dye*-P —[P P(v;)e '-~jk,

2)r J k ok(

e
—VcT QO

dyei uMvcTa(P)

2z QQ

(4 7)

provided
(4.g)(y) =Q P(p, )e

(4.2)I((d) ~ d re'(" ""C(r)—
On substituting (4.7) in (4.3) we have

The phase kp is defined by (1.12). In that expression,
E~ and E contain constant parts, E~' and E ', plus the
perturbations. The constant parts contribute to y~ the
amount [(Ez —E 0) jhgt =k)'t, &0' being the normal fre-
quency of the line. In this section, we redefine p (wzthout and this ma be ex ressed as

changing zzotatiozz) to me(zzz only the variable part which
is cozztributed by eke pertgrbations As a result. , we change P.(()=
Eq. (1.13a) to read

C()"( *"")"=J! '"P ( )d (4.3)

where P, (((p) is the probability of a phase change kp in
the interval 7. It is convenient to make the assumption
characteristic of the impact approach, namely that the
collisions are sudden and occur singly. The value of q
is then the sum of a whole number of individual phase
changes p;, each associated with one collision. By the
rules of probability, P, (vp) is related to the probability

'7 G. Burkhardt, Z. Physik 115, 592 {1940).

Positive p corresponds to a positive diGerence AE
(upper state) —AE (lower state). There is some con-
fusion on this point in the cited literature.

The quantity v)(t+ r) vp(t) represe—nts the per-
turbational phase change which has occurred in the
interval (t, i+r). The integrand in Eq. (4.1) is a time
series in which this quantity changes from instant to
instant t, and we are integrating over t. As is customary
(ergodic hypothesis) the one time series is replaced by
an ensemble of time series and the time integra/ is
identified with an ensemble aver(zge (except for a constant
factor). Thus

e
—vcT

C(r) =
27K QQ

1cpdkp dyCck'0+ccccc(k)

—cc

The factor ( ) is b(y, 1). Hence,

C(r) —
v
—vc c [i—cc(1)) (4 9)

This result is sufficient for many purposes and
underlies most of the work on impact broadening. A
generalization which allows the collision probability to
depend on velocity, and which also gets rid of the usual
assumption that the collisions are sudden and occur
singly, is contained in Kolb's~" report and is given
below, following the lines of the preceding account. The
result [Eq. (4.16)] is used in Sec. V.

Let us divide the time interval (—c(), ~) into ele-
ments At;. The phase change produced by one perturber
in the time interval 7. depends on the time of closest
approach, the velocity v, and in general on some impact
parameter /. Let us call this phase change kp, , „, i(r),

"A. C. Kolb, AFOSR-TN-57-8, Astia Document No. AD115-
400.
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where i refers to the time interval 67., which contains

the time of closest approach. If the perturbations are

scalarly additive, the total phase change is

p(r)=P V,„(r),

where p;„(r) is the phase change produced in the time

interval r by all perturbers described by (i,v) C.learly,

% (~'v)

(('.(r)= 2 V' ) (r)

if %(iv) is the number of perturbers characterized by
(i,v) in some effective volume. We first compute P((v;„),
the probability of a phase change p;„due to all per-
turbers in the class (i,v).

Assume that the efI'ective volume of our system is a
sphere of radius R and write )t(v) for the number per
cubic centimeter of perturbers with velocity v (assumed
at first to take on discrete values). We designate by
W(l) and WLR(i, v) j the probability distributions for l
and %(i,v). The latter is given again by Poisson s dis-

tribution,

W[%(i,v)j= (v„At, )v)""'e ""~'* (4.10')
%(i,v)!

(I00 00

p(p)= — e"&ds g I dye""()" '"'2J„,.J„
1

d~. esqz, v(u—e),
I

The last integral is 8(y —s), so that

P(v)) =—~' e""ds g e'"~"( '"" ')

2 ' —Q0

2K Q0

exp{isv)+P ) „t(vt;I n;, „(s)—17}ds.
'C, V

C(r) then becomes proportional to

00 00

I ds exp{+ „At,[;,„(s) 17} ——dye" ""
—00 t t) 2m~

and, therefore,

C(r) n exp{+ v.Dt;$n; „(1)—1j}.

On using Eqs. (4.13) and (4.14) this becomes, after
rearrangement,

where v„ is the collision frequency for particles with This finally can be written with the use of Eq. (4.4) and

velocity v and is given by replacement of the sum by integrals, as

We then have
v„=vR'vu', v). (4.11)

C(r) n exp J~dv dtrrR'vrt(v)(a(, „(1)—1j . (4.15)™
j

P(, )= ~ I' I'
Wr.~(, )j

%(&V)=o~ ll ~ &9?(t, V)

%((,v) ( 9)((v)

X g W(l, )dl, t)~ p,.—Q pv;, &, (.
7'=0 t. 1'=( )

We now apply this general formula to the special
case of impacts. In this approximation, all collisions are
assumed to be short enough so that those having their
time of closest approach in r are also completed in 7.,
and one may disregard the others. This means, in terms
of ~t v &, that

=0 if t is not in v-Again we replace the 6 function by its Dirichlet
representation Pt, v, l = p„~ if t is in ~.00

t)(x—x') =—
I

dye'"&' ",
2m~ „

substitute (4.10) into (4.12) and obtain

1
P(p;„,) =— dy exp{iyp;„+v„Dt;[n;,.(y) —1j}, (4.14)

27r—
n&, „(1)= 1 if t is not in r

(4.13) In the second instance pt, , ~ is independent of time, and
therefore y, ~ represents the total phase change pro-
duced by one particle with time of closest approach in
v and with impact parameter /. Under these conditions

provided

n, , „(y)=)l W(l)e '" "'dl.

n, , „(1)=n.(1)=J~dt1V(l)e '""' if t is in r

Equation (4.15) then leads to

Now P(y) can be written

I"(II P(( .)d( *.)~(( —2 ~;.).
t t)

C(r) ~exp vR ~ dvvrt(v)[n„(1) —1gr . (4.16)

This is the general form of C(7) for an impact theory
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based on scalarly additive perturbations. We return to
this equation later (Sec. V). Equation (4.16) reduces to
(4.9) under the proper conditions. To show this we

erst assume that all perturbers have the same velocity
v'. This means we replace n(v) by r8(v —v'), where n is
the number of particles per cubic centimeter. In view
of Eq. (4.11) and because v. is now identical with our
former v„we then recover Eq. (4.9)

Equation (4.21) distinguishes between phase changes
by the arbitrary index j;Eq. (1.5) classifies them by the
impact parameter p which is the closest distance of
approach. The connection is this: If p, is taken to be
(o(p) then P[(o(p)]= 2v.pdp/q, where q is the total
collision cross section. On the other hand, v, =neap.
Therefore (4.20) and (4.21) become

C(r) ~ Pec[a(1) ill f
u2 ——nvj 2v.pdp sink(o(p, v), (4.22)

This is the correlation function for perturbers all of
which have the same velocity. This derivation shows

that its validity rests on the premise of scalarly additive
perturbations and does not require the restriction that
the impacts fail to overlap in time; this feature was not
evident from the simpler proof which led to Eq. (4.9).

We return to calculation of the line intensity, em-

ploying the correlation function given by Eq. (4.9}.We
split a(1) into its real and its imaginary part, a =ni+ ia2
and put

so that
va(1 Ql) =ui, vaR2 =u2

C(r) —e—(as+(am) ~

(4.17)

(4.18)

The calculation of I in accordance with Eq. (4.2) is

then easy. One further detail has to be remembered. It
follows from (4.1) that C(—r) =Cv (r), a relation
necessary for the reality of I((o) but obscured by the
explicit form (4.18) which is valid for r) 0. Thus

C(r)=C*(—r}=e("' '"'~' for r(0
and by (4.2)

0 00

guI r+i(co—co'—ug) rd + ~
—uI r+s(os—ce'—u2) rd(-) j ~ r

—00 0

=2ui[ui +((—o(o —u2) ]

(o~=2nv q
— 2vpdp cosA(p(p, v)

=2nv t (1—cosh(o)2v pdp=4vnv sin'D(ppdp. (4.23)

The integrations over p are to be carried from 0 to
(q/v. ) &. Because of the rapid decline of h(o with p it is
often permissible to replace the upper limit by ~. In
the case of long-range Coulomb interactions there is the
added difFiculty of giving a meaning to q.

The evaluation of Aq proceeds in accordance with
(1.4); it is profitable only for simple force laws of the
form

e(r) = AQ./r'. (4.24)

Here we have replaced the former C by AQ to save
writing. For our purposes the form (4.24) is satis-
factory, for we shall be dealing mainly with linear Stark
eRects (where e=AsF=Ase/r2, whence o =2) and quad-
ratic Stark eRects (where e =AtF'= Ale'/r4, whence
o =4). Here e is the difference in the Stark displacements
of the two states; it refers to the line, not to a given
state.

With (4.24) Eq. (1.5) yields

To make J'o"I(co)d(o= 1 we must write

I ((o) =ui/v-[ui'+ ((o—(o' —u,)']—'.

This represents a dispersion curve with a shift

u, =v, Q P(o;) sin(o;

(4.19)

(4.20)

I'[(o—1)/2] Q.
Q(o —Q l d)(pm+v2t2) —a/2

r( /2) vp'-'

In particular, for 0=2

and for 0.=4
to the blue of the normal peak at co', and a half-width

A(o= (v Q2)/(vp)

D(o= (v.Qi)/(2vp').

(4.25)

(4.26)
(o~= 2ui 2v,[1 ——PP((p—,) cos(o,]. (4.21)

Lindholm now falls back upon Eq. (1.5) for a com-
putation of the w, , which he identifies with the hy(p, v)
of that expression. This proficient and simple step is
warranted under two conditions: (u) The impacts are
sudden and do not coincide; (b) the perturber has a
classical path, so that e[(p'+v'P)&] is meaningful. The
first of these had already been discussed; the second is
an additional restriction to be examined in the light of
Sec. II.

We now compute (4.22) and (4.23) for these two cases.
The shift for the linear Stark eGect is not observable

as such because the splitting pattern as a whole is
symmetric. I-indholm and Unsold do not compute it for
that reason. Nevertheless, it is meaningful as a measure
of the shift of each Stark component, and it does
manifest itself in each wing of such lines as Hp and H~,
which have zero intensity at the center. Since q is not
well defined, the upper limit in the integrations of (4.22)
and (4.23) will be taken as ro (see Sec. III: (4rr/3)r~'n
= 1), this being the order of distance beyond which the
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Coulomb force is effectively screened.
~~

When o =4 the
convergence is fast and the integrations may be carried
to ~. For 0 =2 both integrations are straightforward
(see Lindholm); the forms below involve an expansion
of the integral sine and cosine. For 0.=4 a graphical
integration is necessary to determine the numerical
factors. Thus one finds:

Linear Stark egect, o = Z

T( K)+n

10'
10'
104
10~

'j pl 2

8.6
22
58

158

10»

3.5
11.7
30
81

10'&

2.6
6.3

16
42

1016

1.4
3.5
8.6

22

1P16

1.05
1.9
3.5

11.7

TABLE V. Electron broadening. Ratio of shift to half-width in the
linear Stark effect.

n( nQs
Half-width = te; =2w'Qs' —

~
0.923—ln

v( vro

+"
24v'r s )

n ( vrp v' nQs
Shift =us = 2wsQss —

~

——+
v E+Q2 4 2vro i

(427)

(4.28)

tuations contribute greatly to co~ while the small con-
tributions from large p are less significant. Now the
division between large and small p comes at p= po, the
point beyond which neither integrand oscillates.

All this suggests that perhaps a useful simplification
results if we integrate (4.31) from ps to eo, and (4.32)
from 0 to ps. Furthermore, we replace the sine in (4.31)
by its argument and revert to the original form for N2,

Eq. (4.20). It reads

Quadratic Stark egect, o =4
us ——v, P P(ps)v', = v, p, . — (4.33)

Shif t=N2= 9.804&v&n,

Half-width= coi = 11.4044&e.

(4.29)

(4.30)

us=nv ~ sin(po/p)s'2trpdp, (4.31)

re; =4nv sin'-,' (pp/p)'2v pdp, (4.32)

because in this instance tlat, given by (4.26), takes the
form (ps/p)s if we put ps= (trQ4/2v) &. This, is the value
of p (always in terms of our single-impact analysis) for
which the phase change hq=1 and therefore corre-
sponds to Weisskopf's critical radius p,.

Consider the integrands in (4.31) and (4.32). Clearly
sin(ps/p)s ffuctuates rapidly about zero for small p and
becomes monotone and decreasing for large p. The
initial fluctuations practically make N2 depend on the
contributions it gets from large p. But as for (4.32),
its integrand is never negative; hence, the initial fluc-

~~
The Debye-Huckel radius would be a better limit; but the

results should not depend critically on this choice if they are to
be believed.

In these formulas v is the speed of the perturbing
particle (in the center of gravity system).

Equation (4.27) is somewhat embarassing: it makes
the shift depend directly upon the cutoB radius and
thereby emphasizes the uncertainty of our assumptions.
Numerical considerations even show that for electrons
as perturbers, (4.27) is generally much greater than
(4.28), and this exposes an inconsistency of the present
method. Table V shows the ratio us/tui from (4.27) and
(4.28) for different temperatures and electron densities.

Burkhardt, ' Lindholm, ~" and particularly Unsold'
couple an interesting consideration with the analysis
leading to Eqs. (4.29) and (4.30), where no convergence
difficulties are encountered. If v=4, Eqs. (4.22) and
(4.23) read

The line shift, which arises primarily from small Ap
(large p) is in effect the average number of phase shifts
per second.

The integration of (4.32) from 0 to ps changes the
numerical factor in (4.30) very little; hence, we may
conclude that, under conditions in which (4.32) is
valid, contributions from b p smaller that 1 may be
ignored. This, however, is not the same as saying that
(4.32) is valid when hie))1. Within the limits set by
the example of the second-order Stark eGect, and for
force-law parameters 0 greater than 4, one arrives at
the qualitative rule that impacts within the optical
radius broaden, impacts outside the optical radius shift
the line. This somewhat precarious generalization is
belied by Eqs. (4.27) and (4.28), and by Table V;
hence it has no meaning for first-order Stark eGects.

