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A NALYSES of aerodynamic dissipation in ordinary
un-ionized gases are all based upon the Navier-

Stokes equations. These equations relate the rate of
dissipation to the local gradients in velocity and tern-

perature through the viscosity and heat conduction
coefficients. Although it is true that in many Qow

situations the magnitude of the total dissipation in the
gas does not depend on the magnitude of the viscosity
coefficient, this coefficient does determine the minimum
scale of variations observed in the gas and the form of
the Navier-Stokes equations determines the type of
phenomena which are observed on a small scale. In
order to discuss dissipation in an ionized gas in the
presence of a magnetic field, it is therefore necessary
to re-examine the derivation of the basic Row equations.
This paper attempts to do this for a case of a com-

pletely ionized gas and demonstrates that the basic
microscopic dissipation mechanism is appreciably
diferent. For example, it is shown that the minimum

length in which the properties of the Qow field can
change noticeably is appreciably less than one mean
free path.

For un-ionized gases there are two well-known
derivations of the Xavier-Stokes equations. The first
is a phenomenological approach based upon the
experimentally observed fact that the shear stress is
directly proportional to the velocity gradients. The
second approach is based on an expansion of the
Maxwell-Boltzmann equation which describes the
history of the individual particle motions in the gas.
Since at present there are no experimental data concern-
ing dissipation rates in a completely ionized gas, it is

necessary to refer to the Boltzmann equation. The
basic equations from which one must start in order
to derive hydrodynamic equations are, therefore, two
Boltzmann equations, one for the electrons and one for
the ions, coupled with the four Maxwell equations
which describe the electromagnetic field.

CLASSIFICATION OF REGIONS

In attempting to derive useful hydrodynamic
equations, it is worthwhile first to examine the magni-

tude of various terms in the Boltzmann equation. ' In
this way it is possible to define regions in terms of the
gas state where one would expect different terms in the
Boltzmann equation to be dominant and therefore
different Bow phenomena to occur. The Boltzmann

'A. R. Kantrowitz and H. E. Petschek, "An Introductory
Discussion of Magnetohydrodynamics" from

Magnetohydrody-

namicscs, edited by R. K. M. Landshoff (Stanford University
Press, Stanford, California, 1957).

equation for the ions is
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where f is the number density of ions in six-dimensional
phase space, V is the velocity of an ion, E is the electric
field, e and M are the ionic charge and mass, c is the
velocity of light, 8 is the magnetic field, t is time, V', is
the gradient with respect to the components of the
velocity vector and (Bf/Bt),„iiis the net influx into
six-dimensional phase space due to collisions. The
collision term may, for order-of-magnitude purposes,
be approximated by'
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where fo is the Maxwell distribution and r is the mean
free time between collisions. This approximation is
based upon Maxwell's conclusion that a nonequilibrium

gas adjusts to a Maxwellian distribution in about one
mean free time and assumes that the mean free time
is of the same order of magnitude for particles of a
given type but of all velocities. If l is taken as the
characteristic length associated with variations in the
flow field, Eq. (1) may be multiplied by l/V'f =to/f in
order to make it nondimensional. This gives
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where Hi is a unit vector in the magnetic field direction;
E'=E+(vXH)/c is the electric field in a coordinate

system moving at the gas velocity v; V' is the thermal
velocity of an ion, the bar indicating an average value;
r; is the ion I.armor radius; and P is the mean free path.

In conventional aerodynamics the characteristic
length of the Bow field is usually much larger than the
mean free path. The coeKcient of the collision term is
then a very large number as compared to the gradient
terms. Therefore (fo/f) 1must be of —order X/l, so that
to zero order in X/1 the distribution function is Max-
wellian at all points in the Qow field. The Navier-
Stokes equations are obtained by substituting a
Maxwellian distribution into the terms on the left-hand

' Bhatnagar, Cross, and Krook, Phys. Rev. 94, 511 (1954).
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side of the equation and evaluating a 6rst-order
correction to the distribution function to be used in the
collision term.

In estimating the magnitudes of the remaining terms
in the ionized gas case let us begin with the electric
field term. If plasma oscillations are not set up, the role
of the electric field is to insure equal accelerations for
the electrons and ions in the gas. The electric field
required mill be of the order of the acceleration per
particle of the entire gas, thus
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where Ã; is the ion density and p is the mass density.
Therefore the coefficient involving the electric 6eM
is of order-of-magnitude unity as compared with the
first two terms in Eq. (2).

