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crystals, no such splitting could be detected. If present, the
splitting must not be greater than 5 cm ' in the trichlorobenzene
and hexachlorobenzene and 3 cm ' in the durene crystal. In the
case of the hexachlorobenzene crystal, the energy of separation
between the two K=O levels in the exciton band has been calcu-
lated to be 0.7 cm '.

Thus it appears that at least one of the low-lying excited elec-
tronic states of the pyrene crystal has the nature of exciton states,
though in the case of the 1,3,5-trichlorobenzene, hexachloroben-
zene, and durene crystals any such conclusion would be too hasty
in view of the paucity of experimental data.

Photocondgctivity of organic crystals (Sec. 6).—In a recent
paper"' Northrop and Simpson have published values of photo-
currents of pure hydrocarbon crystals. They observed that the
impurity molecules embedded in pure crystals which quench the
fluorescence of pure substance reduce the photocurrent in the same
ratio. Their other observations regarding dependence of photo-
current with light intensity, applied voltage, etc., are in agreement
with previous publications. From these observations they propose
that the interaction of two excitons is required to produce a single
ionized molecule. Thus the production of charge carriers is ex-
plained. Compton et al. '~6 studied photocurrent of anthracene
crystals before and after neutron bombardment and concluded

'2~ D. C. Northrop and O. Simpson, Proc. Roy. Soc. (London)
A244, 377 (1958}.

"'Compton, Schneider, and Waddington, J. Chem. Phys. 28,
741 (1958).

that conductivity was greatly reduced on bombardment. They
further observed that dependence of photocurrent on wavelength
and intensity of incident light remained unaltered after bombard-
ment. Before bombardment the photocurrent was markedly non-
ohmic, after bombardment it was ohmic up to a field of 25 000
volts cm '. Before neutron bombardment the sample shows
change of photocurrent when polarity of electrode is reversed,
but this asymmetry disappears after irradiation. Kommandeur and
Schneider'7 studied the photoconductivity in greater detail with
very pure specimens of anthracene crystals and obtained results
very different from previous ones, They observed that the maxi-
mum value of photocurrent corresponds to the minima of the
absorption spectra. They also observed that the intensity de-
pendence of photocurrent changes with wavelength, Geld direction,
and even with magnitude of the applied field. These authors finally
concluded that spectral response, voltage, and intensity depend-
ence of photocurrent depend on the source and treatment of the
crystals used, i.e., it depends on the density of imperfections of
the crystals.
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I. INTRODUCTION

HIS paper reviews and extends the theory of
irreversible thermodynamics. The irreversible

behavior of a system driven by externally applied
forces has been studied extensively, but attention has
been focused primarily on the first-order term in the
driven response. Here we also consider the higher-order
terms in the driven response and the random fiuctua-
tions, or noise, occurring during an irreversible process.
In addition to the well-known relations between the
linear response and the equilibrium Quctuations, several
new relations are proved involving the nonlinear
response, the driven noise, and the equilibrium Quc-
tuations.

The method of analysis is statistical mechanical and
general, neither assuming a specific model nor postu-
lating Markofhan behavior. The purposes of the analysis

*This work was supported in part by the OfBce of Naval
Research.

)Now at Research Division, Raytheon Company, Waltham,
Massachusetts.

f Recipient of Philco Physics Fellowship, 1956-1958.

are thermodynamic; that is, to investigate interrelation-
ships among macroscopically observable characteristics
of systems undergoing irreversible processes. In this
sense the aim should be clearly differentiated from those
other approaches which might be characterized as
kinetic or statistical mechanical rather than thermo-
dynamic.

The most direct approach to the problem of irrever-
sibility is the kinetic approach, in which a specific
model is immediately introduced. The essential features
of the model may be expressed in terms of molecular
collision probabilities, giving rise to the Boltzmann
equation, or to some similarly detailed kinetic equation.
This is the standard method of "transport theory, "and
it is the method characteristic of the theory of the solid
state.

A considerably more general approach is one which
we term the irreversible statistical mechanical approach.
The purpose there is to develop a general formalism,
analogous to the partition sum algorithm of equilibrium
statistical mechanics, which would provide a systematic
recipe for the calculation of any macroscopically ob-
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servable characteristic of a system undergoing an irre-
versible process. No specific model is invoked; the aim
is rather to provide a general formalism into which any
particular model could be substituted to obtain explicit
results. The irreversible statistical mechanical approach
has not been completely successful as yet, but one type
of partial result has been exploited widely. In this type
of result the driven response of a system is obtained as
a perturbation expansion in the applied forces. The
various order response terms are typically expectation
values of (multiple) commutators, taken with respect
to the equilibrium system. It is, of course, hoped that a
general algorithm for the computation of equilibrium
commutator forms then will be developed to complete
the general formalism.

The third approach is the thermodynamic approach
which we adopt here. Although the statistical mechan-
ical formalism is used to describe the motion, our
purpose is not to compute either the response functions
or the value of any quantities characterizing the
equilibrium system. Our purpose is rather to explore
the general interrelationships among different types of
response functions and the equilibrium Quctuations,
insisting, however, that the quantities so related each
be macroscopically observable. Thus, for example, the
equilibrium commutator forms in terms of which sta-
tistical mechanics expresses various response functions
are not true observables of the equilibrium system. In
order to give thermodynamic significance to statistical
mechanical results, it is therefore necessary to re-express
such quantities in terms of macroscopically observable
symmetrized equilibrium forms, or anticommutators.

Three general classes of irreversible thermodynamic
results have previously been obtained for first-order
processes: (a) relationships between o8-diagonal ele-
ments of the admittanc- -these are the Onsager reci-
procity, ' ' and its extension to non-MarkoKan systems';
(b) the relationship between the first-order response and
the second correlation moments of the equilibrium
Quctuations —this is the so-called Quctuation-dissipation
theorem"; (c) the relationship between the path dis-
tribution function for a driven system and the equi-
librium Quctuations. ~'

The extensions of the theory which are developed
here, and the general structure of irreversible therrno-
dynamics, are summarized in the diagram in Fig. 1.
The quantities appearing at the vertices of the diagrams
denote the macroscopic observables, while the connect-
ing lines indicate the existence of thermodynamic rela-
tionships. The arrowheads refer to the direction in

' L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931).' H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945)~' Callen, Barasch, and Jackson, Phys. Rev. 88, 1382 (1952).' H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
'H. B. Callen and R. F. Greene, Phys. Rev. 86, 702 (1952);

88, 1387 (1952).
6L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953);

S. Machlup and L. Onsager, ibid. 91, 1512 (1953).' L. Tisza and I. Manning, Phys. Rev. 105, 1695 (1956).' H. B. Callen, Phys. Rev. 111,367 (1958).

& q(t)»fil

40
IA

z qq(t)»fO)

& (t)»'' &q(t)q{t )»" &q{t)»f ~q(ti)q(t, )»' '
a

~:
I ~ ~ I

r
9 6 'x

I y i I
l&t.

&q(tl)q(t~)q(t3)» ' &qq(tl)q{t~) q(ta)»qq(ti) q(t )»fo)

Fxc. 1.

which specific relationships are developed in this paper,
the numbers along the lines indicating the sections in
which the various proofs appear.

The nature of the observables of interest can be made
clear by the following considerations. Let (q(t)) denote
the expectation value of the variable q at time t in a
system driven by externally applied forces; that is, the
driven response of the variable q. Further, let (q(t)) be
expanded in powers of the applied forces. Then we label
the first-order term in the response (q(t)) "&, the second-
order term (q(t))&", etc. The zeroth-order term (q(t))&'&

=(q)&'& is simply the average value of q in the equi-
librium system. Ke similarly obtain a more detailed
description of the driven system by introducing the
expectation value (q(ti)q(t2)) of the product of the
variable q at time t~ with its value at time t2, this is the
second correlation moment of the random Quctuations,
or noise, in the driven system. Again it is possible to
expand (q(ti)q(t2)) in powers of the applied forces. We
label the 6rst-order term in the driven noise (q(ti) q(t2)) &'&,

the second-order term (q(ti)q(t2))&'&, and so on. The
zeroth-order term (q(ti)q(t2)) &'& =(qq(t2 —ti)) &" charac-
terizes the spontaneous Quctuations in the equilibrium
system. Similarly, it is possible to consider third- and
high-order driven correlation moments.

There exists a definite hierarchy of irreversible ther-
modynamic relationships. The left-hand diagram repre-
sents the Quctuation-dissipation theorem, between the
first-order response (q(t))"' and the equilibrium second
moment (qq(t))&0&. The middle diagram indicates the
triplet of relationships which exists among the second-
order response (q(t)) &", the first-order term (q(ti)q(t2))"'
in the driven second moment (noise), and the third
moment (qq(ti)q(t2))&" of the spontaneous equilibrium
Quctuations. The right-hand diagram indicates the
cycle of interrelationships which may be presumed to
exist among the next appropriate group of observables,
although we do not consider this case explicitly.

In Secs. 2 to 4 the general statistical mechanical
description of the time-evolution of a driven system is
briefly reviewed. Sections 5 to 8 are devoted to a
review of the existing first-order theory of irreversible
thermodynamics. In Secs. 9 to 14 the general theory of
irreversible thermodynamics is extended to the second-
order response and the driven noise. Sections 13 and 14
are devoted to the irreversible thermodynamics of
step-driven processes. In Secs. 15 and 16 the question
of path distribution functions is considered, which may
be regarded as the fundamental quantities of irreversible
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thermodynamics in the sense that all macroscopic
quantities are derivable therefrom.

The differential equation (6) is equivalent to the

integral equation

2. THE TIME EVOLUTION OF DRIVEN OPERATORS

We consider a system, of which the unperturbed
Hamiltonian is B(), in interaction with a number of
external driving systems or signal generators. The
Hamiltonian of the composite system may typically be
represented by

H«)t
U(t) =exp i—

- ~(o)t, -

Xexp i U(ti)
A

~t
1+—P d&,F,(t,)Q, &'&(&,)

A iA~

(7)

H=H&2&+P FQ&+H.2,

where Q, =Q, (&f,p) is a function of the coordinates &7

and momenta p of the system of interest, F,= F;(&7',p')
is a function of the coordinates q' and momenta p' of
the ith signal generator, and H„denotes the Hamil-
tonians of the signal generators.

Whereas the dissipative system possesses a large
number of degrees of freedom and a quasi-continuous
spectrum of energy eigenvalues, the signal generators
have relatively few degrees of freedom and an extremely
high degree of excitation. Thus, the coordinates of the
signal generators, and consequently the F;(q',p'), are
essentially classical functions of the time. Ignoring the
term H, g as being irrelevant to the system of interest,
the perturbed Hamiltonian assumes the form

H=H&'&++ F,(t)Q, .

We adopt the interpretation that the Hermitian
operators Q, (&f,p) correspond to thermodynamic exten-
sive parameters of the system of interest, while the
F,(t) represent the conjugate intensive parameters
imposed upon the system by the various signal genera-
tors. Thus, Q, (&f,p) might be the operator corresponding
to the position of a movable piston (volume), the total
number of particles, or the magnetic moment of the
system. The respective imposed intensive parameter
would then be the pressure, the electrochemical poten-
tial, or the applied magnetic field.

If the system is in equilibrium, with the temperature
T, before the forces are applied, the expectation value
of an operator Q, at time / is

(Q;(t)) =Trace &'&Q, (t),

where p& &is t2he initial (unperturbed) canonical density
operator

p "&=exp) PH "&]/Tr exp—L
—PH&'&], P= 1/kT, (4)

and where the Heisenberg operator Q;(t) is defined by

Q*(&)= U'(&')Q*U(&). (~)

The unitary time-evolution operator U(t) satisfies the
Schrodinger equation

The iterative solution of Eq. (7) is

H&o)). ~ ( 1 ) ~

U(t) =exp i — p
~

——
( p I

dt,
A ~=o E iA&

~
t1

XJ dt2 d~.F;(&,,)F, (t2)

XF.(~.)Q, "&(~i)Q;&"(i2) "Q.&" (~.) (9)

The perturbation expansion of Q, (t) follows from
Eqs. (5) and (9). The zeroth-order term is simply the
unperturbed operator Q, &"(t). The first-order term
Q;&'& (t) is

1 rt
Q' '(&) = . 2 II d),F, (),)LQj o

(& ) Q, o (&')] (1O)ih~~

The second-order term Q;&2&(t) is

q
2

Q, &2&(~) =
(
—

( P —
~~ d~,F;(~,)

& ia);. 1

X
J

dt2F2(t2)Q, "(ti)Q;"'(t)Q2&" (t2)

t

+
J

A1Fj(/1) J
d/2Fk($2)

X&Q &"(t )Q, &'&(t )Q,"'(t)

+Q""(&)Q "'(~ )Q '"(~ )] (11)

the correctness of which can be verified by di8eren-
tiation. Q;&2&(t) represents the unperturbed Heisenberg
operator

a&')t 8«)t
Q, &"(t)=exp i — Q; exp i—

A . A

Z

U(~) =—. H(~) U(~) =—. fH'"'+2 F'(&)Qf]U(&) (6)
jA ~A

In order to put the second-order term into a more
suitable form, we decompose the t~ integral of the firs&
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term, so that
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(Q*(t)&"'=Tr t "'Q "'(t)

t33 t

Ct&Fj(tl)
J

Ct2F3(t2)Q;"'(t&)Qt"'(t)Q3'"(t2)

~t ~tl

J dt&Fj (4) d4F, (4)Q, &'& (tt)Qt&'& (t)Q3&'& (t2)

pt ~t

+J «&Ft(t&) J «2F3(t2)Qt"'(tt)Q'"'(t)Q3"'(t2)
—oo t1

=
J

«&Ft(tt) " «2F3(t2)Qt"'(t&)Q'"'(t)Q3"'(4)

t t1

+JI dt F,(t )JI ct2F3(t2)Q3&'&(t2)

XQ."'(t)Q,"'(t.) (»)

In the last step we have inverted the order of inte-
gration in the second integral and interchanged the
dummy indices i, j and the dummy times t&, t&. Using
this result, Eq. (11) can be written in the form

Q, '(t)=~ ——
I P I dt, F,(t,) dt,F,(t,)

) 2 t

& 3V);.

XLQ.&"(t.),LQ, "&(t&),Q, "&(t)] ] . (13)

Examination of Eqs. (10) and (13) clearly indicates
the general form of the nth-order term Q,'"'(t) in the
driven Heisenberg operator Q;(t). Thus, for example,
the third-order term is

1q3 ft tt

Q "'(t)=
I . I E i dt, F,(tt) dt2F3(t2)3V);.t~ „

p, tg

x
J

ct3F&(t3)LQt"'(t3)

XLQ3&3&(t2),PQ, &3&(t,),Q;&'»(t)] ] ] . (14)

This section follows the perturbation formulation
given by R.