What are the conditions for validity of (4.22) and
(4.23) of which (4.31) and (4.32) were special cases?
We have derived them by assuming the impacts to be
sudden. A little reQection shows that the derivation is
essentially unchanged provided the collisions do not
overlap, i.e., are binary. The case of multiple collisions
hs, s been treated by Lindholm (though in a way which
makes no allowance for the vecto~ superposition of fields
in the Stark-e8ect problem and which remains within
the "classical path" approximation) who succeeded in
showing that the foregoing results of this section have
wider validity than the present analysis suggests. Some
further consideration is given by Krogdahl" and, by
Kolb."

B. Core and Wing Theorems for
individual Collisions

Under the assumption of binary collisions the criteria
for the impact and the statistical theory take special
forms.

' M. Krogdahl, Astrophys. J. 110, 355 (1949).
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With the result we can derive" a more specific criterion
for validity of the impact theory. If we assume that the
important impacts are those that occur within the
optical radius p, for which Ay=1, we have

p =(C /Av)"' '

Combining this equation with the foregoing inequality
we have for the range of validity of the impact theory
in isolated collisions

Aoi«v(Av/C )"' '

In certain cases Kolb"" has shown that this relation
is valid under more general conditions than the re-
strictive ones imposed for this simple derivation.

2. 8'ing Theorem

The wing theorem, Sec. I, shows that for suKciently
large hei (measured from the normal line position) the
statistical theory holds, but it does not say beyond what
frequency it may be applied. When the Line arises from
individuaL impacts, a very simple argument covers this
point. For there appears in the entire formalism only
one time (and hence one frequency) that is charac-
teristic of an impact namely, the duration of the per-
turbation v„. Hence, there is only one frequency 7„'
to which appeal can be made as a critical limit. The
condition, Ace —+ ~, may therefore be replaced by

Aa) r~))1. (4.34)

A more pictorial demonstration of the meaning of
this inequality has been given by several authors,

-E/i

Fro. 5. Idealized representation of collisions. Long and flat rec-
tangles represent gentle impacts of long duration; short and tall
rectangle; represent energetic but brief impacts.

1. Core Theorem

The impact theory (see Sec. I) was established on the
assumption that the impacts are sudden and separated
in time. The general form for the intensity distribution
depends on integrals of the form J'e'~«" ~"'idt. A

single impact, and therefore the change in p corre-
sponding to a single impact, are completed in a time
of the order of p/v. If the change in Doi t over this time
interval is small compared to unity, i.e., if Atop/v»1
the impact can be considered to be sudden. This
inequality can always be satisfied for sufFiciently small
her, hence the impact theory is valid in the core of the
line (core theorem).

For singLe impacts the phase change is (see Sec. IIA)

C.n' I'[(a —1)/2g

Avp' ' I'(o/2)

among whom Burkhardt37 seems most explicit and
circumspect. He pictures different collisions as produc-
ing different rectangles on a perturbation energy vs

time plot, as drawn in Fig. 5. Distant passages have
large 7-„but small Ace, for in this instance we may
identify a specific A~ within the observed line with a
specific passage. A given passage is assumed to affect
recorded frequencies in two ways, by virtue of the
phase jumps occurring at the beginning and the end of
a perturbation, and by the actual change of frequency
during the perturbation. The former leads to a formula
like (4.21) (in which v, is strictly twice the collision

frequency). Empirically, the resulting width is usually
small.

The detuning over an interval v„requires different
treatment in different cases. Taken by itself, a given
rectangle in Fig. 5 produces a line at the frequency Ace

a.nd of Lorentz width 1/r„. Consecutive impacts yield
superpositions of such lines, and these superpositions
produce a statistical distribution about the different
values of Ace if 1/rv«Aoi, i.e., if the different impact
lines do not overlap. Here we discover again the
inequality (4.34).

This reasoning is alone perhaps not quite convincing;
for it will occur to those with experience in Fourier
analysis that the replacement of a set of continuous
perturbations by the rectangles of Fig. 5 is a risky
practice. Still this demonstration possesses merits, even
if rigor is not among them.

There is some likelihood of confusion in the criterion
(4.34). We noted, in the text following Eq. (4.32), that
the condition hy))1 selects those encounters which
make important contributions to the impact width of
the line. This same condition is implied by (4.34). But
(4.34) is also the condition for validity of the statistical
theory. If impact broadening and statistical broadening
were mutually exclusive or contradictory effects we
should encounter here a paradox. This, however, is not
the case. Inequality (4.34) means what it says: it
permits the use of statistical theory. The earlier in-
formation is also true; it means simply that an impact
theory, when carefully employed under these conditions
(which is in general more difficult to do), must give
approximately the same answer. The literature contains
many instances showing this to be true. ' Lindholm's
theory, for instance, leads to Margenau's statistical
formula for Van der Waals broadening, a case which
has been repeatedly discussed in this connection.

The overlapping of impact and statistical domains is
further illustrated by the following coincidence. We
saw that the line shift (4.33) arises from small phase
changes, which violate the criteria Aq))1. But if we
compute it under certain circumstances, it is never-
theless the statistical shift. Assume, for instance, that
every p; arises from a perturbation AE,. lasting a time
t' which is inversely proportional to the velocity v (so
that the interaction distance, d, is constant). Then
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p, = (AE,/A) (d/v). Also, v, = rtqv and by (4.33), u&

=uqdhE//k, a result which displays the important
characteristic of all statistical theories inasmuch as it
does not depend on v. In fact, it is exactly the statistical
result. In Fig. 6, X is the mean free path. Along it
DE=0 except in a region of length d. Hence,

(DE) 1 0 X+DE. d nqdDE,

A A A

because nqP = 1.

H Electrons
)Protons

(ElectronsHP )P
)Electrons

~ (Protons

fElectrons
~ )Protons

25 000

580
0.63

120
0.13

48
0.05

32
0.03

10 000

230
0.25

48
0.05

19
0.02

13
0.01

5000 3000 (K)

110
0.12

24
0.03

9
0.01

6
0.007

70
0.08

14
0.02

6
0.006

4
0.004

TABLE VI. Statistical wavelength limit r&" in Angstroms for the
Balmer lines (after Unsold).

C. Some Numerical Estimates, Mainly
Regarding the Balmer Lines

The wing theorem for binary collisions says, in

effect, that for Ace greater than co", such that cu"~„=1,
a statistical description is appropriate. But as we have

seen, ~' Tp also equals Ap if this simple picture holds.
We now consider the first order Sta-rk egect Here D. p

is given by Eq. (4.25). Putting

FIG. 6. bee zs distance
travelled by perturber.

7p

we have p, =v.Q2/v. The frequency displacement for
this p, is

(4.35)&u"=Q /r'=Q /p '=v'/(v'Q )

This "statistical frequency limit" within the line is
independent of the perturber density.

I-et us now consider the half-width of the line which
would be calculated by means of impact theory, Eq.
(4.28):

co lr 2v Q B/V. (4.36)

As a typical case we take the H line, emitted at a
temperature of 10000'K and an ion density n=10"
cm '. At that temperature v (electron) = 6.23X 20r
cm/sec s.nd v (H-ion) =20.6X10' cm/sec. From (4.35)
and (4.36) one then computes the following values.

The dependence on v is interesting; the statistical
frequency limit moves out farther with increasing v,
whereas the impact width becomes smaller.

To make a comparison of (4.35) and (4.36) we need
the values of Q2. These are discussed by Unsold (whose
C is our Q~/2v. ) are are given for the Balmer lines:

H Hp H~ Hg

Q~ 3.96 10.35 20.5 27.6 (cgs units)

H line broadened by

II ions: ~~=4.8)& 1P» sec-1, ~"=1.1y 1P» sec-1.

electrons: cu, =1.6&(10"sec ' co"=9.8X10"sec '.

For all these cases the Holtsmark half width is =10'
sec '. The ions, if their broadening effect were computed
by the impact theory, would show a half-width greater
than co". But since for Ace))co" the statistical theory is
valid one may, so long as one is not interested in the
intensity distribution for smaller hen, disregard co~ for
the ions. The electrons, however, produce an co" well

beyond the limit of interest; hence, a statistical treat-
ment for them is not proper. On the other hand co; for
electrons is very small. The important contribution to
the line structure comes from the statistical effects of
the ions beyond co" and everything else, indeed the
entire role of the electrons, can be ignored. The actual
Holtsmark half width computed for the ions under the
conditions here assumed is of course greater than co"

(it is about 8X10" sec ').
In cases of this sort it is sometimes claimed that the

part of the line beyond cu" can be treated statistically
while the inner portion arises from impacts. There is
no logical warrant for the second half of this statement
despite the core theorem, for the limit of validity of
the core theorem need not coincide with that of the
wing theorem. Since the interior part has usually been
of little interest in line analysis no damage is done by
that pleasing supposition.

Table VI, taken from Unsold, "shows the wave length,
AX", in angstroms from the line center, beyond which
the statistical theory is applicable; A)I."=(X'co")/(2v. c)
if ) is the normal frequency of the Balmer line. In all
these instances the limit in question is close to the
line center for proton broadening, so that Holtsmark's
theory may practically be applied throughout the
intensity distribution to the protons. The limit for
electrons is so far out that they may not be treated
statistically. But their impact widths are small, and
presumably their entire effect is therefore negligible.

Our logic regarding the electrons contains a blind
spot, which we hope the remainder of this article will
in part remove. At this point we observe only the pro-
portionality of co; with n in Eq. (4.36), a feature which
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Hence

=14' —
I

X10-".(gl'
(Z

(gl'
~)=6.6X10 "( —

[
nv~.

&z)
(4.37)

V. DISAPPEARANCE OF LINES WITH HIGH
QUANTUM NUMBERS

Special consideration must be given to the Balmer
lines involving high quantum numbers, and in general
to lines emitted from highly excited states of atoms or
ions within a plasma. The states near the continuum
limit have a tendency to disappear for two reasons:

1. Broadening of the levels causes them to merge,
which effect begins among the excited states which lie
close together on the energy scale. We speak of this as
the merging of states.

2. There is also an effective lowering of the con-

indicates that at higher densities the electrons do
become important. Had we chosen n=10" cm ' and
T=10 000 K in the example of H (see text following

Eq. (4.36)) &ay for electrons would have been greater
than cv" for protons.

Before concluding we take a glance at the second-order
Stark effect. Here hp is given by (4.26), and if this is
to be 1, p, = (s04/2v)&. The corresponding

co"=04/p, '= (2v/v)&04&.

A typical value of 04 is 2)&10 "cgs units. Because of
the dependence of co" on v& we encounter here a situation
like that presented in Table VI:protons may be treated
statistically fairly close to the center of the line, elec-
trons only beyond a large, uninteresting distance from
the center. But according to Eq. (4.30) the impact
width cog=11.404~v&n. It is proportional to v&, not to v '
as in the first-order Stark effect. Impact broadening
therefore favors the electrons in the present instance.

A numerical example illustrates the situation. If
T=10000'K, co"=7X10"sec ' Assume again n=10"
cm '. This makes harp in the Holtsmark theory
fhcoo= 04(EO'/e ), (compare Sec. III)7 equal to 1.36X10'
sec '. For the frequency or", where this theory becomes
valid, the parameter cu"/Demo=500, and at this value
the function WL(&J'/hcov)&7 (see Fig. 2) is aires, dy quite
small. Hence the Holtsmark theory has little to say
about the case. The impact width for electrons, how-
ever, leads to co~=8&(10" sec ' which is the dominant
contribution.

The formula for the electron contributed to the line
width in the case of the quadratic Stark effect may be
written more explicitly. For a hydrogen-like atom (if
Z=1) or an ion of charge Z with principal quantum
number g one finds, approximately,

g q
8 a mes

2&zr

tinuum limit or, more precisely, an upward displace-
ment of the higher levels because the electron in the
atom does not move in a pure Coulomb field. The actual
field in a plasma is subject to the Debye-Huckel cutoff.
As a result, levels do not approach the energy zero with
large quantum number g like —1/g', but there will be
a finite distance between the energy of the level with
the largest g (say g*) and energy zero. This has been
recognized in connection with the problem of calculating
partition functions, where actually both effects, 1 and 2,
are important.

Effect 1 has been treated by Inglis and Teller, "
effect 2 most carefully by Unsold" and by Ecker and
Weizel. 4'

The best simple derivation of the formula for the
merging of levels (differing only slightly from that of
Inglis and Teller) and reliable comments on its precision
are found in Unsold, whose method is followed here.
Our analysis will again be applied to the levels of
hydrogen, for which E,= —e'/2g'ao and therefore the
undisturbed level separation at large g is

hE= e'/g'ap

Here ap is the 6rst Bohr radius. The splitting of the
levels in the linear Stark effect for the extreme com-
ponents is approximately

2g QpeF.

The most probable value for the ionic field is 4.2 e'n&;

Inglis and Teller chose the smaller value 3.7 e'n&.

Merging will take place when the splitting equals
=BE/2. Hence the last discernible level will have the
quantum number g* which is defined by

1 e' 3
=-(g*)'ap3 7e'n&.

2 ao(g*)' 2

When logarithms are taken this becomes

logypn= 23.3—7.5 logypg .

This formula has often been used for the determination
of the ion density n.

So far we have neglected the electrons. If only their
statistical effect is considered (assuming that their
impact width is small), Eq. (4.28), which represents
the limit beyond which the statistical theory holds, tells
what role is played by the electrons. For if ku" is much
greater than the above hE/2, they do not contribute
to the ionic breadth when it equals hE/2 and may
therefore be neglected. But if

f "=(he)/(e0, ) &~E/2
40 D. R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939}.(For

experimental verification see F. L. Mohler, Astrophys. J.90, 429
(1939).j' A. Unsold, Z. Astrophys. 24, 355 (1948).~ G. Ecker and W. Weizel, Ann. Physik 17, 126 (1956).
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Equation (5.1) is therefore subject to modification on
account of the electrons when

or

A 3kT/m

-' e'ap(g*)'/f 2(g")'ap

m-'me' 5X10' 'K

6A'kg* g*

(5 2)

the electrons must be considered. For large g, the linear
Stark constant [defined in Eq. (4.24)) has approxi-
mately the value e'apg'/h. The value of v for electrons
is taken from

'ia
O
Cl
~ 25
Z
E

a 20
D

Ct

I5

E

IO
E

E
5

D
Z

IO IOI7 IOI8

Fro. 7. Disappearance of levels in hydrogen.

l'4m '-&

&3) (5.3)

With this simple model, g* does not depend on the
temperature because it ignores the electrons.

