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1. INTRODUCTION

SUBSTANCE which undergoes an order-disorder

~ ~

~ ~

transition of second degree shows, near the
critical temperature, a large increase in its cross section
for the scattering of waves. This is due to the large
fiuctuations about the average which occur in this tem-
perature region. Probably the best known example is
the phenomenon of critical opalescence caused by the
scattering of visible light in a liquid or dense gas near
critical conditions. Considerable interest has recently
been aroused by the observation of a large increase in
the magnetic scattering of neutrons from ferromagnets
close to their Curie points which may be attributed to a
similar eGect. Most of the studies of this so-called critical
scattering have been on iron where the eBect has been
observed in total cross section by Palevsky and Hughes'
and by Squires, ' around the forward direction by Shull,
Kilkinson, and Gersch, '4 and near a Bragg reflection
by Lowde. ' Similar effects appear in magnetite, ' and
should be observable in antiferromagnets and other
substances with more complicated magnetic order under
appropriate conditions. They should also be found in
alloys which show order-disorder transitions of second
degree with both x-rays and neutrons, but have not so
far been observed.

The theoretical discussion of critical scattering in the
liquid-gas system was first given by Ornstein and
Zernike' some fifty years ago, and their method has been
generalized by Klein and Tisza. ' Van Hove' "pointed
out the origin of the magnetic critical scattering and
extended the theory to cover this case. The theories
determine the cross section as a Fourier transform of the
so-called pair correlation function of particles and spins.
The general form and size of the eGect was, however,
only determined to order of magnitude by using thermo-
dynamic arguments. A determination of the scattering
in terms of a microscopic theory is given in this paper
so that the detailed observations' ' now available may
be interpreted in terms of standard theories of order in

~ Now at Clarendon Laboratory, Oxford, England.' H. Palevsky and D. J. Hughes, Phys. Rev. 93, 268 {1954).' G. L. Squires, Proc. Phys. Soc. (London) A67, 248 (1954).' C. G. Shull and M. K. Wilkinson, Phys. Rev. 103, 516 (1956).
4 Shull, Wilkinson, and Gersch, Phys. Rev. 103, 525 (1956).'R. D. Lowde, Revs. Modern Phys. 30, 69 (1958), preceding

paper.' A. W. McReynolds and T. Riste, Phys. Rev. 95, 1161 (1954).
7L. S. Ornstein and F. Zernike, Proc. Amsterdam Acad. Sci.

17, 793 (1914).
~ M. J. Klein and L. Tisza, Phys. Rev. 76, 1861 (1949).' L. Van Hove, Phys. Rev. 93, 202 (1954).
'0 L. Van Hove, Phys. Rev. 93, 1374 (1954).

alloys and magnets. The method is an extension of the
Bethe-Peierls" (B-P) and other closely related methods
which give a good treatment of order-disorder problems
near and above the critical temperature. The Ising
model is used for alloys and a crude treatment of mag-
nets, which are also examined using the Heisenberg
model. There is a model for the gas-liquid transition
which is equivalent to the Ising model, " namely, the
lattice gas or hole theory but it is a much cruder ap-
proximation in this case and will not be considered in

detail.
The method is an improvement and extension of the

calculation by Zernike" of the propagation of correla-
tion in alloys near T,. The approximation is also reason-
ably satisfactory at high temperatures but fails at low
temperatures where the correlations have been discussed
by other methods ""'4

2. SCATTERING FORMULAS

Van Hove has shown that the concept of the pair
correlation function which is so useful in discussing the
properties of x-ray scattering, " can be extended to
cover the cases of interest here. Because the energy of
neutrons used in diffraction experiments of this kind
(i.e., neutrons with wavelength of order 1 to 10 A) is
small, the energy changes which take place on scatter-
ing have an important e6ect on the cross section. This
can be taken into account by considering the time de-
pendence of the correlation function. Also, because the
spins are vectors, it is necessary to define pair correlation
functions for their components in the principal direc-
tions. Thus Van Hove defines"

I'~e(r, t) =X ' P ~dr'S, (0)8(r+r, (0)—r')

xS/(t)s(r' —r;(t))) (2.1)

the sum being over all pairs z, j of 3 spins. The position
and n component of one spin are measured at time t
before the position and P component of the other. The
diGerential cross section per atom per unit solid angle

"H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935);
R. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).' T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952)."F. Zernike, Physica 7, 565 (1940).

'4 J. Ashkin and %. E. Lamb, Jr. , Phys. Rev. 63, 159 (1946).
"See, for example, N, S. Gingrich, Revs. Modern Phys. 15,

90 (1943).
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and per unit energy of the scattered neutron is related
to the Fourier transform of I'. For unpolarized neutrons
this is

d'0 (2g8') ' k
|P( ) I' Z (~-e e—-ee)

dQdE Lwc'i kko

X I' e(r, t) exp(i(» r—s&t))drdt, (2.2)

where ko, k are the incident and scattered neutron wave

vectors and x=4—ho is the scattering vector. Ace is the

energy charge on scattering ft'(ko' —k')/2mo, g( 1.91)
is the neutron's magnetic moment, m the electron, and

mo the neutron mass. F(») is the form factor which is

the Fourier transform of the spin density distribution
in each atom, and falls oB like e '& as x increases (where

p is the atomic radius). e is the unit vector in the direc-

tion of x. The factor in e arises from the anisotropic
nature of the electron-neutron spin-spin interaction. "

In the magnetic models considered below each spin
is always found on a particular atom with equilibrium

positions on lattice points R. The thermal motion of
the atoms around these positions is, to a good approxi-
mation, independent of the time dependence of the spin
components. Therefore (2.1) may be written

where
r«e(r, t) =pRy e(R,t)GR(r, t),

y e(R,t)=(S (0,0)Se(R,t)).

(2 3)

(2.4)

where ~ is a reciprocal lattice vector, and the eGect of
the thermal motion on the atom position introduces the
Debye-%aller factor e"'~. Here, Vo is the volume of a
unit cell. In magnets with more complex order, the
appropriate reciprocal lattice will enter and a structure
factor will replace (S')'. The second term of (2.5) gives
an additional diGuse scattering which is in general in-
elastic and is given by (1.2) with y' replacing I' and the
Debye-Wailer factor included. t

~6 Q. Halpern and M. H. Johnson, Phys. Rev. SS, 898 (1939}.
t The time dependence of G(r, t) also allows the neutron to

exchange energy with the thermal vibrations. Through this, the
first term in (2.5) gives a cross section for phonon scattering in

In the ordered phase the average components of spin
on each atom are not all zero so that it is convenient
to write

q.e(R,t) = (S.)(Se)+~"e(R,t). (2.S)

The 6rst term representing the long range order gives
elastic Bragg scattering, which in a crystal with all

spins ordered in the s direction is

do NVO (2ge') '

dQ (2n)' & tmc'&

X ) P(») )'(1—eP)(S')'e '~ P 5(»—~) (2 6)

The calculation of critical magnetic scattering there-
fore reduces to a calculation of y'«e(R, t) at temperatures
close to the critical point. This is a convenient formula-
tion since y' is an extension to all R, t of the short range
order parameters which are often discussed by order-
disorder theories. It is convenient to consider 6rst the
instantaneous correlation function y e (R,O) and we shall

con6ne our attention to this static approximation. The
time dependence, and hence, the inelasticity of the
scattering will be considered in a further paper. The
quantity &' e(R 0) is interesting initselfanduseful under
certain conditions since, if energy transfers Aeu are small
compared to the incident energy, one may write

f
I'(r, t) exp(i(» r—cot)dt=b(o&)r(r, 0) exp(i» r). (2.7)

This static approximation is always valid for x-rays
since they have such large energies. Close to the critical
point the scattering becomes predominantly elastic" so
that it is actually a useful approximation in the neutron
case also.

