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1. INTRODUCTION

ESULTS of calculations of atomic wave functions
and fields, by the method of the self-consistent

field with or without exchange, for a number of atoms
had already been published before the war. But a sys-
tematic survey of these functions and the way in which
they vary with atomic number does not seem to have
been undertaken till recently, by Lowdin" and by the
writer, ' and, with reference to atomic fields rather than
wave functions, by Mrs. Ridley. 4

One purpose of such a survey is to provide means for
the interpolation of wave functions or fields with respect
to atomic number. %hether the results of such an inter-
polation are going to be used as they stand for the
interpolation of other atomic properties, such as x-ray
scattering factors, or adopted as initial estimates in a
self-consistent field calculation, it is worth taking some
trouble to make this interpolation as accurate as
possible. This is clear if the interpolated results are
going to be used as they stand; and if they are going to
be used as initial estimates of a self-consistent field
calculation (particularly one with exchange), trouble
taken in obtaining these estimates is likely to be repaid
many times over in the shortening of the subsequent
calculation.

2. SCALING

For a given (nl) wave function, the most obvious
variation with increasing atomic number is a decrease
in linear dimensions. The linear dimensions of an atomic
wave function can be characterized by a dimension R,
which will be called the "scale length. " This can be
chosen in various ways: we may, for example, take R
to be r~, the radius of the main maximum of the radial
charge density P'(nl; r), or to be the mean radius

r= ~I rP'(nl; r)dr,
0

or the root-mean-square radius,

or the median radius r, that is, the radius such that
' P. O. Lowdin, Phys. Rev. 90, 120 (1953).
2 P. O. Lowdin, Phys. Rev. 94, 1600 (1954).' D. R. Hartree, Proc. Cambridge Phil. Soc. 51, 684 (1955).
4 E. C. Ridley, Proc. Cambridge Phil. Soc. 51, 693 (1955).
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the probability of the electron lying within r is -„

(3)

If, for a given (nl), the radial wave functions P(nl; r)
for different atoms were replicas of the same function
on different linear scales, they would be related by the
relation

R*'P(nl; r) is a function of r/R only. (4)

The relation (4) between wave functions of different
atoms will be called "pure scaling. " It is convenient
to write

s=r/R, P*(nl; s) =R~P(nl; Rs), (5)

and to refer to s as the "reduced radius" and P*(ml; s)
as the "reduced radial wave function. " The relations
between the inner wave functions of the heavier atoms
depart little from the "pure scaling" relation (4), and a
relation of this kind has been used by various workers
to estimate wave functions or other atomic properties
depending on them for one atom from those of an atom
of neighboring atomic number.

3. SCREENING PARAMETERS

It is often convenient to express the scale length R
for an (nl) wave function in terms of the point charge Z
of a Coulomb field for which the (nl) wave function has
that value of R. This point charge Z is often called the
"effective nuclear charge" for R, and if for an atom of
atomic number E this effective nuclear charge is written
X—o., 0- is called the "screening-parameter"* for R. If
subscript (H) is used to denote values for hydrogen,
a is given by

R=Ri@&/(1V 0').

If for a many-electron atom the (ml) wave function
were derivable from that for hydrogen by the pure-
scaling relation (4), the screening parameter 0 would be
independent of the particular dimension R used to
define it. However, the outer wave functions of neutral
and slightly-ionized atoms, particularly those of nega-
tive ions, the (3d) wave functions of the atoms of the
first long period, and probably the (4d) wave functions
of the second long period, depart considerably from

*Other terms are "screening constant" and "shielding con-
stant" but these do not seem satisfactory as the quantity o-, so
de6ned, is not a constant for variation of any of the variables of
which it might be considered a function.
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scaled hydrogen wave functions, and the screening
parameter o. may vary quite considerably with the prop-

ertyy

chosen to de6ne it. For Mn, for example, the values
of 03~ defined through the radius r~ of maximum

~
P(3d; r) ~

and through r difier by as much as 3 units.
Thus there is no single "screening parameter" which
will represent all the properties of such a function. This
is perhaps not always sufEciently realized.