,Kubo. ' However, because we are later
concerned with Q operators which are intrinsically
time-dependent, we choose to examine the time evo-
lution of Q;(t) rather than of ttt(t).

3. THE MACROSCOPIC RESPONSE AND DRIVEN
CORRELATION MOMENTS

The first-order term in the driven response (Q;(t)) of
the thermodynamic variable corresponding to the
operator Q; is

' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

ih ~ ~ „ct,F, (t,)

x(LQ "( ),Q"'()] )"' (1s)

where the bracket ( )"' denotes an expectation value
with respect to the equilibrium ensemble.

Similarly, the second-order term in the response is

XQ, '"(t+ )].)'"' (»)

Upon decomposition of the first integral according to

t ~ t+r

J
dt&= JI dt&+

J
dtt,

( 1l f ft&
(Q (t))"&=

~

——
I P dt&F, (t&) I d4F3(t2)

& 3a)

XII:Q '"(t ),LQ "'(t ),Q'"'(t)]-]-&'". (16)

The form of the higher-order terms is clear from Eqs.
(1S) and (16).

The spontaneous fluctuations in an equilibrium
ensemble are characterized by the second correlation
moments in time between each pair of variables, al-
though all higher moments are required as well for a
complete description. The second equilibrium corre-
lation moment is

+' "'(t) =&lLQ,Q "'(t)]+&"' (»)
where the bracket $, ]+ denotes a symmetrized
operator product, or anticommutator.

A driven ensemble also exhibits fluctuations about
its average motion, which in general differ from the
equilibrium fluctuations. The fluctuations in a driven
ensemble are characterized by

(lLQ'(t), Q (t+ )] )=Trt "&lLQ*(t), Q (t+ )]+ (»)
Using the result (10) for Q, &"(t), the first-order term
(2'(Q, (t), Q;(t+2-)]+)&'& in the driven second moment
(18) becomes

(le'(t), Q;(t+ )].)"'
= 2&LQ. & &(t). Q, &t&(t+.)]+

+LQ' (t) Q "&(t+r)]+)&3&

f t+r

« " (t )(t.Q'"'(t),
2ih ~

x LQ. o (t,), Q, &(t+.)] ],)'o&

pt
+J

«F (t )&LLQ "'(t ),Q'"'(t)]
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Eq. (19) becomes

&l[Q (~), Q (~+ )].&"'

dtiF» (4)([Q» &'& (4),
2ih ~

x[Q,"&(~), Q,'o&(~+')],] )&o&

p t+r

+ i «,F,(4)([Q,&o&(t),
J,

X[Q."&(~ ), Q &"(~+ )]-]+&'" . (2o)

the formalism in a simple manner, we also consider
step-driven processes in particular.

A step-driven process is defined as one for which the
generalized forces in the distant past have increased
slowly from zero to some constant value. This constant
force remains applied until t=0, at which time it is
suddenly removed and the system is allowed to relax
into its equilibrium configuration. For a step-driven
process the first- and second-order responses reduce to

1
«&[Q "'(~ ),Q'"'(&)]-&"',ia;

(23)

X&[Q»"'(& ),LQ &0&(& ),Q'"'(&)]-]-&"' (24)

1)s &, o

The higher-order terms in the perturbation expansion &Q, (~)&&»&=1
1 p F,.F»

of the driven second moment can be written in anal- i ih)
ogous fashion, although the expressions involved become
rapidly more complicated. The second-order term is

&l[Q'(&), Q, (&+ )]+)"'

ptl

«&F»(4) «iF&(4)j2 4 ih)

X&[Q&"'(4) [Q» (&1),

X[Q,&'&(t), Q, "(t+r)]+] ] &

t ~ t+r

+J d4F»(4) d4F&(4)
—&e

X([Q "'(t ), [Q,&" (&'),

When the indicated time integrations are performed
in Kqs. (23) and (24), the contributions from the infinite
time limits pose certain difhculties, which are related to
the approach to equilibrium. This matter is examined
in Appendix A. It is also possible to approach the
question of step-driven processes from the following
alternate point of view, which circumvents 'these dif-
ficulties. We expect the applied forces Ii; to bring the
system to a new equilibrium configuration at t=0,
characterized by a density operator p(0) having the
generalized canonical form appropriate to an ensemble
in contact with a set of reservoirs with constant in-
tensive parameters Ii,.

»(0) =exp& —P[H"'+Z F Q ]}/
X[Q& "&(4),Q, &" (~+ )]-]+]-&"& (») » exp( p[H"'—+Ef FJQZ]} (25)

The nth-order term in the driven response can be
written directly in terms of the (e—1)st-order term in
the driven commutator ([Q;(ti),Q, (t)7 )'" ".

1p 1i
(Q'(1)&'"'=-I —.1Z „' «F, (4)

~&. ia)

X([Q,(t ),Q;(&)] &'"-". (22)

At t=0 the interaction with the external systems is
removed. Since for t)0 the Hamiltonian is simply
H&'&, the response &Q;(t)& during a step-driven process is
given by

&Q'(~) &
=Tr p(0) Q*'"(&')

=Tr exp( —P[H&"+P;F,Q;]}Q;&0&(t)/
Tr exp( —P[H& &++;F,Q ]}. (26)

For &i= 1 this expression is identical to Eq. (15). For
is= 2 it can be obtained directly from Eq. (16) and the
commutator analog of Kq. (19). For any order it is a
direct consequence of the iterative nature of the per-
turbation expansion, and furnishes a clear picture of
the essential structure of the motion.

4. STEP-DRIVEN PROCESSES

The preceding two sections were concerned with the
motion of a driven system for which the forces are
arbitrary functions of the time. In order to illustrate

In order to expand Eq. (26), we first perform the
well-known expansion of the operator

A (P) =—exp( —P[H"'+ eH"']},

where H&'& denotes the perturbation Hamiltonian. A (P)
satisfies the integral equation

A(P)=e p[—PH"&]

1—e I d&& expPH&'&]H&'&A (&&), (27)
0
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the iterative solution of which is

QO r&
A(P)=expL —PH&'&] P (—«)" ~~ d7&&Ho&( —ihX&)

n=p 0

We now substitute the expansions (29) and (31) into

Eq. (26) and collect terms corresponding to each order
in the perturbation. The results for the 6rst few orders
in the expansion of Q;(t) are found to be

)tn-I

X dX.H &'& (—z&&&7 „) (28)
—P(Q')"'(Q )"' (32)

Xeq& &( iA—7z)e, & &(t)) &'&

where H"'(—iQ&z) =expL&&&H"']H"' expL —X&H"'].
&Q (z))&z& Q F F I dp dy (Q &0&( $g )

Replacing ~H&'& by the perturbation Hamiltonian ',.
&,

' " J
P; F,Q, in Eq. (28) yields the quantity appearing in

the numerator of Eq. (26).

expf —PLH"&+2 Fe 7}

=expL —PH&'&] P (—1)" Q F;F&, F&
n=p @go ~ og

P &P

B. (Q;"'(—'&rzA )Q )&"(Q;)&'&
2J

+P 2 F &Q &"'(Q'(I)&"', (33&

pP

X ~ dhze, "&(—z&&zXz) ' dl&zg&g&" (—z&&zhz)

"0 ~o
~P ~XI )Xg

(Q;(t)&&'& = —Q F;F&,F&
~

d)&z ~ diaz d)&z

-~0 "0 "O

d)&.e&&'& (—i&&z)&„). (29) X(e,&'&(—i&&&i&&)ez&'& (—i&&z)&o)

The expansion of the denominator of Eq. (26) can
be simpli6ed by employing a technique, due to
Nakajima, " which reduces all multiple temperature
integrals by one order. Consider the trace of the
operator A (P) defined in the foregoing. Differentiating
Tr A (P) =Tr exp( —PLH&"+eH"&]} with respect to ~,

we obtain

8—Tr A(P) = —P Tr expf —PLH&'&+eH&'&]}H&'& (30)
86

We now expand the quantity expf —PLH&'&+eH&"]}
according to Eq. (27), integrate this expression with
respect to e, and substitute P;F,e, for zH«& to obtain
the denominator of Eq. (25).

Tr exp f —
PLH "&++;F,e,]}

( 1)n
=expt —PH&0&] 1+P P F.. . .F F

n=& g g~ ' «kl

p, )&n;2

X )I dX&. . .)~ d)& &Q&&0& (—ih7 &)

0 0

X(Q,"'(—zf X&)e."'(—zf 7 z) Q&&'"(Q,&"'

+P Z F,&Q'&"'(Q'(I))"'-- Z F F.
2

d7&&(Q, "'(—iN&)ez) "&(Q,(t)&"'. (34)

The classical forms of the foregoing equations are
easily obtained and constitute a series of thermody-
namic relationships. Letting q;(t) denote the time-
dependent classical variable corresponding to the
Heisenberg operator Q, (t) a.nd replacing tra, ces by
integrals J'dl' over phase space, the classical step-
driven response is, from Eq. (26),

(q;(t)) = dI'p(t) q;

dI exp{—PLH&o&+P; F,q,]}q,(t)

I S. Nakajima, Advances ie Physics (Taylor and Francis, 1.td. ,
London, 2955), Vol. 4, p. 363.

t dI' expf P[H&o&+Q, F,q;]}—(35)
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(q'(~)&=&exp( —P 2 F q )q'(~))"'/
X(e"P(—p p, F,q,))&'&. (36)

Since all quantities appearing in Eq. (36) are now
classical functions, the perturbation expansion can be
carried out in a straightforward way. Thus, the first
few order terms in the classical step-driven response

(q, (t)& are (Q;(~))&'&=+ dr,F,(t,)y;, &'&(&,—&,,). (40)

nonlinear processes, and yields a relation between
commutators and anticommutators to which we make
frequent reference.

It is convenient to characterize the first-order
response by the aftereffect function @;,o&(t), which is
the response (Q;(t)»" to a &&-function force F; applied
at t=0. That is, by definition,

&q'(&)&"'= -p E F L&q q'(&)&"' —&q'&"'&q »" 3,

&q'(~)&"'= lP' 2 F F~[&q q~q'(~)& "&

(37)
Thus, writing the equilibrium commutator in Eq. (15)
in the equivalent form ([Q;,Q, "' (t—t&)] )"',we identify

—
&q q &'"(q'&"'j+p & F (q &"'(q'(~)&"', (»)

1
4' "'(&)= —H[Q', Q'"(&)j-&'".

iA
(41)

&q'(~)&"' = —lP' 2 F F F [(q q q q*(~)&"'

—
&q q~q&& "&&q*)"&j

—kP' Z FP'~&q~q~&"&&q'(»')&"'

+Ps F,&q,&«q, «»»". (39)

Equation (36) is the first truly thermodynamic rela-
tionship we have developed up to this point. It
expresses the step-driven response (q;(t)& in terms of
the quantity (exp( —PP;F,q, )q;(t)&& &, 0which charac-
terizes the spontaneous equilibrium fluctuations in an
operationally significant way. In particular,

(e"P(—p 2 (F q )q*(&)&"'

represents the second equilibrium correlation moment
between the quantity exp( —p p, F,q, ) at time zero
and the quantity q; at time t.

The first-order term (37) in the expansion of Eq.
(36) will be recognized as a classical form of the so-called
Quctuation-dissipation theorem, which relates the first-
order response (q, (t))&" to the equilibrium second corre-
lation moment (q,q;(t)»" between the variables q;
and q, (t). We discuss the quantum-mechanical form
of the fluctuation-dissipation theorem in the following
three sections, considering the step-driven case specifi-
cally in Sec. 7.

Similarly, Eqs. (38), (39), etc., relate the second-
and higher-order terms in the classical step-driven
response (q;(t)) to appropriate higher equilibrium fluc-
tuation moments. The quantum-mechanical form of
these relationships is presented in Sec. 13.

S. EQUILIBRIUM FLUCTUATIONS AND THE
FIRST-ORDER RESPONSE

The linear theory of irreversibility is reviewed in
this and the two following sections, following quite
closely the formulation of R. Kubo. ' The pattern of
this development suggests the method of extension to

1
4* "'(—&) = —

—. &[Q* Q '"(—
~)j-)"'.

~h
(44)

The t dependence can be transferred to the operator Q;
by performing a unitary transformation with

exp{&i[B&0&t/kj), proving Eq. (43).

&f&;;"&(t) is odd under reversal of time and magnetic
field.

y;;&'&(—t —A) = —y;, &'&(t A) (45)

According to Eq. (42) Q, &'& (—t; —A) =Q;&'&*(t; A),
similarly p& &(—A)=p&'&*(A), so that p;, &'&( t; —A)—
= —p;, &'&*(t; A). Invoking the reality of @;,&'&(t; A)
yields the property (45).

Properties (43) and (45) also imply

y "&'&(t -A)=y;, &'&(t A) (46)

We now establish the fundamental relationship which
exists between the equilibrium commutator

4* "'(&)= —(1/+)&[O', Q "'(&)3-&"',

The aftereffect function p, ;"&(t) exhibits significant
symmetry properties with respect to reversal of the
time t and of an applied magnetic vector potential A.
The classical quantities q; are assumed to be even
functions of the particle velocities; explicitly indicating
the dependence on A, the operators Q;(A) then satisfy
the relationship

Q*(-A) =Q'*(A).

The unperturbed Hamiltonian H&0&(A) and its eigen-
functions also satisfy Eq. (42).

Because the response (Q, (t)»" must itself be real, it
follows that @;;"&(/) is real.

A second property of p;;"'(t) is

(43)

Introducing the transformation t ~ t in Eq. (—41), we
have
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characterizing the erst-order response, and the equi-
librium anticommutator +;,&" (t) =P[Q,,Q, &o) (t))+)&o),

characterizing the spontaneous equilibrium fluctua-
tions. The motivation for so doing is that the latter
quantity is a true macroscopic observable of the
equilibrium system, while the former is not.

Consider the equilibrium second moment 0;,&o&(t).

Since the analysis is carried out in the spectral repre-
sentation, it is convenient to define the operators Q;
such that 4', ;&o&(t) has no constant component, thus
avoiding the attendant 8-function singularity appearing
in its Fourier transform. As discussed in Appendix A,
the time-independent portion of 4', , &o& (t) is

lim 4,, &"(t) = lim &-,
' [Q;,Q, &') (t))+)&"

= &Q')"'&Q &"' (47)

Consequently, we assume that the operators Q, are
defined such that &Q,)&'&=0.

