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I. EXPERIMENTAL DATA AND THEIR
REPRESENTATION

HE painstaking measurement of atomic masses by
experimentalists using mass spectrographic and

nuclear techniques have brought forth an impressive
array of precision data' ' whose interpretation continues
to challenge the nuclear theorist. The strength of
nuclear forces is immediately expressed in these data by
the large deviations of observed atomic masses from the
masses of the unassembled constituents. These devia-
tions may be quantitatively expressed by the "nuclear
energy" which for practical purposes (in view of small-
ness of atomic binding energies) may be defined by

A=M —Zmp, —Em„,

where M is the atomic mass of the neutral atom and nsI,

and m„are the masses of the hydrogen atom and the
neutron. The general trend of these nuclear energies for
beta-stable nuclei is shown in Fig. I. The smooth curve
corresponds to an empirical formula defined later. The
dots represent averages of experimental data for beta-
stable nuclei in the neighborhoods of mass numbers IO,
20, 250, i.e., the normal places. The most significant
properties revealed in this 6gure are that nuclear
energies build up in magnitude almost linearly with the
number of particles, are large in magnitude, ranging up
to 2000 mMU for very heavy nuclei and that the
scatter of the "experimental" points are extremely small
compared to the absolute values of the nuclear energies.
It is convenient to dehne the quantity

e=Z/A,

the nuclear energy per particle, represented by the curve
labeled e in Fig. 1. The extent to which e is constant is
an indication of the degree of saturation of nuclear
energies. From the diagram it is clear that while the
nucleus is approximately saturated, there are definite
systematic departures from the constancy of the nuclear

energy per particle. The two straight lines in Fig. 1

represent the general trends of the nuclear energies of
the last neutrons and protons. The agreement and
departure of the average of E„and E„from 8 are even
better measures of the degree of saturation.

*Much of this work was carried out at The Florida State
University with the support of the U. S. Atomic Energy Commis-
sion LProject AT-(40-1)-1'/55].

f On leave until September, 1958.
' A. H. Wapstra, Physica 21, 367 (1956).
s J. R. Huizenger, Physics 21, 410 (1956).

Two other ways of exhibiting nuclear mass data are

(3)
and

f=6/A = (M—A)/A.

The former has variously been called mass defect, mass
excess, or mass decrement, the latter is called the packing
fraction. Both quantities may conveniently be measured
in millimass units (mMU). The experimental normal
points and a smooth curve representing the empirical
function'

6,=0.01 (A —100)'—64,

are shown in Fig. 2.
The corresponding empirical curve and normal points

for the packing fraction are also shown. The fact that
the mass decrement and packing fraction vary above
and below the zero line indicates the appropriateness of
the definition of the atomic unit as the mass per particle
of 0". If, as is frequently assumed in qualitative
discussions, nuclear energies per particle all were equal
to the value for 0" (=8.0 Mev) then mass decrements
and packing fractions would lie along the horizontal line
in Fig. 2. Departure from this horizontal line ac-
cordingly measures the stability relative to that of 0".

To display the fine details and for making careful
comparisons with theory it is helpful to present nuclear
masses relative to a smooth reference function which
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FiG. 1.Nuclear energies (E) nuclear energies per particle (e) and
nuclear energies of the last proton and neutron (E~) and (8„) for
beta stable nuclei. The dots and circles represent averages of the
experimental values in the neighborhoods of A =10, 20, ~ etc.
The smooth curves are all based upon an empirical expression for
mass decrements /see Eq. (5)j.

'A. Green, Nuclear I'hysics (McGraw-Hill Book Company,
Inc. , ¹wYork, 1955), Chaps. 8 and 9.
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them. Among the earliest eGorts, the work of Weiszacker4
brought forth a number of concepts which still prevail.
He divided the total nuclear energy into components
called the volume energy, the surface energy, the
Coulomb energy and the symmetry energy and allowed
certain coeScients, which should be determinable from
the two-body interaction, instead to be empirically
adjusted in the light of stability and mass data of
complex nuclei. In his original work and in subsequent
theoretical eGorts'' the expression for total energy
contained many small terms whose dependence upon
the nuclear numbers A, Z, X, or D is quite complicated
and rather untractable. Since the complications were
unwarranted then, Bethe' chose a somewhat simplified
form of the mass equation