If the Larmor radius is less than the mean free path,
the coefficient of the term involving the magnetic
6eld becomes larger than the coeKcient of the collision
term. If one now considers the case l/r, ))1, the mag-
netic field term exerts the controlling inQuence on the
particle motions and to zero order the distribution
function must be such that

(V'&Hi) .v„lnf=0.

This requires f to be of the form

f=f(i V'XHi ~,
V' Hi, x, y, s, t).

In other words, the particles describe circles about the
magnetic 6eld lines but the distribution of velocities
are not restricted to be Maxwellian.

In Fig. 1 an attempt is made to indicate the regions
in which different terms in the Boltzmann equation
will be dominant in terms of the gas state. It is assumed
that the gas pressure is equal to the magnetic pressure.
For other ratios of these pressures the positions of
the bounding lines are somewhat different. At high
temperatures and densities (5 region) the mean free
path is less than the Larmor radius for both the elec-
trons and the ions. In this case the dominant term in
both Boltzmann equations is the collision term and the
transport properties have a similar form to those in an
un-ionized gas. In this region the particle paths are
essentially straight between collisions and therefore
the electrical conductivity ls a scalal.

At somewhat lower densities and higher tempera-
tures (T region) the electron Larmor radius becomes
less than the mean free path, resulting in a tensor
electrical conductivity. At still lower temperatures and
higher densities (3I region} the ion Larrnor radius also
becomes less than the mean free path. In this region,
as shown later, the basic dissipation mechanism becomes

Log&0 of temperature ('K)

FIG. 1. Magnetohydrodynamics Row regions for
fully ionized hydrogen.

appreciably diferent. If a reasonable length scale for
astronomical phenomenon is taken as 10' km, there is a
density belom which the ion Larmor radius becomes
larger than this length at extremely low densities. In
this region (EM) the electron. motion is controlled by
the magnetic 6eld, but the ion motion is controlled only
by the electric 6eld which insures charge neutrality.

It is to be expected that the change in the dominant
term in the Boltzmann equation which occurs at the
boundaries of each of the regions in Fig. 1 will produce
different basic phenomena in the diferent regions.

In addition to de6ning the regions on this map
several other lines have been drawn. The conditions
under which the mean free path is equal to what has
been taken as a typical length is indicated. Above this
line one would expect some tendency for particles of
one type to assume a Maxwellian distribution. Since
it takes many collisions for electrons and ions to adjust
to the same temperature, somewhat higher densities are
required before one would expect these two tempera-
tures to be essentially equal. On the basis of these two
lines one may subdivide the 3f region into two regions,
M, and M. This is, however, only a subdivision, since
the dominant term in both of these regions is the
magnetic field term. The Debye length is less than the
electron Larmor radius in all of the region covered by
the map or as long as the electron thermal velocities
are not relativistic. Lines of constant magnetic 6eld
strength have been drawn. The line along which the
viscous and magnetic Reynolds numbers are equal for a
given length has also been drawn. In most of the 5 and
T regions the viscous Reynolds number is larger than
the magnetic Reynolds number, mhereas most of the
conditions under which the magnetic Reynolds number
would be larger than the viscous Reynolds number are
in the M region where it is not clear that the ordinary
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concepts of conductivity and viscosity apply. For
reference purposes the conditions in the interior of the
sun have also been indicated. Figure 1 shows that
interstellar gas clouds and conditions in the solar
corona are well within the 3f region. It is, therefore,
of particular interest to attempt to obtain basic How
equations for this region.

PULSE STEEPENING

In order to illustrate some of the differences to be
expected in the M region, let us consider the steepening
of a pressure pulse into a shock wave. In an un-ionized
gas the nonlinearity of the Row equations produces a
steepening which continues until the steepening
tendency is counteracted by the viscous CGect. The
6nal steady-state thickness of the shock wave is of the
order one mean free path.

For the M region gas, let us consider a particular
one-dimensional, time-dependent problem. We assume
that a broad pulse has been produced in the Quid by,
for example, the motion of a piston in the x direction.
The magnetic 6eld is taken in the s direction. Since
quantities vary only with x, this choice of magnetic
Geld automatically satisfies the equation for the di-
vcrgcnce of thc magnetic field. TlM electric 6cld ln tlM
s direction can be chosen as a boundary condition and
set equal to zero. An electric held exists in the x direc-
tion in order to maintain equal acceleration of the
electrons and the ions. An electric field. is also induced
in the y direction duc to changes of the magnetic field
with time.