The treatment by Ecker and Weizel involves a solu-
tion of the Schrodinger equation for an electron moving
in a Debye field (or, if the reader is a nuclear physicist,
a Yukawa field) of the form

V= —(Ze'/r) exp( —r/D)+const.

The Debye radius is

D=PT/one'(1+Z))1
T= 10 000'K

(5.4)

=10 'cm for (5.5)n=10" cm '

How to include the electrons when this condition holds—and it holds in many cases of physical interest —is, in
principle, a difficult problem. The custom seems to be
to accord them a role equal to that of the ions and to
replace n in Eq. (5.1) by 2n Sin.ce this adds to logip
only the amount 0.3, and the number 23.3 on the right
of (5.1) is hardly certain to within that amount, it is
not reasonable to worry about the electrons in this
connection.

The second effect, the drowning of the higher levels
in the continuum, is treated by Unsold in a very
simple schematic way. The Coulomb potential in which
an electron moves never reaches the value zero because
another positive ion is situated at a finite distance from
it. The electron may slide over into the trough of the
other ion, even at a negative total energy, much in the
manner in which high atomic levels are depleted by a
strong electric field. If the depth of the transfer channel
is made to correspond to the mean distance between
atom and nearest ion, the highest permitted quantum
g* number is given by

than D:
(g*)'ap/Z& [kT/4mne'(1+Z))&.

For Z=1 this means

g*=3X104(n/T) '

(5.6)

(5.7)

(g*)'=0.86D, (5.8)

which reduces the limiting quantum number slightly
below the value given by Eq. (5.6).

Perturbation theory is not strictly applicable since
for the last level the perturbation energy is of the same
order of magnitude as the unperturbed energy. For this
reason we present here the essentials of a parallel
variational calculationg in which an exponential
screening factor g is employed as variable parameter
in connection with hydrogen state functions of prin-
cipal quantum number g. It may be asked why this
method should be expected to work, since variation of
3 might push a hydrogen level initially assigned to the
quantum number g down to energies corresponding to
lower values of g. The answer is that variation of $
does not alter the number of nodes, which is controlled
by g, and that therefore a crossing from one g to another
cannot occur.

In view of the Debye-HQckel shielding effect the

if g* is the greatest possible quantum number.
Equation (5.7) is plotted for three di6'erent tempera-

tures in Fig. 7. On the same figure we have drawn Eq.
(5.1).Unsold's Eq. (3) (Eq. (5.3) of this paper), which
is not included, specifies values of g* which fall slightly
below the dotted curve. For high temperatures and low
densities the merging of the levels according to Inglis
and Teller determines the highest permitted quantum
number, whereas in the other extreme the drowning of
levels in the continuum is the decisive effect.

The latter has been studied in another way, employ-
ing straightforward perturbation theory, in a recent,
unpublished calculation. 4' This led to the result

in terms of Z, the charge on an ion. The result obtained
is simple and agrees with the plausib1e expectation that D. Kelly and H. Margenau, Progress Report, Oct~be~ 1, 1956,

Contract Nonr 609 (22).the largest orbit of the cited electron shall be smaller $ Contributed by D. Kelly.
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atomic electron moves in a potential

t'1 1
V;(r) = —Ze'

b+D)
r&b

E,= I Q,*HP„dr

and requires BE,/8/=0. ($ is the variable charge
number, Z the fixed ion charge number. ) Since

—(ft'/2m) 7'IP g
= [Eg'+ (pe'/r) ]/g

and E,P=Q'Ea/g' we have

8 (' (8E,= EH 2EH tt,*—
)
——

~$,dr, (&.10)
g' ~ ( r/ap

where EIr e'/2ap=——13.53——ev Expand. ing e "'o in a
power series yields

t ($—Ze "t )
J 4 r/ap )

(—1)" t«)"
=($—Z)—+~ P

g' ~=p m! 4 ap) (5.11)

x=ap/D—
((«/ap)")—= ~I!&.I'(xr/ap) dr

The values of ((&r/ap) ) are given by Condon and
Shortley. 44 For 5 states,

E,=E„{[( $'+2/ Z)/g'] 2ZrS (P)—)—
p=~g'/8

3 5 35/' 63
s(p) = -p — p'+ — — —p4+

4 12 192 960

(5.12)

44 E. U. Condon and G. H. Shortley, Theory of Atorn~c Spectra
(Cambridge University Press, London, 1957}.

—Ze' exp[ —(r b)/D—]
Vp(r) = r) b.

1+b/D r

The maximum of the radial charge distribution falls
at r =D, signifying that there is a considerable fraction
of the surrounding ion cloud inside the "Debye sphere. "
V'e assume b&(D As a .consequence we can use V(r)
= Vp(r) with little error. In view of these assumptions
concerning b/D and V(r) we write the Schrodinger
equation for the optical electron in the form

HP= —(A'/2m) V' iP Ze'(e—'o/r)P= EP (5.9).
Choosing functions P, which satisfy the Schrodinger
equation for the hydrogen atom of nuclear charge $
for quantum number g we compute the integral

2Z—$—2ZPS(P) =0. (5.14)

Elimination of Z through (5.10) and (5.11) gives an
equation involving only p,

1 2Ps—(P)+P'(~s(P)/~P) =o, (5.15)

which has P= 1.27 as a root. Thus

p= [(g")' o]/AD=1 27.
Reintroducing the true ion charge number, Z, we find

(g*)'=0.804(ZD/ap), (5.16)

which differs very little from the perturbation result,
Eq. (5.8).

We might also inquire how the departure from the
hydrogen level structure sects the merging of lines.
For this purpose we can apply perturbation theory to
all but the last few levels, using hydrogen state functions
with l=l =g—1, since it is for these substates that
the Stark splitting is extreme. These functions prove
to be very simple and it is not necessary to resort to
to the expansion in ((«/ap) ). The calculation shows
that the first order correction to the hydrogen levels is
independent of g and the second order term is so small
as to change g* as given by (5.1) less than one percent.

There are other corrections. Edmonds4' has calcu-
lated, for instance, how the efFective mean distance
between ions is altered by the Debye shielding eGect.
For present concerns, relating to the disappearance of
the lines, this consideration is of secondary importance.

VI. BROADENING OF DEGENERATE LEVELS

Recently, Kolb" has treated the broadening of
hydrogen lines in a manner which is more careful than
previous treatments in its consideration of the di%-
culties of degeneracy and which furthermore attempts
to include both ions and electrons in their simultaneous
actions upon the radiating atom.

We present a synopsis of Kolb's calculations after
first discussing certain fundamental ideas of the method
and also its principal results. The details given here
differ from Kolb's in this respect: our functions [see
Eq. (6.8)] are solutions of the unperturbed Schrodinger
equation, whereas Kolb's are said to be adiabatic
functions. The latter choice leads to difhculties which
our treatment avoids. Let us recall the meaning of
"adiabatic" in the first and second sense discussed in
Sec. IIB.The collisions a hydrogen atom can experience
with an electron can be divided roughly into two extreme
groups, namely, (1) close collisions that turn the atom
around (adiabatic in the second sense) and (2) distant

45 F. N. Edmonds, Astrophys. J. 123, 95 (1956}.

The variational constraint, BE,/8/ =0, leads to

Z—+ZP'itS(P)/OP=0 . (5.13)

The principal quantum number of the last level (g*) is
given by the equation E,*=O. This gives
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or weak collisions that do not turn the atom (adiabatic
in the first sense). We assume that under certain speci-
fiable conditions the weak collisions are mainly respon-
sible for the broadening, so that the analysis can be
restricted to collisions of type 2. One can now speak of
adiabatic and diabatic in the following sense; an
adiabatic collision leaves the atom in, or returns it to,
its original state (permitting the energy to change while

the collision is in process), a. diabatic collision causes
transitions to other final states.

Principal conclusions are (a) the electron effects are
an important factor in the broadening of the hydrogen
lines; (t)) the adiabatic and diabatic electron effects are
of comparable magnitude.

A. Mathematical Foundations

The energy radiated and absorbed per second due to
transitions between states m and the state n (providing
E„Q)E 0) is given by"

4„( ) (XQ„(0)-p„(0))
~T 2

X II —
II Clp '(l)e "' ) . (6.1)

T—+oo T J p Av

becomes

1
I f(~)" 2 Lp-'(o) —p f(o)]-

&prxi 2'

Defining

1 feQ) T 2

X II — Chp. e '(l)e "' ) . (6.4)
T T ~p

pT
Iefae= —lim I dtpefa'(t)e

20rr" "0
(6.5)

Ie'f =Qef ac Lpa 4 (0)Iefa 4]. (6.7)

In keeping with the weak-collision hypothesis, a solu-
tion of Eq. (6.3) is written as

x.(t) =P C. .(t)v.'
pt

Xexp ——
(I {E '+(H, ) idt', (6.8)

we now sum over all degenerate f states, obtaining

'cp ef I f((e)e) 00 P 4{P eaf[cpa (c0) pef (0—)]Iefa 4) . (6.6)

The term in brackets represents transitions between the
groups of i and f states. The first term represents ab-
sorption, and we define the absorption coeScient I;f as

Here p (0) and p„(0) are Boltzmann factors for the
states having unperturbed energies E„'and E„',p„'(t) ~he~~ + Q and E Q are eigenfunctions and en~kg, ~~ of

Hp, and (H~g ~ ~ is given by

p„„(t)= x„*(t)px„(t)dr, (6.2) (Hi) a a =— (p ~ Hi(pa dr.

where p is the dipole moment operator. The functions
&„satisfy

iN„(t) = LH, +H, (t)]x„(t), (6.3)

provided HQ is the Hamiltonian for the atom and Hi(t)
the interaction between the atom and the perturbing
ions and/or electrons. Equation (6.1) is valid if
E ')E '. For states (m, n) such that E„')E„',e ' '

must be replaced by e'"t.
Equation (6.1) was derived by calculating the

increase in population of the nth state due to the
action of the light. Since E„&E ' the first term,
pm(0)

~

J'tceem e '"'j' iS Seen tO repreSent abSOrptiOn, i.e. ,
transitions from m to n; the second term p„(0)
X

~

J"tc„„'(t)e 'ac~' represents induced emission (elec-
tromagnetic field was not quantized) i.e., transitions
from n~m. Therefore I„(Q)) is the net absorption.
The average in Eq. (6.1) is to be carried out over
diferent collisions.

Suppose that the states n and m are degenerate in
the absence of perturbations. For the level n, we call
the collection of states f and label the individual states
ef., for the states m we use i and n;. Occasionally, we
omit the subscripts on Q and n. Equation (6.1) thus

When Eq. (6.8) is substituted into Eq. (6.3), we obtain

Z

C.".(t) = —— P' C. .(t)(H,).".
rxl txr+rxf r

Xexp( —i{60..'t+P. . )] (6.9)

upon using the following abbreviations:

'=(d '—
40 ' (Q '=E '/k)

1
I

4 (6.10)
P, ~ =P P"; P .= —(H, ) ~ .dt. —

k~p

We take as an initial condition that only the state n is
present at t=o. With weak collisions only the initial
state is appreciable at a later time, i.e.,

(C (0) ( )C (t) ) 1; (C (t) )«1 for n'An.

Hence, Eq. (6.9) can be written

i
C " (t)= —

I (H ) "
h.

XexpL —i(40..'t'+P. . )]dt'. (6.11)
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In this approximation Eq. (6.8) takes the form

X.(t) = q.'exp[ —i(cd 't+P )]
+ P' C (t)«« 'exp[ —i((a 't+P )]. (6.12)

a', a'&a

where Ii is the instantaneous ion field, e the charge on
the ion, and 02' are terms connected with the Stark
shift of the states (e,cc).

The electrons are treated by the phase shift (impact)
approximation. Consider

(expo —&P,.i,~i A„When Eq. (6.12) and a similar one for X,(l) are used to
calculate p, '(l) the result is

exp —— Hy Hy dk 6.17
w,.(~) =u,.o exp[i(~,.'l+P,.)]

+Q' p...'C, ,~(t) exp[i(«0, 'l+P; )]

+P' p,.'C. .(t) exp[i(ce„'l+P,.)], (6.13)

B. Adiabatic Approximation

The oG-diagonal elements are neglected in this
approximation, only the first term in Eq. (6.13) being
used. This simpli6es the theory so that it can easily
be applied to any two states (a,c). The resulting ap-
proximation is general enough to include both electrons
and ions and serves as a guide for the more complicated
theory below, which includes the oG-diagonal elements.
On substituting Eq. (6.13) into Eq. (6.5) we have,
neglecting the oG-diagonal elements,

fgca I
1

I. = lim-
27r r T

X
J

dl exp[ —i(Ace,.'—P,.)], (6.14)
0 Av

where hce, '=co—«e, '. Equation (6.14) can be put into
the usual correlation form (see Sec. IV)

Re, '

dr
~0

X exp(idee, Or)(exp[ —iP, (r)])A„. (6.15)

The term P, contains interactions involving the ions
and el'ectrons. We therefore write

P, =P, '+P, '

and assume that the ion and electron averages can be
calculated separately. The ions are to be treated in the
statistical approximation and therefore permit the
interaction to be written as time independent. With
this understanding

P„'=(0,' je)Fr, (6.16)

where p, 0= J'q, 'pv 'dr and terms of the order C'
have been neglected. Equation (6.13) together with
Eq. ('6.5) determines the absorption coefficient. We are
now ready to consider two special cases of interest.