-80- ;04k
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MASS NUMBER

Fro. 2. Mass decrements (6) and packing fraction (f) for beta-
stable nuclei. The dots and circles represent the experimental
points, the smooth curves are based upon an empirical expression
for mass decrements.

follows the general trends. The empirical function
de6ned by Eq. (5) has proven helpful in these connec-
tions. We therefore define the mass residual by

(6)

The mass residuals of all beta-stable nuclei are presented
in Fig. 3. Also shown are "the normal points" obtained
from linear averages of residuals at equally spaced
intervals centered about mass number 10, 20, 250.

Perhaps the most conspicuous aspect of Fig. 3 is the
short-range oscillations of the nuclear masses. These are
associated with nuclear shell structure. From this 6gure
it is apparent that it is possible to achieve local "fits"
considerably better than the over-all fit attainable with
a gradual curve. There is no obvious systematic separa-
tion between odd A and even A mass residuals and this
is the basis for our use of all beta stable nuclide masses
in arriving at the normal points.

The nuclear energy is related to the mass residual
according to

E=R+6' 2(6 +hi)A —i2(h„h—i,)—D, —

where D=S—Z is the neutron excess. The curves in
Fig. 1 are based upon Eqs. (5) and (7) and the empirical
formula for the line of beta stability, 3

D '=40A'/(A+200).

Equation (8) is also useful for magnification purposes.

II. SEMIEMPIRICAL MASS EQUATIONS

Since the birth of modern nuclear physics in 1932,
theorists have attempted to relate the nuclear energies
and other properties of complex nuclei to the inter-
actions of two nucleon systems. Certain diculties were
encountered and even today we are still struggling with
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FIG. 3. Experimental mass residuals of beta stable nuclei. The
circles correspond to even A nuclei, the dots to odd A nuclei. The
crosses represent the "normal points. "

' C. F. von Weiszacker, Z. Physik 96, 431 (1.935).
~ H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 165

(1936).' E. Feenberg, Revs. Modern Phys, 19, 239 (1947}.

E= aiA+a2A—*+asZ'/A ~+a4D'/4A.

The coe@.cient of A in the first term, the volume term,
is usually interpreted as the energy per particle in
infinite nuclear matter at normal density. The second
term is assumed to represent the extra energy of a 6nite
nucleus by virtue of the unsaturated bonding of the
surface particles. The third term is the added energy
occasioned by Coulomb repulsion between protons. The
fourth term represents an additional energy of rather
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radius defined by
R'= 5(r')/3, (12)

obtained from p-mesonic x-ray and electron scattering
studies. If one fits the recently reported equivalent
uniform radii for seven selected spherical nuclei by least
squares to a function of the form given by Eq. (10) one
obtains precisely F0=1.216. A somewhat better fit to
the Stanford equivalent uniform radii is given by

R= 1.031A ~+0.897= 1.216A '. (13)

Although the R defined by Kq. (12) furnishes a good
basis for comparing almost uniform distributions, it
actually measures a moment of the charge distribution
which does not strictly correspond to the Coulomb
energy radius. The most direct comparison of a Coulomb
radius determination from nuclear masses may be made
using the estimates of Coulomb energies obtained from
the Stanford charge distribution measurements. Using
the experimentally determined density function, the
energies

1
E= p(r) V—(r)dr (14)

'~Hahn, Ravenhall, and Hofstadter, Phys. Rev. 101, 1131
(1956)."B.G. Jancovici, Phys. Rev. 95, 389 (1954)."B.C. Carlson and I, Talmi, Phys. Rev. 96, 436 (1956)."0.Kofoed-Hansen, Nuclear Phys. 2, 441 (1956).

'9 P. C. Sood and A. Green, Nuclear Phys. 5, 274 (1958).

have been evaluated. " Equating these energies to
3Z'e'/5R, one obtains a set of radii which are close but
not quite equal to those from Eq. (12).These radii when
fitted by least squares yield

R,=1,052A'+0. 753=1.204A&, (15)

where the second expression is the least square fit to the
restricted form.