3. ISING MODEL OF A FERROMAGNET S=$

As the simplest case which allows a clear discussion
of the method, the Ising model of a ferromagnet with
S=-, is first considered, although it is not a realistic
model for any physical case. It may, however, be readily
extended, as shown in later sections.

In the Ising model attention is confined to the 2' com-
ponents of the spins, with the two possible values +-,'.
The interaction potential between two spins is re-
placed by

—2JS*(R)S*(R+g),

where g defines the nearest neighbor positions of R.
Also attention is confined to those cubic lattices where
two nearest neighbors of a given atom are not nearest
neighbors of each other, namely, the simple cubic where
the number of neighbors is z= 6 and the body-centered
cubic where z=8. In each case the side of the cubic cell.
is taken to be a. In the face-centered lattice (z=12),
where this condition is not fu1611ed, an extension of the
usual Bethe-Peierls type of theory is required. The
present method of discussing y could also be extended
to this case but is not treated in this paper.

The B-P method" treats the order-disorder problem

addition to the usual phonon scattering from the neutron-nuclear
interaction. This magnetovibrational scattering (R.J.Elliott and
R. D. Lowde, Proc. Roy. Soc. (London) A230, 46 (1955)) is some-
times comparable with the strictly magnetic inelastic scattering
PR. D. Lowde, Proc. Roy. Soc. (London) A235, 305 (1956}j given
by y'. In the region of the critical point (S'}is small and the scat-
tering from y' large, so this experimental diKculty will not arise.
However, if measurements of energy transfer are made it may be
possible to observe magnetovibrational eBects since the magnetic
scattering from y' is nearly elastic. The major magnetovibrational
term is now, however, likely to arise from y which is giving the
largest scattering in this temperature region.

~' U. Firgau, Ann. Physik 40, 295 (1941).
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by taking independent clusters of spins comprising one
spin and all its neighbors. The interaction of this cluster
with the rest of the crystal is assumed to take the form
of a magnetic field II~ which acts on the outer atoms of
the cluster. If 8&/0 the system is ordered and the de-
gree of order may be conveniently discussed in terms
of an ordering parameter

X=exp( —2PBq/kT). (3.2)

Taking a single cluster with eGective Hamiltonian,

3'.=Q p
—2 '*(R)S'(R+ g) —2PH,S*(R+g), (3.3)

the probability that the central atom R has S'=+-',

P+(R) = (1+At)'/(1+Xt)'+ (X+t)', (3.4)
while for

S*=—-'„P-(R)= (Z+t) /(1+v) +(X+t)' (3.5)

where t=e f~~. For an atom on the outside of the
cluster, however,

P+(R+ g) = (1+X)»'
t(t+X) '/(1+th)'+ (t+X)' (3.6).

But the probability that a spin has S'=+2 must be
the same whether it be regarded as at the center or on
the outside of a cluster. Hence, (3.4) and (3.6) must be
equal, giving

X(1+th)»'= (t+X)»' (3.7)

as an equation for X. This has only one root X= 1 (i.e.,
no order) above a certain temperature given by

z 2 zp

can be considered as modifying H~. At large distances
R' this modification will be small. X must therefore be
modified and replaced by X+& (R') (o«X). Here a
labels the atoms on the outside of the cluster centered
at R' and ~ will vary with e and R' since it varies with
the distance from 0.

P +(0, R+g) can be calculated in two ways in
parallel to (3.5) and (3.6). For spin R considered at the
center of a cluster

PH (O,R)

P (0) IIs (1+tX+tes(R))
(3.11)

II (1+@+t (R))+II (t+ (R)+&)

where IIs is the product over the z neighbors. Writing

o (R') = Q. c.(R'), (3.12)

where the sum is over the neighbors of R', and using
(3.7), the analog of (3.11) for R+g regarded as the
center of a cluster is, to first order in e

PH (0, R+g)

(1+th)' (1—t') o (R+g)1— (3.13)
(1+)8+20)' (1+X'+2t7) (1+th)

Alternatively considering R+ g as a spin on the outside
of the cluster around R,

P++(O,R) tP+ (O,R)P (0, R+ g) = + . (3.14)
1+tX+tes(R) t+X+es(R)

i.e.,
z Equating (3.13) and (3.14), the terms independent of e

(3 g) vanish and the first-order terms give

X(1—t )
o(R+g) = o (R)

(t+ X) (1+a)Below this critical temperature (3.7) has a solution
which can be shown to give a lower free energy than the
solution X= 1, and so describes an ordered state. Using
(3.4), (3.5), and (3.7)

t(1+2Xt+)P) (t+OP+2X)
+co(R) ~ ~ ~ . (3.15)

X(t+X (1+th 1 t'—
(S*)= (1—X')/2 (1+2th+ X')

The quantity &**(R,O) may be written

(3.9)
) )(

Summing over g, the neighbors of R, and using (3.12)
we have

y(R) = (So*S*(R))=y'(R)+ (S*)'
= -', [P++(O,R)+P—

(O,R)
—P+ (O,R)—P +(O,R)j, (3.10)

where P++(O,R) is the probability that the spin at 0
be + if the spin at R be +, etc. %'e now calculate
P++(O,R) by considering the clusters which include R.

The fact that the spin at zero is fixed as + will aGect
these clusters, since it will exert a force through the
coupling betweeni ntermediate atoms and makes P+(R)
greater than its equilibrium value. The eGect of the
environment of the cluster is transmitted through the
effective magnetic field. Thus the fixing of spin zero

zz(1—t')
E o(R+W =o(R)

(t+) )(1+0,)
t(1+2Xt+2) (t+a'+2) )+ (3.16)

(tyX) (1+a)(1—t')

A similar calculation of P (O,R) shows that the
first-order changes are as above proportional to o(R)
which is governed by (3.16). The behavior of P-+(O, R)
and P (O,R) can be calculated in the same way. By
setting the spin at 0 as —,X will be modified to become
X+e '(R) on the cluster around R'. Since the prob-
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FIG. 1. a'tt:1' for the Ising model, spin $.

where
t(1+X'+2u) (t+t7'+2a)

GKy= —z . (3.20)
(t+X) (1+7 t) ) (1—t')

At large distances R where p' will be slowly varying
(3.19) can be replaced by a differential equation

(V' —~i2)p'(R) =0 (3.21)

which was derived by Van Hove. " However, Ky has
now been determined on a microscopic model ~ The
solution is

ability of any atom being + is the same,

P+ (O,R)+P++(O,R) =P +(O,R)+P++(O,R)
=P+(0, R+ P)+-P++(0, R+ g)

= (1+9.)/(1+X'+2Xt), (3.17)

and one can show after some manipulation that to first
order in e

(1+th)e (R') jX(X+t)e '(R') =0 (3.18)

everywhere. Each P"(O,R) therefore can be obtained
by modifying (3.13).

The first-order changes in P'&(O, R) are all propor-
tional to 0 (R) and hence from (3.10) so is y'(R). Modi-
fying (3.16) we obtain a difference equation for y, viz. ,

Q y'(R+ g)
—zy'(R) —a'Ki2y'(R) =0, (3.19)

However, it is more convenient to work directly with

the difference equation which has a much wider range

of validity.
The long range of correlation near T, means that if

a particular atom has, say, a + spin, there is likely to
be around it a region where spins are more often +
than —.The equality in numbers of + and —spins is

maintained by the presence elsewhere of regions of pre-
dominantly —spins. The size of these regions is K

and becomes macroscopic at T, itself. These extended

regions are the fluctuations that cause the increased

scattering; the neutron effectively seeing many changes
of refractive index as it traverses the crystal. Because
of their size the scattering is predominantly small angle.