Hg'=Qv Hp (6.18)

The sum here is taken over all the electrons contained
in some eGective volume. The phase change during the
time interval 7. produced by a single electron depends
on the velocity v, the time of closest approach t, and
on some other parameter /. Since

Hc'= Q X(i,v,l)H, (i,v, l), (6.19)

where JT,(i,v, l) is the number of electrons characterized
by (i,v, l) in the effective volume, P, ' becomes

P,.'= ll
—' Q X(i,v, t) [(Hc(i v,l))„

—( H(civ, l))..]dt, (6.20)

P,:=Q K(i,v, l)(p;. .. c(r),

v', ~, c(r) =5 ' [(Hg(c,v, l))„—(Hg(i, v)l)) ~~]dt. (6.21)
Jo

Using the results developed in Sec. IV we find

(«p[—iP-'(&)])A

=exp vR'J dvvn, (v)[e«, (1) 1]r, —(6.22)

n. (v) being the number of electrons with velocity v per
cubic centimeter. The eGective volume of the system is
assumed to be a sphere of radius E and

cc,(1)= d/W(l)e '& c. (6.23)

Here p, , & is the total phase change produced by an
electron of velocity e and parameter / which has its time
of closest approach in the time interval v. Now suppose

where B~' is the interaction of the atom with all the
electrons in the plasma. In the evaluation of (6.17) we

employ Eq. (4.15), following Kolb. This does not
require that the impacts are sudden or isolated. It is
applicable to scalarly additive perturbations, that is
perturbations for which



SPECTRAL LINES FROM PLASMAS 599

that the parameter I, labels two impact variables p and

cr, p being the distance of closest approach and o. some

other characteristic variable defined later. The prob-

ability distribution functions for these are

W(p)dp= 2rrpdp/srRo; W(a)ca=ca/Ze (6.24)

where Z is the total cross section for 0.. Then

a.= )t I W(p)W(a) exp( —i)t„, ,)dpda, (6.25)

and hence
t'

(expt —iP, '(r)])s„——exp 2sr i vn, (v)dv pdp

C. Diabatic EBects in Degenerate Systems

The ions are neglected, so that the atomic states are
degenerate, in this approximation. The resulting for-
mulas are useful because they indicate the magnitude
of the diabatic efI'ects as far as electron broadening is

concerned. In particular, the results of the present
development, when applied to the Lyman-n line, and
then compared with the adiaba, tic approximation (when
ions are neglected), clearly demonstrate that the
adiabatic theory can contain large errors. The method
of this section can be generalized to nearly degenerate

systems, degeneracy being removed by inclusion of
the ions, but the results are difficult to handle and have
not been carefully studied.

In the weak collision approximation we assume that
~P, '~&&1 so that Eq. (6.13) can be written in the form

X (da/Z) (exp( —ios. ..)—1)r . (6.26),
(), (. , ) ~ 1+.p

Finally, we replace rh, (v) by rh, W(v) understanding by
n. the number of electrons per cubic centimeter and by
W(v) the Boltzmann distribution function; we write

o), (~) for os„,, „letting (o,n) indicate the two states
involved and omitting the (p, v, a) dependence; the

symbol (ot) ) means that the phase change produced by
one particle is completed. One then finds

(expL —iP, '(r)])os=exp| —(Nr' +iso' )r), (6.27)

where

0 ,0+Q', ,*++' C..). (6.31)
Pea a' 9~a

Since
~
P, '~&&1 and the sum are small, we can write

ts,.'(t) =ts, ' exp(i),.ot) oexp(iC, .), (6.32)
with

0 0Pe'a Pea'
C,.—=P,.—i P' C...*++' C. . (6.33)

el Q I 0Pea Pea

When this is substituted in Eq. (6.5) there results

N~" 1 t—'«&
vW(v)dv

(—Ns' ) EIm) &o 40

t'~ do—(expt: —io -(")j—1) (6 2g)
Jo g

Substitution of Eqs. (6.27), (6.16) and (6.15') into
(6.15) results in

I, = lim-
2g T~ T

2

X ~ dt exp( —iso),.ot) exp(iC, ) . (6.34)
0 Av

In the weak collision approximation, then, Eq. (6.11)
for C„becomes

C = —— (Hg') ~ exp( —iP ")dt
»0

o/o eo -
(Re ) exp iI hoo, '—ots'

J,
(Hr') ~ Ch'. (6.35)

Qn2- ~F )Ir N)esr dr-
Av (ions)

ohio I
(S ' —O -r/e ee -)'+(ee -)')A (. —4), —= Q X(i,v,l)~;„r, ,

(6.29) If one assumes, as in the adiabatic case, scalarly additive
perturbations t see Eq. (6.19)) then, in view of Eq.
(6.35),

(6.30)

Ke shall return to this equation. At present we wish
to develop a formula including the ofI'-diagonal ele-
ments, which are taken to be zero in the treatment
above.

t 0

)r;„, r(t) = lh-' Ck' Q (Hg(i, v, l)), ,
4o ' P.a0

(H, (i,v, l)) ~

~

. (6.36)
a' pea
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Equation (6.34) is formally the same as Eq. (6.14).
On the other hand, Eqs. (6.36) are similar to Eq. (6.21).
We can therefore use the results of the adiabatic
treatment when the proper replacements are made. Our
results in that case do not contain the efI'ects of the
ions. Instead of Eqs. (6.35) we thus find

8CL

7

(+Oi 0 u ea)2+ (u ea)2

( u' ) t'«l ~R
'W(')d'

I(—u2") (1m) 0

(6.37)

p~ du—[exp[—2~„(~)]—1], (6.38)

subject again to the use of the phase shift approxima-
tion, which accounts for our writing ~, (oo ) in place of
the ~;, „, i appearing in Eq. (6.36). The condition

~

I',
~

&&1 is violated after a long enough time, and Eq.
(6.37) is valid only in the wings. In applications, since

~
I~, (oo ) ~

&&1, we retain only the first two nonvanishing
terms in the expansion of e '" . In the wings (6.37)
becomes

I,.=u "/[2r(aid ')']
and

is the polar angle describing the location of the position
vector of closest approach y in some fixed coordinate
system; 8 is the 0 parameter mentioned earlier. Equation
(6.28) then gives

where p is a cutoB distance and is chosen as the Debye
length of Sec. II. Kith the definition

8 ' =—202' /p„v,

Eq. (6.43) then becomes

t "W(v)
u ea —82m (fl ea)2 dv 0.2094—

6 lnbm'
~p V

(b ea)2

+ + ~ ~ ~

240
(6.44)

The velocity average is approximated by replacing the
outside of [ ) by its Boltzmann average (v ')

= (4/or) (1/(v)) in Eq. (6.44). We then obtain, finally,

N2' =0
Pee

ui' =22m, vW(v)dv pdp
0 J,

sin(202 "/pv)-
X 1—,(6.43)

(202' /pv)

QO rvR ~Z d~
=22m, I W(v)vdv pdpJ, 40 Jp Z 2&2

+00 ~ 2

d (P p, o(Hi) ~ —g p,o(H,), ) (6.40

ui'a= (32/(v))n, (goea)'G(b ea)

G(x) —= (0.2094—-', Inx+x'/240. . )

b-"=»2"/(p-(v)).

(6.45)

(6.45a)

D. Electron Broadening in the Adiabatic
Approximation

In this section, the adiabatic theory of part B is
applied to broadening by electrons only. Here "adia-
batic" means that we retain only the first term in Eq.
(6.13). This calculation, although restrictive, is useful
in estimating la) the error introduced by the electron
collisions that fail to satisfy the conditions for an impact
theory; (b) the effects of close collisions. The value of
2o,,.2(~), defined by Eq. (6.21) except that the inte-
gration is now extended over all time, is (with suitable
changes of indexes)

22ea(~) = (202' /pV) COSH, (6.41)
where

Qoea= (o go/fi) ( [ne (kie kie) ] [na (kia k2 ) ]). (6.42)

In this expression n', kI', k2' are quantum numbers, in
parabolic coordinates, of the state o and 0 of Eq. (6.41)

with the understanding that HI refers to one electron
with specified p, v, 0.. Ke shall now apply the formulas
of this and the previous section to line broadening by
electrons.

for the present results to be acceptable. One can estimate
the error resulting from extending the velocity inte-
gration from zero to infinity by computing the con-
tribution to (v ) from velocities less than v,o. One obtains

v —v v(t;

(v ')

2n(Boo) D2'
+ . (6.46)

4kT

For 10 000'K, and for Ht2 (4861 A) at 30 A from the
line center, 90%%uq of (v ') comes from velocities which
satisfy the phase shift approximation.

(b) It is reasonable to treat close collisions by the
Lorentz formula [Eq. (1.2)]. This leads to an I,
which is similar to Eq. (6.30) (the ion contribution is
again neglected) except that ui' is replaced by r, ',
r, being the mean time between collisions. Hence the
suggestion that NI' can be represented, in an approxi-

Let us now return to the two points mentioned at the
beginning of this section.

(a) According to the criterion for the validity of the
phase shift approximation (Sec. IVB), the velocity
must satisfy

v» (02' Ao2) 2 =—v,
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mate way, as a sum of two terms

ui = (ui' ) p&p~+ (u1' ) p(pp, (6.47)

so that

I211, 100 I21—1, 100

where (ui' )»P, is the contribution from the weak
collision theory, computed according to Eq. (6.32)
except that p is now allowed to vary from p, to p . Here

p, is the value of p which roughly divides the impacts
into strong (close) and weak ones, chosen so that

I +,100 I —,100
1

I+ 100= I,100— (6.55)
or (Boo~, 100) or (501, i0o)

ui ' =ui ' = p p+ 100 i
(6e ao/vpi2),

or
g «=2Q21~/(p (v)) = 1

p, = 2Q2' /(v).

and
l'6.48)

(6.49)

f'6eoao) f6e'ao'2
(—=22m. ~ vW(v)dv pdp( (. (6.56)

4pvi2] o p ( vPi2 &

In view of Eq. (6.41), 8,' is the maximum phase shift
that an electron with velocity (v) and distance of closest
approach p, can produce. But

(ui )p(p r '= 2rp—2n, (v)= (42r/(v))(Q2' )'n.
3(u +,100)

)
2r (A(o+, 100)

(6.57a)I+ 100=and

The o6-diagonal elements contribute twice as much as
the diagonal elements to Eq. (6.55). We may therefore
write Eq. (6.54) in the form

(6.50)

(ui' )»"=(32n.i(v)) (Q2")'LG(~-")—G(1)3
= (32n./(v)) (Q,' )'-

XL—0.0042——,
' in' ' + j. (6.51)

3(u —"') 0I,100=
2r (501,10o)

(6.57b)

Comparing (6.50) and (6.51), the contribution due
to close collisions can be neglected if

that is, if

(ui )p(p 3 1
(&i,

(ui'~), », 4 ln(1/8 ' )

ln(1/b„-)»1. 5.

(6.52)

(6.53)

When (6.53) is satisfied, the quantities expressed by
Eqs. (6.51) and (6.45) are approximately equal.

Example: If n, =10", T=20000'K and Q2'~/A=1. 1
(where A —=—20e'ao/fo) then in(1/8 ' ) =6.

E. Broadening of the Lyman-e Line by Electrons

In this section we treat the broadening of the Lyman
lines by electrons only. Both adiabatic and diabatic
e8ects are considered. The wave functions used are the
Stark wave functions with the Z axis fixed in space

i i
P+ ('@200'+ 02210) y &P— ( 02200 '@210)y

v2 v2

+21+1) +100)

u 211,100—u 21—1.100—0 u +,100—u —,100 (6 54)

the subscripts on q denoting, in spherical coordinates,
the quantum numbers nlm.

We use Eqs. (6.39) and (6.40), dropping P ~ in Eq.
(6.40) because of the nondegeneracy of the ground state
(100). Letting 12 designate the state (100), 0 the states

(»~1), (+), (—),
one finds

where (u,+ '~),z is given by Eq. (6.40) with only the
diagOnal term, p+, 1000(H1)++ appearing in the Sum.

Finally, then,

(u +,100) —(u —,100)

( p+, 100'~' 144ao'e' n. (p~)—ln( —l. (6.58)
3 )22 (v) l p )

This result for (ui+ '~),e agrees with the corresponding
one obtained from the adiabatic theory of part D of
this section, Eq. (6.51) with Q2' /A =2 and definitions
of (6.49), (6.45a), and (6.42). Thus a pure adiabatic
treatment (part D) which ignores collision-induced
transitions underestimates the broadening by a factor
of 3, a conclusion which is important later when an
attempt is made to introduce both ions and electrons.
Such an attempt succeeds simply only in an adiabatic
theory. But with the information now at hand one can
estimate the contribution to u1' from the off-diagonal
elements (diabatic effects) by using the results of this
section.

F. Simultaneous Broadening by Ions and Electrons
in the Adiabatic Approximation

In this section both electrons and ions are taken into
account in the adiabatic approximation to the theory.
The basic formulas are Eqs. (6.27), (6.28), and (6.30).
The N1's are treated in the manner explained in part D.
So far as the ions are concerned the averaging process
indicated in Eq. (6.30) can be performed with the use
of the Holtsmark distribution for the field Ii since the
ions are to be treated in the statistical approximation.
Thus, define W(Q) to be the probability distribution for
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the quantity Q =F—/e; Eq. (6.30) then becomes The electron effects are revealed by comparison of
Eqs. (6.61) and (6.62). In addition to the correction
factors in each term of the sum in Eq. (6.61), there is a
term that depends only on the electrons. In the wings
of the line this is dominant since it is of the order 8 '
whereas the mixed electron ion effects are of the order
8 &. This feature is present in all theories which
attempt the fusion of statistical and impact features:
the intensity in the statistical theory for large 8 is
proportional to 8—

& that in all impact theories 8 '.
Equation (6.61) is applicable to any two pairs of

StateS (o,n), (o',n') fOr WhiCh Q2' =Q"' '
SinCe it

neglects collision-induced transitions (off-diagonal ele-
ments of C). Formally, Kolb does generalize Eq. (6.1)
to include the off-diagonal elements. This leads to
mathematical difficulties because the Nj.' are then
dependent on the ion field strength, which complicates
the ion-averaging process. The dependence arises
through the C (where 43' &a) (taken as zero in the
adiabatic approximation). Under certain conditions,
these can be neglected. If, for instance, the average ion
field is large the degenerate states are split far enough
apart so that the off-diagonal elements vanish. Under
other conditions, the term in C ~ that causes the dif-
6culty, namely exp(uo ~ ot) (where o) o is the sepa-
ration of two degenerate levels due to the ions) can be
replaced by unity. This will be true if the collisions are
fast enough, i.e., if the collision time is small compared
to ((o ~ ')—'. In this latter case, one can employ the
adiabatic theory of Sec. E and estimate the diabatic
contribution to u~' from a knowledge of the diabatic
electron effects, using the procedure given in the
treatment of the I.yman-o. line. That is, one first deter-
mines u1' (adiabatic and diabatic) by considering only
electrons and then uses this N~' in the formula for
broadening by ions and electrons in the adiabatic
approximation.