4;,&'&(t) can be written

+,,")(t) = l(Q'Q "'(t)+Q "'(t)Q*)"'
= l&Q,Q, "'(t)+Q'"'(—iAP)Q "'(t))"' (48)

We obtain the Fourier transform G;, &o&(&o) of%';,'&"&(t)

by introducing

E„=E)+4.

Thus Kq. (51) becomes

~ "'(t)=&-'LQ Q "'(t))+)'"'

(52)

where

d&oe' cG;;&o& (&o) (53)
(2~) **

G;, &'&(oo) =
I

—
I

A[1+exp( —AP&d)) ' dEp(E)
t'ir

~
~

Xi&(E)»(E+A&d) &E I Q, I
E+A&o)

X(E+Aa)
I Q, I E); (54)

G;, &'& (&o) is the spectrum of the spontaneous equilibrium
fluctuations.

We obtain the Fourier transform of the aftereGect
function &tc,,&'&(t) in an ana, logous way. Equation (41)
can be rewritten

The second term on the right has been obtained by
inserting exp[&PH&o)) in front of Q; and cyclically
permuting the operators in the trace. That is,

(Q "'()Q )"'= p"'Q "'(t) exp[~pH"'Q'
=Tr p"' exp[pH&"Q, exp[ —pH&'&]Q, &'&(t), (49)

and invoking the definition (8) for Q;"'( &AP) gives-
Kq. (48). We decompose Eq. (48) into a. double sum-
mation over matrix elements in the unperturbed energy
representation

d;; (t) = —.&Q,Q," (t)-Q, "(t)Q.)"'
th

= —.&QQ, "'(t)-Q, (-'Ap)Q, (t)) . (55)
sh

Decomposing the equilibrium expectation value into a
double integral over matrix elements in the unper-
turbed energy representation and introducing the
transformation (52), we obtain the result

00

&t "&'&(t) = d&oe'"'L; &'&(&o)

(2ir)& &

+' "'(t)=l Z p(Ei)(1+exp[p(E& —E-))&
(56)

(E„—Ei) t
X&«IQ*IE-)(E-IQ IEi& exp '

A
(50) where

L;;o&(&o)= (2ir)tcj[1 —exp( Ap&o)) "—dEp(E)i&(E)
where p(E&)=e Px'/P& e Px', and (E&IQ;IE„& is the
matrix element of Q; between the eigenstates of H&"
having the eigenvalues E~ and E . In virtue of the
quasi-continuous spectrum of energy eigenvalues, the
double summation appearing in Eq. (50) can be replaced
by a double integration over energy eigenvalues.

Xi&(E+A&d)&EI Q;IE+A&d)&E jhcoI Q, I E) (57)

CO CO

+;;"'(t)=- " dE„dE~(E)n(«)n(E-)
—00

i&oG;, &o)(&o) =En&(co p)L; &')(co) (58)

is clearly the Fourier transform of ctc;, &'&(t).

Comparison of Eqs. (54) and (57) shows that the
Fourier transform G,;&o&(a&) of the equilibrium second
moment cp;, &0&(t) is related to the Fourier transform

L&' ( &)&odf the aftereffect function ct&;,")(t) according to

X(1+exp'(E —E.))&&E& I Q; IE.&
(E —Ei)t-

X(E„IQ;IEi)exp i (51)
A

where

Ao) APoo 1
E&'&(&0; p) =—coth -+ —.

2 2 P'P (59)

where it(E&) is the energy density-of-states function.
The universal function E&'& (&0; P) is uniquely quantum-
mechanical in origin and corresponds to a slight
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smearing out of the microscopic contributions to the

macroscopic response at extremely high frequencies
(&10"cps at room temperature). In the classical limit

P ~ 0, K&"(&d; P) ~ (1/P) as indicated.
Equation (58) is the spectral statement of the funda. -

mental relationship which exists between the first-order
response and the spontaneous equilibrium Quctuations.
It provides directly the basis for the Quctuation-dis-
sipation theorem, several alternate forms of which have
been developed. '4' We discuss these in the following
two sections.

The result (58) has also been obtained by Kubog
using function-theoretical arguments rather than the
matrix approach employed here.

—(Q, (t))"'= ((I),(t))"'=
dt

ao

d&de*"a (&d), (60)
(2)r)1 ~

1
P;(t) = ~' dcoe*'"'y (a)).

(2n-)» „ (61)

We further define the admittance matrix elements
F'»(~) by

n, ( )&e=P; y;(&e) F;;(o))

whence, from the definition (40), it follows that

(62)

6. THE ADMITTANCE AND THE FLUCTUATION-
DISSIPATION THEOREM

We rephrase the results of the preceding section in
the familiar terms a8orded by the admittance matrix.
We define a, (&e) and y, (&d) as the Fourier transforms of
the Grst-order "current" and force, respectively,

symmetric and antisymrnetric parts with respect to the
indices ij.

Ko) (&e
~ P)

(8)(~)G, .(0)(&e) = iLL„..(&)(&e)~L, o)(&d)) (66)

where the superscripts (s) and (a) denote the sym-
metric and antisymrnetric parts, respectively. However,
using the time-reversal symmetry property (43) of
p;;&»)(/), it follows from Kq. (63) for F;;(&e) and Eq
(58) for I.;,«&(&e) that these quantities are related
according to

2LL'»"'(~)+L'"»'(~)) =
2i Re&'& F "(&e)

, (67)
(2n) &

2 Im&'& F;» (&d)

2LL'»o'( )-I»'"'( ))=
(2~)&

(68)

Re&'»F;, (&e) is the real (symmetric) part of F;,(&d) and
Im&'F;, (&e) the imaginary (antisymmetric part). We
note from Kq. (65) that Re"F;,(&e) and Im')F;;(&e)
are even and odd, respectively, with respect to reversal
of the vector potential A.

Substituting the relations (67) and (68) into Kq.
(66), we obtain the results

(2) & Re&'&F "(&e)
{I)G..(0) (&e)

—
~ ~

K(1)(&e
.P) (69)

k')r J &e

t'2) i Im&'&F~»(&e)

Ew) co'

F;,(co) =i&d I dte '"'@"&'»(t). —

0

(63)

Since G;, &0) (&d) is the spectrum of the equilibrium second.
moment PLQ;, Q;&0&(&))+)&'&, the Fourier transforms of
Eqs. (69) and (70) are

By Eq. (63) the symmetry properties appropriate to
F;,(&e) follow immediately from the symmetry proper-
ties of P;, (&&(t). The reality of P,,&'&(t) implies that the
real and imaginary parts of F,, (&e) are even and odd,
respectively, under the transformation cv —+ —~.

(8)PLQ, Q.(0)(~)] )(0)

Re &'& F;, (&e)
d&e cos&dfZ&" (&e P) (71)

GO

Re +Re
F„(--)= t t F.,(-)

Im -iml (64)

"8LQ',Q "'(~))+)"'

Im&'& F;z(&d)
dkd sin&etE&'» (&d; p)

0 GF
(72)

The symmetry property (46) of g;, &'&(/) with respect
to reversal of the applied magnetic field implies a cor-
responding symmetry of F;,(co).

F,, (&d; —A) = F,;(&d; A). (65)

Equation (65) represents the extension of the original
Onsager reciprocity" to all frequency components of
the admittance matrix elements.

We now rewrite the spectral relationship between the
first order response and the equilibrium fluctuations in
terms of the F;;(co) by decomposing Eq. (58) into its

The symmetric part &'&(-,'LQ;,Q, &'&(t)]+)&'& of the equi-
librium second moment with respect to ij is even with
respect to reversal of the vector potential A, while the
antisymmetric part &'&(—,'(Q;,Q, &'&(t)]+)&'& is an odd
function of A. Further, &')(-,'LQ, ,Q, &"(t))+)&" vanishes
in the absence of an applied magnetic field.

Equations (69) and (70) or (71) and (72) constitute
the familiar spectral statement of the Quctuation-dis-
sipation theorem. ' In the classical limit p —+0 Lsee
Kq. (59)], Eqs. (70) and (71) reduce to the familiar



1026 W. BERNARD AND H. B. CALLEN

Nyquist forms

Re(') V "((0)
&'&(q;q, (())"&= ——

ii kf(0 cos(0t, (73)
xP ~p GJ

Similarly, it is shown that the symmetric and anti-
symmetric parts of the second moment (F;F;(t))&0) of
the equilibrium force Quctuations for a multidimen-
sional system are given by

2 t." Im&'& Y;,((0)
&'&(q,kt, (1))&'& =—,~ d00 sin(0)!

4 p

(74)
(6

&'&(F,F, (t)) &'& = —— d(0 coscdtE&'&(kd; p)
tl' 0

XRe&'&Z;, (kd), (78)

(FF($))(0)=
(6

(f~ekotg(0) (~)
(2)r)1 " (75)

Using Eq. (62), together with Eq. (69) for G&" ((0), we
obtain

(0'G&0&((0) t'2) 1 Re F((0)
(0) (~) — —

( ~

E!'i (00
~ P)

[ I'((0) ]0 &)r) [ V((0) I'

p2q 1
= —

i
—

I
E"'(~ P) Re Z(~) (76)

& )

where Re Z((0)=Re Y((0)/~ I'(0)) ~' is the real, or dis-
sipative, part of the complex impedance function. Thus,
(FF(t))&0& is given by

2 f'
(FF(t)) &0) = ——

~( ck0 cos0)tE&'& (0); p)Re Z((0) (77)
~~o

which corresponds to the one-dimensional form of the
fluctuation-disspation theorem (71) for

If we put t=0 in the Nyquist relation (73), the left-
hand member represents the total noise intensity. It is
of interest to note that this form of the equation for
I,=0 also follows from the Kramers-Kronig or dispersion
relations, together with the results of equilibrium fluc-
tuation theory. The Kramers-Kronig formulas relate
the real and imaginary parts of the admittance matrix
element Y,, (kd) in consequence of the general require-
ment of causality. In Appendix B we consider this con-
nection between the dispersion relations and the spectral
form of the Quctuation-dissipation theorem.

It is sometimes convenient to characterize the spon-
taneous equilibrium Quctuations in terms of a set of
hypothetical intensive quantities F; rather than the
extensive quantities Q, . These hypothetical forces are
associated with the lluctuating Q; in the same formal
way as real forces are associated with the average first-
order driven response. That is, by ai alogy with Eq.
(62), the fluctuating force is so de6ned that the product
of its Fourier transform with F(kd)/000 yields the Fourier
transform of the fluctuating extensive parameter.

Consider a one-dimensional system with a single
force F(t) and corresponding operator Q. The spectrum
b(0'((0) of the second moment (FF(t))&'& of the equi-
librium force fluctuation is defined by

~00

&'&(F,F, (t))&'& =— d(0 sinkdtE&'&(0) p)

XIm&'&Z;, ((0). (79)

The symmetry properties of the elements Z,, (kd) of the
complex impedance matrix are identical to those of
I'*t(~) ~

The fluctuation-disspation theorem of Eqs. (71) and
(72) or (78) and (79), which establishes a quantitative
relationship between a dissipative process and appro-
priate equilibrium Quctuations, can be given the fol-
lowing intuitive interpretation. A dissipative process
can be conveniently considered to involve the inter-
action between the dissipative system and a source
system or signal generator. As mentioned at the be-
ginning of Sec. 2, the dissipative system is characterized
by a large number of degrees of freedom and is capable
of absorbing energy when acted upon by an imposed
force. In equilibrium it exhibits random Quctuations of
its variables.

The source system, on the other hand, which provides
the imposed forces and delivers energy to the dis-
sipative system, is characterized by relatively few
degrees of freedom and a high degree of excitation.
Examples of such systems might be a classical pendulum
or polyatomic molecule. When isolated from the dis-
sipative system and given some internal energy, the
source system may be regarded as having a sort of
internal coherence.

If the source system is now connected to the dissi-
pative system, this internal coherence is destroyed, the
periodic motion vanishes, and ~he energy is sapped
away, until 6nally the source system is left with only
the random disordered energy 1/p characteristic of
thermal equilibrium. This loss of coherence within the
source system may be regarded as being caused by the
random Quctuations generated by the dissipative
system and acting back upon the source system itself.
The disspation therefore appears as the macroscopic
consequence of the disordering eGect of the random
equilibrium fluctuations, and, as such, is necessarily
quantitatively related to the fluctuations.

An interesting analogy is furnished by the historical
development of the theory of spontaneous radiation
from excited atoms. After the initial development of
quantum mechanics, it was found impossible to compute
the spontaneous transition probabilities for an isolated
excited atom, and this dissipative process appeared to
be outside the existing structure of dynamics. With the
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advent of quantum electrodynamics, however, the dis-
sipation could be computed, and it was found that the
spontaneous transitions could be consistently considered
to be induced by the random fluctuations of the elec-
tromagnetic held in the vacuum. In this case, the excited
atom plays the role of the source system, and the
vacuum plays the role of the dissipative system.

7. THE FIRST-ORDER RESPONSE—TEMPORAL
REPRESENTATION

A particularly useful temporal form of the Quctu-
ation-dissipation theorem, due to R. Kubo, ' is obtained
by taking the Fourier transform of the basic spectral
relationship (58) between l.;;"&(cu) and G,,"&(&d). Ac-
cording to Eq. (56) this yields the aftereffect function
&t;;"&(t) in the form

The evaluation of the function I'(t) has previously been
carried out by R. Kubo, ' and is presented in Appendix
C.

Equa, tion (82) constitutes the temporal statement of
the fluctuation-dissipation theorem. Although equiva-
lent to the spectral form of Eq. (58), it presents the
basic relationship between equilibrium commutators
and anticommutators in a more explicit fashion.

The result (82) can of course be substituted back
into Eq. (40) for (Q, (t)&'&' to yield the first-order
response directly in terms of the equilibrium corre-
lation moment.