4. CHOICE OF SCALE RADIUS

In the results presented in Sec. 6, the mean radius r
given by (1) has been adopted as the scale radius R.
This choice is perhaps not the best, as it gives rather
too much weight to the behavior of the wave function
for large r (the root-mean-square radius (r')& gives still
more weight to the wave function for large r). A result
is that for given atomic number, the values of 0 for the
outer wave functions, so defined, may show quite a
considerable variation with the degree of ionization.
The radius rss of the main maximum of ~P(r)l; r)

~

varies less than r with the degree of ionization. The
main effect of the degree of ionization is on the way the
wave function decreases from this maximum as r in-
creases, so that the choice R=t ~ would lead to a smaller
variation of cr with degree of ionization. On the other
hand, three-figure values of the radial wave functions
are all that are available in most cases, and in view of
the approximations made in deriving the equations
from which these wave functions were evaluated, there
would be no signi6cance in carrying the solution of these
equations to a greater degree of numerical accuracy. But
this is not enough to locate the position of the maximum
of

~
P())l; r)

~
consistently to the accuracy desirable for

the analysis of the variation of the wave functions with
atomic number and with the atomic con6guration. The
values of r are easily evaluated to the degree of accuracy
justified by that of the values of the radial wave func-
tions themselves, and adoption of this dimension as the
scale length, turns out to have some other advantages.

5. BEHAVIOR OF WAVE FUNCTIONS FOR
LARGE ATOMIC NUMBER

Although the nonrelativistic Schrodinger equation is
not physically signi6cant for large values of the atomic
number N, still we can inquire, as a mathematical
rather than a physical question, how its solutions be-
have, as functions of N, as N~. The results turn out
to be useful in the present context: first, because they
suggest the most appropriate way of presenting the
variation of the screening parameters 0 and reduced
wave functions P*(s) with atomic number N, from the
point of view of ease of interpolation; and secondly,
because by using the asymptotic behavior of 0. and
P*(s) with N as N~~, we can make the estimation of
wave functions, for atoms of atomic number higher than
any for which results are available, an interpolation
between available results and the limiting results for
N~00, instead of being an extrapolation.

Then
r ="(n)/(N &) ~

(r =o p+0 (1/N),

(7)

where

o p
——[2/r(H)) ( P(n) (el; p)Q(Nl; p)dp.

Since, from (7), r is O(1/N), it follows that (8) can be
written

o =o p+0(r), (1o)

O(r") denoting a quantity q such that q/r" remains
6nite as N~~.

It also follows from (6) that, if s=r/r, the reduced
wave function is given by

P(r)l; s) =P*(H) (Nl; s)+rQ*(gl; s)+O(r'), (11)

Q* being a function which can be expressed in terms of
the functions P(H) and Q, which occur in the expression
(6). It is clear from formula (11) that, for a given value
of s, the Coulomb-field value P*(n)(wl; s) is the limit
of the reduced wave function P*(nl; s), for large atomic
number (N~~, r—)0). For a given (el), the limiting
value r0 of the screening parameter and the function
Q*(el; s) consist of sums of contributions from the
various ()sl) groups in the atom.

Equations for the functions Q, R, in (6) can be
obtained by inserting this expression into Fock s equa-
tions and equating powers of 1/N. Solutions of these
equations (with exchange) for the normal configurations
(for large N) of systems of up to 28 electrons have been
evaluated by Charlotte Froese, and the values of 00
calculated. ' Some results from these calculations are
included in Figs. 1-3.

Mrs. Ridley~ has shown that if the scale length R is
taken as the root-mean-square distance of the electron
from the nucleus,

instead of t", then the limiting value as N—+~ of the
corresponding screening parameter 0 is

= [1/r' ] ~ p'P (rd p)Q(& ' p)(fp'
0

~ C. Froese, Proc. Roy. Soc. (London), 239, 311 (1957).
6 D. R. Hartree, The Calculation of Atomk Structures (John

Wiley and Sons, Inc. , New York, 1957},Sec. 7.6.' E. C. Ridley, Ph.D. thesis, Cambridge (1955}.