As an example of this procedure, Kolb considers the
following situation. For n, =n;=10" cm ', T=15 000
'K, and Q2'a/A =10. While an analysis of this line to
determine the diabatic effects has not been carried out,
Kolb estimates that they are of the same order of
magnitude as the Iyman-n line. He takes the con-
tribution to the weak collision to be twice the adiabatic
contribution Eq. (6.51):

I, = W(Q)dQ

X t (6.59)
( (/1„O QocaQ)2+(u, ca)2

and, according to the adiabatic theory for electrons, is
u2' zero, and u~' is independent of Q. Using the
Holtsmark distribution for W(Q) and adding together
a pair of lines that satisfy Q2' = Qoc

c —' )this simplifies
the results and makes I(I)(o) symmetric) one gets after
some mathematical manipulation (see Kolb)

O/2

I, = —' gdpexpL( —4.21Q2' 23;$ —u1' $)/Q2'"j
~ (Q ca)2)

O

/cd, (O, Og ) AO), Og )
X h(o, ' Sin( )+u)' COS~ ), (6.60)

(. Q, « i (Q,")
where n; is the number of ions per cubic centimeter.
This equation can be expanded for large and small
frequencies (6(o, '). We present here only the large
frequency expansion, since the other is subject to too
many invalidating uncertainties. For convenience we
make the following changes in notation:

Z, =4 52Q2' ).3,3/A, A —= 2eoao/f),

i.e., Z, is the Stark shift (in radians per second) result-
ing from the mean Holtsmark field strength, and

B=D(d, '/Z, ,
—

i.e., 8 is the shift in units of Z, while

R=—Z, /u1',

i.e., R is a measure of the relative importance of ion and
electron broadening. Kith these changes in notation,
for large frequencies (Ao), '), Eq. (6.60) becomes

I'L(323+ 1)/2) cost {(333—1)/2) tan '(BR)j
1 (6.61)

B(3n—1) /2
L1+1/ (BR)2j(on—1) /4 '16 n,

(u)ca)P)P ~ 2 (Qoca)2 lnl) ca

3 (o)
(6.63)Equation (6.61) reduces to the Holtsmark distribution

for ions if we set u1' =0 (R= cc), for in this limit

2 ( 1)n—1

I, (B)dB= i/4, oiodB- +p
or R(B'+1/R') n=2 (23 1)!—

2 (—1)" ' I'L(3N+1)/2jI, (B)dB= )/4,.o(2dB—P
)r n=2 (23 1) ! B(3n—1) /2

XcosL{(323—1)/4) )rj. (6.62)

This agrees with Eq. (3.11b) when the coeflicients are
evaluated. Equation (6.61) reduces to the results of the
adiabatic electron theory if Z, =0.

and for the close collisions

assuming that

e

(u, ' ),&, = 4)r—(Q ")'
(2)

u1 (u1 ) P &Pc+ (u1 )P+Pc

The result is shown graphically in Fig. 8.

(6.64)
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Ica (8)
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mark theory)

d electrons

0
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FIG. 8. Line contours produced by different agencies {after Kolb).

ln(p„(v)/Q2' )+0.485
=0.345 . (6.65)

ln(p (v)/Q2' )—0.212

Ny'"

(ui") Z

For large ln(p„(v)/Q2' ), therefore,

uiEa 0 345 (u&ea)P (6.66)

The quantity ln(p (v)/Q) is in general large enough so
that the difference between Eqs. (6.66) and (6.65) is
within the uncertainties of Kolb's method.

For the condition which led to Eqs. (6.63) and (6.64)

ln(p„(v)/Q, ")=3.25.

Equation (6.65) then gives

ui'~ =0.43 (ui'~) g.
This is the line width of a single Stark component
which is unobservable. The disparity between u& and
(ui)g, however, will remain no matter how the com-
ponents are combined into a resultant contour. Because
of the numerous approximations and inherent uncer-
tainties involved in either of the classical path calcu-
lations it is dificult to say which formula is numerically
preferable, even though Kolb's approach is the more
circumspect and realistic one. Later we compare the
result of the quantum-mechanical treatment with (ui) Z
(after compounding of Stark states) and find closer
agreement.

VII. EXPEMMENTAL RESULTS AND CLASSICAL
INTERPRETATIONS

A. Experimental Determination of
Plasma Properties

Among the important physical parameters charac-
terizing a plasma are the concentrations of various ions

This result may be compared with that obtained
from the classical theory. Lindholm's result Lsee Eq.
(4.28)j is

(ui") g —=cv;/2 = ir'(Q2' )2(u,/(v))
XPO 923—ln(vQi'~/(v)p ) .].

We have replaced the cutoff ro by the Debye cutoff p
and v by (v). The ratio is then

n;, the electron concentration n, and the temperature T.
In a simple plasma, i.e., one containing but a single

type of ion, n; =n.. The remarks of this section are
confined to this case. In complex cases, Dalton's law

of total pressure must be employed in addition to the
equations discussed below, ' but otherwise nothing
fundamentally new emerges in the analysis of lines from
complex plasmas.

A common temperature T exists for all constituents
of a plasma if it is in thermal equilibrium. This is not
necessarily true in the presence of agencies (discharge
currents, ionizing radiations, shocks in rarefied media)
which are not part of the thermal mechanism. In such
instances it is customary to assign different temperatures
to different components (neutral molecules, ions, elec-
trons, photons) and to find ways of measuring each.
The limitations of such an approach should, however,
be apparent; for the external agencies just mentioned
do not always produce a Maxwellian distribution of
particle speeds, 4' and a temperature is definable only
for a Maxwellian distribution. In a discharge plasma at
low electron densities (n. &10i3 cm ') the temperature
concept is known to break down, but it becomes mean-
ingful once more at higher densities when long-range
Coulomb forces among the ions and electrons begin to
randomize the distribution toward its canonical form.
This report does not deal with the pathologies of T, and
we assume for the most part that a common T exists.

It has been standard practice to determine n, =n,
by measuring the intensity distribution of the Balmer
lines and comparing it with the Holtsmark formula.
Since the temperature does not enter in this procedure,
simplicity strongly recommends it. Recent investiga-
tions by Edels and Craggs, 4' Lochte-Holtgreven and
Nissen, 49 and by Olsen and Huxford~ are based on it.
The risks involved in this method are evident from our
earlier theoretical considerations (and from numerous
experimental findings of more recent date): reliance on
the Holtsmark theory alone is permissible at low ion and
electron densities (n, &10" cm '). At high densities,
repulsion between perturbing ions produces a smaller
intensity in the line wing (where measurements and
theory are usually compared), but the electrons add to
it. It is likely that a fortunate, rough cancellation
between these opposing errors has sometimes led to
correct values of n; even when the method was not
strictly valid.

Ion densities obtained by Edels and Craggs and by
Lochte-Holtgreven and Nissen in hydrogen arcs were

46 See, for instance, W. Lochte-Holtgreven, Temperature, its
Measurement and Control in Science and Industry (Reinhold
Publishing Corporation, New York, 1955), Vol. 2. Also Reports
on Progress in Physics 21, 312, 1958.

47Druyvesteyn, Physica 10, 61 (1930); 1, 1003 (1934); H.
Margenau, Phys. Rev. 69, 508 (1946)."H. Edels and J. D. Craggs, Proc. Phys. Soc. (London) A64,
5'75 (1951).

"W. Lochte-Holtgreven and W. Nissen, Z. Physik 133, 124
(1952).

~ N. H. Olsen and W. S. Huxford, Phys. Rev. Si, 922 (1952).
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of the order 10" cm ', in a range where the simple
method can hardly fail. Those reported by Olsen and
Huxford are somewhat higher (condensed flash dis-
charge) and very probably subject to some error. One
should also mention that "fitting a Holtsmark contour"
is not a wholly obvious matter. It involves the com-
position of many Stark-broadened component lines into
a single distribution with appropriate weights. The
weighting has not always been performed correctly;
there are differences, for example, in Olsen and
Huxford" and Craggs and Hopwood" (factor 2 for
perpendicular Stark components).

When n; has been determined, it is a relatively easy
matter to find T from the Saha equation (see the fol-
lowing), the relative intensity of different Balmer lines
and other known eGects involving n; and T.4'4' How-
ever, since line broadening is strictly also a function of
T (mainly through the electron effect), and since we are
furthermore interested in testing line broadening theo-
ries, it behooves us to discuss briefly some available
methods for determining e; and T that are independent
of the details of plasma broadening.

I. Saha Eggert Equ-ation (Mass Action L-ave)

This is a relation correcting n, and T as follows:

partly from the medium, the equation is not exact.
There is some evidence that for low m, photoionization
and recombination by triple collisions are not fully
effective. The Saha-Eggert equation is then impaired,
and Elwert" has proposed its replacement by

ne= 8.4X10' kT
e «", n, (7X10"cm ', (7.2)

no nX g

where g is a number around 2 given in reference 53.
Saha's equation is sometimes used when the tem-

peratures of different plasma components are different.
It is then said to define an ionization temperature T;..
The physical meaning of this concept is far from clear;
still it may be a useful parameter. But if the energy
distribution of the electrons is not Maxwellian (e.g. ,
discharges with n, =10"cm ') the Saha equation may
be vastly in error. E. Dewan'4 has derived the analog
of (7.1) for electron distribution functions given in
references 47 and found departures from Eq. (7.1) by
large factors.

2. Absolute Intensity of a Line

The temperature alone is involved in the formula for
the absolute intensity of the Balmer lines (in emission):

n;n, 2Z, (2~m, kT)-'*

no Zp h'

x-~x
texp. —

kT I

(7.1)
2sre'hfn' t' E„—Ep)

n,l exp(—
E kT

(7.3)

Zp and Z; are partition functions for neutral atoms
and ions, no and e; their concentrations. For protons,
Z, has the classical form (2+MvkT)'*/h', for neutral H
atoms, however, Zo consists of two factors, the one just
written (since MH =M„) and the sum of states
P„g„exp(—E„/kT) with weights g„=2n' and E„
=hydrogen energy for principal quantum number n.
This sum diverges because E„~n '. Physically, how-
ever, this divergence is prevented by the drowning of
levels discussed in Sec. V. A good practice, established
on theoretical and experimental grounds, is to cut oG
the sum at n= 6 or tt.

The quantity y is the ionization potential for the
ion, and Ax is a correction resulting from the drowning
of the high levels or, to put it another way, by the
lowering of the ionization potential in the presence of
ions. It has been computed by Unsold, Weizel and
Ecker, and others (see Sec. V).

Equation (7.1) holds in thermal equilibrium. Strictly
speaking, this means that radiative processes as well as
corpuscular collision processes, both those generating
ions and destroying ions (recombination), must be
balanced in detail. " If, for instance, radiation escapes

5' J. D. Craggs and W. Hopwood, Proc. Phys. Soc. (London)
A59, 755 (1947).

~2 For a simple discussion see W. Finkelnburg and H. Maecker
in Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol.
XXII, p. 308.

(X= wavelength of line, f=oscillator strength, quantum
number, n and E„refer to upper state of line, l is the
thickness of the radiating layer, which must be small,
i.e., optically thin). If l and np can be determined with
precision, this formula is the most direct and reliable
means for determining T.

3. Relative Intensity of Diferent Lines

Two Balmer lines, one originating in the state of
principal quantum number n', the other in state n, and
of frequencies v„and v„, have an intensity ratio

I„n'v A„ fE„E„t-
expI ~ n'Pv A. I kT

(7 4)

~ G. Elwert, Z. Naturforsch. 7a, 432, 703 (1952).~ E. Dewan, Dissertation, Yale, 1957 (unpublished)."See reference 48, p. 562.

if all excited states are in thermal equilibrium. A is
the coefficient of spontaneous emission. Again, in the
absence of external agencies, and at high electron-ion
concentration even in their presence, this condition is
satisfied. Recent measurements in a hydrogen arc
discharge by Edels and Craggs, ' who compared H,
Hp, and H~, have revealed large departures from for-
mula (7.4).
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where xo is again the concentration of H atoms, l the
layer thickness, E„=energy of nth quantum state
= —Rhc/ 'n, and R=Rydberg constant The last twote™~. L ] represent contributions of higher continua
in the region of the Balmer continuum.

5. Temperatlre ie Shocks

Shocks are an increasingly important agency for
producing high temperatures of short duration, yet
long enough to emit measurable spectra lines. Tem-
peratures and ion densities obtainable in shocks surpass
by far the limitation of most electrical discharges. ~

Formulas for the temperature in shocks may be derived
from the Rankine-Hugoniot equations, are given in
Turner's dissertation" and, in a more elaborate manner,
in Courant and Friedrichs. '

Of the five methods thus far surveyed only the first
presents means for determining n, ; the remainder are
independent ways of finding T. The Saha equation, in-
volves both n, and T; hence it must always be coupled
with one or more of the later formulas. Unfortunately, a
determination of n, from Eq. (7.1) is highly inaccurate
because Ax and T appear in an exponent; the error in
T resulting from an uncertainty in a given value of n.
would be much less.