(Q;(t))&'&= —p ~ ct,F;(t,) dt, 'r(t, —t,')

X(lN'"'(t '),Q "'(t)]+)"' (84)
1 " 1

P;, ' (t) =
J

Chde'"' uaG, ,' (co). (80) In obtaining (84) from (40) and (82), we have intro-
(2n.)1 Eo& (co; p) duced the transformation t~'= t—t' and made use of theLetting i entityd tt

(lLQ', 0 "'(t —t ')7+&"'= —(lLQ'"&(t '),Q "'(t)]+)"'

and noting from Eq. (53) that

G;,"'( ) =L1/(2 )'7J" «e *"'(l(Q',Q~ "&(t)7+&"&

In the classical limit p & 0, Eq. (84), in virtue of the
&1-function property of I'(t), reduces to

(a (t))"'= pZ —dt&F'(t&)(&7'(t&)V (t))'"' (85)

Eq. (80) becomes
The erst-order response during a step-driven process

can be obtained directly from Eq. (84) by introducing
the step-function forces dehned in Sec. 4.

xJ ct (-LQ Q "'(t )7+&"'e'"" ' ' ' (81)

Invoking the 6-function property of

we obtain the result

1
@',"'(t)= —.&LQ.,Q, "'(t)]-)"'

ih

X&lL&'"'(t ') Q "'(t)]+&"'. (86)

Integrating by parts and putting (Q;&&'& =0 gives

Br (t&—t&')
(Qt(t)»"=Z F; dt& ' ct&'

at, '

X(lLQ'"'(t. '),Q, "'(t)7.&"' (8»

or, performing the t~-integration,

where

= " dt'r(t —t')&-,'LQ;, Q, &'&(t')] &&'& (82) (Q (')&"'= & F'J~
J

X(-', )Q,"'(t '),Q, '"(t)]+)"'. (88)

1 r"
I (t) —

I dcoe'"'
2' Eo&(~ ~

P)

=—ln coth ~ Pl&(t)
~h 2AP ~0 (83)

In the classical limit p —&0, it reduces to Eq. (37)
(with (&7;&&o& =0).

Throughout this and the preceding two sections we
have been explicitly concerned with the driven response
of standard thermodynamic variables such as volume,
number of particles, magnetic moment, etc. However,
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Condenser plates where the current after-effect function ~@;,&'&(t) is

System

Fro. 2.

Battery

in the important case of transport processes one is
interested in driven generalized currents rather than in
conventional thermodynamic parameters. The special
considerations required to treat currents, and par-
ticularly to treat the steady state, have been carefully
discussed elsewhere. "Before concluding the discussion
of the linear theory of irreversibility, we indicate briefly
the manner of formulation of the theory in terms of
driven currents.

We consider the case of electrical conduction, for
example, by assuming the specific Hamiltonian

H(t) =H "&++ 8;(t)Q;=H &+e P 6;(t) P z';„(89)

The fluctuation-dissipation theorem relating. e
first-order current response to the second moit
(-,'LJ;,J,&o&(t)j+)&'& of the spontaneous equilibn
current fluctuations is readily obtained using the l.-
niques employed previously in connection withe
extensive parameter displacernents Q;. The resultn
the spectral and temporal representations, respectir,

(3&(1LJ.J .(o) (t)] )(o)

dko coskotE&'& (ko; &(t) Re"V "(ko) I)
X p

2
dko SinkotEO&(ko P) Im&'& V; (ko),)

7l p

where 8;(t) is the applied electric field in the ith direc-
tion, and x;„ is the ith displacement component of p, th
charged particle. The component J; of the current
operator J is simply the time derivative of the operator

J;=Q;=ePi;„
I1

(90)

In our interpretation heretofore we would have
visualized the Hamiltonian (89) as applying to the
physical situation illustrated in Fig. 2. The field is
applied to the sample by condenser plates which are
not in physical contact with the sample. The state
asymptotically approached after imposition of a step-
function force is one with zero current. An alternative
interpretation arises if we formally impose periodic
boundary conditions on the particle wave functions in
the system. A step-function applied force then leads
asymptotically to a steady-state current. The formalism
is essentially unchanged, but the trace of any operator
implies a summation over an entirely diferent Hilbert
space than has been implied heretofore.

The Grst-order current response (J;(t))&'& is given,
from Eq. (15), by

~y;, &'&(t) =J) dt'I'(t —t')(-,'LJ;,J,&'&(t')$+)&'&. ')

Equations (93) and (94) follow immediately from'.
(71) and (t2), if we replace the operators Q, by ir

time derivatives J;, which simply removes the f~r
(1/ko)' in the integrand. Similarly, Eq. (95) c-
sponds to Eq. (82) for (t;,")(t).

Finally, the above analysis of driven currents cae
justified by another consideration, which is peas
more physical than the artifice of periodic bouny
conditions applied to the system in Fig. 2. We conr
a time-dependent magnetic field K(t) imposed a&&y

through a toroidal conductor, as shown in Fig. 3.e
induced current in the toroid will be driven by ai-
gential electric Geld 8(t) = —A(t), A(t) being the v(r
potential associated with K(t). The Hamiltonian al)-
priate to this situation is

H (t) =H(o&+g (t)J
where J is the operator corresponding to the elecgl
current around the toroid.

~t
J;(t))&') = ——~ ~ dt b, (t,)(LQ;('& (t,),J

ih '-»

FIG. 3.

"See W. Kohn and J.M. Luttinger, Phys. Rev. 10S, 590 I'1957).
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The first-order response (J(t))&'& to the perturbation
A (t)J is then

(J(t))"'=—— «A(t )(LJ"'(t ),J"'(t)]-&"'.
ih~ „

(J(t))&'& can be rewritten in terms of the induced electric
field h(t) by integrating Eq. (97) by parts.

dt b(ti) dt '(LJ'"'(t '),J'"'(t)] )'"' (98)
iv- „

where we have let A (ti) = —8(ti).
The term involving h(t) is the physically interesting

one, the integrated term corresponding simply to the
accumulation of magnetic field required to sustain the
driving electric field. By ignoring the latter term, the
physical situation is precisely that which would obtain
if the process were driven by a battery placed in the
circuit rather than by the magnetic field 3.'(t). For this
case, (J(t))"& reduces to

00 8 n„
d(0 Re"F "((o)=Q (&"

7I 0 r elr
(102)

The energy density of this fluctuating field is found to
he just the familiar Planck radiation density.

Van Vliet" has recently employed the fluctuation-
dissipation theorem to discuss the equilibrium charge
carrier fluctuations in semiconducting materials. A simple
admittance matrix corresponding to a linear RC net-
work is introduced, the resistances being expressed in
terms of transition rates between difI'erent groups of
carrier levels. The fluctuation-dissipation theorem there-
by yields the second moments of the equilibrium carrier
fluctuations in terms of the thermal generation-recom-
bination process. The charge carrier fluctuations in
turn give rise to a contribution to the driven noise, to
which further reference is made in Sec. 12.

In addition to the fluctuation-dissipation theorem
and the spectral reciprocity, Kubo' points out that
general proofs of certain sum rules can be obtained from
irreversible thermodynamic considerations. Thus, for
the case of electrical conductivity in a system of inter-
acting particles in an applied magnetic field, he finds
that the frequency integrals of Re &' F;,(co) and
co Im& &F;,(co) are given by

~t
(J(t))&'& = —— dt, h(t, )

iA~

00 8„n„
dao (d Im&'& Y; (co) =P

7l O ~ mac
(103)

ptl
dt '(LJ(0&(t ) J'(o&(t)] )(0& (99)

By Eq. (90) we identify

t1

Q, &'& (t ) =
) dt 'J&"(t ') (100)

which is identical with Eq. (91) for the case of one-
dimensional electrical conduction.

8. APPLICATIONS OF THE FIRST-ORDER THEORY

Several applications of the foregoing first-order
theory are now mentioned briefly.

In their original paper on the fluctuation-dissipation
theorem, Callen and Welton4 discussed the relation of
that theorem to the energy density in an isotropic
radiation field. The impedance of a charged particle
driven by a periodic electric field exhibits a dissipative
term arising from the radiation damping force. Ac-
cording to the fluctuation-dissipation theorem (78),
this implies the existence of a random fluctuating elec-
tric field exerted by the vacuum on the free particle.

Therefore,

1
(J(t)&' '= I dt, &(t,)(LQ(o (t,) J'o&(t)] )(o' (lol)

ih

n„, m„, and e„are the number, mass, and charge, respec-
tively, of the rth type of particle, and X, is the s-directed
applied magnetic field. Analogous sum rules can be
derived for the magnetic susceptibility matrix.

H. Mori" has applied the fluctuation-disspation
theorem to the analysis of transport processes in fluids.
The coupling between the slow macroscopic relaxation
of the system and the rapid microscopic fluctuations
is shown to be responsible for the dissipation. Thus, the
coeflicients of viscosity, thermal conductivity, and
diffusion can be computed in terms of the equilibrium
fluctuations of the thermodynamic fluxes.

9. THE SECOND-ORDER RESPONSE
IN A GENERAL PROCESS

In Secs. 5 through 8 the first-order theory of irre-
versible thermodynamics was reviewed, showing the
relationship of (Q;(t)) "& to the equilibrium fluctuations.
Sections 9 through 14 are devoted to an extension of
the fluctuation-dissipation concept to the driven second
moment (i2PQ, (t), Q, (t+r)]~& and to the second- and
higher-order terms in the driven response (Q;(t)). A
number of interrelationships among these quantities
and the equilibrium fluctuations are established.

"K. M. Van Vliet, Phys. Rev. 110, 50 {1958)."H. Mori, Phys. Rev. 112, 1829 {1958).
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$k''{fi+t2 i tli A)
(2)

FzG. 4.

t2, -t2, A)

of Fk(ti) prior to F, (ti), while the second term charac-
terizes the contribution arising from the application of
Fi(t2) subsequent to F, (ti).

Although Eq. (105) defines it;,&&"(ti, t&) only for
positive ti and t2, we accept Eq. (106) as the formal
definition of P;,i&" (ti, t&) for arbitrary values of ti and t2

The symmetry properties of it„;&&"(ti, ti) permit us to
evaluate this function for arbitrary times in terms of
its measured values for positive times.

We first observe that it~;,&, "&(ti,tq) is invariant with
respect to simultaneous reversal of all times and the
applied magnetic vector potential A, the argument
being identical to that given below Eq. (45).

@"g&'&(—ti, tij —A—)=4 "&,&'&(tiltij A). (107)

Further, i&»;,i&2&(ti, tq) can be written in either of the
following forms.

Consider the second-order response (Q, (t))». From
Eq. (16),

1&&' 1y'
(Q (t))&"=-I ——

I Q, dt, F;(t,) dtiF&, (ti)
2E iv»-. . „
X(!Q "'(t ),I Q, "'(t ),Q;"'(t)] ] )"'

XLQi"'(t~) Q""'(t)1-]-)"' (1o4)

where we have inverted the order of integration in the
second term. The second-order after-eGect function

P;;&,"'(ti,ts) is defined by rewriting Eq. (104) as

1
(Q, (t)) &» =—P ~

dt, F,(ti) dtiF (t )

Xq4, ;&»(ti—4, t—ti)

t t

+)I dt&F, (t,))r dtiF&, (ti)
oo t, l

whence

(ti, ti)

Xg,i,"&(4 t„ t —t,) (105—)

I (! Q;) I Q, "'(ti), Qa"'(ti+4)]-]-)"' (1o6)
1

( ta)

t,;, & &&(ri, st —v) is the response (Qi(t))&" at time t()0)
to a 8-function force F; applied at time zero, and a
l&-function force F, applied at time 7()0). Conse-
quently, the first term in Kq. (105) characterizes the
contribution to (Q, (t))"& arising from the application

11'
&""'(t t ) =! —.

I ( —(!Q '"(t ),
iV)

X [Q& "'(4+4), Q;]p]p)'"'

+(LI Q', Q, &"(t )].,
XQ."'(t +t )],) &'&). (10g)

These forms follow by writing out all terms in the
double commutator of Eq. (106) and appropriately
regrouping. Consider the double commutator form of
Eq. (108), which states that

4 "a"'(ti,4)+4,v;"'(4, —4—4)
+&ti &" (—ti —teal ti)=0. (109)

This cyclic relationship corresponds to Fq. (43) for
@, .&i& (t)

We now return to our observation that the sym-
metries (107) and (109) permit us to evaluate
p&,i "&(ti,t2) for arbitrary times from its measured value
for positive times. Consider the t~t2 plane shown in Fig.
4, which we have divided into sectors. The value of
it;,&&i&(t,,t„A) in sector I is obtained by direct meas-
urement.

The value in sector II (for which ti) —ti)0) is
obtained by noting that

0;,i"&(t,t; A)= —y "'(t,+t, —t, A).

Sector III is determined by rewriting Eq. (109),
interchanging the indice ik in the second term and
reversing the vector potential A in the third term.

y;,,&'& (t„t„A)—&»,;,&'& (—t„ t,+t, ; A)

+y„,&'& (t,+t„t„—A) =0. (110)—.

Then for t2) —t~)0 the second and third terms are
measurable, thereby determining the value of the first
term in sector IV.

Equation (107) reflects the known values into the
remaining half-plane.
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We now discuss the relationship which exists between
P,,o(o&(t&,to) and the equilibrium Ructuations. Consider
the form of Kq. (108), for P;,o(o&(t), to), involving the
double anticommutators. This can be rewritten

( i)2
4v."'(t),4) =4~ ——

~
[+o;;'(—t)—4, t))

ih&

where
+jo( (toy tl to)] (111)

I4 J. R. Shewell, Am. J. Phys. 2i, 16 (1959).

%(jo (t).to) o([Q,, [Q,"&(t,)& Qo&'&(t, +to)]+]+)"'
(112)

Since 4', p, "(t),to) is the equilibrium expectation value
of a symmetrized product of the operators Q;, Q, (o)(t)),
and Qo(o&(t)+to), it is a third correlation moment
among the equilibrium Quctuations of the variables cor-
responding to these operators.

However, referring back to Kq. (108) to identify the
two third equilibriumcorrelationmomentsin Eq. (111),
we see that each involve precisely the same operators
at precisely the same times, although the order of sym-
metrization is diGerent. The two distinct third moments
correspond in principle to diferent ways of measuring
the correlation, as can be seen from the following general
considerations.

Since there is only one way of symmetrizing a product
of two non-commuting operators, it is possible to write
a unique quantum-mechanical expression for the second
equilibrium correlation moment [see Eq. (17)]. How-
ever, quantum mechanics furnishes no such unique
a priori prescription for symmetrizing a, product of
three (or more) operators. "Thus, for example, in Eq.
(112) we introduced the equilibrium symmetrized
quantity 4'; o(')(t&, to) containing four permutations of
the operator product QQ, &" (t()Qo&" (t),to), while we can
also construct the fully symmetrized form 4;,o&o)(t), to)
containing all six permutations.

4';;o&'&(tg, to)

=-'(Q.Q "'(t)Qo"'(t+t )
+Q "'(t )Q "'(t+t)Q'
+Qo(o)(ti+to)QQ. (o)(t)))(o)

+(complex conjugate). (113)

Each possible symmetrized arrangement corresponds
to some particular experimental measurement. Con-
sider an experiment in which three detectors monitor
the variables Q;, Q;, and Qo, and feed their signals into
a counter. Appropriate time delay circuits are inserted
between the Q; and Q; detectors and the counter such
that the counter makes a single measurement of the
desired product. Since all three signals are handled in
a completely symmetrical fashion, this experiment
measures the fully symmetrized operator product
4', ;o(o&(t),to).