To calculate the scattering cross section as the
Fourier transform of y'(R) it is essential to consider the
behavior of y'(R) at small R where (3.19) is no longer
valid and the approximate solution (3.22) diverges. This
divergence, if included, greatly increases the scattering
at large x so that Van Hove's cross section obtained in

this way $Eq. (41) of reference (10)j actually diverges
when summed over reciprocal lattice points v (Thi.s is

not saved by the Debye-Wailer factor which should
read exp —(x u)')r. ) Attempts to avoid this difhculty

by arbitrarily cutting off (3.22) at some small It. and
replacing it by calculated values of y'(R) at small dis-

tances can lead to negative values of the cross section—
again a spurious effect. This behavior is not surprising,
since the conditions necessary to produce positive defi-

nite transforms are known to be stringent in the theory
of continuous functions. $

These difhculties may be overcome by working with
the difference equation itself, when the cross section can
be obtained in a simple form. Equation (3.19) was an
approximation valid at large R and we may suppose
that the equation for p'(R) may be written

Qz y'(R+ $)—zy'(R) —a'~py'(R) = —p (R) (3.23)

if p(R) is suitably defined. At large R, as discussed in
the argument leading to (3.16), p(R) is zero to first
order in e and hence in y'(R). By a straightforward but
tedious extension of that discussion it is found that
p(R) is actually of order c'. This argument may be
brieQy summarized when T&T, so that X=1. The
consistency equation (3.17) is satisfied identically by

Vo
(3.22) v.'(R') = —v. (R)/[1+v.(R)],

and to third order in e

(3.24)

where r& is an arbitrary constant which must be deter-
mined from the boundary conditions. Thus the effective
range of correlation, ~~ ', becomes infinite as the Curie
temperature is approached from either side. a'Ky is
plotted in Fig. 1 and is roughly linear with

~
T T,

~
/T, —

but varies twice as rapidly below as above T,.The range
of correlation becomes of order a when

~
T 'r,

~
/T, 0.1—

and the slowly varying condition is broken down. Thus
(3.22) is only valid over a narrow region about T,.

(1—t)
y'(R) = — o (R)—-', it(R)

8(1+t)

(1—t)' — 4(1—P)
a (R)'— ](R) t, (3.25)

12(1+t)' (1—t)'

f See, for example, Cramer's Mathematical Methods of Statistics
(Princeton University Press, Princeton, 1946), p. 91.
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where
Gt(R) =Q. e.(R)', t(R) =Q. p. (R)'. (3.26)

The calculation of y on the 3-P theory is well known'
and using this with (3.35) and (3.20) one finds

By calculating P"+(O,R), etc. , in two ways as before,
but to third order, the equation (3.23) is found to hold if

t(1—t)'
P(R) = f $(R)—p~(R) n(R)+ p~(R)G) (3 27)

12(1+t)4

Thus at large distances p(R) p(R)G. It is sufficient to
evaluate (3.27) using the first-order expressions (3.15)
for p and (3.16) for o and the approximate solution
(3.22). Then using (3.26)

3 —
V &

—ttIR- 3

p(R) = —— (3.28)
8 An-rP R

apart from terms smaller by a factor a'Ky which may be
neglected near T,. It is therefore a good approximation
to take P(R)=0 if KiR)1, although the range over
which this appears to be bad increases as It~—4 near T,.
It is then necessary to consider higher order terms in

the expansion in t..
However, at the first few lattice spacings p(R) may be

calculated directly from a single cluster. One finds

go' =g (t+}I)(1+t'ai)/(1+ X'+2th) ' (3.29)

for nearest neighbors

q '= V(1—t')/(1+X'+2k)' (3.30)

and for all other pairs in a cluster irrespective of their
relative positions

y'=X'(1 —t')/(1+X'+2th)'(t+}i) (1+th). (3.31)

For (3.23} therefore

pp= t(t+tX'+2K)/(1 —t') (1+ii'+2th), (3.32)

pR p(R)=pp. (3.37)

From this result and the particular pR of (3.28), (3.32),
and (3.33) it is seen to be a good approximation for
(3.23) to let

p(R) =o, R~o, (3.38)

~(t) =
Pe (1—exp(it y))+a'Kio

(3.39)

and so has the cross section (2.2) with static approxi-
mation (2.7},

d'~
t 2ge' q

' 1 k

I

——~F(44) )'e 'w(1 —eP)
dQdE E me') k ko

PO
X~(~) . (3.40)

Pe (1—exp(it g))+a'Kip

The factor in the cross section arising from @ is periodic
in reciprocal space because of the periodicity in the
lattice of R, and as may be seen in (3.39). The scatter-
ing is peaked around the Bragg directions when x=~
and falls o6 at large ~ because of the form factor and
the Debye-Wailer factor.

For the two lattices considered

Pe(1 exp(i—44 g)}=6—2 cosK a 2cosK„a——2 cosK,a
for s.c.

while pp is given by (3.32). We use this approximation
very close to T, when (3.28) is not valid.

The Fourier transform of y' has then a simple form

(3 33) and (3.41}
=8(1—cosp gKcoaspKpa cospKIa)

for b.c.c.The solution of the difference equation (3.23) is
simply obtained in terms of the Fourier transform

(3.42)=a' x—~
Summing over the equations with weight exp(it. R)

pR R ex it R Thus the cross section close to reciprocal lattice points
is given by the principal term in the sum over ~ given
by Van Hove. "The factor po is related to the second
length ri introduced as in (3.22) by

4(t)=
p( ) p( )

(3.35)
pe (1—exp(it (t)+ ' aKip

Some further information about the p's can be ob-
tained from the relation of @(0) to the susceptibility
g= (BM/BH)H p, where M is the magnetic moment of
the system

pp= a'/4rip. (3.43)

The parameters ~~, r~, defining the scattering as given
by (3.20) and (3.32) are plotted in Figs. 1 and 2 for the
b.c.c. lattice. Just above T.,4 (0) =Q v'(R) =Q (SG S (R)) &(So*)'

For small 44 —~ both these expressions are approximately

gent

= Rp'R expit R. 3.34

= iV-'(P S*(R))'—(X+1)(Sp*)'

1 )M~ ' kTx t Mq '- kTX
+ — — = . (3.36)

X 42/) 4P' 5 2P) 4'

(z—2)'z ( z ) T T, —
a'Kip = ln

2(z —1) ( z—2) T,
f'(3.44)

and the slope is just twice as great below T,. Thus, r~
is a monatomic decreasing function with increasing T.
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4. HEISENBERG MODEL S=$

The direct extension of the Bethe-Peierls method to
the Heisenberg model of a ferromagnet was made by
Weiss" who calculated the detailed properties of a
cluster with an effective Hamiltonian like (3.3) except
that the Ising interaction (3.1) is replaced by the
Heisenberg form

~ 15— —2JS(R) S(R+g). (4.1)

Heisenbe

10—
I

0-6 0.8 10
Tf'T

12 1-4

Fzo. 2. rP/as for the Ising and Heisenberg models, spin $.

At T,'itself
ri2la'= (z—1)/z(z —2). (3.45)

Although the cross section has this simple form, y' is
actually a rather complicated function. As the trans-
form of p it is

Vp
y'(R) = I P(t) exp( —it R)dt, (3.46)

(2z)' ~

where the integral is over a unit cell in reciprocal space.
At large R the approximate solution (3.22) is repro-
duced by using (3.42) and (3.43) and extending the
integration to all space. Slater and Koster' give a
solution of the difference equation in the simple cubic
lattice as

' J. C. Slater and G. F. Koster, Phys. Rev. 96, 1208 (1954).

F00

& (R)= 2frr (0)) expl —(z+'zi')]t
XI (t)I,(t)I,(t)dt, (3.47)

where p, q, r are the components of R in units of u
and I is a Bessel function of imaginary argument. Slater
and Koster have computed y' with the exponent in
(3.34) equal to 3.5 which is approximately half the
values of interest in this problem. They find that an
approximate formula like (3.20) is reasonably accurate
even at the smallest distances (see their Fig. 3) but that
the crystal structure gives appreciable directional asym-
metry as might be expected from (3.31).