A higher degree of confirmation can be given to a
Saha n, if use is made of the Inglis-Teller formula (Sec.
V) which involves n; (=n,) and only n; directly.
Although it depends on line widths, details do not enter
that equation, and the action of electrons a8ects it in
a minor way. But of course it yields only an estimate.

B. Some Recent Experimental Results

The need for modifications of the statistical theory
because of the impacts of electrons was recognized by
Unsold and Lochte-Holtgreven at Kiel where, in con-

'6 G. Jiirgens, Z. Physik 134, 21 (1952).
"See, for instance, Petschek, Rose, Glick, Kane, and Kantro-

witz, J. Appl. Phys. 26, 83 (1955); E. B. Turner, Dissertation,
University of Michigan, 1956.' R. Courant and K. O. Friedrichs, Supersonic Flmo and Shock
5'aves (Interscience Publishers, Inc. , New York, 1948).

P. Intensity of the Balmer Continuum

The intensity of radiation at a wavelength X below
the Balmer continuum limit of 3646 A is given by the
formula"

sequence, a systematic series of experiments were

recently performed on the Balmer series by Jurgens, ee

Griem, " Dieter-Henkel, " and Bogen. " High-intensity
carbon electrode arcs maintained in a water channel
and supporting currents up to 200 amp were used as
sources of radiation, the first six series members being
observed for various values of temperature and electron
density. Although their experiments were done inde-

pendently, the sum total of work of the Kiel group
exhibits a large measure of unity, justifying a discussion
of their findings as a whole.

In these experiments, the perturbations arise from
protons and electrons acting together in the discharge;
these always occur in equal numbers so that n, =n„
where n„ is the density of protons per cubic centimeter.

In order to allow the application of a theory of
broadening to given experimental contours, values of T
and n, must first be determined, for as we have seen
in Sec. II, the validity of a particular broadening theory
in general depends upon the values of these parameters.
Several independent methods for determining the
temperature were employed, such as: measurement of
the relative intensities of the successive lines of the
series emitted from optically thin portions of the
discharge, measurement of the degree of inversion of
the lines when emitted from optically thick portions of
the discharge, and variation of the intensity of the
series continuum. The temperatures calculated by
these several methods were found (doubtless in part by
good fortune) to agree within a few percent, the values
ranging from about SX10' to 1.4&& 10' 'K. The deter-
mination of n, was made by the single method of
matching the observed contours to an intensity dis-
tribution. Two distributions were used, the first being
the statistical distribution of Holtsmark and the
second a distribution formed by smearing the statistical
distribution over the Lindholm impact distribution.

The Holtsmark fitting is performed in the far wings
of the line where the inequality, Eq. (4.27), holds.
Large discrepancies between this distribution and the
observed contours were found, especially in the cases
of IJ and IJ~, both of which have undisplaced central
components in their Stark patterns which contain large
fractions of the total intensities of the lines (38% for H
and 16'%%uq for H„). The He line, having no undisplaced
component, lends itself best to a fit by the statistical
distribution. An application of the conditions, Eq. (5.2)
to the last resolved member of the series shows that the
electrons may be neglected as statistically broadening
particles at the temperatures calculated. Hence the
perturber density determined by the statistical fit is
interpreted as that of the protons only.

The dashed curves of Fig. 9 show the contours as
found for the first three lines of the series along with
their Holtmark wing fits; these curves were taken from

' H. Griem, Z. Physik 137, 280 (1954).~ W. Dieter-Henkel, Z. Physik 137, 295 (1954).
61 P. Bogen, Z. Physik 149, 62 (1957).
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III A) is valid. Electron effects appear to be confined
to the center of the Balmer lines, and they extend to
greater distances from the line center in the higher
series members.

We end this review of experimental results with a
graphical summary of the shock tube work at Michigan.
The latest data of this group may be found in the dis-
sertation of Turner, " analyzed by Kolb," from whose
thesis Fig. 11 is taken. Again the experimental curve
falls outside the Holtsmark distribution for the proper
n, at large distances from the line center. The dashed
curve marked "ion and electron theory" represents
Kolb's calculation (see Sec. VI), adapted in a suitable
way to the Balmer lines, for which a complete calcu-
lation is still missing.

C. Classical Interpretations

Jiirgens and correspond to T=12 300 'K and n.=8.4
X10"/cm'.

According to these findings, the experimental con-
tours agree with the statistically calculated ones beyond
30A, and the agreement occurs for a value of n,
identical with that obtained from the Saha equation.
This was disquieting to theorists when the data ap-
peared, for it seemed to show the old but unjustifiable
belief in the unimportance of the electrons (at these
wavelengths) to be correct. But the later work of P.
Bogen" has changed this picture.

In his painstaking investigation, which includes a
good discussion of errors, Bogen first measures the
absolute intensity of the IIp line and uses formula
(7.3) to find T. This requires knowledge of no, the
number of hydrogen atoms, which for the water-
stabilized arc employed in these experiments is not
readily at hand. It is obtained from a previous study6'
of the properties of this arc, which resulted in the deter-
mination of no as a function of T (with use of the Saha
equation). Bogen then substitutes T in the Saba equa-
tion and obtains n, =2.1X10"cm ' for the most fully
documented example. When the intensity in the wing
of the Balmer lines is plotted one obtains for each of
the Balmer lines a graph such as Fig. 10. In the indi-
cated wavelength range the experimental curve lies
between two Holtsmark curves, one drawn for n, =2.2
/10" cm ', the other for twice that value. For H,
but not for the higher Balmer lines, the experimental
curve approaches the upper Holtsmark curve at about
60 A, and the indication is that the higher Balmer lines
likewise show this feature, but the approach takes place
at higher wavelengths. Bogen concludes that for large
X the Holtsmark theory is correct for all lines, provided
one lets ions and electrons have independent additive
effects, i.e., one chooses 2n, instead of n, as the number
of perturbers. The range of correctness coincides with
tha, t in which the binary statistics, l theory (see Sec.

~ Burhorn, Maecker and Peters, Z. Physik 131, 28 (1951}.

The electrons must be included in an adequate
theory. Their effect, according to all the foregoing
developments, is most pronounced in the center of the
lines. A simple way to incorporate it is to fold an impact
distribution for the electrons into a statistical (Holts-
mark) contour. This method, suggested in another
connection by Margenau, Burkhardt, and doubtless
others, was employed by Griem and Henkel in their
data analyses. Griem adopts the use of the distribution:

In I

I I

30 60
4'. (A)

Griem, Ecker etc.

Expt I Curve
Holtsmork

16
n=2.2 x IO cm

FIG. 10. Comparison of wing intensities
(schematic, after Bogen).

Here 2A is the half-width computed for the electron
impacts by the Lindholm theory; W(x/Fo) is the statis-
tical distribution for a normal field strength Po. This
is taken from the work of Verwey and Schmaljohann
(see Sec. III), which excludes the central undisplaced
component of a Balmer line. Hence the central com-
ponent, whose total intensity is Io, must be added in
via the first term of Eq. (7.1), which shows only an
impact width. In Eq. (7.1), X is measured from the
normal position of the line. The bar over 8' is to
indicate that a proper average over different Stark
components has been taken. Much better representa-
tions of the data are obtained through the use of (7.6)
as can be seen from the curves of Fig. 12 which are
taken from the paper of Henkel.
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A plausibility argument in favor of smearing the
distributions takes a form similar to the one used in
earlier sections. When a perturbation of the radiator
contains two components, one of which acts slowly and
the other quickly, the action of the slow one is to
produce discrete shifts in energy which may be con-
sidered to be constant over time intervals in which
many broadening collisions involving the fast com-
ponent occur. Hence, in our example, each discretely
shifted frequency of the statistical theory, produced by
the protons, is broadened by the many impacts of the
electrons. The condition under which many electron
collisions occur during a time in which the ions are
essentially motionless is:

tn I

) IO cm

ond Electron
Theory

1 11111l
IO IOO

b X (Angstroms)

t,«t„, (7.7) FIG. 11. Comparison of wing intensities (after Kolb).

where t, is the time between successive electron col-
lisions and t„ is the time during which a proton collision
occurs. For classically describable particles we have
the definitions,

t,= 1/(n~rd'v, ), tv=d/v„, (7.8)

TABLE VII. Densities for which d=p, for the Grst-order Stark
e6ect in hydrogen.

where d is deaned by Eq. (2.5); v, and v„are, respec-
tively, the mean speeds of the electrons and the protons.
The inequality (7.2) thus becomes:

[(690)'v..Tt/n~j(mv/m, )1&&1, (7.9)

where nz„ is the mass of the proton and m, is the mass
of the electrons. This inequality holds for many im-
portant applications of electron broadening, both
stellar and terrestrial.

It was shown in Sec. II that the classical-path
assumption of the impact theory is not necessarily valid
for collisions producing phase shifts less than unity.
Such phase shifts, however, contribute most of the
shift and broadening, as calculated by that theory, for
the first order Stark effect )see Eqs. (4.27) and (4.28)
and Table Vj. Since this is the case, there exists no
a priori justi6cation for employing the Lindholm dis-
tribution, as Griem does in his folding procedure;
instead one should replace it with the results of a
quantum mechanical calculation. For the quadratic
Stark effect this is not the case because the large con-
tributions to the broadening result from collisions
falling within the critical radius as has been shown by
Unsold' and in Sec. IV of this article.

The peculiarity in the behavior of the first-order
Stark effect is connected with the nonconvergence of
the broadening when collision parameters out to infinity

!)'ly

!
O !
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Ii 0= 100 esu, and the
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are considered. The arbitrary cutoff in the collision
parameter, taken usually at d or n &, introduces an
uncertainty in the final broadening; but, more im-
portant even, the nonconvergence leads to the phe-
nomenon of the most distant collisions producing the
greatest amount of broadening. Griem, in establishing
the applicability of the Lindholm distribution to his
broadening results, states that only phase shifts greater
than unity are important and points to the improb-
ability of multiple impacts within p„ in order to validate
the single-impact theory. His arguments, therefore,
ignore the long-range contributions to the broadening.
In the cases where d ~& p„ the Lindholm theory may
indeed be used. At the temperature of the Kiel experi-
ments T=104 'K, and we find the values in Table VII

H
Hp
H~
Hg

6.2 X10"/cm'
1.6 X10' /cm
5.48X 10' /cm
2.52X 10"/cm'

v 2 I

C

I
T

4l 00 IO 20 &0 40 50(A )
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for n*, the density above which all impacts occur within

p, . Thus, for the observed densities, n=SX10" cm ',
the Lindholm theory should not be expected to be
strictly valid, except for the very close collisions.

Aside from these details, there is a very general defect
of the folding procedure when it involves a statistical
distribution varying more rapidly with X than X ', such
as Holtsmark's, in that it forces the asymptotic de-
pendence of intensities, as X —+ ~, to be proportional
to P ', which contradicts the wing theorem. Hence, one
should not expect a line folded in accordance with Eq.
(7.1) to agree with observations at very large X. This
criticism also applies to the use of Eq. (6.30) and all
applications based on it.

Ecker" has discussed the desirability of including in
the calculation of intensities both the electron effect
and the modification of the statistical theory at large
distances. He dealt with the latter in reference 30,
where the parameter 6 is introduced to effect the cor-
rection. In reference 30b he folds an impact distribution
into a statistical one. But he does this for b= ~ and,
therefore, obtains results which do not go beyond those
of Griem and are in essential agreement with them.

Another result obtained by the Kiel investigators
demonstrates that electron collision effects increase at a
more rapid rate than do the statistical effects as one
proceeds to higher series members. This is in agreement
with both the Lindholm theory and the quantum
mechanical calculation. Di%culties in the inclusion of
the electron effects are implied even in the early work
of the Kiel group, as one may see from the following
discrepancy. Henkel's 6t with the folded distribution
leads to values of the perturber density which are about
3 of those derived from the Holtsmark wing 6ts, i.e.,
the method employed by Jiirgens. When this result is
applied to the data of Jurgens, which antedated the
suggestion for the use of (7.6), the Sahal equation no
longer yields his measured value of the temperature.

VIII. QUANTUM TREATMENT OF THE
LYMAN-~ LINE

The Lyman-0 or resonance line of II, because of its
position in the spectrum (X=1216A), has not been the
object of experimental line-width work. Its basic
nature and the simplicity of the spectral terms it
involves, however, have been inviting to theorists, and
calculations regarding its behavior have been made.
Much of Spitzer's'"" "work has reference to this line,
a review of which is found in Breen's" article. An
extended study specifically of the effects of electrons in
broadening the Lyman-a line was made by Kivel,
Bloom, and Margenau. "

Quantum radiation theory is applied from the be-
ginning, and numerous details of little practical im-
portance are discussed. In essence, however, three
rather typical effects are distinguished. The 6rst is

"L.Spitzer, Phys. Rev. S6, 39 (1939).~ R. G. Breene, Geophys. Research Papers No. 41 (1955).

called Nnieersal broadening. It results from a schematic
calculation in which only two levels are included, the
lower and the upper states of the line. In the case of I. ,
the upper state is actually degenerate, but this de-
generacy is not taken into consideration at this stage
of the analysis. The results are therefore not speci6c
to the line in question and have a very general meaning.
They ignore the 6rst-order Stark effect by not including
linear combinations of the degenerate states; and they
ignore the second-order Stark effect by neglecting
higher energy levels whose virtual excitation normally
accounts for the distortion of the radiating atom. What
the universal effect describes, then, is broadening by
electrons which are scattered nearly elastically, as is
apparent in the following.