Alternately, suppose the Qo signal and the delayed
Q; signal are fed into a multiplier, and the multiplied
signal is fed into the counter along with the delayed
Q, signal. The counter makes a simultaneous measure-
ment of the product of its two inputs. In this case Q;
and Qo are treated symmetrically, as are their product
and Q;, and the experiment measures the quantity
4',,o"&(t),to) of Eq. (112).

In the classical limit (zero order in P) the two cor-
relation moments become identical, as discussed later
in Sec. 13.

Returning to Eq. (111), we see that this expression
constitutes a thermodynamic relationship between the
second-order response, characterized by the second-
order aftereffect function p;,o&o)(t),to), and the equi-
librium Quctuations, characterized by the difference
between the two operationally distinct third correlation
moments';, &"(—t) —to, t)) and+;o;(')(4 tl 4).

10. FIRST-ORDER NOISE IN A GENERAL PROCESS

In this section we consider the first-order term
([Q,(t), Q, (t+r)]+)&)& in the driven second moment,
establishing its relationship to the equilibrium Quctua-
tions. The relationship between the first-order driven
noise and the second-order response is also discussed.

The relationship of the first-order driven second
moment to the equilibrium Quctuations is conveniently
approached using Eq. (20) for &o'[Q, (t), Q;(t+r)]+)&'&.
The quantity

—(1/2 &)&[Q "'(t ) [Q'"'(t) Q "'(t+r)]t]-)"'
appearing in the erst term of Kq. (20) is the noise
response (-,'[Q, (t), Q;(t+r)]+)"' to an applied force
Fo(t) =8(t—t)), t)&t&t+r. As such, it characterizes the
noise contribution arising from the application of Fo(t))
prior to time t. This noise response function can be
readily symmetrized and is the quantity of primary
physical interest.

On the other hand, the quantity

—(1/2 &)&[Q'"'(t), LQ "'(t), Q;"'(t+ )] ] )"'
appearing in the second term of Eq. (20) is the noise
response to the force Fo(t)=b(t —t)), t&t, &t+r. As
such it characterizes the noise contribution arising from
the application of Fo(t)) in the time interval t to t+r,
during which the noise is being measured. We denote
this function by 8'o, "&(t)—t, t+r —t)). Thus,

';,o")(t),to)

i=- . &[Q', [Q"'(t), Q."'(t+t)] ],)"&. (»4)
2ik

As we shall see, 8'&o")(t(,to) is not of particular physical
interest; we discuss it brieQy at the end of this section
in connection with the second-order response.

The first equilibrium expectation value appearing on
the right-hand side of Eq. (20) can be symmetrized by
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invoking the basic relationship (82) between com-

mutators and anticommutators. Replacing t by (t—ti)
and introducing the transformation t&'= t—t' gives Eq.
(82) in the form

1——(LQ."'(t ),Q."'(t))-)"'
ik

~00

dt, 'r (t,—t, ') (kLQ. 'o) (t,'),Q;")(t) ]+»" . (115)

If we replace the operator Q; by the anticommutator
siLQ;,Q, (0&(r)]+, this becomes

. (LQ."'(t ), LQ'"'(t), Q '"(t+ ))+)-)"'
2iVi

dt, 'r (t,—t, ') &-',N, (» (t, '),

yLQ. (0)(t) Q.(o)(t+~)] ) )(0) (l16)

The result (116) can be substituted directly into
Eq. (20), along with the definition (114) of 8,, &

o) (ti, t2),
to yield the first-order driven noise in the form

for most purposes one is interested in measuring this
driven noise only for processes in which the imposed
forces are slowly varying over the time interval during
which the noise is being measured. We therefore
assume that F):(ti)~constant—=Fi in the interval t to
(t+r) although, of course, F) (ti) is arbitrary for t)(t.
Further, we decompose F~(ti) into two components
according to

Fg(ti) = F),+AFg(ti). (119)

The contribution to &-', LQ;(t), Q, (t+~))+)") ar&»ng

from the time-dependent force component &Fa(ti) is

~t QO

dt, zF„(t,), I dt, 'r (t,—t,')

&&(lL& "'(t '), I:Q'"'(t), Q "'(t+ )) )+&"' (12o)

intensity (-,LQ, (t),Q;(t))+)('& in terms of the equilibrium
third fluctuation moment

&:N."'(t '),CQ'"'(t), Q, "'(t)).).&"'

Returning to the more general quantity

(-,'LQ'(t), Q, (t+ ))+&"',

&lLQ'(t), Q, (t+r))+)"'
t oo

= —p ~t' dt,F„(t,)~I' dt, 'r(t, —t, ')
Ic

QO

&&-'LQ "'(t ')
I
Q'"'(t), Q "'(t+r))+)+)"'

p t+7'

+Q ~ dt, P), (t))tt,)„")(t)—t, t+ r ti) (117)— .

As discussed in the preceding section, the symmetrized
equilibrium expectation value

since the integral J')'+' dt)AF) (ti) vanishes. It is there-
fore directly expressible in terms of the equilibrium
fluctuations

The contribution arising from the constant force
component F&, on the other hand, is just the first-order
term in the perturbation expansion of the driven second
moment with respect to a constant applied force.
However, the application of a constant force F~ implies
simply a change in the corresponding (equilibrium)
intensive parameter associated with the system. Hence,
this contribution can also be regarded as a macroscop-
ically observable characteristic of the equilibrium
system. %e denote it by

&-'LQ), "'(t ') m*"'(t) Q "'(t+).))+)+&"'

is one macroscopically observable form of the third cor-
relation moment among the spontaneous equilibrium
fluctuations of the variables corresponding to the
operators Q) ("(ti'), Q,"'(t), and Q, "'(t+r).

A thermodynamic relationship between the intensity
of the first-order driven noise and the equilibrium
fluctuations follows immediately from Eq. (117).
Letting 7=0, the second term in Eq. (117) vanishes,
leaving

(-:LQ'(t),Q, (t))+)"'
t )QQ

Ct,F,(t))
~

dt, 'r(t, —t,')

&&&'LQ""'« ') LQ'"'(t) Q '")(t)) ] )('& (»8)

8
&2'', Q ")(r))+)"'

QPg

where the derivative is evaluated at Eq= 0.
Inserting the quantities (120) and (121) into Eq.

(117), we obtain the result

&-'LQ (t), Q, (t+ )]+)"'
t 00

dt&AFg(t)) I dt), r(t) —t) )

&&lÃ "'(t ') LQ'"'(t), Q "'(t+ )) ) )"'
8+" &lLQ' Q "'( ))+)"' (122)

Equation (122) constitutes a thermodynamic relation-
Eq~atio~ (118) expresses the first-order driven noise ship between pI Q;(t), Q, (t+)-))+)o& and the indicated
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=p —p ch,aF, (t,)(q, (t,)q;(t) q, (t+~))&»

BY;,(cd)
(126)

1——Fk ~' des coster—Re
7T 0 M

We return Anally to a brief discussion of the rela-
tionship of the noise response function 8,;t, &'&(ti, t2),
defined in Eq. (114), to the second-order response.
This relationship also stems from the basic relationship
between equilibrium commutators and anticommu-
tators given in Eq. (82). Replacing the operator Q; in
Eq. (82) by the commutator —(1/i&rt)[Q, ,Qc&0&(t2)]
and noting Eqs. (106) and (114) for tt&;;t, &2&(ti,tt) and
8;,t, "'(t&,tt), respectively, we find that

(l[Q'Q "'( )]+)"'

2 Re Y,, (cv)
dco coscdrE&t& (co; p) . (123)

7l {) N

Just as (a[Q;,Q, & &(~)]+)& & is a function of the applied
forces F&„Y;t(a&) also in general depends upon Ft,. Con-
sequently, Eq. (122) can be written as

macroscopically observable characteristics of the equi- (q;(t)q, (t+r))&'&
librium fluctuations.

We further note that (8/BFi)( i2[Q, ,Q, &'&(r)]+)"& can
be re-expressed in terms of the nonlinear behavior of
the system by invoking the Quctuation-dissipation
theorem, Eqs. (71) and (72). In order to keep the
notation simple, we consider explicitly the case of no
applied magnetic field, for which (-', [Q;,Q, &0&(r))+)&o&

reduces to

&!LQ. (h), Q, (h+.)]+)"'
f 8

4'tc"'(ht)4) = Cht'Y(h& —h&') 8', t "'(ht', 4) (127).
Bti'

dt, t1F„(t,)~ Ch, 'r(h, —t, ')

X&-,'[j,«&(t, '), [Q,«&(h), Q, &»(h+.)],],) &o&

1 BY,;( )cd
dcd coscurE&'& (&o; P)—Re . (124)

GP BFIc

The physical significance of the derivative BY,,(cv)/BF&,
can be regarded as arising from the nonlinearity of the
system in the following way. Most physical systems
are nonlinear. Nevertheless, for sufFiciently small devi-
ations from a given "operating point" (corresponding to
a constant applied force Fi) the linear approximation is
adequate. As a consequence of the nonlinearity of the
system, however, the admittance matrix must in
general be a function of the "operating point. " The
quantity BY,, (a&)/BF&, specifies the first-order contri-
bution to this dependence on FI,.

Equation (124) is an alternate thermodynamic ex-
pression for (-', [Q,(t), Q, (t+~)]+)&i& to that given in
Eq. (122), expressing the first-order driven noise in
terms of the equilibrium third moment (-', [Qz&»(t, '),
X[Q,"'(t), Q, &0& (t+~)]+]+)&" and the second-order
response function BY,, (cd)/BF&,

In the classical limit, Eqs. (122) and (124) reduce,
respectively, to

(q, (t)q, (t+ r)) "'

t

p) «t~Fk—(tt)(qi(tc)q'(t)q (t+r))"'

8
+ (q'q ( ))"' (125)

BF,
'' !'

The spectral form of Eq. (127) is found to be

QO C0

8 c&"(t, t,)=— dcd, I dcd, tc~ttletwtttI)2 1' 2

2' oo Qo

I-„i"'(~&,~2)
XF"'(»;P) (128)

ZGOy

where I.t,c&'&(&oitco2) is the double Fourier transforms of
tht;, c"&(ti,t&) defined by

QQ at&

tttttc& & (ti tt) —
Jl dcd& If d~ e4ll2tt%t2ttt

2m.

XL t,c"'(~„~2). (129)

Equations (128) and (129) have the following formal
implications. Using Eq. (114) for 8;,t, "&(ti,t2), Eq. (19)
for (-', [Q;(t), Q, (tj~)]+)&'& can be written in the form

&-'LQ'(t), Q, (t+ )]+)"'

dh, F„(t,)8,„&»(t,—t —r, t —t,)
a

p
t+r

+
~

dt F (t)8;, "(t t, t+ t)—. (130)—

Since Eqs. (127) and (128) express the function
8;t&&i&(ti,t2) in terms of the macroscopically observable
second-order aftereffect function ctt, tt,.&2&(ti, t~), Eq. (130)
permits us to compute (-', [Q,(t), Q;(t+r)]+)&'& from
suitable measurements of the second-order response.

11. FLUCTUATION SYMMETRY

In the preceding two sections we have established the
basic interrelationship among the second-order response,
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the first-order second moment, and the equilibrium
third moment.

In order better to appreciate this basic interrela-
tionship, it is of interest to examine its consistency from
the point of view of symmetry. For this purpose it is
convenient to represent the response (Q;(t)) to a set
of applied forces F, (t) by the symbolic expansion

(Q'(t)&=x;"'+Z ~,x, ,"'+l 2 ~,~.x,', '+" . (»1)

The response functions g are suitable combinations of
the aftereGect functions defined previously, while the
5'; are integral operators, linear functionals of the forces
F, (t) acting on the X's. X,&0& denotes the equilibrium
expectation value (Q;)"'. Similarly, the driven second.
moment (i2LQ;(t), Q, (t+~)Q) can be represented by the
expansion

(-LQ'(t) Q (t+r)7+)

= 6,"&+2 &~'Ea*,"&+i 2 &~'&&'4&*,+
k I&,l

(132)

where the $ are suitable noise response functions, and
the F~' are appropriate integral operators.

The physical symmetry of many systems is such that
reversal of all forces simply reverses all responses
(Q, (t))—(Q,)"&. For such systems only the odd terms in
Eq. (131), and only the even terms in Eq. (132) can
exist.

The physical symmetry referred to above also has
obvious implications for the equilibrium Quctuations.
Consider particularly the third equilibrium correlation
moment (q,q, (ti)qi(ti))&'&. This moment is defined in
terms of an integral involving the equilibrium joint
probability distribution Ws&0&(q;; q;,ti, q&, t2) For man. y
systems the physical symmetry implies that this joint
probability distribution is unchanged if each of the q's
is replaced by its negative. For such a "Quctuation-
symmetric" system, all odd equilibrium correlation
moments vanish.

The relations which were proven among the second-
order response, the first-order noise, and the equi-
librium third moments indicate that the physical sym-
metries referred to in the two preceding paragraphs are
equivalent, as we might intuitively expect. A system
which is Quctuation-symmetric, with no odd equi-
librium moments, exhibits no second-order response,
and no first-order noise.

A homogeneous system, symmetric under spatial in-
version, is Quctuation-symmetric with respect to its
transport properties. In such systems, electron, phonon,
or other currents can exhibit no first-order noise.

With Quctuation-symmetric systems, it is necessary to
go to second order to obtain a contribution to the driven
noise. Such second-order driven noise can be appreciable
in magnitude, and, in fact, is easily observed in semi-
conductors. Hy analogy with Eqs. (111), (124), and

(127), the second-order noise may be presumed to
depend generally in some complicated way upon the
third-order response and the equilibrium fourth
moment. In Sec. 12, we give a limited discussion of one
contribution to second-order noise.

On the other hand, there are many systems which do
not obey Quctuation-symmetry and which therefore
may exhibit first-order driven noise. Rectifiers, for
example, because of their pronounced asymmetry with
respect to current Qow, necessarily possess significant
equilibrium third moments.

Finally, it is possible for a system to be Quctuation-
symmetric with respect to some of its variables but not
with respect to others. Thus, for example, a P-e junction
is Quctuation-symmetric with respect to current in the
plane of the junction but Quctuation-asymmetric with
respect to current perpendicular to this plane. Another
example would be a bulk solid, which we have pre-
viously mentioned as being Quctuation-symmetric with
respect to its transport properties. Such a system would
not in general be Quctuation symmetric with respect to
its thermodynamic extensive variables such as energy,
volume, or the number of particles in the conduction
band.