Calculations of ~~ and t'~ can also be made from
Zernike's results" and these difFer from the above by
only a few percent close to T,. The methods are in fact
very similar in this temperature region although Zernike
neglected correlation between two spins on the periphery
of a cluster and the efFect of the ordering field H~. His
results, moreover, do not come in such a simple form
and our method may be readily extended to other cases
which are considered in later sections.

the effective field H j again giving the efFects of the sur-
roundings. Bj is now determined by minimizing the
free energy. The resultant equation is found to be (3.7)
with the same definition of X(3.2). In fact the two
methods are exactly equivalent as was shown by
Fowler and Guggenheim. ~ For the probabilities of
occurrence of the various configurations of nearest
neighbors can be found by inspection of (4.2)

P++:P :P+ :P+=1—/7:7:-t:t-(4.3)

and they are found to be the same in the B-P method
of the last section when the condition (3.7) is used.

Taking now (4.2) with the Heisenberg interaction
(4.1) substituted, the eigenstates and eigenvalues are

I++) ' —i~—2P&i

1—LI+-)+I-+)j; -!J
) i 2J+2pHi

(4 4)

1—I:I+-)-I-+)j;
v2

3J

» P. R. Weiss, Phys. Rev. 74, 1493 (1948).~ J. Van Kranendonk and P. %. Kasteleijn, Physica 22, 317
(19S6)."E. A. Guggenheim, Proc. Roy. Soc. (London) A148, 304
(193S).

~ R. H. Fowler and E. A. Guggenheim, Proc. Roy. Soc. (Lon-
don) A174, 189 {1940).

The calculations are however much more complicated
and require numerical analysis, since the eigenstates are
made more djt6icult by the noncommutation properties
of S(R). It is possible to extend the theory of the last
section into this formalism but numerical solutions are
again required.

Recently Van Kranendonk and Kasteleijn" have
given a difFerent formulation called the constant
coupling approximation which allows the results of this
model to be much more easily obtained in closed alge-
braic form in close analogy to the results of the last
section. This is an extension of the so-called quasi-
chemical approximation of Guggenheim" for the Ising
problem. This approach chooses a basic cluster of a pair
of spins. Returning for a moment to the Ising case the
efFective Hamiltonian is

—2J$'(R)$*(R+ g) —2P&i($'(R)+$'(R+ g)), (4.2)
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and |
Z +:Z—-:I —:I"+=-:~:l(1+P):l(1+P).(4.5)

X

Comparing this with (4.3) the properties of this model
are seen to be exactly the same as the Ising model with
', (1-+P) replacing t, as is shown by detailed calculation
in reference 20.

The two methods are, however, not equivalent for the
Heisenberg model. This arises because the noncommut-
ing properties of S(R) have been partly neglected in
the constant coupling approximation, and enter only
through the efFective 6eld. At high spin values where
this efFect is less important Van Kranendonk. and
Kasteleijn show that their results are almost identical
with the results of the gneiss theory obtained by Brown
and Luttinger. " It is not easy to see a priori which
approximation is more correct since the efFective 6eld
enters di8erently into the two theories and may in part
compensate for the neglect of commutation in refer-
ence 20. In fact these authors show that their method
is better at high temperatures in the sense that it repro-
duces the exact high-temperature expansion of the
susceptibility to one further term than the Weiss
method.

For the Heisenberg model the p' s(R) are required for
all components n, I3 of the spins. By symmetry it is clear
that y' &(R) =0 if n/P. If the direction of spin in the
ordered state is taken as s then y**(R)Wy**(R)=y»(R)
and there are essentially two diferent correlation func-
tions to be determined. Above T, however the system
is isotropic and y**(R)=y**(R).

To obtain these functions of position it is convenient
to construct a theory of the B-P kind and use an argu-
ment like that of Sec. 3. We therefore build a cluster
theory equivalent to the constant coupling approxima-
tion. This is not dBKcult in view of the close analogy
with the Ising case discussed above. Considering a spin
R as participating in z pairs and using (4.5) the prob-
abilities of its being + and —have the form

P+ (P+++P+ )'= +-', (1+—P)

Po(s)
@sz(t)—

Q (1 exp(—it g))+a'~g, '

where

(4.10)

a' (1+P)[(1+P)(1+X')+43
Po(Z) = (4.11)

4rgl2 (1—P) (3+P) (1+X'+X(1+P))

2(1+P)[1+X'+X(1+P)]
8~K

(1+P+2X)[2+X(1+P)]

2[(1+P)(1+X')+47 g
X —z . (4.12)

~(1—P) (3+P)

These parameters are plotted and compared with the
Ising model in Figs. 2 and 3.

and comparing it with the equation of the constant
coupling approximation we find v=X= e '&~&~~~ as
might reasonably be expected on physical grounds.

Here, y'**(R) is calculated as before from P"(O,R).
The 6xed orientation of the spin at zero is considered to
modify the efFective fields acting on the pairs around R
by inducing additional components hP*(R) in the s
direction. Under these conditions the probabilities of
spin arrangement in the pair R, R+ g are given by (4.5)
with X modified.

W+ I P+ P +=1/(X+& s(R))
:X+~,(R):—,'(iyP): —,'(1+P). (4.8)

The properties of the spin at R must be obtained from
the z pairs in which it participates which are no longer
equivalent. So the cluster around R gives from (4.7)

I"+(0R):P'-(O,R) =II [(X+es*'(R))-',(1+P)+1)

:II9+~s'(R)+l(1+P)3 (49)

The calculation therefore proceeds exactly as in Sec. 3
with ~~(1+P) substituted for t. The Fourier transform
of y'**(R) is then given by (3.39)

P -(P ++P )'=P,+-', (1+P)3'.
(4.6)

To obtain the relative probabilities we must take ac-
count of the fact that in the pair formulation an ordering
field acts on spin R, but its efFect must not be included
in the cluster where all the neighbors of R are con-
sidered. We therefore write

2-0—

p1P+:P = v'~ -+-', (1+P) (:(X+-', (1+P)', (4.7)
Ez i

where v gives the efFect of the field. By constructing the
consistency equation for this cluster in the B-P manner 06 I'2 1 *4

~ H. A. Brown and J.M. Luttinger, Phys. Rev. 100, 685 (1955). Fro. 3. a~aP for the Heisenberg model, spin $.



R. J. ELLIOTT AND W. MARSHALL

For y' we consider a cluster at R and take the small

additional effective field hp*(R) from the fixing of the
component of the spin at 0 in the x direction. Thus the
eGective Hamiltonian for a pair is

—2JS(R) S(R+g) —2PH, (S*(R)+S*(R+y))
—2Php*(R) (S*(R)+S*(R+g). (4.13)

The total field
H = (HP+hp*(R)') & (4.14)

acts in a direction 8 to x where tan8= hp /Hj. Referred
to this direction the eigenfunctions have the form (4.4)
and the energies are the same with H replacing H&.