Polarization of the radiating atom is introduced by
properly combining the degenerate states of the upper
level. The four correct combinations are known from
the theory of the linear Stark effect; they are

1 1
4+ (%f 200+4210) j p— (4200 $210) j

V2 v2

421—1 j 421+1

The subscripts on f denote, in spherical coordinates, the
quantum numbers elm. The 6rst and second of these
correspond to different energies L(—e2/Sa0)a3ea0Fj
whereas the last two belong in first approximation to
the unchanged energy —e2/Sa0. Moreover, the states p+
and |jt have permanent dipole moments in the field F.
Transitions between them involve, therefore, spatial
reorientations of the atomic dipoles occurring as a result
of the perturbing electrons. The effect of i/21 1 and $211
is more subtle; it represents the induction of a dipole
moment by the passing electron. The calculation which
includes only P+ and P is easy because it does not
lead to divergent matrix elements. Its results on the
line width were termed "polarization broadening by
reorientation. "The inclusion of $21+1 and $21yl produces
divergences which must be dealt with more carefully.
It results in much larger effects, here called "polariza-
tion broadening by induction. "

Finally, there is an effect connected with matrix
elements of the electron perturbation between the states
2p and 1s. These obviously represent quenching by
electron collisions, a problem for which the theory had
already been given by Wentzel. '~

Polarization and quenching are strongly dependent
on the nature of the quantum levels entering the cal-
culation. The results computed are, therefore, not
capable of immediate generalization to other cases and
are here only cited as numerical examples. The universal
effect, however, presents certain features of wider
interest, even though it is small in the case of the
Lyman-n line.

"G. Wentzel in Hundbuch der Physik (see reference 52), Vol.
24/1, p. 738.
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c(r) =Co2—Cii, (8.1)

provided 2 is the upper and 1 the lower state of the line.
In accordance with the usual procedure in (time-

dependent) perturbation theory it is now supposed
that the electron, before the interaction, has an anergy
Ei and its state is represented by a probability ampli-
tude a;, whereas afterward these quantities are changed
to Ef and af. We take the states to be those of a free
electron: E,= (k'/2m)k, o, |k„ccexp(ik„r). The ampli-
tude af is then a function of t as well as of co,f, and
the intensity of the spectral line at a frequency co;f

beyond its normal frequency is given by

I(co,q) ~ lim~ ag(co, f) ~

'. (8.2)

The lengthy calculations in reference 13 concerning
the universal eGect lead to the same result as a much
simpler picture, "which we use here. While this analysis
standing by itself is perhaps not convincing, its plausi-
bility is fairly high. Instead of considering atom,
radiation field, and electron as the quantum system, we

concentrate attention on the electron alone and inves-

tigate the change in its motion as it meets the radiating
atom. If it loses an energy AE while it passes the atom,
one may say that the atom gains hE and therefore
emits a frequency shifted to the blue by co;f—A AE.
What this picture does not suggest is the potential
exerted by the radiating atom upon the electron as it
moves near it, for the atom has a finite probability of
being in the upper as well as the lower state during the
emission of radiation.

Here our earlier reflections are helpful. All through
Sec. I it was evident that the perturbation responsible
for line widths is e, the diAerence between the upper
and the lower energy levels as a function of the position
of the perturbing particle. This is the quantity that
alters the phase of the radiation in the impact theories
and causes the shifts in the statistical theory. Reference
13 bears out the expectation that e, in the form proper
for a Coulomb interaction, should be used as the per-
turbation in the present problem. If the Coulomb
interactions between the atomic electron at rg and the
perturbing electron at r are denoted by C(rz, r), and
C;;(r) is the diagonal element of C(rR, r) with respect
to the ith state of the atom, then

If we put a;= exp( —y„t), integrate (8.4) and substitute
in (8.3) we find

~

2 eiui jc+ygc

(8.5)
~if+'V u

The sum over final states is converted to an integral in
a well-known manner:

V
2ork Pdk~ sinitdg,

(2or)'

where 0 is the angle between the wave-number vectors
of the electron, k; and fj, and V is the volume per
electron. If co„ is written for Ak„'/2m, the integration
over co~ in (8.5) can be carried out according to the
formula'

ei(co;—cef) t+y„t

~
f("f) . dcof=7rf(co')

o(coi cof)+'y~

and (8.5) results in

V mork, t.
~
e;f

~

' sinedtt,
(2or)' k' ~

(8.6)

Thus

and

F„(oc)=— I exp(»c roc) ~P, (ra) I'dric.
J

4me'
oif (F22 Fll)

VK'

K =k,'+kf' —2kikf cos0. (8.7)

From this last relation sintIjd0 is computed, and Eq.
(8.6) then gives

2ore ao m t
* (F»—F»l

/dx.
V k'k;"o & x i (8.8)

with the understanding that the remaining integrand is
evaluated at kf—k;. This shows that the scattering
which leads to p„ is essentially elastic.

Now e,f is easily computed; it is expressible in terms
of other atomic integrals frequently encountered in
scattering theory, namely,

i7id;=Pf agog;e-* &",

ikcif ai6ife '"'

co ,f =k '(E, EI). — —

(8.3)

(8.4)

Strictly, the limit t —+ ~ is meaningless because the
radiative process lasts only for a finite time which is
the reciprocal of the natural line width in cycles per
second. This natural width is being neglected in the
passage to an infinite limit.

The equations for the amplitudes are

The variable x here stands for K ao and ao is the first
Bohr radius; F~~ and F22 refer, of course, to the 1s and
to the weighted mean of the 2p states of hydrogen. The
upper limit, x'=4k ao', represents the maximum value
permitted by (8.7) when k;=k&.

Let us call the remaining integral in (8.8) 2oroV; it
is a function of the initial energy of the perturbing
electron through x'. In Fig. 13 it is plotted for the L
line, Ei being in units equal to the ground-state energy

"%.Heitler, Quantum Theory of Radiation (Oxford University
Press, 1936), 6rst editioII, p. 112.
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ciency factor F es electron
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of hydrogen. If now we replace V in Eq. (8.8) by n '
and Ak; by mv;, that equation reduces to

From Eq. (8.4)

y„=nv,~ (h/mv, )' Y(v;)

s97sf f

—ikuf=e;,
7u+ ~if

(8.9)

TABLE VIII. Broadening of Lrx by electron impacts at an electron
concentration n=10' cm ', mean energy (1/25) (e /2a0) (=$ ev).
The quantity coy is the natural line width, 3.12X10 sec '.

"Universal" broadening
Polarization by

reorientation
induction

Quenching
(Stark broadening by ions

Cdl/Rf )/Cdl/t,

0.13

0.027
2.7
0.0013

80)

"R. K. Meyerott and H. Margenau, Phys. Rev. 99, 1851
(1955),

because a,= e &"'. Hence, (8.2) yields a dispersion curve
of half-width 2y„; from (8.9), therefore

cog(N) =2n/v. (h/mv;)'5Y(v, ) v;. (8.10)

A comparison of this result with Lorentz' formula, (1.3),
is interesting, for both are of the same form. Evidently
the collision cross section for this type of electronic
broadening is vX' times an efliciency factor Y(v;), X

being the DeBroglie wavelength. The rise of Y(v;) from
small values at small v; illustrates again that a per-
turbing electron, if it is to produce effects other than
shifts described by a static theory, must have sufhcient
velocity. The development here sketched, and also the
work in reference 13, relies upon the Born approxi-
mation. When the energy of the impinging electrons is
of the order of magnitude of 1 volt, as in the examples
under study, this approximation may be greatly in
error and the numerical results (e.g., Fig. 13 and
Table VIII) may be inaccurate. When good experi-
mental data are at hand, recalculation with better wave
functions is desirable.

Meyerott and Margenau" computed the analog of
Eq. (8.10) with the use of Lindholm's impact theory,
basing the work on (4.16). But instead of using a
schematic potential of the form (4.17) they employed
the potentials e» and e&, which the electron actually
experiences in its approach to the hydrogen atom. The

result, plotted in Fig. 14, shows moderate agreement
with Eq. (8.10).

In several publications" Sobel'man has shown that
Eqs. (8.8) and (8.10) can also be derived in a simple
way from scattering theory. His method is quite similar
to that employed in reference 67, and he gives useful
criteria for the applicability of the scattering approach
to line-width problems.

We now turn to the polarization effects, in which
electrons cause transitions between the initially de-
generate states. Here, the calculation is troubled by the
occurrence of spurious divergences in the matrix ele-
ments, divergences which can only be avoided by the
choice of a cutoff radius like the d encountered in Sec. II.
The uncertainties introduced by this somewhat arbi-
trary procedure are not serious, however. Polarization
brings the greatest contribution to the line width so far
as the effect of the electrons is concerned.

Kolb, on applying his classical-path theory to the
line, has made a careful comparison between his results
and those of reference 13. While he reaches numerically
different conclusions (resulting from omission of one
matrix element in Kivel et al. ,

" and also from the fact
that Kolb averages the Stark components of L with
proper weight factors whereas Kivel et al. do not
average), he is able to show that even the polarization
effects can be calculated for the conditions under study
with the use of classical-path theory instead of the
completely quantum mechanical theory here sum-
marized. The only effect not appearing in Kolb's work
is the one called polarization by reorientation, and this
is seen to be very small. In Sec. IX it appears that a
similar conclusion holds for the Balmer lines —a for-
tunate fact likely to obviate the need for further
detailed calculations.

Finally, there is the width caused by quenching.
This, for L, turns out to be negligible. In illustration
of orders of magnitude the various results are collected
in Table VIII, where all quantities refer to a special
situation that is approximately realized in the photo-
sphere of the sun. The last line in the table represents
the Holtsmark width produced by the ions which in
this instance quite evidently outweighs all electron
effects.

In judging these results and in appraising the role of
the electrons at higher charge densities and for other
lines, two facts need to be borne in mind. First, electron
effects increase with n, ion effects only with n& (see Sec.
III). Secondly, lines involving states of higher excitation
than L offer larger targets to the impinging electrons,
and this enhances their sensitivity to broadening
impacts. The enhancement is, in fact, greater than the
accompanying increase in static polarizability which
accounts for the Holtsmark width. While this is not
apparent from the present discussion, it manifests itself

"I. Sobel'man, Optika i Spektroskopiya 1, 617 (1956);
Fortschr. Physik 5, 175 (1957).
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in our treatment of the Balmer lines in the following

section, where the electrons begin to play a role that
is no longer subordinate to that of the ions at attainable
concentrations. There the work is limited to the efkct
which was here found to be predominant, namely
polarization. In the terminology of Sec. IV, the adia-
batic hypothesis is abandoned and full consideration is

given to the degenerate states that go into the formation
of a broadened line.

IX. QUANTUM THEORY OF THE
BALMER LINES

An entirely quantum-mechanical treatment of the
broadening of the Balmer lines dge to electrons has been
given by Landwehr. "A system composed of the radi-
ator (i.e. , an atom or molecule), a number E of
perturbing electrons, and the quantized radiation field
all confined to a volume V, is described by the
Schrodinger equation

(9.1)

The Hamiltonian H is decomposed into an unperturbed
part H' representing the total energy of the isolated
components of the system, and a part H' which accounts
for their mutual interaction. We write

is assumed to be the equilibrium distribution of the
particles at the temperature T (i.e., the Boltzmann
distribution).

The solution of (9.1), corresponding to the initial
conditions given above, can be expanded over the
eigenfunctions of H' to give

0'(t) = g a„g„(t)P„P),&P„~
n) u

Xexp — (E R+—E&n+E„f)t, (9.4)
h

with uno, ) 0,0= 1. The determination of the coefficients a
is extremely unwieldy; hence, it is assumed that a
satisfactory approximation can be obtained by neglect-
ing all matrix elements of H' that do not involve the
initial state. This means that only the initial state can
radiate a photon and all collision-induced transitions
are from and into the initial state. With this assump-
tion, the equations for the amplitudes become

( N

ano, & o,o(t) = ——P I mAo 2 CQ j nX
I a„, &,, o(t)

t=i J

Z

Xexp — (E„~+Ey—" En@ E—z p")t—
N

H'= Ha'+HP+ Q H~P, (9.2) +P(np, OI JgtIn'v)a ',zo, (t)

where Hz', H»', and Hf' are, respectively, the unper-
turbed Hamiltonians of the radiator, the jth perturbing
electron and the radiation field. The perturbation

Z

Xexp — (E„"+E,I —En P)t—
N

H'=&mr+ Z Ca, , (9.3)

o (
an, x, o(t) = ——

I
nA P Cz, m pX p I anp, xo,o(t) (9.3)

where Jgf is the interaction between the radiation field
and the radiator, and Cg; the Coulomb interaction
between the jth electron and the radiator. The Coulomb
interactions between the perturbing electrons has been
neglected.

Landwehr's method of calculation is similar to that
of Weisskoff and Wigner" for the problem of the
natural line width. It starts with an initial condition in
which an excited atom but no photons are present and
then derives the probability of finding a photon of a
given frequency after a time long enough so that the
atom has certainly radiated. At zero time the pertur-
bations are "turned on" suddenly. We then have at
I,=o'

P(0) =PnpQgP~o',

where PnP is the moth eigenstate of Hz', fo the null
state of Hp, and ip~p" the Xpth eigenstate of p Hnp.
The function &~on is taken to be a product of plane
waves. The momentum distribution of the X electrons

69 V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930).

Z

Xexp ——(Eno"+Exo" En —E&")t,

Z

an&p, (t) = —
, (rt'vI~&f

I np0)anp, zp, o(t)

Xexp — (Enp En ~ E„~—)t . — —

The approximations have not interfered with the correct
normalization, as the solutions of Eq. (9.5) retain the
property

n)i v

For Jgf we take the single-photon operator

where pR is the momentum of the radiator's atomic
electron and Af is the vector potential of the field. The
Coulomb interaction, Cgf, is cut oG at the distance d
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of the upper state, and the sum is over all states to
which the atom can pass by collisional transitions. The
Fc depends on the transition matrix elements,

re~ F(v) p![np!1—exp(ipp ra)!n"j!',

0
Io lo lo

vI (cm/sec)

Io

from the center of the radiator and given by

g2 g2

+
CR, =' r, ! r, —ra!

for 0~& r;~& d

for r, &d.