It appears' ' that, for a given configuration, the nor-
malized solutions of Fock's equations (or of the equa-
tions of the self-consistent field without exchange) have
for large N the asymptotic behavior expressed by

P(ml; r) =N&[P(n)())l; Nr)+(1/N)Q(wl; Nr)

+(1/N')R(r)l; ¹)+O(1/¹)],(6)

and consequently that if the screening parameter 0 for
t is defined by
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and if the scale length R is taken as the median rad
r, such that

as e me lan radius

4
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then the limiting value as N~~ f tho e correspondin
screening parameter is

p g

f ~IIS

o'0= —
2~ P&H&(I&l) p)Q(nl; p)&lp/r~&&P&H&(nl; r~))

These values differ from each other and from the value
r =r; t is i"ustrates the variation of the screen-

ing parameter with the property used to de6n d
ows that this variation does not vanish in the limit

00.
Formulas (10) and (11) suggest that a convenient

way of presenting the variation of the screening param-
eters and reduced wave functions P~, '

hs, wit atomic
number is to plot 0, and P*(s) for fixed s, against r as
a scissa, instead of against the atomic number N. Then
the Coulomb-6eld points 00 and P~ s
c u e on a plot of 6nite extent, and also the variation

~n; s~ may be approximately linear in r,
at least for values of N large compared with h hre wl 0) w ic

d be convenient for interpolation. It is indeed found
or a given con6guration that these variations are re-

y y linear over the whole range from the
limit N~ down to the slightly ionized and neutral
atoms.
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0. VARIATION OF SCREENING PARAMETERS
WITH ATOMIC NUMBER

with atomi
Figures 1—3 show examples of plots of tho e variation

wi atomic number of screening parameters for r,
plotted wit the mean radius r as abscissa

(2 2s a
in e previous section. They refer respectiv l t they, o e

p), ( s), and (3d) wave functions calculated b the
solution of Fo

uae yt e

exchan e
Foc s equations (self-consistent field h

ge). On such a plot of 0 against r the oin f
e wit

an atom of ao atomic number N, in difFerent states of
ionization, are the hyperbolas

O' =N r&r&&(r, —

o er, in t e irec-space at unit intervals from one an th, '
h

Fi
ion o t e o axis. These curves are drawn b kro en in
igs. 1—3. Here r(H) has the value'

r&&r&
——,'f 3I&' l—(l+1—))

For each configuration for which there are enough
points to judge, the results for the (2 ) fe " wave unction

ig. & s ow remarkably small departures f les rom inear

from r=0 t
ions with atomic number over the h 1r e w oe range

rom r=0 to the negative ions. In Fig. 2, for the (2s)
wave function the de partures from a linear variation
of 0 with r are greater than for (2p) hr; t ey occur mainly
or arge r, and even then are not large. In Fi 3 f

ave function, some of the points are based on
n ig. , or

results of calculations which are only preliminary, but
improvement in the approximation to th l

oc s equations is unlikely to make more than m
changes. For the + '

more an minor

g . or e Cu iso-electronic sequence, the con-
uni s' in r3~, from j.8.3siderable variation (nearly 5 t

or Cu to 14.5 in the limit N—+~ should b
ates how rough an approximation it may be

to treat the screening parameter thas e sum o contribu-
FIGs. 1—3. Screening parameters a.g o a

f h d' F s te t 6eld calcula-
~ ~

ius r. rom results of self-con
e, p o e against r.

8E UE. U. Condon and G. H. Shortley, The Theor o
Spectra (Cambridge Universit P L diversi y ress, London, 1935), Table 2'.
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tions from the various (nl) groups, these contributions
depending on the configuration only. Moreover, this
variation is a decrease with increasing atomic number;
this should be compared with the behavior of the screen-
ing parameters of Viervoll and Ogrim, ' and Qurashi, "
used in the calculation of atomic scattering factors for x
rays; these parameters increase with atomic number,
and to a much greater extent. Certainly Viervoll and
Ogrim's, and Qurashi's figures refer to neutral or slightly
ionized atoms, whereas the uppermost curve in Fig. 3
refers to a constant con6guration; no results, calculated
with exchange, are currently available for extending Fig.
3 to con6gurations of more than 28 electrons, but it does
not seem likely that the addition of further electron
groups, lying mainly outside the (3d) group, would in-
crease 03~ by more than a few units. This different
behavior of the screening parameters used in calculating
atomic scattering factors for x-rays is discussed in the
following section.

Figures 1—3 show that when the variation of a screen-
ing parameter 0.