Changing the axis of reference to x these functions
transform to

(1,1)'= I++)=-', (1+sin8) (1,1)

1
+-', (1—sin8) (1, —1)+—cos8(1,0)

v2
1

(1,0)'=—
l l+ —)+ I

—+&j
V2

1=—cos8I (1,1)—(1, —1)j+sin8(1,0) (4.15)

ai ()P+1+2$P)(/+ 1)i
Po(*)= (4.1

4ri,' 4X'(1—P) (X'+1+X(1+P))

(X'+1+2XP) (X+1)'
8 Ky z

(7'+1+2~(1+P)) Z(1—P)
(4.2

which are plotted in Figs. 2 and 3.
Substituting into Kq. (1.2) the cross section is in t

static approximation

d'a (2ge') ' k
IF(x) I'e '~8((d)

dQdE ( iiic'~ hko

(1+p*') to(~)
X

P p (1—exp(it y))+a"-xi.')

y'**(R) is calculated like p **(R)by building an equi
alent B-P theory for z pairs with properties defined 1

(4.17). Comparing (4.17) with (4.8) it is seen that (4.1
may be obtained by putting X= 1 and

-'(1+P)—+(X'+1+2XP)/(X+1)' (4.1

in that expression. The argument of Sec. 3 may the&

fore be repeated with (4.18) for t to give y**(R) and g
in the form (3.39) with

(1, —1)'=
I

——)=-', (1—sin8)(1, 1)

1
+-,'(1+sin8) (1, —1)+—cos8(1,0)

(1—p*')Po(s)
+

Pp (1—exp(it g))+a'xi, '
(4.2

(o,o) =—
I
li-)- I-+)1=(0,0),

v2

Below T, therefore the cross section shows a depender.
on the direction of magnetization through e,. Above
this disappears as it must when both (4.11) and (4.1

become

where the representation in parentheses gives the total
spin and its component referred to the axis of H on the
left and to x on the right. The coeKcients are the
elements S")mm' of the matrix irreducible representa-
tion of the rotation group. Defining X=e 'p~/kT we
have from (4.15)

g2
=&o='('+P)/('+') ('-')

4rg2

while (4.12) and (4.20) become

2(1+P)
SK z

(3+P) 1 P—

(4.2

(4.2

= (X+1)'+2 (X'—1) sin8+ (X—1)' sin'8

: (X+1)'—2 (X'—1) sin8+ (X—1)' sin'8
. (X'+ 1+2XP)+ (X—1)' sin'8

: (X'+ 1+2XP)+ (X—1)' sin'8 (4.16)

Since h' is always small (X—1) sin8 is small. Well below
T„sin8 is always small h /H&, and when H& itself
becomes small close to T„X—1 is small 2t3H/kT„so
that (X—1) sin8 2Ph*/kT, . To first order in h* there-
fore (X—1)' sin'8 may be neglected and (4.16) written

= (1—e): (1+&):(li'+1+2XP)/(X+1)'
: (&'+1+»P)i(2+1)' (4.»)

where e is small and linear in h*.

Thus, Ky is always larger than K&,
' below T,. Close

T Ky rises twice as fast as K~' above T„K~ ' rise~

times as fast. re has the value (3.45) at T. and r„' c

creases with decreasing T while r&, increases. This lea
to a complicated behavior of (4.21) with temperatu

Van Kranendonk and Kasteleijn20 use their resu
with s=12 to give a first approximation for the fat
centered cubic lattice. To the same accuracy the resu
of this section might be used for the same purpose.

5. BINARY ALLOYS

Simple binary alloys with equal numbers of A and
atoms may conveniently be treated in the formalism
the Ising model of Sec. 3, with some slight modificatio
which in fact returns the theory to the form origina(
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presented by Bethe. The A atoms are taken to corre-
spond to spin state S'=+-,', B to S'=+-,'. The energy
of an alloy with respect to the energy of the pure A
and 8 crystals can be written

2+AB[VAA+ VBB 2 I AB7 2 Jit AB) (5 1)

where E~~ is the number of AJ3 pairs, and V~~ is the
interaction energy between a pair of nearest neighbor
A atoms, etc. For alloys which tend to form an ordered
mixed phase 2V@gg Vgg+ Vgg, l.e., J)0. The e8ec-
tive interaction in the Ising model may therefore be
written

2JS*(R)S*(R+g), (5.2)

where the sign is different from (3.1), J remaining
positive.

The ordered arrangement of the s.c. and b.c.c. lattices
under consideration consists of two sublattices, one
comprising mostly A atoms, the other mostly B. This
eGect can be represented in this method by introducing
a "staggered" ordering field Hi which acts in opposite
directions on the two sublattices. Since in these lattices
all z neighbors of a B site are on the A lattice and vice
versa the effective Hamiltonian of a pair may be written

—2JS*(R)S'(R+g) —2PH2(S*(R) —S*(R+II)) (5 3)

where R is on the A lattice, R+ g on the 8 lattice. There
are two kinds of cluster in the B-P method depending
on the sublattice of the central atom. However, these
may be treated together by considering an atom be
"right" (i.e., A atom on A sublattice, J3 on 8) or
"wrong" (It on A) instead of the probabilities of the
occurrence of the two spin orientations. Using (5.3) the
probabilities of the four possible configurations of a
pair, writing superscripts R for right and W for wrong,
are in the ratio

form

Ze 7'(R+5)+ST'(R)+a2e127'(R) =+p(R) (5.g)

since all the neighbors of R lie on the other lattice; and
the Fourier transform of the solution analogous to
(3.39) is

4(t)=
Qe (1+eXp(it. g))+a'x2'

(5.9)

In determining pe as from (3.36) the algebra is exactly
the same as that case but because of the formulation is
in terms of "right" and "wrong" the quantities do not
have the same meaning. x is, for example, not the
chemical potential.

The neutron scattering takes place because of the
interaction with the nuclei which can be represented by
a Fermi pseudo-potential. There will be an incoherent
part giving an isotropic background and a coherent part
for which the two elements will have diferent scattering
lengths a and b. The eGective coherent interaction be-
tween a neutron at r and the crystal may be written
therefore

h'
[2(a+b)+(a—b)S*(R)jb(r —R) (5 10)

R 28$p

The first term gives Bragg scattering with the reciprocal
lattice vectors of the lattice

do- XVp
', (a+b)'e-'wb (22—~).

dQ ~ (22r)'
(5.11)

The form factor is here unity because of the 8 function
interaction (5.10). The second term shows the effect of
the ordering. Below the critical temperature where
&S*)WO it also gives Bragg scattering but because (S*)
is diferent on the two sublattices it occurs at di8erent
angles. The cross section can conveniently be written

P22R. PWW. PRW .PWR —1(g.g . t. t (5.4)

where X and t a,re defined as in (3.2) and (3.5). In a
cluster the probabilities that an atom be right or
wrong are

P":Pw= (1+At)*:(X+t)'. (5.5)

Thus all the expressions of Sec. 3 can hold if R is written
for + and W for —.Returning to the S* notation, (S*)
has diGerent signs on the two sublattices.

(S*(A))=-,'[P"—P ]=—(S*(B))
= (1—X') i2(1+X'+2th) (5.6)

as in (3.9). Similarly,

7(R) = &S*(0)S*(R))=7'(R)+&S*(0))(S*(R))
=-,'h(R)[p" (O,R)+Pww(O, R)

P22w(0 R) Pw22(0 R)j
where b(R) is &1 according as whether R is on the same
sublattice as 0 or not. The difference equation (3.23)
which is derived using P~~, etc. , therefore takes the

dc EVp
,'(a —b)'e 2wb(22 —~—w), (5.12)

dQ ~ (22r)'

where w is a vector in reciprocal space such that
exp(iw R) = &1 according as R is the distance between
two atoms on the same or difFerent sublattices. ) There
is in addition the critical scattering given by

d'o (a—b)'
b(ru)e-2w P y'(R) exp(ii2 R)

QdE 4h 8

(a b)'—
b(~)e—2w

4h
Pp

X (5.13)
Q (1+exp(ix g))+a2ei2

$ See R. J. Elliott and R. D. Lowde, Proc. Roy. Soc. (London)
A230, 46 (1955). For s.c. one may choose w =~/a(1, 1,1) for b.c.c.,
2m-/a (1,0,0).
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from (5.9) where po and a'xp are given by (3.32)
and (3.20).

The denominator is periodic in reciprocal space and
is peaked around the points ~+w P.s (1+exp(iu g))
can be written Ps(1—exp(i(v+w) g)) and the function
has the forms given by (3.41) and (3.42) except for the
addition of w to x. The critical scattering thus occurs
around the superlattice Bragg reQections and does not
occur in the forward direction With. in the approximation

y is independent of time since transitions between spin
states here mean atomic displacements. The static
approximation is therefore exact for this case and all the
scattering is elastic as given in (5.13).