12. SECOND-ORDER DRIVEN NOISE

Although we do not undertake a complete discussion
of the second-order noise in this paper, it is of interest
to indicate how the general theory would apply in a
specific physical situation. As an example, we consider
the steady-state thermal generation-recombination
noise in semiconductors.

We consider explicitly the second-order driven
current noise (i2LJ, (t), J, (t+r)7+)&2&. In accordance
with the recipe developed in Sec. 3 for computing driven
second moments in terms of the equilibrium system, we
have that

(lLJ'(t), J (t+ )7+&"'

=l((LJ'"'(t) J "'(t+ )7+)"'
+(LJ "'(t) J "'(t+r)7+)"'

+(LJ*"'(t) J "'(t+ )7+)"&) (133)

Although the first and third terms also contribute to
(~iLJ;(t), J,(t+r)7+)&'&, we focus attention on the term
(isLJ;&'&(t), J,«'(t+r)7+)&'&, which is subject to clear
physical interpretation.

The first-order driven current operator J,&'&(t) is
obtained in accordance with the discussion at the end
of Sec. 7.

~t
J,"'(t)= —.E «h. (t )LQ."'(t.),J,"'(t)7- (»4)

zEi

In the steady state, the electric field 8&(t) is constant,
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and Eq. (134) reduces to

1
- H«)t

J,&'&(t) = ——p 82 exp i
ik I

0 ~(Q)t
X ~ «)[Q2& &(t)),J,] exp i— (135)

There exist in general other contributions to the
second-order steady-state noise, as can be seen from
Eq. (133). Here we have sought only to establish the
connection of the general formalism with the usual
model treatment of semiconductor noise.

13. HIGHER-ORDER STEP-DRIVEN RESPONSE

where we have let ty =t—t] and extracted the resulting
t dependence of the commutator as indicated.

We define the unperturbed Heisenberg operator
&r2;"&(t) corresponding to the kith element of the con-
ductivity matrix by rewriting Eq. (135) as

(136)

whence

1
- II«)t-

a2;&2&(t)= ——exp i
ik

II(Q)t-
«)[Q."'(&),J'7- -p -i (137)

Using Eq. (136) for J;&'& (t), the contribution
(-,'[J,&'&(t), J,o&(('+r)]+)(0) to the second-order steady-
state current noise becomes

(2[J.o) J.o)(r)7 )(o)

=Z h.-«(![-",-;"'( )]+)"' (»g)
kl

where we have set t=o in virtue of time stationarity.
The quantity (2'[o2;,&r(, &'&(r)7+)&'& can be interpreted as
the second correlation moment between the spon-
taneous equilibrium Quctuations of the conductivity
matrix elements 02, and 0', )

& & (r).
The correlation function (22[&2,o")(t)7+)"& is easily

calculated in the case of a simple semiconductor for
which the conductivity is given by 0 =ne'r, /222*,"where
n is the equilibrium carrier concentration, m* is the
efI'ective mass, and r, denotes a simple relaxation time
for the scattering mechanisms. Assuming that

n(t) = )2()e
—'('2 (139)

where rp denotes a relaxation time associated with
thermal charge carrier generation and recombination,
the second-order term (J&"J")(t)) &" in the steady-state
current noise (JJ(t)) is

which is a well-known result. "
'~ See for example W. Shockley, Holes and Electrons in Semi-

conductors (D. Van Nostrand Company, Inc. , Princeton, New
Jersey, 1950).

(J"'J&"(/)) "&= (nm(t)) &"6'
m*'

84r 2

(~2)(0)s &&rp$2 (140)—

Whereas we have previously shown that the second-
order response in a general process is characterized by
the difference of two equilibrium third moments, the
classical result of Eq. (38) suggests the possibility of
establishing a more conventional quantum relationship
in the case of step-driven processes. Although measure-
ment of two distinct equilibrium third moments is still
required to determine the second-order step-driven
response, we shall find that for this simple class of
processes the relationship is in close formal analogy to
the first-order Quctuation-dissipation theorem. Further,
the uniquely quantum-mechanical efkcts are more
easily visualized in this case.

It is convenient to consider (Q;(t)) &'& as given in the
form of Eq. (33). Rewriting this expression so as to
indicate explicitly both contributions from a given pair
of forces F;, F2, and assuming that (Q;)"'=0,

P XI

(Q;(r))&2&=-'pF, F, ~ dX,
~

4Q ~Q

X[(Q,"'(—ih7 )Q &"(—iQ. )Q;&'&(t))('&

+(Q2")(—ih7(() Q, "'(—ih)(2) Q;&'& (t))&'&].

(141)

Inserting exp[&pH(0'] in front of the operator Q;&'&(t)
and permuting the operators cyclicly, the integrand of
the second term in Eq. (141) can be rewritten

(Q2(')( ihl())Q,—"'( i& )Q,—2")(t))"'
= (Q;&"(t)Q2"' (—ih)(2+ ihP) Q,"'

X ( ih72+—ihP))."' (142).

Thus, inverting the order of integration, and making
the successive transformations X2' ——p —X), )()'=p —7 2,

~p

J~ B) I d4(Q2&'&( —ih)())Q, &'&( —ihX2)Q, &'&(t))&')
0

~)2 &IX&

=
J

D )J~ dl(2(Q, "'(t)Q2"'(+ih72).
Q Q

XQ, & &(+ihk)))& &. (143)

Inserting (143) into Eq. (141), we thereby obtain
(Q, (t))&2& in the form

~p
(Q;(t))&"=-', g F F2 ~' dX ~I u,

X[(Q,&o& (—ih), )Q„&'&(—ih)(,)Q;(o& (i)) &")

+.(Q.(o&(t)Q2(0&(ih)(2)Q &o&(iB,,))(o&7 (144
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00 ~00

C „&'&(t)=—
~l dcd& dcoke' kcX,k; '&(cokkcdk) (150)

2' &O Q0
&Q'(t) &"'=l Z EP' C' *"'(t)

It is further convenient to define the second-order finally obtain C, k;&2&(t) in the form
step-response function 4,k, &k&(t) by rewriting Eq. (144)
as

whence

t&

C,k;&'&(t)= I u, , dx, p p(E,)(E,IQ, IE„)

x&E-IQklE-&&E. IQ'IE&&e"'&" "&

(E„Ec)t'—
Xe"k&e e»& exp i +(c.c.) (147)

where &Ec I Q, I
E ) is the matrix element of Q, between

the eigenstates of II(') having the. energy eigenvalues
Ec and E, and p(Ec) = e ee'/Pc e ee'.

Performing the indicated temperature integration,
and replacing the triple summation by a triple integral
over energy eigenvalues, this becomes

pQ0 00 00

C,k;&'&(t) =) dE& ~ dE )I dL' p(E&)rt(E&)

X~(E.)0(E.)
(Ec—E„)(E&—E )

gP (El—E») eP (El Erk)

p

C k &'&(t) = I dX& ' dhkI &Q, &'&(—ih7c&)

0

XQk"'(—ihhk)Q, "&(t)&&k&+(c.c.)j. (146)

The notation (c.c.) is used to indicate the complex
conjugate of the first term. C,k, &" (t) represents the
second-order response to unit step-function forces F;
and FI,.

We now proceed to analyze C,k;0'(t) by decomposing
the equilibrium expectation values appearing in Kq.
(146) into appropriate summations over matrix ele-
ments in the unperturbed energy representation. This
technique is similar to that employed in Sec. 5 in
connection with &t&;,

&" (t), and yields

where

Ar, k;&'& (cd&,k&k)

1 exp( —hpk&k) exp( —h peek)
+ +

- 1~2 1 &1 2 ~2 2 ~1

1 exp(+hP&d&)
Xgtkc(&L&&gcc&k)+ +

-~12 &1 &1 2

eXp (+ hook)+ g, k;*(—cd„—cd,) (151)
M2 M2 G)1

and

gjk 1 (k&&&k&k)

=gck& (cd2)cdl) =2'&r)l dEp(E)rt(E)rt(E+hcu, )

X»(E+hk&k)&E
I Q, I

E+hcd, &

X&E+hk& IQ IE+hcd&&E+hk& IQ;IE). (152)

In order to relate the second-order step-driven
response to the equilibrium Quctuations, we undertake
a similar spectral analysis of the equilibrium correlation
moment of the variables corresponding to the operators
Q;, Qk "&(tk), and Q;"&(t&+t2). However, as discussed at
the end of Sec. 9, there exist several equally valid,
operationally distinct quantum-mechanical expressions
for a given equilibrium third moment. Thus, the quan-
tity 4', k;&k& defined in Eq. (112) corresponds to one
particular set of experimental conditions, while the
fully symmetrized equilibrium form 4', &;(') defined in
Eq. (113) is appropriate to a different experimental
arrangement. We find, in fact, that measurement of
both +,k,'k&(tk, t2) and 4', k;&k&(t&, tk) is required for a
complete experimental determination of C,k, &'& (t),
except in the classical limit.

Equation (113) for 4', k;& &(tk, tk) is conveniently re-
written

+
(E E„)(Ec E) (—E„—L„)—(Ec—E„) +tk'"'(t&, t.)= e&Q~Qk"'(t&)Q. "'(tk+ tk)

+Q "'(—ihP)Qk"'(t&)Q'"'(t +t )
+Q, &'&(-ihP)Q &'&(t, ihP)-

XQ,&'&(t +t ))"'+(c.c.) (153)

X&E IQ IE-)&E-IQ.IE-&&E-I O'IE &

(E„E,)t-
Xexp i + (c.c.) (148)

h where we have inserted exp[&pH&0&] at suitable posi-
tions in the second and third terms and permuted the
operators cyclicly.

As in the case of 4,k;&" (t), the quantity 4;k, & &(t„tk)
can be decomposed into a triple integral over matrix
elements in the unperturbed energy representation. In-
troducing the transformations (149) and letting

E =Ec+hcdk, E„=E&+berk (149)
and letting k&k~ cd&, k» ~ —

k&k in t—he (C.C.) term, We

where»(E&) is the energy density-of-states function. In-
troducing the transformations
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a» —~ —(al, (ak~ —(ak in the (c.c.) term, we obtain the fluctuations, respectively, in the sense of Kqs. (160)

expression and (161), are related according to

1
ej„,«&(t, ,t,) =—

~~ d«, d,e'. ((e'.k(k

—00 —o0

rjki ((al,(ak) = f;k;&'& ((ai, (ak) (162)
E( ) ((al (ak

~ p)
where

XGjk ' ((ai (a2) (154)
E('& ((ai, (ak, P)where

Gjk (a)(~i,~k)

=—(I 1+exp(—hP(al)+exp( —hP(ak) j
6

h' 1+exp( —hP(al)+exp( —hP(ak) 1
(163)

6 1 exp( —hP(al) exp( —hP(ak) t' P'
+ +

~1~2 I 1 2 2 &2 I

Xg jk;((a, ,(a2)+L1+exp(+hp(ai)

+exp(+hP(ak))g, k;*(—(al, —(ak)), (155)

gjk, ((al,(ak) having been given previously in Eq. (152).
G,k;(a)((al, (ak) is the double Fourier transform of the
equilibrium third moment %,k, (a&(tl, tk).

Similar analysis of the equilibrium third moment
&I',k;&k)(t, ,tk) of Eq. (112) yields the result

00 00

.(0) (tl tk)
— d(al I d(akeiralilaira2(2

2K Q0 Q0

where

Gjk;«)(~i, ~k)

XG,k;&'& ((ai,(ak) (156)

k'
=—($1+exp( —hP(a, )jg,„;((a„(a,)

+$1+exp(+hP(al) jg,k,*(—(al, —(ak)). (157)

We now discuss the relation of the second-order
step-driven response to the equilibrium fluctuations
using the spectral quantities X,k;&'& (a»,(ak), G, k;«' ((al,a»),
and G,k, &" ((al, (ak) obtained above. In order to indicate
the formal analogy of this relationship to the first-order
fluctuation-dissipation theorem, it is convenient to
define the functions r, k;")((al,(ak) and f, ,k&a()(a,l(a)k.

1 exp( —hP&al) exp( —hP(a2)
((ai,(ak) = + +

-~12 ~l 1 2 ~2 2 I

Xg,k, ((a„(ak), (158)

k'
f;k;(a& ((al,(a.) =—L1+exp( —hP(al)+exp( —hP(a, )7

6
Xgjl.((ah(a2), (159)

in terms of which Eqs. (159) and (155) can be rewritten

+jki ((alp(a2) rjki ( l~ 2(a)+(ajki r( (alp (ak)y (160)
G '(jki, «)=«fk, 'k(~ ) l)«+kfjk, «'*(—~i) —~k). (161)

Comparison of Eqs. (158) and (159) shows that
r;k;"'((al, (ak) and f;k;"'((al,(ak), which characterize the
second-order step-driven response and the equilibrium

Equation (162) strongly suggests itself as a direct
extension to second-order processes of the Quctuation-
dissipation theorem of Eq. (58), which relates the
Fourier transform L,,"&((a) of the first-order aftereffect
function @,, "&(t) to the Fourier transform G,j(a&((a) of
the equilibrium second Quctuation moment. The uni-
versal function E&'& ((al,(ak, p) is the second-order analog
of E(')((a; p). It is uniquely quantum-mechanical in

origin, corresponding to a slight smearing out of the
microscopic contributions to the macroscopic response
at extremely high frequencies. In the classical limit,
E»((al)(ak,.P) ~ (1/P') as indicated.

Whereas Eq. (58) constitutes a true thermodynamic
relationship, however, Eq. (162) does not. That is, the
function f;k;(k& ((al,(ak) is not macroscopically observ-
able, although its sum with f,k,*&'&( (al, —(ak)—is, as
indicated by Eq. (161).

The specific way in which quantum-mechanical
eGects enter the picture is evident by first considering
what happens in the classical limit. For this case, Kqs.
(151), (155), and (157) reduce to

hkp2

lV&k( ((ai)(a2) Qjk(((al)(ak)+gjli ( (alp (a2)j
6

=O'G jk, ")(«&,«k) =O'G, k, &') («i,«k) (164)

The functions Gjk;(a&((al, (a2) and G,k, "&((al,(ak) have
become equivalent, and measurement of either com-
pletely determines j~j', k, &k) ((al,(ak). The temporal form of
Kq. (164) is obtained immediately from Eqs. (150),
(154), and (156).