The procedure adopted in order to determine hydro-
dynamic Qow equations is similar to that which is used
in the Chapman-Knskog method of deriving Qow

cqURtlons froIQ thc Boltzmann equation. Wc first tRkc
moments of the Boltzmann equation corresponding to
conservation of mass, momentum, and energy. These
moment equations involve particular moments of the
distribution function. The latter moments are evaluated
by going back to the Maxwellian-Boltzmann equation.
In doing this we assume that the typical scale length
of the pulse is much larger than both the Debye length
and the electron Larmor radius. We keep terms con-
taining the Larmor radius of the ions. These terms are
dropped for the calculation of the steepening of the
pulse; however, they are of use in the next section
where an attempt is made to derive the final structure
of a shock wave.

Integrating the Maxwell-Boltzmann equation over
the velocity coordinates at a fixed position in time
results in a continuity equation for each species

where E, and E,. are the electron and ion densities,
and U, and U; are the electron and ion mean Qow
velocities in the x direction. Since the Debye length is
taken as very small, the gas to a good approximation
has essentially equal densities of electrons and ions
Rt Rll polIlts. In other words, thc Poisson cqURtlon mRy
be replaced by

Substitution of this condition in the above continuity
equations show that 8[%,(N, I;)j—/Ox=0, or that the
x component of the current eE, (u; I,)/c—must be
independent of position. Therefore if we exclude a
uniform current in the x direction by the choice of
suitable boundary conditions at plus and minus
inanity thc two vclo cities must bc cqURl. Thc coIl-
tinuity equations may then be combined to give

(Bp/Bt)+ (Bpu/Bx) =0,

where the subscript on the velocity has been dropped.
The assumption that the electron Larmor radius is

much less than the characteristic scale of the pulse
implies that to a good approximation the magnetic
field term in the electron Boltzmann equation must be
equal to zero or that the electron distribution function
satisfies Eq. (4). Since the electrons are closely coupled
to the magnetic field and since there are no gradients
in the y direction, their mean velocity in the x direction
is at all points equal to the so-called velocity of the
magnetic field, cE„/H.The equation for the curl of the
electric field may then be written as

Combining this with the continuity Eq. (5) implies

—=const.

Equation (6) is a, result of the fact that the gas is in
the M region and that the pulse is large compared to
the electron Larmor radius. The infinite conductivity
assumption has not been made directly.

Multiplying each of the Boltzmann equations by the
momentum in the x direction of each particle, inte-
grating over all velocities, adding the two equations,
and making use of the equation for the curl of the
magnetic field

8g; 9g;U;
+ =0, where j is the current density and v; and v, are the mean

velocities in the y direction for the ions and electrons,
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one obtains

DN 8[p; .+p„+(B'/Ss) j
p + =0,
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p„,is a similar integral over the electron distribution
function; and U' is the x component of the velocity
relative to the mean Qow velocity. The equation for
conservation of momentum in the y direction can be
obtained by multiplying by the y component of velocity.
The equation expressing conservation of energy may be
obtained similarly by multiplying the two Boltzmann
equations by the total kinetic energy per particle:

f pi*a+ piyy+ pisz+ pe~u+ psyy+ peas+If /4& &

Dt& 2p

r II 't BQ O'Ve
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where the pressures are de6ned as above, and

q=-', ia; U'(U"+ V"+W")f,dV'

+-,'m. U'(U"+ V"+W')f dV'

Formally, the collision terms appear to have dropped
out of these equations since mass, momentum, and
energy are all conserved on collision. In ordinary gas
dynamics the effect of collisions comes in the expres-
sions which de6ne the moments of the distribution func-
tion such as q. However, if the magnetic 6eld terms are
dominant in the Boltzmann equation (r,&(X) and if we
assume for the time being that the scale of the pulse
is still very large compared to the ion Larmor radius,
one may to a good approximation write the ion and the
electron distribution functions in the form given by
Eq. (4).' In this case the symmetry of the distribution
functions reduces Eqs. (7) and (8) to the form,

DN 8fp+ (H'/Ss) j
p + =0

Dk 8x

D f' p EP y t' 8'~8N~l c;+ !+l p+—
I
—=0, («)