No observations have been reported of critical scat-
tering in these substances. It should also be observable
with x-rays where a formula like (5.13) will hold with
appropriate modification of the interaction (5.10). An
atomic form factor will appear in the cross section
because of the size of the atomic charge cloud. One
experimental difBculty will arise from the time required
for a crystal to reach its equilibrium configuration.

L ANTIFERROMAGNETS S= ~~

The methods of the earlier sections may be extended
without di6iculty to cover the case of antiferromag-
netism arising from a Heisenberg interaction of opposite
sign to that in Sec. 4. The cluster method for this case
was examined by Li.'4 Kasteleijn and Van Kranendonk25
have recently treated this problem in the constant
coupling approximation and again find that the results
can be obtained in closed algebraic form, although their
actual values are not very diBerent from Li's. VVe shall
find their formalism convenient for the theory of critical
scattering, and adopt their notation with the ordering
field written H1 instead of A4. The algebra is somewhat

heavy and since the method is exactly parallel with that
of earlier sections, the discussion will be given in

outline.
The eGective Hamiltonian for a pair of spins is

where

P"~.P~~ Pew P~"=X:X:1:1,

1q t
iq-

x,=-;.
I
.+- I~»n~l

s& E s)

(6.3)

(6.4)

with x= e (~ = t ', a=x '" as in reference 25.
An equivalent cluster is built from the z pairs involv-

ing one particular spin. As in (4.7) the probabilities for
this central atom are, using (6.3)

Ps:P~= v*(1+X )'. (1+X )'. (6.5)

Here, v is again related to the energy diGerence between
right and wrong spins arising from the ordering field.
The consistency equation obtained from the B-P
method gives

v'(1+X+) '= (1+X ) (6.6)

and comparing this with the equation (57) of reference
25 obtained by the constant coupling approximation

p —) —~2PH1(lcT —~—tan(a (6.7)

It is related to 8' in that reference by rV= 5" '.
The difference equation for Ps~(O, R), etc. , can now

be obtained as in Sec. 3 by varying the eGective field
on the pairs around R by a small space dependent com-
ponent in the z direction, and comparing the results for
an atom on the outside of a cluster with one in the
center. With the superlattice structure present, y'**(R)
is defined as in (5.7) and given by the difference equa-
tion (5.8). After manipulation we find

1 co 1 o)—co~I:I+—)+ I
—+8+—»n-I: I+—

&
—

I
—+8

2 V2 2

——',Jj(J'+4HPP') &

where since=2HQ(J'+4HPP') &. The probabilities of
the occurrence of the various configuration of neighbors,
using "right" and "wrong" as in Sec. 5, are

I++& 1J2

M 1—sm-I:I+ —)+ I
—+)J—cos-C I+—)—I

—+)j
v2 2 v2 2

(6.2)—-',J—(J'+4HPP') &

2JS(R) S(R+g)—2PH I
S*(R)—S*(R+g)j, (6.1)

where R is on the sublattice of predominantly + spin
and R+g on the other sublattice of predominantly
—spin. J is again positive. The eigenstates and energies
of (6.1) are

where

(2+X++X ) C

(1+X+)(1+X) D

a 1yx, a ) (1+x )
C/D= ln ln

BHx 1+X BH, (1+X )

( 11 t' 1)
lng 1+angl v+—

I

—
2gl s——

I
since

t)
1q

2g ingate%&+gl v ——
I

cosa~
s)

(6.8)

~4 Y. Y. Li, Phys. Rev. 84, 721 (1951).
~~ P. Q'. Kaste1eijn and J. Van Kranendonk, Physica 22, 367

(1956).

and

Po(s) = (s'/4vg, ') =C/4D(2+X++X ). (6.9)
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In the evaluation of Pp(s) using (3.36) x is not the
magnetic susceptibility because of the staggered spin
arrangement.

The x component can also be obtained by the method
used in Sec. 4. A small effective field hs*(R) in the x

direction is now considered to act on the cluster. To
first order the energies and eigenstates referred to the
axis of the resultant field at 0 to x, are given by (6.2).
Transforming to states referred to the x axis as given
by (4.15)

( ii , ( i) ( ii , ( ii
=1+vxI "+ I+-,'xl v

I
cospp+"I v

I
»n~»nil'1+pxl v+

v) L v) v) ( v)

( ii ( ii ( 1) ( ii ( 2) ( 1)
+pxl v—Ico~-xI v—

I
~ i»:1+pxl v+- I-pxl v—Ico~:1+pxl v+-

I

—pxl v ——Ico~ (6.10)
E vi v) E v) i v) E v)

to first order in since sine which is always small. Comparing this with (6.3) when X=i+p and pp=0, the ex-
pressions required may be written down from (6.8) and (6.9). They are

and

GK1s =2 2

iy ( ii
1+-',xl v+-

I

—-', x cos
I

v ——
I

v) ( v)

1)
1+-',xl v+—

I
v)

ii
x v —— coRo

E.

ii ii
xl v ——

I
co»p —lnx 1+-',xl v+-

I

v) e)

(6.11)

, (
co»p 1+-,'xl v+—

I

——,'xl v ——
I

cospp
E v) i v) & v)

Pp(x) =
4ri.' ( 1q ( 1i ii

t1+pxl v+-
I xl v--

I
co~—1+ixI v+-

I
»x

v) ( v) I ( v) I

(6.12)

Above T, there is no anisotropy and

CKy = —8, (6.13)
x+3 (xP —1)—p(x+3) lnx

g2 (x' —1)
0 (6.14)

4r|P (xP+3)L(x' —1)——,'(x'+3) lnxj

Putting these expressions into the scattering cross
section (1.2) we obtain a result analogous to (4.21)
except that because of the superlattice structure we use
(5.9) instead of (3.39). The critical scattering in anti-
ferromagnetic materials is therefore peaked around the
magnetic superlattice reflections and not about the
Bragg reflections nor the forward direction. The expres-
sions given above show that this scattering is of the
same order of magnitude and general behavior with
absolute temperature as is given by the constants for
the ferromagnetic case plotted in Figs. 2 and 3 for the
b.c.c. lattice.

7. ISING FERROMAGNET S=1

In the preceding sections the critical scattering has
been examined for the most important classes of sub-
stance where it may be observed, but for simplicity
attention was confined to spin ~i. Many magnetic sub-
stances which are possible for experimental observation
have larger spin values and it seemed important to

—2JS*(R)S*(R+g) —2PH, (S*(R)+S*(R+g) )
+D(S*'(R)+5*'(R+g) —2). (7.1)

For a cluster calculation this is summed over all g and
the && and D terms in S*(R) are omitted as in (3.3).
Proceeding in the B-P fashion, the relative probabilities
of finding 1, 0, and —1 at the center of a cluster are

Z'= (1+@+PAP)',
gp —~s(1+y+.gp)s

Z-'= (P+y+X'),
(7.2)

extend the theory at least as far as S= 1 to obtain some
indication of the effects at larger S and in particular to
make comparisons with the experiments on iron. As has
been shown by earlier calculations the theory is con-
siderably more complicated. ""These complications are
shown up by the Ising model with 5=1 which is now
considered in detail.