The variation of the two term radius expression from
the one term form helps to reconcile the larger Coulomb
radius constant inferred from mirror nuclei mass dif-
ferences with the smaller constant inferred from ab-
solute masses. The two term form leads one to expect
radii of the order of 1.302: for nuclei near mass number
25. This is still somewhat smaller than the radii inferred
from mirror nuclei differences (1.47A') using the semi-

empirical formula. The remainder of the discrepancy is
largely accounted for when one considers the fact that
the particle involved in mirror nuclei transitions tends
to be in the outer regions. Detailed quantum-mechanical
calculation based upon the shell model" '~" bring out
this aspect quite clearly. The Coulomb exchange energy,
which also is relatively more important in mirror
nuclei also contributes somewhat. Taking all of these
considerations into account, the mirror nuclei proton
radii are in accord with the other proton radii
determinations.

The radius to the half fall-oG point of the proton

distribution conforms to

8;= 1.1383:—0.280 = 1.0803 &,

which is significantlv smaller than either R, or E.

III. INFLUENCE OF PERTURBATIONS UPON
THE MASS FORMULA

(16)

While the precision of the mass formula method of
determination of the Coulomb radius is good, in the
absence of a rigorous basis for the complete mass
formula, one might legitimately question the signifi-
cance of the determination. It is dificult to put aside
these concerns. From the theoretical viewpoint the
number of corrective terms which have been proposed
to the Bethe-Weiszacker formula are almost innumer-
able. From the experimental viewpoint examination of
Figs. 3 and 5 shows that the principal source of con-
fusion is due to the fluctuations in nuclear masses
related to shell structure. A number of e6orts have been
made to characterize these fluctuations. Wapstra" has
suggested terms of the form

E,I, A;/(up+1), —— (18)
where

(19)

and A;, Z;, and zv, are empirical constants. This carries
the mass surface smoothly through the closed shells
regions, which is helpful in several applications. Green
and Edwards, " proposed a discontinuous parabolic
correction of the type

E,g
—n, (X—A';)', —— (2o)

where n;, E;, are fixed constants within shell zones.
These roughly conform to the prescriptions

n, = 1 /(1V« —Xi) in mMU and iV;= 2(V~+1V~), (21)-
where S„and S~ represent the upper and lower magic
numbers. Similar expressions apply to corrections for
proton shells. One additional constant must be applied
in each zone of the mass surface bounded by magic X
and Z numbers. Its value depends upon the smooth
mass surface used. While Green and Edwards did not
pursue the parabolic shell correction to the limit of its
capabilities, they did show that even using the rough
prescriptions embodied in Eqs. (20) and (21) a very
considerable improvement in the fit is accomplished.
A recent study of Cameron" tends to confirm the
separation of neutron and proton shell energies and the
general nature of the above type of shell correction
although Cameron presents empirical constants for
every E and Z rather than a shell function.

The purely empirical equations for nuclear masses of
Baker and Baker" and of Levy'4 might be viewed some-

'0 A. .H. Wapstra, Physica 18, 2 (1952).
2' A. Green and D. Edwards, Phys. Rev. 91, 46 (1953).
2' A. G. W. Cameron, Can. J. Phys. BS, 1021 (1957)."G. A. Baker, Jr., and G. A, Baker, Sr., Can. J. Phys. 34, 423

(1956).
24 H. B.Levy, Phys. Rev. 106, 1265 (1957).
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what in the context of local corrections to a VVeiszacker-

type equation since the subtraction of a smooth major
term should not necessitate a change in the form of their
local functions although their parameters, of course,
would be changed.

The most remarkable achievements in the way of
local fitting of nuclear masses are those of Talmi,
Thieberger, " and de-Shalit" based upon formulas
inferred from the shell model. While these have not been
carried out in the context of shell corrections to a
smooth mass surface, the transformation of their results
to such a view point should not be dificult. For heavy
nuclei Thieberger and de-Shalit show that the total
nuclear energies of a series of isotopes relative to one
with a magic or submagic Z are accurately represented
by the parabolic formula,

8=nap+ ,'n(44 -1)a~—+y(N)ap, (22)

where ao, a&, and a2 are energy parameters, e represents
the number of neutrons in the subshell, y(44) =0 for 44

even and 1 for e odd, A similar expression holds for a
series of isotopes. For these series their formulas are
equivalent to Green and Edwards. They determine by
least squares the energy parameters which lead to its
with standard deviations which frequently lie within the
experimental error.