& with atomic number is expressed by
plotting cr against r rather than against X, the variation
of cr with r, for a given configuration, is very nearly
linear right from small values of r (large values of E),
for which the results of Sec. 5 can be expected to apply,
to the slightly ionized and neutral atoms, and even in
some cases to the negative ions. On account of the small
departures from linearity when there are results for
more than one state of ionization (in addition to the
limit X—+~) available, the curves of p against r have
been drawn as straight lines unless there is reason to
draw them otherwise.

On these figures, the results for constant con6gura-
tion and those for constant atomic number lie on smooth
curves. On the other hand, for atoms in which the (Nl)
group is incomplete, the values of 0.„~ for a constant
degree of ionization may not lie on a smooth curve,
since they refer to terms with difi'erent values of (LS),
and the coefficients of one or two of the terms in the
equation for the corresponding radial wave function
have different values for the diferent terms.

A physical explanation can be given of some of the
features shown by Figs. 1-3.Consider, for example, the
behavior of 02~ with r for the 10-electron iso-electronic
sequence. With increasing atomic number, the (2p)
wave function contracts relative to the (2s) function.
This is illustrated by the fact that for F, Ne', and
Na, r2~&r2„whereas in the Coulomb-field limit,
r»= (5/6)r&, . Consequently for an electron in a (2p)
wave function, the screening of the nucleus by the elec-
trons in the (2s) wave function decreases with increasing
atomic number (decreasing r), as shown in Fig. 1. A
similar explanation applies to the decrease of 03~ with
r for the (3d)'P configuration.

The screening parameter ops for Ti+(3d)' is actually

9 H. Viervoll and O. Ogrirn, Acta Cryst. 2, 277 (1948).I M. M. Qurashi, Acta Cryst. 7, 310 (1954).

smaller than that for Ca+(3d)'; the reason here is that
in Ca+ the (3d) wave function lies largely outside the
(3s)'(3P)P charge distribution of the argon-like core,
whereas in Ti+ the (3d) wave function lies in the same
range of radii as the (3s), (3p) wave functions, and the
lessened screening by the (3s)'(3p)P groups more than
compensates for the screening by the additional elec-
trons in the other two (3d) wave functions. A similar
explanation can be given of the decrease of 0.3& by more
than 1 unit between Mn+ and Mn+'; on the removal of
one (3d) electron from Mn+, the remaining (3d) wave
functions contract relative to the (3s)'(3p) p groups, and
the consequent decrease of the screening of the nucleus
by the (3s)'(3p)p groups is added to the decrease of
screening resulting from the removal of the (3d)
electron.

Data for plotting p against r for the (3s) and (3p)
wave'functions are at present scanty. However, when
recently an estimate was required of the difference be-
tween the contribution from the argon-like core to the
atomic scattering factor for Fe in the configuration
(3d)p(4s)p and the configuration (3d)p(4s)p(4p)4, sug-
tested as an approximation to that in metallic iron, it
was found that the available data for the (3s) and (3p)
wave functions, including particularly the limiting
values for X~~, were adequate to give the estimates
required.

'7. SCREENING PARAMETERS FOR CALCULATING
ATOMIC SCATTERING FACTORS

Instead of determining screening parameters 0- for an
(nl) wave function by comparing the value of some
dimension R (or some other quantity) with the corre-
sponding value for the (el) wave function of hydrogen,
screening parameters can be specified, without reference
to hydrogen wave functions, by assigning arbitrarily a
value ao to that wave function of some atom, of atomic
number X0, and determining the values for other atoms
accordingly. To obtain the scaling ratio R(Ã)/R(Xp)
between the values of the scale length E for atomic
numbers X and N'0, the value of 0. assigned to atomic
number 1V is given by

(X—o)/(Xp —op) =R(Xp)/R(Ã). (12)

This, in effect, is what has been done in the assign-
ment of values of screening parametersf for the eval-
uation of the contributions to the atomic scattering
factors from different (nl) groups of electrons in an
atom. James and Brindley" write "s is defined by
having values which make the curves of f against
L1/(Z —s)$(sine)/X as nearly coincident as possible";
this process is one of pure scaling, using screening
parameters (s in James and Brindley's notation) related
by formula (12).This formula, however, does not define

t The screening parameters 0. are written s by James and
Brindley" and p by Viervoll and Ogrime and Q by Qurashi'0."R.W. James and G. W. Brindley, Phil. Mag. 12, 81 (1931),
p. 89.
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a unique set of screening parameters, since if 0.0', cr' are
numbers related by

(X—o.')/(1Vp —o p') = (.V—o)/(.Vp —o p); (13)

the relation between the wave functions which is ex-
pressed by the use of ao' and 0-' as screening parameters
is just the same as that expressed by the use of ao and 0-.