In this problem we confine attention to the s com-
ponents of spin which, on each atom, has three possible
values 1, 0, —1. It is necessary to introduce two order-
ing parameters x2, @ in order to build a consistent
theory. One of these can be regarded as arising in a pair
or cluster from an effective magnetic field Hi, but this
essentially only affects the ordering by altering the
relative amounts of 1 and —1 spins. The second reflects
a different kind of order by affecting the number of 0
spins. An effective Hamiltonian for a pair may be
written



R. J. ELLIOTT AN D W. MARSHALL

Zl Zo
Zl + +

(1+ht+A. ') (1+y+X') (P+kt+7P)

Z'y ZO@ Z—ly
Z'= + +

(1+ting+ PX') (1+@+X') (P+hk+X')

These reduce to

X't' '(1+/+X')~'=/X'(1+@+&, ')I '
=ik(P+ kk+h') '. (7.4)

This equation can also be obtained from the pair
Hamiltonian by minimizing the free energy with respect
to Hl and D, i.e., by using the Guggenheim method. ""

One solution of (7.4) is always

X=1 t' '(2+i') '=P(1+hk+P) ' (7 5)

Even for this disordered solution P is not unity. Above
a critical temperature when t= t, this is the only solution
of (7.4) but below T, there is a further solution X(1
describing the ordered state. Thus, f, is given by the
intersection of curve (7.5) with

t@=z(1—P) —2.

The Curie temperature is found to be k T,= 4:.79J.
To calculate y' we consider the clusters including R

with ordering parameters modified by the fixed orienta-
tion of the spin at 0 in state i= j., 0, —1

x'~&2+..'(R'),

4 =y+ h. '(R'),

where n labels the neighbors of R'. Then

(7 6)

where in terms of (7.1)

t = exp( —2J/kT), X = exp( —2PHi/kT),

@=Xexp( —D/kT).

By the equivalence of spins at the center and the
periphery of a cluster one obtains three consistency
equations, of which two are independent,

for all i, g, it can be shown that

Q;Z*be'(R) =Q; Z*ee'(R'). (7.11)

As in Sec. 3, P"'(O,R+ ll) are calculated in two ways
and simultaneous difference equations are obtained in
the form

a*'(R)= h'e "'"/R+j'e ""/R,
P(R) —gie mls/R+—kie xmR/R—

(7.13)

where h', j', g', k' are constant coefficients and Kl K2

the roots of

B'—h'Z'(z+a K) C' —c' Z(z +'aii)
=0. (7.14)B' b'Z'(z+a—K ) Co—coz'(z+a'K')

When this equation is evaluated numerically it is
found that one root a'Kl goes to zero at the Curie tem-
perature but the other a'F2' is always large ()200) so
that the corresponding parts of the solutions (7.13) may
be neglected. Equations (7.11) and (7.12) together with
the symmetry condition, P"(O,R) = P&'(O, R) determine
the coefficients in (7.13) except for a scaling factor. This
can be determined by relating P(R) (So'S*(R)) to the
susceptibility as in (3.36). This susceptibility has been
determined by a straightforward but tedious calculation
using the B-P method. Writing the final result

(So*S*(R))= (So*)'+
4n-rP R

(7.15)

the parameters ~&, ri are plotted in Figs. 4 and 5.

t»zi p, f (R+ y)+c~zi pe &'(R+ y)
=B'1'(R)+C'a'(R) (7.12)

of which two are independent, say, j= 1, 0. 6&, c&, 8',
C' are complicated coefficients which are determined
numerically. At large distances (7.12) may be replaced
by differential equations with solutions

where

Z'Y*&'(R)
P'~(O, R) =

P; Z~F' (R)
(7.7)

20-
V"(R') =g. L1+t4+PX'+ tb. '(R')+ P&.'(R')7,
F o(R') =g. L1+y+a'+S '(R')+e.*(R')jt (7.S)

v'-i(R') =g. P+@+V+ts.'(R')y..'(R')).

To first order in e and i1 the probabilities (7.7) may
be expressed in terms of the sums

ir'(R')=P e '(R'); f (R')=g & (R'). (7.9)

1.0-

06 OB tO I 2From consistency equations like (3.17)

P*(0)=P'(R) =P*(R+g) (7.10) FrG. 4. a~aP for the Ising model, spin i.
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8. HEISENBERG FERROMAGNET S=1
This model is probably a good approximation for iron

on which there have been a number of experimental
observations, which can be compared with the theory.
Section 7 has demonstrated the complexity of calcula-
tions for S= 1 but fortunately above T, a considerable
simplification is possible. Below T, however the calcu-
lations were more difIicult and the results have only
been obtained with further approximations.

The eRective Hamiltonian for a pair may be written

by analogy with (7.1) as

—2JS(R) S(R+g) —2PH, .[S*(R)+S*(R+II)]
+D[S "(R+(I)+S*'(R)—2]. (8.1)

0

20-

I 0-

0'6 0.8 IO I 2 l4

Neglecting D for the moment the eigenstates for the
pair can be labeled by the total spin 5=2, 1, 0 and
component S*.The energy of

~
S,S*) is

—2J[S(S+1)—2]—2PHiS*. (8.2)

Expanding the states in the representation ~S'(R),
S*(R+Il)) the relative probabilities P" that these
neighbors will be in the various spin states are found.

Pll. P10.Pl—1.~10.~l—1.POQ

= 1/X'-'(1+P)/X: (1+3P+2P)/6
-'(1+P)a a' (2+ P)/3 (8.3)

where X and t are defined in (7.2).
As in Sec. 4 it is now possible to build an equivalent

cluster where with the definition (7.2)

FIG. 6. a tent for the Heisenberg model, spin 1. The curves for
T(T, have been calculated on an approximate theory and may
not be reliable.

The consistency equations may be determined by either
a B-P method or the constant coupling method and are

X[-'(1+P)(1+X')+X-',(2+P)]
=X'[1+-'X(1+P)+-', X'(1+3P+2P)]*-i

= [xs(1+3P+2t')+ ~X(1+8)+X] ' (8.5)

which clearly cannot in general be satisfied. They are
satisfied however by X= 1 so that at high temperatures
8&=0, D=O, i.e., no ordering, is a solution. Taking any
pair of equations they also determine a unique transition
temperature below which another root would occur, vis. ,

20-

1 x

Z' = —+-,'(1+P)+-',X(1+38+2P)

1 z—(1+3P+2P)—i2 (1+P)+X
Q

He isenber

(8.4)

z(5 —3t,'—2t, ') =3(5+t,'),

where t, = exp( —2J/kT, ).
Below this temperature a consistent theory demands

that both Hl and D be nonzero, but close to T, when
Hl is small the equations are satisfied to first order so
D must be of order (PHi)'/kT, . Because of the non-
commutation of S(R) the problem including the two
parameters is much more tedious than is Sec. 7 and has
not been pursued. Above T„however, it is possible to
use the one parameter theory. As in Sec. 3, one calcu-
lates J"&(O,R) by considering that the fixing of the spin
at 0 induces an ordering field on the clusters around R
and X becomes 1+cd(R). There is also a second ordering
eRect through D but it is an order of magnitude smaller
than that through Hl and is neglected. Following
through the argument of the earlier sections we find

l5—

.IO—

Heisenber
(8.6)

(5+9P+4t') (5+P) 2a'
PO

(5+3P+t') (5 3t' 2P) 3r '— —(8.7)

(5+9P+4P) — 3(5+P)
aA:1=2 2

Z

2(5+3P+P) (5 3P 2t')— —

i

06 08 I.O
TITc

I

I 2
I

I e4

F1G. 5. r12/a2 for the Ising and Heisenberg models, spin 1. The
Heisenberg curves for T &T, have been calculated on an approxi-
mate theory and may not be reliable.

if rl is defined as in reference 10. The cross section is
given by (4.21) with these substitutions, and is inde-
pendent of e. Comparing the plots for the b.c.c. lattice
in Figs. 5 and 6 with those in Figs. 2 and 3 giving the
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results for S=~., ~& and r& do not diGer greatly with S
value. In particular at T, itself r~ has the same value as
given by (3.45).