One assumption underlying the derivation of Kq. (22)
is that the single particle wave function entering the
complete wave function is independent of the number of
nucleons in the shell. It is quite likely that the formula
which they propose has greater generality than implied
by this restrictive assumption. One expects that by
adding particles the radius of the nucleus expands. The
principal energetic effect of this expansion is to increase
the single nucleon energy (ap). Studies with realistic
potentials" indicate that in a small region this rate of
increase is approximately linear with A (and hence 44).

Therefore in the empirical fitting of the local energy
parameters, the correction term associated with the
expansion would naturally be absorbed in the second
term on the right of Eq. (22).

Another puzzling point in this recent study is that the
experimentally inferred energy parameters do not
change appreciably in going from one subshell to
another, whereas the contrary might be expected from
the shell model. The fact that subshell effects are
dificult to detect in nuclear masses and nuclear decay
energies had been noted earlier in a number of
studies. ""This absence of subshell effects suggests the
importance of configuration mixing in ground-state
masses and is probably closely related to spheroidal
deformation of nuclei.

The pairing correction is perhaps the next most
important perturbation. Since it has so short a "wave-

"I. Talmi and R. Thieberger, Phys. Rev. 103, 718 (1956)."R.Thieberger and A. de-Shalit, Phys. Rev. 108, 378 (1957).
"A. Green, Phys. Rev. 102, 1325 (1956).
'8 K. Way and M. Wood, Phys. Rev. 94, 119 (1954).

length" it can be easily discounted in the study of
statistical models as long as one is comparing the mass
surfaces for comparable nuclear types. Following tradi-
tion we have been fitting the odd A mass surface. The
fact that the experimental data for even A which are
almost all of the EE type nuclei, agree on the average
with the odd A beta-stable nuclei is due to the average
compensation of the negative pairing correction with
the positive parabolic correction. " The separation of
the EE, odd A, and OO surfaces are fairly well repre-
sented by the function"

H (A) = 12A '* mMU, (23)

which does somewhat better than the functions 36A '
or 140A ' which appeared earlier in the literature. ""
The shell model leads one to expect subshell sects in
pairing energies and also differences in proton and
neutron pairing energies. The former are not readily
apparent"" although the latter have been noted""
particularly near closed major shell nuclei.

The Quctuating character of the shell and pairing
corrections make it reasonable to expect that they
would not seriously inhuence the determination of the
Weiszacker parameters. On the other hand, the influence
of a slowly varying perturbation would be a matter for
more serious concern since it might be expected to
cause a systematic change in these parameters. An
extension of the least squares procedure may be applied
to the analysis of smooth perturbations of the mass
surface. This method uses the close agreement attained
to provide a surface of departure for studying perturba-
tions which are smooth functions of the integral nuclear
parameters. One assumes that any small perturbation
may be placed in the form

8E= ho (A)+by (A) po+8p (A) poo/2, (24)

where p=ap/a4. The shift in the masses along the line
of beta stability 8,=6 —6 ' is given by

Ra =&o+&iZ~'+ D&~ &h)/4+a4 /—4+~1/2+82Z~']8,
8agA+8apA *+8a4(—D o+8,)/4. (26)

In principle one might readjust the Weisza, cker con-
stants for any perturbations to the Bethe-Weiszacker

"N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939)."J.W. Blatt and V. F. Weisskopf, TheoreIica/ 1Vnclear Physics
(John Wiley and Sons, Inc. , New York, 1952)."C. D. Coryell, Ann. Rev. Nuclear Sci. 2, 305 (1953).

where p=D —D ', 50, 6~, and 6~ are functions of A and
D ' is the unperturbed line of beta stability. If a
perturbation is turned on the parameters ai, a., a3, and a4
will change in order to preserve the best ht of mass data.
The net shift in the line of beta stability 8,=D —D is
given approximately by

bp2A'Z '—26jAa4~'