C,k;"'(t) ~ P''(q, qkq, (t)) " . -(165)
P -+0

Substitution of this result into Kq. (145) for (Q, (t))&'&

yields the classical result given previously in Eq. (38).
We decompose g, k, ((al, (ak) into its real and imaginary,

even and odd parts with respect to simultaneous
reversal of co1 and ~~.

g jk(((ai,(ak)

=Re &+&gjk(((al, (ak)+i Im'+'g jk(((al (a &)

+Re( &g, k, ((a„(a,—)+i Im —
g;k(((a&,(a2). (166)

The superscripts (+) and (—) denote the even and
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odd part, respectively, under the transformation
co1~ —co1, co2~ —co2. Using this decomposition, the
classical relationship (164) becomes

$2P2

E;),;&'&(&O,,co2) = [Re&+)g;&,(co),co9)
3

+i Im( &g,
—);(~),&0&)]=P'G;);&'&(~&,~,) (.167)

Thus, in the classical limit we are concerned only with
Re(+)g, ),;(ca),(d2) and Im& '&g, ),;(co&,&o2), both of which
are determined by experimental knowledge of the
complex quantity G,»&'& &(d),co2) =G, )„"&(&o),co2)

In the general quantum case, however, X,&, "'(&u&,co&)

depends upon all four components of q, q;(s», (d2) because
of the uniquely quantum-mechanical spreading intro-
duced by the quantities

1 exp(~APED&&) exp(~t'tP~2)
+ +

-1&2 ~1 1 2 2 &2 1

appearing in Eq. (151).For this case 6,&;(0)(a»,(d2) and
G,)„")((d&,co2) are no longer equivalent, and Kq. (155)
and (157) constitute two independent complex ex-
pressions which can be solved for the four components
of g, );;((dq,(d2). Because of the quantum-mechanical
interference among the components of g,~;(co),co2),
measurement of both equilibrium third moments
4';»&'&(tl tg) and 4,»"'(t&,t2) is necessary to determine
completely the function X,&;(2'(co&,co2) and, consequently,
by Eq. (150), the second-order step-driven response,
c .z,.(&) (t)

It may be presumed that an analogous quantum-
mechanical analysis of the third- and higher-order terms
in the step-driven response can be made, although we
do not attempt to carry out this laborious program
here. Instead we simply refer to the classical relation
between the step-driven response and the equilibrium
fluctuations, given previously in Eqs. (36) through (39).

14. STEP-DRIVEN NOISE

For step-driven processes, the perturbation expansion
of the driven noise &-,'[Q, (t),Q, (t+r) j+) simplifies con-
siderably, exhibiting a strong formal similarity to the
step-driven response (Q;(t)). We can, therefore, use the
techniques employed previously for analyzing the step-
driven response to discuss the relationship between the
step-driven noise and the equilibrium fluctuations.

Consider Kq. (117) for the first-order driven noise
&', [Q;(t), Q, (t+r)j+)"'. For step-function forces, the
unsymmetrized term vanishes, and Kq. (117) reduces,
upon integration, to

(-.LQ'(t) Q (t+r)l+)")

Equation (168) can also be obtained from Kq. (88)
for the first-order step-driven response (Q;(t))&'& by
replacing the operator Q; by the anticommutator
—,'[Q;,Q;&'&(r)j+. Equation (168) relates the first-order
step-driven noise (-,'[Q, (t), Q, (t+r) j+)&" to the third
equilibrium correlation moment

&-:[Q. &t.), [Q, «), Q;"(t+ )j.j)
In the classical limit it reduces to

&q'(t)q (t+ ))"'=—tt E F &q q*(t)q (t+ ))"' (169)

The formal similarity between Eqs. (88) and (168)
also carries over into the higher-order terms. Thus, in
the case of step-function forces, Eq. (21) for P[Q;(t,)
Q, (tjr)j+)") reduces to

&l[Q'(t), Q (t+ )j+)"'

( g y
2 (0 ~tI

,([Q,(0)(t2)~
ih)

X[Q~")(t ) l[Q'")(t), Q "'(t+ )3+)-j-)") (170)

which also follows from Eq. (24) for the second-order
step-driven response (Q;(t))(2), if we replace Q; by
-,'[Q;,Q;&"(r) j+. Consequently, the analysis of the
previous section for the second-order step-driven
response can be applied directly to the second-order
step-driven noise. Similarly, it may be assumed that
the third- and higher-order terms can also be treated
on an equivalent basis.

The consequences of the above formal resemblance
can be most simply demonstrated in the classical limit.
Consider Eq. (36) for the full step-driven response
(q, (t)). Replacing the operator Q, by the anticommu-
tator ~~[Q;,Q, &0)(r)j+, which corresponds to replacing
the classical variable q, by the product q;q;(r), Eq. (36)
becomes

&q'(t)q (t+ ))=(exp( —0 2 F q )q*(t)q)(t+ ))")/

(exp( —8 Z F q ))"' (171)

Equation (171) expresses the step-driven noise
(q;(t)q, (t+r)) wholly in terms of the third correlation
moment (exp( —P P), F&q))q, (t)q, (t+r))(0) of the spon-
taneous equilibrium fluctuations.

It is possible to summarize the results of this section
and the preceding one in the following intuitively
appealing way. We first differentiate Eq. (36) for
(q, (t)) with respect to F;, evaluating the result at F),
F2 ~ ~ 0 0

= —&F l~ «p(t)(l[Q. '"(t),
4

&&[Q'"'(t), Q "'(t+ )3+3+)"' (168)

(q, (t))= —
p&q, q;(t)) &'&

BF,

which is equivalent to Eq. (37).

(172)
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Taking the second derivative of &q;(t)) with respect
to F; and Fl„we obtain

(q;(t)) =P'&q, q&q, (t)) &'& (173)
BF,BFI,

which is equivalent to Eq. (38).
On the other hand, differentiating Eq. (171) for

(q;(t)q;(t+r)) with respect to F&„we obtain

macroscopic variable corresponding to the operator Q
has the value q in the driven ensemble at the time t. In
this section we review the theory of the path distribu-
tion function and its application to the 6rst-order
problem discussed in Secs. 5 through 7. We also discuss
the path distribution function for a step-driven process.

In order to keep the notation simple, we restrict
ourselves initially to a one-dimensional process. The
distribution function W&(q, t) can be expressed in terms
of its characteristic function K&(v, t)

&q, (t)q, (t+ r))= P(q q—, (t)q;(t+ r)) &0& (174)
FI

which is equivalent to Eq. (169). Letting t=O and
replacing ~ by t, this becomes

oo

W&(q, t) = dve'"'K&(v, t)
(2&r) &

whence Ki(v, t) is given by

(179)

8
(q q*(t')) = P&q

—
q q'( )1)" &

~Fa

00

(17$) K&(v, t) =
~

dqe '"'W (q, t)
(2&r)1 ~

Equations (173) and (175) can be combined in the
form

W&(q, &) =Tr p&'&5(q —Q(t)) =(&&(q—Q(t))), (]81)

(e '"'"')= Tr p"'e '"o"& (18O)
(2&r)1 (2s)1

& '(&))= -P ( '(&))=e'(, . ;(~))"' ( 7 )
gF,gF~ gF

which constitutes a triple relationship among the
second-order response, the first-order noise, and the
equilibrium third moment for a step-driven process. It
is apparent that further differentiation of Eqs. (36)
and (171) would yield a whole hierarchy of analogous
higher order thermodynamic relationships.

Although they apply literally only to step-driven
process, Eqs. (172) and (176) exhibit most of the essen-
tial elements of the more general theory. Therefore, the
results presented above characterize the general struc-
ture of irreversible thermodynamics.

Finally, we compare our results for a step-driven
process with the results of time-independent equilibrium
fluctuation theory. Letting t=O, Eqs. (172) and (176)
reduce to

8
&q'&"'= -&3&q*q~) "'

BF;

a2 8

BF;BFI, BFp

(177)

Equations (177) and (178) are precisely those which
can be derived for a generalized canonical ensemble
using standard equilibrium Quctuation theory. "

where l&(q —Q(t)) is the driven l&-function operator
Ut(t)i&(q —Q)U(t), which selects from p&'& the appro-
priate contributions to W&(q, t).

Since W&(q, t) is just the expectation of value of
&&(q

—Q) in the driven system at time t, the theory
developed previously for the driven response (Q(t)) can
be applied directly to the path distribution function.
Thus, for example, the first-order term W&&'&(q, t) is
obtained in symmetrized form from Eq. (88) for
(Q, (t))&'& by simply replacing Q; by i&(q

—Q).

IC

W&&'&(q, t) = — dt&F(t&) ) dt&'1'(t& —t&')

X&lLQ"'(& '—~) ~(q —Q) j+)"', (»2)

the t dependence in the integrand has been transferred
to Q by performing a unitary transformation with
exp(& fLH &'&t/&r& j.

The quantity (-,'LQ "&(t&'—t), &&(q
—Q) j+)&'& is inter-

preted in the following way. Since the classical analog
of the operator i& (q

—Q) is simply the b function b(q q'), —
we can calculate the equilibrium correlation moment
of the variables corresponding to the operators
Q&'&(t&' —t) and b(q —Q) according to

dq'~(q q')W "'(q')(0"'(~ '—r)&'"' (»3)—

15. THE PATH DISTRIBUTION FUNCTION
&lLQ"'(~ '—~) &(q—Q)3+&'"Recently one of us has discussed the erst-order term

in the nonequilibrium path distribution function
W&(q, t) . This function specifies the probability that the

'6 See for example R. F. Greene and H. B. Ca11en, Phys. Rev.
83, 1231 (1951). where W&&0&(q) is the equilibrium probability distribu-
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tion, and (Q&'&(ti' —t)),&'& denotes the equilibrium ex-
pectation value of the variable corresponding to the
operator Q at time (t' t) —conditional on the variable
corresponding to Q having the value q at time zero. The
q' integration can be performed immediately to yield

&-:X «'-t), ~(q-Q)j, )
= W, &'& (q)(Q &'& (t,'—t)),&". (184)

Substituting the result (184) back into Eq. (182) we
obtain

t

Wi&'&(q, t) = —Wi&'&(q) J~ dtiF(ti)

Wi(qi, ,q„; t) as

(q, (t))= J
dqi

J
dq„q~W&(q&, ,q„; t) (.188)

According to Eq. (36), however, (q;(t)) can also be
written

(q'())=J~ &tq '''J~ &tq q;W & &(q, ''', q„)

X( xpL —P P F,q;(—t))„.. .,„o /

X dt 'r(t —t ')(Q& '(t ' —t)),&"&. (185)J „
The corresponding first-order term Wi"'(qi, ,q; t)

in the path distribution function for an e-dimensional
process can be developed in a completely analogous way.
In place of the single operator b(q —Q), we introduce a
symmetrized form of the product 8(qi —Qi) . ~ ~ 8(q„—Q~)
of 8-function operators. The result is

W'i&'&(qi, ,q„; t)

n

Wl ('qlf
' ' ' qn)Q J

dtlF j(tl)
oo

X
J

dt, 'r(t, —t, ')(Q, &»(t, '—t))„",„«&. (186)

Wi"&(qi, ,q„) is the simultaneous equilibrium prob-
ability distribution for the variables q&, ,q„, while

&Q, & &(ti' —t))&0&qi q„denotes the equilibrium expec-
tation value of the variable corresponding to t&&&, at time
(ti' —t) conditional on the variables corresponding to
Q, , ~,Q„having the values qi, ,q„at time zero. In
the classical limit, Eq. (186) reduces to

q 't) ~ PW"'(q —q)p-+p

XZ J' dt&Fi(ti)(qi(ti t))~& ~~"' (18t)
1=l

Equation (186) constitutes a generalized statement
of the fluctuation-dissipation theorem, expressing
Wi&'&(qi, ~,q„; t) in terms of the equilibrium prob-
ability distribution Wi'0&(qi, ,q„) and the equilibrium
conditional expectation value (Q, "'(ti' —t))&&i q "'.
Since all of the previous theorems regarding the Grst-
order problem can be derived from Eq. (186), this form
can be considered the fundamental relationship for the
linear theory of irreversibility.

Ke now consider the full path distribution function
Wi(q», q„; t) for a classical step-driven process.
The step-driven response is written in terms of

(exp( —P Z F q,))"'. (»9)

The t dependence of the time-stationary quantity
(exp( —P P;F,q, )q, (t))&" has been translated into the
exponential exp( —P P, F,q, ).

&-pL-t Z, F,q, &-t»)- '.
denotes the equilibrium expectation value of

em( PZ& F—
&q&)

at time —t conditional on all variables having the
values q~,

. ,q at time zero.
Since Eqs. (188) and (189) must be identical, it

follows that the step-driven path distribution function
Wi(qi, ,q„; t) is given, in the classical limit, by

Wi(qi, ,q„; t)

=Wi"'(qi, ",q-)(expL —~ 2 F,q, (—t)j).i '-"'/

(-p —P 2 F q ))"' (190)

Equation (190) expresses the path distribution function,
characterizing the time evolution of a step-driven
ensemble, in terms of the equilibrium probability dis-
tribution Wi&'& (qi, ,q„), together with the conditional
expectation value &expL —P P; F,q, ( t))qi ~ q- ~

The signi6cance of this result for the path distribution
function can be made more apparent by rewriting Eq.
(36) for (q;(t)) in the form

(q;(t))= dqi. . dq„W&& &(q», q~)
o

Xexp( —
&9 P F, q) &q(&)t)g i q~'"/

&exp( —P 2 Ftq~)) "& (191)

However, letting t=0 in Eq. (189), we find that the
initial perturbed equilibrium probability distribution
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Wi(qi, ,q; 0) is given by

Wi(qi, q„; 0)

=W"'(q, ,q.) e p( tt—ZF q)8

X(exp( —)3 E Fgq ))"'. (192)

Ko (v«t «'v «t )

~oo ~00

dq dq'e '"'e '""'Wo(q, t; q', t')
2or «« —««

1
(e i v g—( t )e i g(v—) ' ))2'

(195)

Inserting this result in Eq. (191), we obtain

(q;(t)) =
) dqi ) dq. Wi(qi, ,q„; 0)

X(q'(t))g) ".g~&o). (193)

10. THE JOINT PATH DISTRIBUTION FUNCTION

Just as a, more detailed description of the equilibrium
behavior can be obtained by introducing joint prob-
ability distributions containing two or more times, it is
possible to describe in greater detail the evolution of a
driven ensemble by introducing joint path distribution
functions. In this final section we extend the theory of
the previous section to include the joint path distribu-
tion Wg(q, t; q', t'), which specifies the probability that
the variable corresponding to the operator Q has the
value q at time t and the value q' at time t' in a driven
ensemble. We consider explicitly the case of a single
variable, although the extension of the theory to multi-
dimensional processes is quite straightforward.