Dt ( p 87rpJ ( 8~)Bx
8 This type of approach was suggested for the case where there

are no collisions by Chew, Goldberger, and Low, Proc. Roy. Soc.
(I ondon} A236, 112 (1956); K. M. %'atson, Phys. Rev. 102, 12
(1956);and K. M. %atson and K. A. Srueckner, Phys. Rev. 102,
19 (1956).
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Equations (5), (6), (9), and (10) form a set of hydro-
dynamic equations which are very similar in form to
the ordinary equations for inviscid Row, The set is not
quite complete as yet, since the magnitude of C„has
not been speci6ed. This quantity can be determined
easily in two limiting cases. If the scale of the pulse
is large compared to the mean free path, collisions will
lIlsule that the d1strlbutlon funct1on ls lsotroplc 1n
three directions, so that C, =-', . If the scale of the pulse
is smaller than the mean free path there will not be
enough collisions to affect the particle motion in the s
direction; and since the electric and magnetic 6elds do
not accelerate particles in this direction, the kinetic
energy per particle due to motion in the s direction will
be a constant; that is, D/Dt(C, 1)p/p=0—. In this
case one may effectively take C„=1in Eq. (10). The
only eGect of the collision term in these equations is
therefore to change the ratio of the internal energy of
the gas to the pressure, or the effective speci6c heat
of the gas, by a small factor.

Assuming that the pulse started with a scale large
compared to the mean free path, the equations are
initially identical with the inviscid Bow equations and
the pulse wiH tend to steepen towards a shock wave.
When the pulse width becomes comparable with the
mean free path, the Row equations change very slightly
because of the change in specific heat, but the essential
basis for the steepening process is still present. This
steepening then continues until the assumption that the
pulse width is much larger than the ion Larmor radius
breaks down. Ke conclude that a shock wave will
steepen until its thickness is comparable with an ion
Larmor radius or possibly even less.

There is one minor exception to the above conclusion.
The speed of sound in the gas with the assumed
geometry of the magnetic 6eld is

pC.+1 p H' i '
~=I -+

C„ p 4sp)

This speed increases slightly as C, decreases. It is
therefore possible to have a very weak wave whose
velocity would be supersonic when collisions adjust
the three degrees of freedom of particle motion, but
whose velocity is subsonic if the pulse width becomes so
small that collisions are unimportant. Such a wave
would therefore steepen if its width is longer than a
mean free path, but the steepening would not continue
beyond the point where its local velocity becomes sonic.
%ith the exception of this very small range of shock
velocities, the shock thickness is limited by the ion
Larmor radius and possibly even by a smaller dimension. .



970 H. E. PETSCHEK

This conclusion is in contradiction with calculations
of the shock structure which had been made by
Marshall4 and Sen, ' who both conclude that the mean
free path is the important dimension. Both of these
calculations made use of a viscosity coefFicient quoted
in Chapman and Cowling. ' Their coefFicient differs
only by a numerical factor between the cases where the
ratio of Larmor radius to mean free path is extremely
small and where it is extremely large. The source of
the error in the Chapman and Cowling result has not
been located, since the detailed calculations are not
presented. It is, however, clear from the above argu-
ments that the viscosity is electively reduced in the
presence of a strong magnetic field. Physically one'
may explain this reduction in viscosity by the fact that
in the presence of a magnetic field the mean velocity
of an ion is adjusted continuously between collisions
by the electric and magnetic fields, whereas in the
absence of the magnetic field the particle velocity
remains constant between collisions. The calculations
of Marshall and Sen are therefore only valid in the S
and T regions where the magnetic terms do not domi-
nate the Boltzmann equation.