It develops that the solution of (9.5) for the initial
state amplitude, is of the decaying exponential form
when the following conditions hold:

3kT
))FC+FJ )+FC+FJ

2

(r,+r,)/
Gn'Xo~

(~—~')'+ (rc+rr)'
(9.6)

Here rr=g "rnp, n" is the total radiative decay
constant of the upper state, the sum being taken over
all states into which the atom can radiate;
r,=P„-rnp, p"' is the total collisional decay constant

100

Here co' is again the frequency of the undisplaced line
and Fc+FJ is the total decay constant of the initial
state, a sum of the contribution from electron scattering
Fc and from spontaneous emission FJ. The inequalities
above are both satisfied over wide ranges of interest;
the case of electron broadening of the Balmer lines will

be analyzed with respect to them below.
There results, for the distribution of amplitudes cor-

responding to frequency co due to transitions from an
initial state (n li Op) pto a final state (n', Xp,pi), the simple
formula

where F(pp) is a function of pp, the wave-number dif-
ference between the initial and final states of the
colliding electron (pi= ip; —ipr), and rn is the coordinate
of the atomic electron.

When degeneracy exists in the states of the radiator,
the largest contribution to Fc comes from matrix ele-
ments of the states that are degenerate with the initial
state. In addition, F(pp) is highly weighted for values
of x which correspond to elastic scattering. The evalu-
ation of Fc is, therefore, restricted to those states that
are degenerate with the initial state. These matrix
elements may be summed approximately in a con-
venient manner by using known sum rules.

The method leads to a spectral contour associated
with a particular radiative transition between given
initial and final states. In order to form a single spectral
line, such as a Balmer line of hydrogen, it is necessary
to combine the results obtained for each transition
from one of the initial degenerate states with one of the
final degenerate states. In this procedure each of the
initial states is assumed to be equally populated and
each transition is weighted by the relative transition
probabilities per unit time in the dipole approximation.
The line formed in this manner is symmetric about co

but is not of strict resonance shape, being lower in the
line core and higher in the wings.

The diagonal matrix elements of H' have been
neglected in Eq. (9.6). These represent shifts in the
individual line components but are presumably small
because of the uniformity of the perturber's charge
distribution. These neglected matrix elements, of
course, are responsible for the line width and shifts in
a purely adiabatic theory; however, in the extreme
diabatic case (collision-induced transitions) they con-
tribute only to the shift.

Landwehr has applied this theory to the first three
Balmer lines. The half-width Fc arising from collision
broadening of the atomic state (npfpmp) is expressible
in the form

'D

3
IO—

I

Ox

(2~m) & ( k'
rpoio o=no'! ! e'n, ao A —B In!(IT) (n.~2mk Tnpap)

+CQ(h'/2rnkTnp'a ') (9 7)o

I

IO

l I

IO lo
Temperature (de|lrees absolute)

IO5

FIG. 15.Broadening of H, Hp, and H~ as calculated by Landwehr,
compared with classical impact theory.

where A, B, and C are constants dependent on (nplprnp)
and 5(x) is the exponential integral of x.

Table IX, calculated for n, =5 X10" cm ' and
T=104 'K, lists the ratio rnplpmp/rpo22 for the first
three Balmer lines.
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The form of Eq. (9.7) is strikingly similar to Eq.
(4.28) for the impact half-width. Indeed when com-

parison is made of the results of the two theories we

find exactly the same variation with temperature and
electron density, as shown in Fig. 15. The dotted line

is an application of the Lindholm theory, as adapted
to the Balmer lines by Griem. 59 Griem treats the nor-

mally degenerate states in a given excited level as one
state using an average splitting factor for this composite
state. The quantum mechanical values of the half-width
of the lines exceed those of the classical impact theory,
by hardly more than the possible error introduced by
Landwehr's use of sum rules in the evaluation of matrix
elements. Thus the two theories yield about the same
results, the major difference being that the Lindholm
theory produces a resonance contour and the quantum
mechanical theory a less peaked distribution.

The form of the variation of the collision damping
constant with T and n,

I c~n, T ~

50

\

I I I

FIG. 16. Compari-
son of line shapes.
Landwehr calcula-
tion against reso-
nance curve.
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X. SHIFTS PRODUCED BY ELECTRON
COLLISIONS**

is a quite general result and has been found also by
Rudkjobing in a quantum mechanical calculation of a
different sort.

TABLE IX. Fnplpmp /Fnp22 for n, =5)&10" cm ' and T= 10' 'K.

3
np 4

5

(lo, ~no)

(2,2) (2, —2) (2, 1) (2, —1) (2,0) (1,1) (1, —1) (1,0) (0,0)

1 1 1.7 1.7 3.4 1.9 1.9 5.5 3.6
1 1 2.8 2.8 2.9 1.3 1.3 4.7 2.8
1 1 3.0 3.0 3.7 1.5 1.5 4.1 2.4

Figure 16 shows the complete quantum contour of
Hp taken at n, =5&(10"cm ' and T=1.25)(10' 'K as
compared with a resonance curve (as predicted by
Lindholm theory) of the same half-width and total
integrated intensity. The solid curve in this figure
results from a superposition of curves based on Eq.
(9.6) for the different degenerate upper state.

Figure 17 compares the values of the half-width of
Hp produced by electrons with that produced by ions
(Holtsmark theory) where the average broadening is
given by"

. IOO

'D

IO
O

I

Dz

Ox IO K

x IO K

Argon spectra from high-temperature plasmas pro-
duced in shock tubes by Petschek, Rose, Glick, Kane,
and Kantrowitz at Cornell proved surprising at first
because the lines were not at their expected wave-
lengths. It seemed that the shifts were greater than
could be accounted for by the usual Holtzmark theory
of static ion 6elds and the consequent Stark shifts. f$
Hence the results were attributed to line shifts induced
by the free electrons in the plasma. Baranger" made a
quantitative calculation based on the theory of
Lindholm (see Sec. IV) which showed that this inter-
pretation was reasonable.

At the same time the group at Yale" had been
working out the details of the quantum mechanical
theory of electron efkcts. Their predictions of hydrogen
line broadening have been shown by Meyerott and
3 Iargenau" to agree with semiclassical broadening

For stellar applications at n~&10" cm ', T)5/10'
'K the electrons do not contribute much broadening of
the line and may be omitted from consideration. In
some interesting terrestrial applications, such as those
discussed in Sec. VII B, the electrons do contribute
large eGects to the line. Electron broadening becomes
inappreciable for extremely large values of the tem-
perature if the number density of electrons is held fixed.

' M. Rudkjobing, Ann. astrophys. 12, 229 (1949).

O. l

IO IO IO IO IO
Perturber Density (I/cm )

IO

FIG. 17. Broadening of Hp, as calculated quantum mechanically,
compared with Holtsmark theory.

**We are greatly indebted to Dr. B. Kivel for a draft of this
section.

ff This point has not been entirely clariied; for the asymmetry
of the statistical background can introduce a shift."M. Baranger, Phys. Rev. 91, 436 (1953).
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in Sec. VIII where we used the approximation

CI

gt(cd & cdj) f+pf

)I f(cd') dcdf rr——f'(ce;)
1(cdc osf)+'r

(10.1)

Fro. 18.Matrix element f C(2PO ~ 2sO) f' as a function of x—=ao'K'.
The shaded portion is uncertain.

theories. This agreement and the calculation by
Baranger led Kivel" to expect that the quantum
mechanics will also predict an electron-induced shift.
The situation in hydrogen is obscured because the
atomic levels are nearly degenerate, distant collisions
become important, and an artifact such as the Debye
shielding to cut oB distant collisions must be employed
in the calculations. On the other hand, argon presents
the difhculty of unknown matrix elements. Helium,
having hydrogenlike atomic wave functions and non-
degenerate eigenvalues is free of these two problems.
The experiment in pure helium, however, is not easy
because for elements of low molecular weight it is difFi-

cult to heat gas to 20000 'K and obtain the high free
electron densities (10"/cm') required. Nevertheless,
Seay and Seely" of Los Alamos have largely succeeded
in carrying it out by using a high explosive driver for
their shock tube. The preliminary results are in agree-
ment with the theory when an algebraic error in
reference 72 is corrected.

An interesting aspect of this work is that the Born
approximation used in the theory gives a reasonable
result. Though perhaps somewhat surprising, this
reflects the fact that the approximation requires only
that the energy of the electron be large compared to
the atomic energy separation, and not the atomic
binding energies. Also, while the Born approximation
fails to some extent for slow electron scattering, in our
problem a small error in the electron trajectory is not
serious. This same circumstance accounts in general
for the success of the classical theories in line-broadening
problems, i.e., the Born approximation is close to the
classical correspondence limit.

A. Quantum Theory

The line shift might be expected as a matter of
course since it arises from the coupling of two states by
a perturbation (electron-atom interaction), and such
perturbations generally cause coupled states to separate
in energy. To deal with this shift quantitatively, we

apply a simple correction to the theory of the line width

"B.Kivel, Phys. Rev. 98, 1055 (1955).
7' G. E. Seay and L. B. Seely, Jr., Bull. Am. Phys. Soc. 1, 227

(1956), Washington Meeting, 1956.

In this formula f(os~) is the collision matrix element
integrated over the scattering angle; it depends on
caf =—(h/2rrs)kfs through the quantity cc, defined in (8.7),
which appears in e;I and therefore in f(car) As . an
example, we reproduce the sketch of IC(2p0~ 2s0) I',
which is proportional to f(ca~) as a function of the
momentum transfer ao'a' —=x given in reference 13
(see Fig. 18). The region of interest in helium is that
of large momentum transfers, since the atomic states
are not degenerate. Here the close collisions matter,
the Debye cutoff does not enter, and the ICI' de-
pendence on x is known. For hydrogen, however, where
the energy levels are close together and the distant
collisions become important, the problem is more com-
plicated and is not worked out at this time.

The physical meaning of the decrease in the matrix
element with x is that the electron prefers to minimize
its momentum change. Consequently, if the electron
causes an atomic transition which requires energy
(excites the atom) some of this energy will come from
the photon (red shift) since the electron is stingy with
its own energy change. Similarly for de-exciting col-
lisions the photon will ga, in energy (blue shift). This is
in agreement with simple expectation based on 6rst
order perturbation theory where coupled levels repel
each other. Figure 19 shows this schematically: the
perturbation C changes the optical transitions J in the
indicated manner.

Now we return to Eq. (10.1). In view of the slow
variation of f(cd) with ce, Eq. (10.1) is not strictly valid.
A more careful evaluation yields an extra, imaginary
term on the right, and this term gives rise to a shift, 8;,
of the line.

Quantitatively, 's the shift (assumed small compared
to energy separation; hence the formula given is not
valid for hydrogen) is a sum over all coupled states

h&;= (h~»~x/3) & (~.;/l~. ;I)(lr.;I/a, )', (10.2)
nAi

where n=electron density, v&=electron velocity, o-&

=sr(A/sssn&)', fr„;f'= fx„;I'+ fy„;I'+ ls„;f', ll =free
atom function for eigenvalue E„with space vector r,
and hen„i= E„—E;.

The error in Bethe" was the use of Is, l' instead of
the correct

I
r„;I', as given above. It is interesting that

the shift does not depend on the magnitude of the
energy separation if the electron has enough energy to
excite the transition. For a Maxwell-Boltzmann dis-

'4 H. Bethe in Handbuch der I'hysi k (see reference 52), Vol. 24/1,
p. 433.
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+505 (to the red); similarly the transition 4s~ Sp
contributes +56; 4s —+ 6p, +8.4, 2p~3d, —4 (to
blue); and 2p~2s, +9. The net of all terms with
principal quantum number ~&8 is 573. The corre-
sponding wavelength shift for n =4X 10" and T
= 20 000 'K (kT = 1.72 ev) is

h7 = li'5/2orc =35 A.

free atom atom in plasma

Fxo. j.9. Energy levels in a plasma.

tribution of velocities we find (f'4 is in units of sec '):

This assumes the Born approximation even for the
zero energy electrons.

eo )1 r o

hb;=4. 55 &(10 'hnI
(2aokT J En&ei ao

oI
&&exp( —i44o„;/kT) —P . (10.3)

E„&E; go

IS4, , „I'e'/aonC &

u2=7I neo2 2

Go hcdv 'v

(10.4)

Since a=1/137, Is4, 4vI'=180aoo, AV4„4v=919 cm ' the
line shift for the same values of n and T as in 8 is
about 24 A. We have written (10.4) so that it can be
compared with the quantum result, Eq. (10.3), which
reads, with retention of the same matrix element,

C. Comparison with Lindholm's Theory

It is interesting to compare this result with that of
Lindholm's theory. From Eq. (4.22) we find for the line
shift according to Lindholm:

u2 ——9.8044&n.

Considering only the main contributions of 4s —4p to
the polarization, one finds

B. Applicatton to Helium

As a sample application we consider the He line
4s ~ 2p at ii=4713 A. This is one of the lines studied
by Seay and Seely at Los Alamos and has a measured
shift to the red estimated to be 25 A when the electron
density is n=4&(10'7/cm' and the temperature is
T=20 000 'K. This shift is far too large to be accounted
for by ions, which produce only a few angstroms. On
the other hand, Eq. (10.3) predicts a line shift of
about 35A, as shown below. Considering that the
measurement is preliminary and that the calculation
uses the Born approximation, this seems to establish
the electron effect.

To evaluate Eq. (10.3) we note that the sum over
the magnetic quantum number removes the angular
dependence'4; i.e.,

3+1
PIr. "'+'" I'= (R-i"'+')'

2l+1
and

(R "'—')
m' 2l+1

The radial integrals R are tabulated for hydrogenic
wave functions in the quantum mechanical literature.

For the 4s ~ 2p transition the most important term
in the curly brace is the 4s~4p term for which
(R4,4v)4= 540, (l+ 1)/(2l+1) = 1 and the exponential in
Eq. (10.3) is 0.9360, so that there is a contribution of

I s4, , 4vl' (acq '

ao' ( v)
(10.5)

This gives a shift of 28 A.
Lindholm's theory assumes that the perturber can be

localized sufhciently long so that it is reasonable to
consider a polarized atom. This is in contrast with our
calculation, which assumes the particles to be moving
so quickly that the atom is at all times essentially free.
Also our treatment which uses the Born approximation
is restricted to perturbers with kinetic energy large
compared to the atomic energy level separations (e.g. ,
DV4g, 4V).

These two extreme assumptions predict similar
e8ects, since the physical situations being considered
lie between their separate provinces. Their agreement
makes the magnitude of the result more secure, espe-
cially since they are reasonably close to the experimental
value.
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