1+poA '—2A8pa4o
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TABLE I. Changes in mass surface parameters (in mMU)
induced by the addition of various perturbations. The case Ed is
for yq= —0.68. The case E„is for y„=—25 and a term 5D /2
has been added to minimize the net perturbation.

d,a1 ha2

I E„—0.108 —0.364
II E„0.062 0.133

III E„0,123 0.138
IV Eg —0.234 —0.354
V E„0.519 0.959

VI E,f,
—0.038 —0.190

0.0028
0.0184
0.0343
0.0452
0.0443—0.0004

—2.47—1.91
7.20—0.66
5.44—0,06

—0.37
—2.45
—4.57
—6.03—5.91—0.06

formula in the following way. Using Eq. (25) the bp

needed may be evaluated by least squares or more
conveniently by requiring that 8, vanish at an appropri-
ately chosen mass number. This establishes a relation
between 5as and 5a4, and the function 8,. Using Eq. (26)
the values of ha~, ha2, and ha4 can be determined by
least squares. The CScacy of the perturbation is then
determined by how well the perturbed line of least
masses and the perturbed line of beta stability Gt the
experimental trends of the mass residuals. In doing this
one is confronted with the fact the nuclear masses
predicted from the Bethe-Keiszacker equation are in
such good systematic agreement with experiment that
it is dificult, in view of the scattering caused by shell

cGccts, to infer any smooth correction which signifi-

cantly improves the agreement, On the other hand, a
small but probably signihcant systematic discrepancy
appears to exist between the experimental line of beta
stability and the predicted one (Fig. 3 and Fig. 4 of
reference 7 or Figs. 8-8. and 9-2 of reference', 3). In
examining the influence of perturbations to the mass
surface it therefore appears wise to look first at the
changes in the line of beta stability. A number of per-
turbations have been so examined. These include the
self-energy perturbation,

gas model if the neutron distribution radius divers from
the proton distribution radius. A similar term also
arises in the Wigner modep" and in the shell model
equation of Talmi. " A surface symmetry energy is
expected from refinements of the kinetic energy expres-
sion in thc Fclml gas model.

In treating a perturbation it is helpful to minimize its
magnitude by subtracting away a constant times one of
the terms in the Bethe-%eiszacker equation which is
close in functional form to the perturbation (e.g. ,
y„D'/5A for case V). After the analysis is completed,
this subtracted term may be reintroduced by embodying
it into the adjusted mass parameter. Thus relatively
large changes in the mass parameters may be explored
without exceeding the limits of the expansions used.

Changes in the mass parameters by these perturba-
tions are listed in Table I. Because of the large shell

structure "noise" the 6ts to the mass data when mea-
sured by standard deviations were not changed appreci-
ably ( &0.3 out of 2.7). On the other hand, the fits to
the line of beta stability occasioned by various pertur-
bations seem to vary significantly. These effects are
illustrated in Fig. 6 where the shifts corresponding to
the five perturbations are shown along with a deviations
curve which represents the trends of the departures of
the experimental points from the Green-Engler line of
beta stability. ' The parameter change hp was chosen to
insure agreement of the line of beta stability with the
Green-Engler line at A =200. If a least square adjust-
mcnt were used instead the principal additional CGect

mould be a slight rotation of these lines to minimize the
standard deviations relative to the experimental line. It
is apparent from Fig. 6 that all of the shifts lead to a
deterioration of the fit. The size and directions of

hei= —a3'ZA ',

the Coulomb exchange perturbation,

hEgg = —0.764a3'Z'A ',

and the Coulomb radius compression correction,

(2&)

(28)

8E,rr ——aPZ'A-lL(E. '/Eg) —1] (29)

where Eq is given by a linear relationship as in Eq. (15)
and E' does not have the constant, the direct symmetry
term

&Rv =vdD,

and the surface symmetry energy of the form

aEv =y„D'/3''.

(3o)

I .. ) l 1 1 1 t f l l I l l I l t l' I I 1 t l t
'0 50 l00 &50 200 250

MASS NUMSKR

Examination of these last two perturbations has been
inspired by recent studies of Szamosi and Ziegler" and
of Cameron. "A term linear in D arises from the Fermi

'2 G. Szamosi and M. A. Ziegler, Acta Phys. Acad. Sci. Hung.
6, 346 {1956).