MAGNETIC STORMS

One example of an astrophysical phenomenon which
seems to indicate the existence of a shock wave which
is much thinner than a mean free path is the sudden
commencement of magnetic storms on the earth. It
was suggested by Gold that this sudden commence-
ment was due to a shock wave arising from a dis-
turbance on the sun. The objection which has been
raised to this suggestion was that a temperature
corresponding to the velocity at which these waves
travel, 2 X10' cm/sec, and assuming an inter-
planetary gas density of about 10' particles per cubic
centimeter, the mean free path is much greater
than one astronomical unit. Therefore, a shock wave
one mean free path thick could not be formed between
the earth and the sun. However, if one now assumes
that the shock thickness is comparable with the ion
Larmor radius, then for an interplanetary magnetic
field of 10 ' gauss, the time required for a shock wave
at this velocity to pass a particular point will be only
of the order of 10 sec. Since this time is less than the
observed two-minute time associated with the com-
mencement of magnetic storms, it seems very likely that
these storms may indeed indicate the arrival of a shock
wave from the sun. The fact that the observed signal
has a slower rise time than the incident shock wave is

4 W. Marshall, Proc. Roy. Soc. (London) A233, 367 (1955).
~ H. K. Sen, Phys. Rev. 102, 5 (1956).
~ S. Chapman and T. G. Cowling, The Mathematical Theory of

Eon-Uniform Gases (Cambridge University Press, New York,
1953), p. 337.

'T. Gold, "Discussion on shock waves and rare6ed gases, "
from Gas Dynamics of Cosmic Clouds, edited by H. C. van de Hulst
and J. M. Burgers (North Holland Publishing Company, Amster-
dam, The Netherlands, 1955).

probably caused by delays in the transmission of the
signal through the ionosphere.

STEADY-STATE SHOCK STRUCTURE

An attempt to compute the anal steady-state shock
structure utilizing a method similar to the Chapman-
Enskog expansion has been attempted. This method
consists basically of computing corrections to the
zero-order distribution function given by Eq. (4) from
the Boltzmann equation and using the corrected
distribution function to evaluate the moments required
in Eqs. (9) and (10). This procedure assumes that the
distribution function diGers only slightly from the
zero-order distribution function. One therefore, expects
it to be valid only for the case of fairly weak shock
waves where one might expect, by analogy with the
structure of a shock wave in an un-ionized gas, that the
thickness of a shock wave would be at least several
Larmor radii.

Assuming that the ion Larmor radius is very much
shorter than the mean free path, there will be virtually
no collisions in the shock front and, therefore, the
collision terms may be neglected. On this basis the
first-order correction to the distribution function is
given by

where the subscripts 0 and 1 represent the order in the
expansion. The corresponding correction to the electron
distribution function is much smaller because the
electron Larmor radius is so much smaller, and has
therefore been neglected. Substituting the distribution
function to first order into the momentum and energy
equations (7) and (8) reduces them again to the form
given in Eqs. (9) and (10). It is therefore necessary to
continue the expansion to second order, before one
obtains a pressure tensor which contains terms
analogous to the viscous stresses and before one
obtains a heat Qux vector. Making use of the second-
order terms and making the approximation of weak
shock waves, one obtains a second-order differential
equation for the variation of the density in a steady-
state pulse. The analogous equation for an un-ionized

gas is a first-order differential equation which permits
a smooth variation of gas density from the conditions
in the supersonic stream to those in the subsonic
stream. The second-order equation obtained in this
case does not permit such a solution. The solution
obtained from this equation describes a pulse in which
the gas density increases, goes beyond the density
required to satisfy the Rankine-Hugionot equations in
the subsonic stream and increases to a maximum, and
finally decreases again returning to the initial density
in the supersonic stream. The width of this pulse is
ol/4/r;/(iV 1)&), where r; is the La—rmor radius based
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Fro. 2. Schematic diagram of gas accelerator to produce
cylindrically converging shock vraves.

S. A. Colgate, University of California Radiation Laboratory
Report, UCRL 4829 (1957).*This experimental program is being carried out primarily by
C, Sargent Janes.

on the Qow velocity and M is the ratio of the Qow

velocity to the sound speed in Eq. (11).This pulse is
not a shock wave, since it returns to the initial condition.
If the collision term had not been dropped completely,
the final state behind the pulse would have been
slightly diferent from the initial condition and a
series of pulses would follow. These pulses would
eventually damp in a distance of the order of a mean
free path and leave the gas in the appropriate condition
for the subsonic stream. However, if the mean free
path is very much longer than the ion Larmor radius,
there would be very many pulses in this series and it is
questionable that such a long train of pulses would be
stable.

Longmire and Rosenbluth and Colgate'suggested that
a shock wave of this type should not have a steady-state
structure, but would oscillate in time even in a co-
ordinate system moving with the shock wave. Colgate
has assumed without justi6cation that the important
length associated with this oscillation is the electron
Larmor radius. However, the above calculation indi-
cates that some effects begin to occur with a scale
comparable to the ion Larmor radius. One might there-
fore be more justi6ed in assuming that the ion Larmor
radius is the important length.