Just below T„a one parameter theory can be con-
structed by applying a more approximate theory which
may not be very reliable, similar to that developed by
%eiss. ' D is again taken to be zero and all the ordering
is produced by the eGective magnetic 6eld H&. It is not
now possible to satisfy the condition that a central and
a peripheral spin have the same probabilities of being
in each spin state since this leads to two equations in
one unknown (8.2). Instead, a single consistency condi-
tion is imposed that the average magnetic moment on
the two spins be the same; i.e.,

Z1(] —yP) ZP(1 —y)a Z—'(b —)P)
Z' —Z '= + +, (88)

1+aX+bX' a(1+X')+cX b+aX+)'

where

a=-', (1+t'), b= p (1+3t'+2t1), c=
p1(2+tp). (8.9)

The y'(R) are calculated by the same method as in the
earlier sections except that it is essential to calculate the
change in magnetic moment induced in a spin at R by
fixing spin 0 in state i, i.e., Pp, s"—8' '(O,R); rather
than E"(O,R) separately. For y'**(R) the e8ective fields
on the pairs participating in the cluster around R
have an additional component hs*(R) and X becomes
A+ ps(R). The usual difference equation (3.23) is repro-
duced. The calculation is straightforward but tedious
and gives 6nally

Xz'(X' —b)
asp1,P=(z'a'+ZPaP+Z 'a ') ~

l (1+ah+hZ')

Xz '(bX' —1) X'(Z' —Z ')'
+ (8.10)

(b+aX+XP) Z'+ZP+Z '
I

2a'
(

Z'(2b+aX)
Pp(z) = =z

3r1P I (1+aX+bX')

Z-'(2m '+u)+,(Z1+ZP+Z—1)—1

(b+aX+X')

+ap111 'L(z'+Z ')Zp+4Z'Z ']
X[z'+Z'+Z 'j ', (8.11)

where

a1= zX(2b+aX) (b—X')+XP(aXP+4Q, jab)
ap = z(1—XP)Pa'+ aX (dP+4aX+ c) (8.12)

a 1=zg (2bl1+a) (bXP 1)+&~(aby +—4bg+a)

A few values have been calculated and extrapolated
curves are given in Figs. 5 and 6 for the b.c.c. lattice.

For y'**(R) the calculation is similar to that given for
this quantity in Sec. 4. The results have the form (8.10)

with X= 1 and (8.9) replaced by

a =2P,'—X+1+Xx'$/(1+X)'

1 2 16
b=

i
X'+—+—+8z+—x' iX'/(1+X)'

X' 3 3 (8.13)

1 2 4
c=4( V+ + + e )V/(1+~)4

3 3

and are plotted in Figs. 5 and 6. The cross section is
given by (4.21) with these substitutions.

This approximation is only valid in the region just
below T, where D is small, and is possibly adequate
if

~
T, T~ (0—.1T,. In this region the curves of 111 and

r~ again resemble the results in Figs. 2 and 3 for S=-,'.
The experimental points determined by Shull, Wilkin-
son, and Gersch'4 are shown in the 6gures. The agree-
ment is good near T, but at higher temperatures the
agreement is less satisfactory. The discrepancy may
possibly be accounted for by the inelasticity of the
scattering which will be discussed in a subsequent paper.
Lowde's' results also con6rm the general form and order
of magnitude of the predicted scattering around a Sragg
reflection. Shull et ul. 6nd no dependence of the cross
section on e, below T, but have made measurements
only at one angle. Lowde has some indication of a small
change with magnetization of the kind predicted.
Further experimental observation of this eGect would
be most interesting.

9. CONCLUSION

A method has been given for determining the corre-
lation functions between spin components at all dis-
tances S'(0)S'(R) in ordered magnetic materials. Details
of these functions are given for a number of the simple
cases—ferromagnets with spin ~ and 1, antiferromagnets
with spin —,', and binary alloys. The parameters a& and
r& describing the order are found to diGer by only a
factor of about two and the above results are probably
a useful 6rst approximation for other spin values which
may be observed experimentally. The method could be
readily extended in some directions, for example to
magnets of arbitrary spin above T,.

The correlations have been used to calculate the
critical scattering of neutrons close to T,. There is
reasonable agreement with the experimental results on
iron and the Heisenberg model with S=1 and it would
be interesting to have experimental results on the pre-
dicted dependence on the direction of the magnetization
below T„and on the predicted eGects on antiferro-
magnets and binary alloys. The inelastic scattering
arising from the time dependence of the correlation will
be discussed in a later paper.

The correlation functions have an important bearing
on other properties, and in particular the modi6cation
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of the specific heat anomaly and the eGect on the elec-
trical resistivity of magnets are being examined.
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1. INTRODUCTION

HE spin arrangement in the antiferromagnetic
state of cubic crystals MnO, FeO, CoO, and NiO

has been a subject of active interest during the past
several years. The first neutron diGraction study by
Shull, Strauser, and Wollan' indicated that the spin
superstructure in these oxides is such that a sheet of
plus spins and a sheet of minus spins alternate along
one of the L1117 directions (a structure suggested by
Neei2) and that the direction of the spins is one of the
(1007 axes, except in FeO in which it was found to be
perpendicular to those sheets, i.e., parallel to L1117.
The electronic state of a free Mn++ is (Sd)' 'S and so
one expects the magnetic anisotropy energy in MnO
to arise principally from the magnetic dipole-dipole
interactions among the manganous ions, as the elec-
tronic state '5 would suQ'er little change in the crystal.
A simple elementary consideration, as well as an exact
calculation due to Kaplan, ' of these interactions shows
that the stable spin direction should lie in the (111)
plane, in contradiction to the experiment. A similar
situation is encountered with NiO, since the orbital
moment of Ni~, whose electronic state is (3d) "P, is
to be quenched in the cubic crystalline electric field
of the oxide. A new neutron di8'raction study carried
out by Roth4 has revealed features which are in favor
of the theory. His results indicate that the spin direction
in MnO is either L1117 or L1107, the latter in the
(111)plane, and that in Nio t 1107. Both experiments,
new and earlier, conclude that the spin direction in
FeO is perpendicular to the (111) sheets, as reflections
from these planes vanish. This could be expected from

' Shull, Strauser, and Wollan, Phys. Rev. 83, 333 (1951).
~ L. Noel, Ann. phys. (12) 3, 137 (1948).' J. I. Kaplan, J. Chem. Phys. 22, 1709 (1954).
4W. L. Roth, Annual Meeting, American Crystallographic

Association, June, 1956.

with

4=alt, i+%),v+Q Lr

@=0.900, b= —0.401, c=0.169, (2)

' J. Kanamori, Progr. Theoret. Phys. (Kyoto) j.?, 177, 197
(1956).

a theory cited below. In CoO, Roth's preliminary
interpretation of his results was that the spin direction
might be either L1127 or L0117, both being in the (111)
plane, which, however, contradicts the theory. The
situations with FeO and CoO are somewhat complicated
due to the existence of a residual orbital moment of
the ions in the crystal. This was already conceived by
Shull et c/. ' in connection with larger observed intensities
of diGraction lines than expected on the basis of the
spin only theory.

The electronic states of a free Fe++ and a free Co~
are, respectively, (3a)' 'D and (3d)"F. In the cubic
crystalline field of the oxides, their orbital degeneracy
is lifted only partially leaving the ground-state triply
degenerate in both cases. This ground state is described
in terms of an angular momentum operator 1 of magni-
tude one, i.e., the total angular momentum operator
L of the free ion can be replaced by —1 in FeO and
——,1 in CoO. This small 1 is coupled with the spin
angular momentum, S, to form a total angular momen-
tum 1+S, and the eigenstates of the ions are character-
ized by the eigenvalues of (1+S)'=j(j+1), with
j= j., 2, 3 in. the case of FeO and j= —,', -'„—', in the case
of CoO, if no exchange couplings exist among the ions.
Actually they do exist, and when taken into account in
the approximation of the Weiss molecular field, states
with diGerent j but with the same l,+S, couple where
s is the direction of the molecular field. Kanamori'
has shown that the state of Co + in CoO at absolute
zero is described by the wave function