FIG. 6. Shifts relative to the G. K. line of beta stability induced
by the perturbations given by Eqs. (27)—(31).The curve labeled d
is for a direct symmetry coefFIcient yd =0.68. The curve labeled ss
is for a surface symmetry with the coefFicient y„=25. The curve
labeled sx corresponds to the trends of the experimental data.

3' D. I . Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).



NUCLEAR SIZES AND %EISZACKER MASS FORMULA

Coulomb self-energy, Coulomb exchange, and Coulomb
radius compression are already determined. The sum
of these three perturbations if added would considerably
exaggerate the discrepancy The surface symmetry
energy and the linear term in the neutron excess can be
inverted by choosing their coeScients negRtlve. There-
fore a perturbation term of either of these types or
another similar one is needed to improve the line of beta
stability or to restore it after various Coulomb perturba-
tions are added to the simple Bethe-VVeiszacker
equation.

The recent work of Cameron" bears out the above
conclusion relative to the inhuence of perturbations on
the Bethe-Weiszacker mass surface. He chooses a
trapezoidal proton density distribution of constant sur-
face thickness and with a radius constant to the half
fall-OG point given by

2-
8

IO

0
Ch

CO
IaII'

"6-

I I I I I ~ I I I I I I I I I I l I I I I I I l I

gR (52)

Re(54)

Et = 1.1122 &[1—0.620252 &j.

On this model the Coulomb energy is computed using
classical techniques but- with corrections for the self-
energy and Coulomb exchange terIns. In addltlon to the
usual volume and symmetry and surface energies with
their fl ee parameters, CRmel on Includes R suI'f Rce
symmetry energy term with a fourth free parameter.
The two symmetry parameters are then adjusted by
least squares to the line of beta stability. The free
surface symmetry energy parameter assumes a rather
large negative value with the volume symmetry energy
going to a positive value which is considerably larger
than the usual values. The combination u4 —4y/A&
with the average value of A&=5 is however quite close
to the earlier value.

The 6t of Carneron's line of beta stability with the
experimental normal points and a smooth curve based
upon the experimental normal points is shown in Fig. 7.
The curve labeled Ii-G represents the line of beta
stability associated with Fermi's constants' and the

I I I l I I I I I l I I 4.1 l l I l I I l I l f

~ EXPER1MENTAL

I,

I I I I I I I t .t. I I I I I I I I I I I I I I I

0 50 I00 ISQ 200 250
MASS hlUMBER

FIG. 7.Lines of beta stability. F-6 corresponds to the line of beta
stability associated with Fermi's constants and with earlier sets
of constants used by Green. The curve labeled C represents
Canteron's line. The curve G(58) represents a least square 6t
using the Bethe-Weiszacker equation. The curve labeled 8
represents a "best" smooth 6t to the experimental data. The dots
represent thy "gorlnal place, "

50 l00 l50
MASS NUMBER

200

FIG. 8. Mass residuals es mass number. R (52), E. (54), and
E (58) correspond to the Bethe-Weiszacker equation based on
constants obtained in 52, 54, and in 58. R, represents Cameron's
equation. 8 represents the "best" smooth fit after corrections for
the residual parabolic and pairing effects are applied.

various constants given. previously by Green. That
labeled G(58) represents a newly determined ieast
square 6t with the simple Bethe-Weiszacker form. Line
C makes somewhat smaller excursions from the experi-
ment than line F-6 but is not substantially diR'erent
from G(58).