At present it is not clear what is the final structure of
such a shock wave. This leaves open the question of
whether the dissipation associated with a shock wave
produces a high ion temperature or a high electron
temperature immediately behind the shock wave. It is
interesting to speculate on the possibility that such a
shock wave is in fact unsteady in time and may there-
fore lead to the emission of radio waves. Also, it is
conceivable that the form of the dissipation mechanism
is such that a few particles are accelerated to very high
energies and thus a shock wave might be a source of
cosmic rays. This acceleration would seem plausible
if it is true that the shock structure is time dependent
and if the frequency associated with oscillation is the
cyclotron frequency of the ions.

Shock velocity
(8.)

Shock velocity
(b)

Flo. 3. Mirror camera pictures of cylindrically converging
shock waves in hydrogen. Horizontal axis indicates distance along
the diameter of the chamber (see slit indicated in Fig. 2) and
vertical axis indicates time. The initial pressure was (a) 0.2 mm
Hg and (b) 0.3 mm Hg. In (a) the gas waspreionized so that there
was no magnetic 6eid in the center. In (b) it was not preioniaed.

EXPERIMENTAL*

Before concluding, I will brieQy mention experiments
which are being performed at the AVCO Research
Laboratory with an aim of studying gas dynamics in
the 3f region. In order to produce a laboratory sample
of gas in the M region with a magnetic pressure of the
order of the gas pressure one requires a sample of gas
at about 10' 'K and a density of the order of 10"
particles per cubic centimeter. At the present time,
temperatures of the order of 3&10' 'K have been
achieved.

A schematic diagram of the experimental setup is
shown in I'ig. 2. A condenser bank is discharged.
suddenly into the drive coil. This produces an axial
magnetic held inside the coil. The gas inside the chamber
which has been preionized by a low-energy discharge
excludes the magnetic Geld from the center of the
chamber by a current on the surface. The magnetic
6eld then acts as a piston pushing on the outer radius
of the gas and produces a cylindrically converging
shock wave. Shock velocities as high as 12X10s crn/sec
in deuterium have been obtained. Using the Rankine-
Hugoniot conditions across the shock wave, this
velocity corresponds to a temperature of 3+105 'K.
The experimentally observed shock velocities are in
agreement with a theoretical prediction based upon
setting the magnetic pressure equal to the gas pressure
behind the shock wave.



Figure 3 shows mirror camera pictures of shock
waves produced in this manner. In Fig. 3(a) the shock
wave starts from the outside of the chamber and
continues to the center where it is reQected. In this
case there was no magnetic 6eld in the center of the
chamber before the shock wave was initiated. In Fig.
3(b) the shock wave does not proceed to the center of
the chamber but the gas appears to be rejected before
it reaches the center. In this case no preionization was
used so that some of the magnetic field leaked through
the gas to the center of the chamber before breakdown

actually occurred. The gas is then presumably reQected

by the compression of the magnetic field in the center.
In this picture the gas has been slowed down gradually

by the magnetic field and that because of the small

extent of the gas sample no rejected shock has been
formed. This is to be contrasted with Fig. 3(a) where

the gas is decelerated rapidly at the center and a.

reQected shock wave is formed. These pictures are an

example of one way in which dissipation in a gas can be

reduced by the presence of a magnetic field.

DISCUSSION

H. K. SEX, GRD, AFCPC, Haescom Field, Bedford,
Massachusetts: In my paper LPhys. Rev. 102, 5 (1956)]
on magnetohydrodynamic shock structure, I found that
the pressure tensor as derived by Chapman and
Cowling (Mathematicat Theory of Eon Nniform -Gases)

reduces to the usual magnetohydrodynamic extension
of the Navier-Stokes equation for two asymptotic
cases: &o/v&(1 and co/v))1, where ca is the gyrofrequency
(in deference to Laporte, I would not call it the Larmor
frequency) and v is the collisional frequency. The first
case is the hydrodynamic analysis with the ma.gnetic
6eld as a perturbation. The second case, curiously
enough, turns out to be similar to the erst, with a
pseudo-viscosity ~ times the ordinary viscosity. The
Chapman-Cowling treatment, probably, is no longer
valid in this case.