The relation between the set of screening parameters
o and the set 0' is

o = 1V(op —0'p)/(1Vp —&tp)
—o(Vp o'p —)/(Xp —o'p), (14)

30

(4s)r 0r
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A 4+ Cs+
I

4o
rx

xI

and if 0 varies only slightly with E, e' will vary nearly
linearly with S.Such a nearly linear variation of screening
parameter with atomic number is indeed shown by the
values for the (3s), (3p), (3d), and (4s) wave functions
given by Viervoll, Ogrim, and Qurashi, shown in Fig. 4.
This behavior is strikingly different from that of screen-
ing parameters obtained by comparing values of some
dimension R with that of the corresponding hydrogen
wave function. The most nearly comparable values are

FzG. 5. Screening parameters 03 0.3p (T3d 04 and ~4„ for the
median radius r, from results of self-consistent field calculations
without exchange, plotted against X.

any values of op and o given by (12) will give the same
results when applied to the scaling of wave functions or
the evaluation of properties depending on such scaling.
However, the smaller the range of a screening parameter
the more likely it is that it can be interpolated accu-
rately. A comparison of Figs. 4 and 5 suggests that, for
the (3s), (3p), (3d), and (4s) wave functions, a more
convenient assignment of screening parameters could
be made than that adopted by Viervoll and Ogrim,
and Qurashi.

No C I IC Co
I

IO 20

Cu' Rb

30 40
N

Cs
I

FrG. 4. Screening parameters rr3 0.3p 03$ and (T4„as used in
calculation of x-ray scattering factors, plotted against atomic
number X.

those for the screening parameter for the median radius
r Lsee Eq. (3)$, obtained by Mrs. Ridley' in an analysis
of results of calculation of the self-consistent 6eld with-
out exchange, mainly for neutral and slightly ionized
atoms of the heavier elements. These values, for the
(3s) to (4p) wave functions, are shown in Fig. 5, which
is drawn on the same scales as Fig. 4 so as to be easily
comparable with it. For X=29 to 55 the range of Mrs.
Ridley's values of o (3d) is less than 2 units, whereas the
values given by Qurashi cover a range of nearly 18
units; that is, the range of 0. is not much less than that
of X—cr. A feature of the results shown in Fig. 5 is the
initial decrease of o(3d) with increasing atomic number
once the (3d)" group is complete; the physical reason
for this has been considered in Sec. 6. The values of
Viervoll, Ogrim, and Qurashi, on the other hand, in-
crease with atomic number over the wide range.

This behavior of the values of the screening param-
eters used by Viervoll and Ogrim, and Qurashi does not
imply that there is anything wrong with these values;

8. VARIATION OF REDUCED WAVE FUNCTIONS
WITH ATOMIC NUMBER

Figures 6 and 7 are plots of P*(rd; s) against r for one
value of s for each of the (2p) and (2s) wave functions;
the values of s for which the 6gures are drawn have been
chosen as being in the neighborhood of the values of s
for which the variation of P*(s) with r is greatest for
the wave function concerned. In Figs. 6 and 7, points
for atoms of the same element in different stages of
ionization are joined by broken lines.

The results for the neon-like iso-electronic sequence
have been calculated by different workers, Na+ and Si+4

by W. Hartree" ";Mg+' by Yost" F, Al+', and Fe+"by
Charlotte Froese"; and Al+' also by Kattenbach"; using

O
0. 6

Q

FrG. 6. Reduced wave functions P*(2p; s) for s=0.3, from re-
sults of self-consistent field calculations with exchange, plotted
against r.

' D. R. Hartree and %. Hartree, Proc. Roy. Soc. (London)
193, 299 (1948).