The comparative 6t of the masses to the normal
points are shown in Fig. 8. Since Cameron 6tted his
formula to odd-odd masses we have lowered the masses
computed from his equation by 12/2*'. Also shown in
Fig. 8 are the curves of Green and Engler, the best 6t
based upon data available in 1954 and the best fit based
upon smoothed normal places inferred from the recent
Wapstra-Huizenger compilations. The standard devia-
tions of the last three are o (C) =3.0, o (54) =2.9,
o(58)=2.7. These are somewhat larger than in our
previous study, due to the extra point at 2 =250 Rnd
one or two normal points near closed shells which more
recent experimental data have scattered somewhat. The
6t to the masses obtained by Cameron leads to no over-
all improvement and indeed somewhat of a deterioration
of 6t particularly for light nuclei. This difhculty at the
low mass numbers is also apparent from the asym-
metrical nature of shell correction which Cameron
introduces for each Z and S at low mass numbers. One
might reasonably conclude that the three corrections,
Coulomb self-energy, Coulomb exchange, and Coulomb
radius compression, have overshot the requirements of
experimental evidence in the light mass region. The
fact that the large negative surface symmetry energy
failed to accomplish a substantial improvement to the
line of beta stability can be attributed to the fact that
it was opposing the tendencies of the three Coulomb
corrections.
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It is quite likely that the difhculty at light nuclei
associated with Cameron's formula is due to the over-
estimate of the Coulomb exchange which was calculated
using free particle wave functions despite the fact that
the requirement kE))1, does not prevail in light nuclei.
This explanation is confirmed by the fact that calcula-
tions of the Coulomb exchange correction factor in
mirror nuclei mass differences using the statistical
formula leads to results about twice as large as those
obtained with detailed calculations using Slater deter-
minants and harmonic oscillator wave functions. '9

Despite this difhculty I believe that Cameron's study
has been fruitful, particularly in bringing out the need
for a negative surface symmetry term. Probably a more
realistic calculation of the Coulomb exchange energy
would lead to a smaller term in which case the re-
adjusted mass surface would probably fit the experi-
mental mass surface somewhat better than the Bethe-
Weiszacker surface. On the other hand, before finalizing

upon particular perturbations it would appear wisest to
see whether other perturbations should also be included.
For example, a negative term proportional to D might
also be helpful to the fit of the line of beta stability and
may be of physically significance since such a term
would arise if the neutron distribution is larger than
the proton distribution. Whereas Szamosi and Ziegler
derive a term with a negative energy coefficient, they
arrive at a positive energy coeKcient, a puzzling fact
probably related to their manner of using mirror nuclei
mass differences.

None of the perturbations investigated thus far take
us back to the larger Coulomb radius constants char-
acteristic of earlier mass surface determinations. An
examination of the parameter shifts listed in Table I
indicate that each of the perturbations studied here
tends to decrease further the radius constant by a small
amount. To test the sensitivity of these radius deter-
minations to shell fluctuations we carried out a calcula-
tion in which the normal places for the masses were
altered so that they would be close to the bottoms of
the shells rather than the local centers of gravities of
the masses. These shifts are listed in Table I. The
Coulomb energy and symmetry energy parameters
undergo negligible changes ( 0.1%), but the surface
and volume energy coefficients change slightly. This
suggests that the Cou1omb radius constant determina-
tion when carried out by a procedure involving fitting
both the neutron excesses and the mass data along the
line of beta stability is stable near r,=1.20. This
stability may not persist in the face of additonal per-
turbation studies. There are indeed a large number of
additional perturbations which might be investigated
(e.g., compressibility terms, "length" energies" and
various quantum-mechanical corrections) so that the
present study is largely illustrative. Despite this my
opinion is that because of recent progress in under-
standing nuclear structure, considerable value would be
derived from the study of statistical perturbations to

R~„= (H J)/3 II'/24 J, — —(34)

where J and H are parabolic and pairing functions, '
approximately compensates for these differences. In
Table II smoothed experimental normal points arrived
at by the above procedures are presented. Experience
with hand calculations suggests that this number of
points is adequate for most investigations. Also given
in Table II are corresponding values from the Bethe-
Weiszacker equation using a set of parameters adjusted
to the smoothed data.

'4 Averaging procedures to eliminate shell effects without
making detailed calculations of these sects have been used in
statistical theories of nuclear reactions —C. F. Porter (private
conversation).

the Bethe-Weiszacker formula, particularly if these are
carried out with a close interplay of phenomenological
and theoretical considerations.