A comprehensive analysis should, however, be based
on the nondimensional ratio a&/v as a parameter, so that
it could yield the two asymptotic limits mentioned
above and at the same time be vabd for the physically
interesting transition region where cu/v 1. This
remark is not trivial, inasmuch as uncritical neglect of
parameters has not infrequently led to singularities
with no physical basis whatsoever. The implication is
that there is no a priori reason to expect that the results
obtained from a treatment with complete neglect of
collisions would closely approximate or even be similar
to those that obtain for weak colhslons (cd/v((1).

H. E. PETSCHEK, Amoco Research Laboratory, Everett,
Massachusetts: The results that are quoted in Chapman
and Cowling do give the result that the viscosity is
essentially the same in the two limits of small and large
&a/v. However, I believe that this is incorrect. It is
di%cult to follow exactly where the error is in Chapman
and Cowling, slncc they do not glvc R dctRllcd dlscusslon
for this particular case but only quote the results.
Physically, I think it is quite clear that for the case
where the cyclotron frequency is much larger than the
collision frequency, the viscosity will be appreciably
reduced and shock waves will steepen.

H. W. LIEPMANN, Daniel Guggenheim AerorIauticat
Laboratory, California Irtstitmte of Technology, Pasadena,
California: I did not see any dissipation in your model,
so I do not see how you can get a thickness of a shock
wRvc Rt Rll.

H. E. PETSCHEK: This is exactly the problem —that
for the steady-state situation there appears to be no
dissipation. If one looks at higher orders in this expan-
sion, they also indicate no dissipation. Now the type
of dissipation one noway get is if the Qow becomes un-
stabl, and makes a general mess, which will be a
dissipation.

H. %. LIEPMAÃÃ: I do not even see that. How do
you get dissipation from instabilityP You must some-
how have a mechanism like viscosity or some sort of
randomization. You have to increase the entropy, and
the rate of increase of entropy determines the shock
thickness.

H. E. PETSCHEK: The randomness introduced by
the instability is already an increase in entropy.

H. W. LIEPMANN: I think we are getting into in-
formation theory.

L. SPITZER, JR., Primceton University Observatory,

I'r&tcetoe, Eem Jersey: Several mechanisms can be
invoked. In the erst place, we may refer to the quantity:
square of the velocity perpendicular to the magnetic
field divided by the magnetic field. This quantity is an
adiabatic invariant, which is constant for slow changes.
In a shock this quantity changes, and I believe this
change may lead to a change of entropy of the system.
In the second place, a change of entropy may occur
through 6ne-scale mixing. I et us suppose that behind
a shock there are oscillations which involve wiggles in
the velocity distribution function. Kith increasing
distance behind the shock, these wiggles or irregularities
would have shorter and shorter wavelengths, and must
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ultimately be damped out even by very weak collisions.
I believe these two mechanisms may be the ones that
must be invoked for the dissipation in a shock.

E. C. BULLARD, DePartment of Geodesy and Geo

physics, Cambndge University, Cambridge, Fngland:
Bees dissipation mean getting the energy into heat,
and, therefore, that you must have collisions sooner or
later' Or can the field be irregular enough to randomize
the motions without collisions)

L. SPITZER, JR. : Finally, of course, collisions are
required to yield a situation where the entropy can be
computed by classical means.

H. E. PETSCHEK: It is not clear that the change in
magnetic moment when there is a sharp change in the
6eM is an entropy change. For the case where y=2,
this is the usual isentropic relation. And, as Spitzer has
pointed out, this is not necessarily valid if the gradient
becomes steep compared to a Larmor radius. One can
show, for example, that if one has a sudden change in
magnetic field which will produce a change in this
quantity for a particle going across, and if this change
is reversed, at the distance which is precisely the
distance the guiding center has moved in one Larmor
orbit, the gas particles will all come out in the condition
in which they started. Therefore, this is not an ir-
reversible process.

A. SCHLUTER, 3IIax P/amck Iestitgt FN'r Physik,
Bottiegerstrasse 4, Gottingee, Germany: The fact that the
magnetic moment of the spiraling motion of the particles
is not constant does not in itself determine the shock
width, because one really needs a mechanism which
produces entropy, and this mechanism does not produce
entropy even if the magnetic moment changes. So the
only process which generates entropy is collisions, and
if the rate of collisions is small, then the deviations from
thermodynamic equilibrium must be so large that the
few collisions can do the job.