W&(q, t; q', t') can be expressed in terms of its charac-
teristic function Kg(v, t; v', t').

W, (q, t; q', t')

00 p ot)

dvJ dv'e'"ge'" g Kg(v, t; v', t')
2K ~ Qt)

(194)

where Ko(v, t; v', t') is given by

Equation (193) shows explicitly how the step-driven
response (q;(t)) is built up from the regression of the
equilibrium Quctuations, characterized by the equi-
librium conditional expectation value (q;(t))gi
and weighted according to the initial perturbed dis-
tribution W) (q), ,q; 0). Although this result is

precisely that which we might intuitively expect, it has
often been pointed out in the literature' ' that there is
no clear a priori justification for identifying the be-
havior of a system undergoing an irreversible process
with the spontaneous equilibrium Quctuations in this
way. The equilibrium Quctuations are microscopic in
nature and generally on an extremely small scale,
whereas the macroscopic response functions measured
in the laboratory are normally orders of magnitude
larger. Nevertheless, the proof of the assumption that
macroscopic processes follow the same laws of regression
as the equilibrium fluctuations is provided by Eq. (193).

According to the discussion of Sec. 3, the quantum-
mechanical form of the driven second moment
Ko(v«t«v «t ) is

K, (v t „' t') — (1[e—'«Q(g) e
—«"o(~')] )&o) (196)2~'

so that Eq. (194) for Wg(q, t; q', t') becomes

Wg(q, t; q', t')

1

(2gr)'
tEV d &Peiv[Z—Q(t)f eiv'[t2' —Q(t')]E K(0)

=(2L&(q—Q(t)) ~(q' —Q(t')) j+)"'. (197)

00 po0

(q(t)q(t ))=) dq
4

dq'qq'W&(q, t; q', t'). (198)

On the other hand, according to Eq. (171), (q(t)q(t'))
can be computed according to

(q(t) q(t')) =
J dq~" &q'qq'Wo"'(q; q', t —t')

(e—P~c(—t')4, , (0)
/c c'(t—t')

X
(e evg) (o)—(199)

~here Wo"'(q;q', t—t') is the (time-stationary) equi-
librium joint probability distribution and
(e ev" ")...«,.)'o) denotes the equilibrium expecta-
tion value of e &~& at time —t' conditional on q at time
zero and q' at time (t—t').

From Eqs. (198) and (199) it follows that the step-
driven joint path distribution function is given, in the

Equation (197) states that W&(q, t; q', t') is just the
driven correlation moment between the 8-function
operators 8(q —Q(t)) and 5(q' —Q(t')). Therefore, the
treatment of driven second moments developed
throughout the preceding sections of this paper is
immediately applicable to the joint path distribution
function.

We limit ourselves here to a discussion of the joint
path distribution function for a classical step-driven
process. The driven second moment (q(t)q(t')) can be
written in terms of W&(q, t; q', t') as
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classical limit, by

W«(q, t; q', t') =W««'(q; q', t—t')

(e
—es'o(—&')), , (o&

(e-e o&«&

Thus, W«(q, t; q', t') is related in a particularly simple

way to the equilibrium joint probability W«(o) (q; q', t—t')
and the equilibrium conditional expectation value

(~pEq(—~')g (p)
rq, q'(t —c') ~

Finally, we rewrite Eq. (171) for (q(t)q(t')) so as to
further emphasize the relationship of this quantity to
the regression of equilibrium Quctuations.

&q(t)q(t')&. "'
(q(t)q(t')) = ' dqW, &'&(q)e e~' . (201)

J (e e«pq) (o)—

This form can be further rewritten as follows.

&LQ, "'(t ),Q'"'(t)]-&"'

8
dX«- (exp@,«H(o&]Q, &o) (t«)

&p Ng

Xexp L
—XH &"]Q;&'& (t)) &'&

Jp
dl(, &LH&'&, Q, &')(t« —i»,)] Q;&"(t))"&. (A-2)

(LQ.(o&(t ) Q.(o)(t)] &(o)

dX,(Q, &"(t —iQ. )Q;"'(t))"'. (A-3)

Noting that (H"), Q, &'& (t« —iB,«)]= —«7«Q, &') (t«—i»&),
we have

(q(t)q(t')), &'& denotes the second equilibrium correlation
moment between q(t) and q(t'), conditional on the
value q at time zero. However, according to Eq. (192)
W&(')(q)e e~'/(e e~'&&'& is just the initial (t=O) per-
turbed equilibrium distribution function W«(q, 0).
Hence, Eq. (200) becomes

dqW (q,O)(q(t)q(t')). "'. (2o2)

This result shows explicitly how the step-driven second
moment (q(t)q(t')) is built up from the regression of
the equilibrium fluctuations, characterized by the con-
ditional equilibrium second moment (q(t)q(t')), &'& and
weighted according to the initial perturbed distribution
W«(q, O).

APPENDIX A

In this appendix we compare a system driven from
t ~ —~ by the step-function forces defined in Sec. 4
to the subsequent motion of a system characterized at
t=0 by the generalized canonical density operator p(0)
of Kq. (25).

Consider the first-order term (Q, (t))"' in the response
during a step-driven process, as given by Kq. (23). The
equilibrium expectation value appearing in this ex-
pression can be written

&LQ,"'(t ),Q'"'(t)]-)"'
=&Q," (t )Q. "(t)

—Q'"'(t) exp(~PH"']Q "'(t ))"'

Inserting the result (A-3) into Eq. (23) and performing
the time integration, we obtain

)e
&Q*(t))"'=—& F

i
dl& L(Q "'(—«» )Q*"'(t)&"'

7 p

—lim (Q, (» (t« —i»,)Q;&'& (t))&'&]. (A-4)
gI~oo

The contribution to (A-4) from the t« —+ —~ limit
is evaluated by taking

pP
lim ~ d&(,(Q, &'&(t« —i»&)Q;&"&(t))&»

gf~oo J 0

r&
= lim — ~ dl(« I dt)&Q, & )(t« —ibl(«)Q, & )(t))' '.

T~ao

(A-5)

Because of the factor 1/T, the oscillatory part of the
integrand gives no contribution, and we are left with

I
e

lim
~ dl(«(Q, &" (t« —il«l(&) Q;"&(t))&'&

]I~oO J p

d»&QQ &")=tt&OQ &") (A-6)

where Q«denotes the diagonal portion of the operator
Q; with respect to the unperturbed Hamiltonian H"'.

Using the result (A-6), Kq. (A-4) for (Q;(t))('&
becomes

.(o) t«,.(o) t exp H(o) .(o)

(Q'(t)&"'= —Z» ~ &Q "'(—» &Q," (t))"'
XexpL —PH(o&]Q, «& (t) &

&» (A-1); J o

where we have inserted expL&&8H&o)] in the second
term as indicated and permuted the operators cyclicly.

—
&3&QQ )"' (A-7)
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l m (-'LQ', Q, "&(t)j+»" =&QQ,&"' (A-8)

where the limit is evaluated as in Eq. (A-6). In order
for the ensemble to be ergodic, however, in the sense
that as t —+ the quantities involved become com-
pletely uncorrelated, we require

lim( —'LQ;,Q;& &(t)j+&& '=(Q;)& &(Q,)&0&. (A-9)
taboo

We believe that the resolution of this problem lies in
the following interpretation. Throughout the discussion
we consider an ensemble in continual interaction with
a temperature reservoir. This should be contrasted with
the interpretation adopted by Kubo, which is that the
interaction with the temperature reservoir is removed
at the moment of imposition of the applied forces, the
ensemble thereafter being adiabatic. In our interpre-
tation the Hamiltonian B(" therefore contains a term
corresponding to the interaction with a temperature
reservoir, which we have not indicated explicitly for
reasons to be explained momentarily. The additional
interaction term induces incoherent transitions among
the states of the system such that the ensemble
"forgets" the details of its previous behavior after a
sufficiently long time. This insures that the ensemble
satis6es the ergodic requirement states in Eq. (A-9).

The justification for not indicating the interaction
term explicitly in calculating the driven response is as
follows. It is always possible to choose the term of
interaction with the temperature reservoir to be so
small that, for times comparable to those in which we
are interested, the disordering e6ects arising from this
source are negligible. Since Eq. (32) gives the first-
order response (Q;(t))&'& corresponding to an ensemble
chosen so as to be in (generalized) canonical equilib-
rium up to / =0, it must therefore yield the appropriate
evolution of (Q, (t))"' for any finite time t) 0.

However, in the limit t ~ , the eGects of the con-
tinued temperature interaction manifest themselves,
regardless of the strength of the interaction. In this
limit Eq. (32) reduces to

&Q'(t))"' —2 Dt&QQ &"'—P&Q'&"'&Q,&"'j. (A-I )

Here it is necessary to take explicit account of the
interaction with the temperature reservoir. This can be

The paradoxical contrast between Eq. (A-7) and

Eq. (32) for (Q, (t))&'& has been discussed by R. Kubo, '
who suggests that the former equation refers to an
adiabatic system, whereas the latter refers to an iso-
thermal system, so that the two need not be equal.

However, the same difhculty is found to arise even
in an equilibrium isothermal system. Thus, in the limit
t ~ , the equilibrium correlation moment

&l(Q*,Q "'(t))+&"'
becomes

accomplished, according to a comparison of Eqs. (A-8)
and (A-9), by replacing the quantity g; by the average
value (Q;)&". The foregoing arguments apply as well

to the time evolution of the full step-driven response

(Q;(t)& given in Eq. (26), in the expansion of which Eq.
(32) is the first-order term.

In order to make Eq. (A-7) consistent with our inter-
pretation, we recall that the quantity g; appearing in
it arose from the evaluation of a t —+ limit. Again we
take explicit account of the temperature interaction in
this limit by replacing Q; by (Q;)"&. Thus, Eq. (A-7)
becomes identical to Eq. (32). If we evaluate Eq. (24),
for (Q, (t))&'& and the corresponding higher-order terms
in the response (Q;(t)) during a step-driven process,
replacing quantities of the type g, by (Q,&&0& whenever
they appear, we obtain expressions identical to Eqs.
(33), (34), etc. The technique for accomplishing this is
essentially an iteration of that employed in putting Eq.
(23) into the form (A-7).

ca Y, .( ) ao ~w

J
ds&ei~c = '

dcd dt'ec~ &c—c'&@ . .0& (t')
—oo ZG) —00 0

Therefore,

=2~, dt'h(t —t')y, ,&'&(t'). (8-1)
0

Y;;(c0) 2sp;, &i&(t) for t) 0
dor8'

10
(8-2)

for t&0

whence it follows that Y,, (s&)/is& can have poles only in
the upper half of the complex or plane.

For a function Y;;(s&)/icd which is everywhere analytic
in the lower half of the or plane, Cauchy's integral
theorem states that

Y;, (s&) I' Y;, (s&')
do&

d'or zx'

d'or

or or

I'
t
" Y;, (s&')

dcd' (8-3)

iver

" is)'(cd' —s&)

where the complex integration is taken around the
contour shown in Fig. 5, and P denotes a Cauchy
principal value. Decomposing Y,, (s&) into its real and
imaginary parts Y,, (s&)=Re Y;,(s&)+i Im Y;;(s&) and
equating the real and imaginary parts of Eq. (8-3), we

APPENDIX B

The causal nature of a linear process finds expression
in the well-known Kramers-Kronig dispersion formulas
relating the real and imaginary parts of the complex
admittance matrix elements.

We first indicate the proof of these relations. Con-
sider the Fourier transform of Eq. (63) for Y;,(s&).
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Im ru cu - plone Im a a-plane

Re ~

Pro. 6.

Re a

obtain

Re V;, ((v)

Im Y;,(co) P &'" Re Y;,(&e')
dM

M 7f ~ ~ &0 (&0 &d)

(8-5) residue at u&

An (a&+An) 1
= lim —exp i t' ~Pi hP (a&+A&&.) 1+e. &"+~'

~
—(a)+ha)-

Equations (8-4) and (8-5) are the Kramers-Kronig
dispersion relations.

We use Eq. (8-5), together with the results of equi-
librium fluctuation theory, to derive the t=0 form of
the fluctuation-dissipation theorem, Eq. (73). Letting
&v=0, the quantity [Im F;,(ru)/&e) becomes simply the
capacitance [&&(q,)&'&/&&F~], so that Eq. (8-5) assumes
the form

2 exp[ —(2t+1)st/hp] . An
lim

&r&» (2t+1)~i ~ ' (1—e—~ )

2 exp[ —(2l+1)~t/hP]

w'l't (2t+ 1)i
(C-2)

&7(q,)&'& P I
" Re F;,(&e')

de (8-6) Equation (C-1) ls now evaluated by taking

The integral is to be taken along the contour shown in
Fig. 6. The integrand has simple poles at &&&& (2——1+1)iw,
l=0, &1, The residue of the integrand at the
pole is obtained by letting 0.=0,&+ho. , multiplying the
integrand by b,n, and taking the limit as Ao. —+0. Thus

However, for a generalized canonical ensemble in
contact with a series of reservoirs with constant inten-
sive parameters, F;, F;, , the equilibrium second
moment (q;q;) &'& is given by"

I'(t) = 2&ri P (residue at n&)
D

4 ~ exp[ —(2l+1)st/I&P]
(C-3)

&rh &=o (2l+1)

It is convenient to take the time derivative of Eq. (C-3)
before performing the summation.

Substitution of Eq. (8-7) into Eq. (8-6) yields the dP(t)
result Q exp[ —(2l+1)vrt/hP]

pt2p &=0

which is identical to Eq. (73) with t set=0.

4 exp[ —(&rt/ftp)]

h'p 1—exp (—2&rt/hp)

2 7rt
csch—. (C-4)

it'p Itp

APPENDIX C

In this Appendix, following Kubo, ' we evaluate the
universal function I'(t), defined in Eq. (83). For t)0,
this can be calculated by performing a contour inte-
gration around the upper half of the complex ~ plane,
while for t&0, the integration is taken around the
lower half-plane. We consider explicitly the case t)0,
since the t&0 calculation proceeds in an identical way.

Letting &r=&&'tp&o, Eq. (83) can be rewritten as a
contour integral in the complex 0, plane.

In performing the summation in Eq. (C-4) we have
made use of the expansion P& x'= [1/(1—g)]. We now
integrate Eq. (C-4) with respect to t, which yields
finally the desired result,

2 7rt
I'(l,) =—ln coth

&rt't 2hP
(C-5)

The corresponding result for t&0 is identical to Kq.
(C-5), except that t is replaced by t. Thus, for all t, —
we can write that