"Hartree, Hartree, and Manning, Phys. Rev. 60, 857 (1941).
'4 w. J. Yost, Phys. Rev. 58, 557 (1940).
'5 C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957)."K.Kattenbach, Z. Astrophys. 33, 165 (19/3),
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Coulomb-Geld point r =O. These features of the reduced
wave functions can be used to simplify considerably
the interpolation of wave functions with respect to
atomic number. "

FrG. 7. Reduced wave functions P*(2s; s) for s=0.4, from re-
sults of self-consistent 6eld calculation with exchange, plotted
against r.

difFerent forms of the radial wave equation, diferent
methods for the numerical integration of the equations
and for determining the characteristic values of the
e parameters in these equations so as to satisfy the two-
point boundary conditions and the condition of nor-
malization which the radial wave function must satisfy;
and using also diGerent sizes of the interval of integra-
tion. The consistency of the reduced (2p) wave func-
tions for the difFerent atoms of the sequence provides a
good check on the whole set of calculations. It also
indicates that the difFerences, at 6xed s, between the
values of the reduced wave function P*(nl; s) for differ-
ent configurations in which the (2p)' group is complete,
such as the 10-electron con6guration of Ne, the 18-
electron configuratioa of Ar, and the 28-electron con-
figuration of Cu+, are significant.

In Fig. 7 for the (2s), the points for Cu+, Ca+', K+,
Cl, Si+', Mg+', and Na+ fall nearly on a straight line,
which however does not pass through the Coulomb-6eld
point at r=O. In the writer's previous paper' this was
commented on as a matter for surprise, if not for sus-
picion of a mistake. It is clear now that it was a result
of trying to pass a single curve through points repre-
senting values of the reduced (2s) wave function for
difFerent configurations; the subsequently calculated
results for Fe+" shows that for a.toms in which the (2p)'
group is complete, the variation of the reduced wave
function with the con6guration, though small, is ap-
preciable. The points for the 10-electron iso-electronic
sequence, with the Coulomb-field point at r=O, fall on
a smooth curve which di6ers little from a straight line.

Figures 6 and 7 show that when, for a given con-
6guration, the variation of a reduced radial wave func-
tion with atomic number is expressed by plotting P"(s),
for given s, against r, rather than against the atomic
number, then the variation of P*(s), like that of the
screening parameter o, is in many cases nearly linear
from r=O right to the slightly ionized and neutral
atoms. Moreover, the curves of constant atomic number
are approximately similar curves with respect to the

I6-

I05 r

IO

Cc+4

Kr+8
' . . +

12-

II-
C+

Cu+

Fzo. 8. Screening parameters 0.3„0-g„, and aeq for 28 electron
systems (straight lines drawn from values of 0.0 and (der/dr)& as
calculated by C. Froese).

In Fig. 8 the straight lines from r =0 to 0.5 are drawn
from the values of so and (do/dr)0 calculated by Miss
Froese for the normal con6guration of 28-electron sys-
tems. The plotted points give the values of o derived
from the results of Piper's calculations. The departure
of o.3& from a linear variation with r is remarkably small.

Miss Froese's results for (do/dr)0 also confirm the
small negative slopes of the curves of o.2, and o 2„against
r for the 18-electron systems iso-electronic with argon
(Figs. 1 and 2) and the much larger negative slopes of
the corresponding curves for the 28-electron systems.

"C. Froese and D. R. Hartree, Proc. Cambridge Phil. Soc.
53, 663 (1957).

'g W. W. Piper, Bull. Am. Phys. Soc, Ser. II, 2, 132 (1957).
~9 C. Froese )Proc. Roy. Soc. (London), to be published j.

ADDENDUM

Since this paper was written, solutions of Fock's equa-
tions for various 28-electron systems (iso-electronic
with Cu+) have been calculated by Piper. 's Also Miss
Froese" has derived the equations for the functions
R(nl; Xr) in the expression (6), and has obtained solu-
tions of them for some configurations. These functions
give the second-order terms in 1/X in the departure of
an (nl) wave function from the corresponding hydrogen-
like function in the 6eld of a point charge X; from these
results the values of (da/dr) at r=0 for the various
con6gurations and wave functions can be derived.

Cu+

IS