L. SPITZER, JR. : That is certainly entirely true.
However, we have been wondering whether one should
perhaps define a more generalized entropy, to discuss
conditions with fine scale mixing, which on the macro-
scopic scale produces without collisions, essentially the
same eGect that collisions would produce.

A. SCHLUTER: Do I understand you correctly in
saying that the rate of change of the magnetic moment
depends upon the relative phase of the particle in its
spiraling motion relative to the phase of the shock
wave traveling through the gas and that, therefore, you
get something which corresponds to the eGect of
collisions' If so, I see the point [cf. F. Hertweck and
A. Schluter, Z. Naturforsch. (to be published)).

R. LANDSHOFF, assi)e Systems Division, Lockheed
Aircraft Corporation, Sgnnyvate, California: The com-
ment I want to make is quite similar to what Spitzer
has said. Actually, the charged particles certainly
interact with each other all the time. But artificially,
in order to treat the interaction so as to fit the mathe-
matical formation of the Boltzmann equation, we
divide it into two parts. A smooth part we treat as
field, invoking the Maxwell equations; the rest whose
cross sections go down at high velocities as (e'/mv')'
we call collisions. But nevertheless, interactions are
there, and that we divide them up in this fashion does
not mean that they cannot provide a transfer of energy.
I also wanted to ask a question. The equation describing
the sharpening of the pulse given by the method of
characteristics,

d 8 lnp ~ (8 lnp)' n+I
— =I

ax I ax & n

(a=small disturbance velocity; n=number of degrees
of freedom), seems to indicate that no matter what,
there will be an increase in the density or the pressure.
This looks as if we do not have to worry about dissi-
pation at all.

H. E. PETSCHEK: This equation comes from the
equations ~here the length has been taken large
compared to the Larmor radius and one does not have
any of the terms corresponding to viscous stresses.
Eventually the gradient becomes steep enough so that
these terms have an eGect. Also, as to the 6rst comment
you made, one has separated the collision of gas
particles with other particles into two regions, the more
or less uniform field and the collision 6eld due to a
particle. The question, I think, is how complicated does
the nonparticle Geld with which a particle interacts
have to become before one gets an entropy increaseP

S. I. PAI, Instititte for Flitid Dynamics and APPlied
Mathematics, University of Maryland, Cotlege Park,
Marylmsd: I am not familiar with Petschek's analysis,
but I am quite familiar with studying shock waves from
ordinary Xavier-Stokes equations. For instance, if we
neglect the viscosity and just consider the Euler
equations, we may analyze the ordinary steepening of
the compression waves into a shock, and will get
exactly the same equation as was given by LandshoR,
but instead of ordinary sound speed, you get the
expression with eGective sound speed. So as far as this
equation is concerned, you really don't consider
dissipation. You just calculate how the waves steepen.
If we really go into details of the shock structure we"

have to put in the viscosity, etc. , which produce
dissipation.

H. E. PETSCHEK: The equation for the rate of
steepening is a standard result. The point is that the
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nonviscous equation is valid up through the region
where the mean thickness becomes comparable with the
mean free path, and the steepening continues to this
limit. This approach does not say anything about the
steady-state structure.

H. W. LIEPMANN: A consideration of the basic
thermodynamics of the model should clarify the
problem of the dissipation. For example, you can make
one of your shock waves in a type of a Gay-Lussac
experiment by breaking a diaphragm between two
gaseous regions at different pressure in a container.
In this way you can make a strong shock in a magnetic
field, and in the beginning and the end you can apply
thermodynamic reasoning. Then you either have
dissipation or you do not. The entropy goes up or it
does not. So I see how you can get a steep front, but I

cannot possibly see how you can get the whole shock
disturbance without getting some form of collision. I
think Schluter agrees with me.

A. R. KANTROWITZ, 2@co Research Laboratories,
Everett, Massachusetts: I would like to emphasize
another form of dissipation that can appear in this
problem: concentration of energy in particles on the
tail of the distribution function would be a very nice
way to do it. We have looked hard for this effect and we
haven't been able to find it theoretically. Experi-
mentally, as Petschek pointed out, it has been observed.
For example, it is observed in the astronomical situation
in the relationship of cosmic rays to solar disturbances.
It is also observed in the laboratory. And this, it seems
to me, is the most likely place to look for a powerful
dissipation mechanism.