One of the major obstacles which hampers the
systematic study of perturbations is the large scatter
associated mainly with shell structure. By using equally
weighted normal points which fit local centers of
gravity these fluctuations have been smoothed some-
what and the strong sampling bias of the actual mass
data minimized. However, the fact that the shell struc-
ture "noise" dominates the standard deviations suggests
that an initial data smoothing procedure would be of
considerable value towards making standard deviations
serve as sharp criteria of fit. While the best smoothing
procedure would be one involving the use of accurate
shell corrections, pending this the following averaging
procedure has considerable merit. '4 Polynomials of
various-orders were fitted by least squares to the
residuals normal points. For the beta-stability residuals
the standard deviations obtained were 0-0= 0.669,
0]0660)020559~030514) IT40 513)050513~
a6=0.509, where the subscript denotes the order. For
the mass residuals the standard deviations obtained
were Op=2. 91, 0'y=2. 83, O-g=2. 35, o3=2.32 @4=2.30,
0.5=2.22, and t76=2.01. In the former case a third-order
polynomial obviously provides the simplest good smooth
representation, and has signiftcance (using the Ii test)
at the 95% con6dence level. In the latter case a second-
order polynomial suffices, and has significance at the
99% conhdence level. One might in the latter case go to
the sixth order but then the "wavelengths" introduced
are comparable to what we wish to smooth out. The
smooth curves arrived at by these least square pro-
cedures lie quite close to those intuitively inferred by
Green and Engler. ' In using smoothed residuals one
should correct for the fact that actual beta stable nuclei
do not lie precisely on the line of beta stability but fall
at random between the stability limits. This random-
ness contributes considerably to the local scatter of
points although on the average it should have a rela-
tively small systematic eGect upon the normal points.
On the average the function
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IV. WEISZACKER FORMULA AND NUCLEAR
POTENTIALS

Since our understanding of nuclear structure has
increased considerably since the work of Weiszacker and
Bethe, it is appropriate to re-examine the derivation of
the Weiszacker formula, particularly as this bears upon
determination of nuclear sizes and density distributions.
Most derivations of the Weiszacker equation have made
use of Fermi-Thomas statistical approximations. Recent
work of Brueckner, "Bethe,"and others relating infinite
nuclear systems to the properties of two-body forces and
the phemenological studies of Wilets" have also largely
been within this framework.

The revival of the independent particle model
(I.P.M.) of the nucleus constitutes one of the greatest
successes of the past decade. The initial successes'~40
(1948—1952) in the use of the shell model as a schematic
guide to the understanding of nuclear moments and
nuclear magic numbers were followed by successes in

applying realistic potential wells to detailed interpreta-
tion of proton and neutron scattering data4' 4' and
proton and neutron separation energies" ~ " (1953—
1957). In view of these successes, the problem of
explaining the origin of these potentials has supplanted
the problem of inferring potentials from experiment as
the main focus of current interest.

In probing the characteristics of nucleon-nucleus
potentials it has been helpful to use probe particles with

TAsLE II. 6'~ (in mMU) and D' are values of the smoothed
normal places. 6"(58) and D (58) are values computed on the
basis of the Bethe-Weiszacker equation with the constants
a1=16.996, a2=19.298, a3=0.7714, a4= 101.03 (in mMU) or
a1=15.826, a2=17.970, a3=0.7183 and a4=94.068 (in Mev}.
6s~—5" and D'~ —D" are the residuals.

a variety of energies. The negative energy states are
particularly useful since the combination (E V)—in
Schroedinger's equation, which determines the details
of the nuclear wave function, undergoes a greater
variation for negative K While nuclear physicists can
use negative energies corresponding to the last states
of binding and low lying excited states immediately
above them, no direct experimental method seems
available to probe the inner energy states (the ultra-
violet and x-ray levels of atomic spectra). Nuclear
masses furnish an indirect way of doing so.

One of the clearest facts emerging from a host of
recent studies is the need for velocity dependence of the
eGective nucleon-nucleus potential. '~53 If one ignores
this effective velocity dependence and attempts to
compute nuclear energies using a realistic static poten-
tial of the type used in optical model analyses and last
particle binding energy studies, one finds that the total
nuclear nuclear energies computed using,

W =Q, (T;)+-,'(V,), (35)

are considerably smaller than the experimental nuclear
energies. Weisskopf54 recently gave a qualitative argu-
ment based upon the approximate equality of last
particle binding energies with average binding energies
which demonstrates clearly the necessity for this
velocity dependence.

The new self-consistent Geld methods of Brueckner
and Bethe" and others in which correlations of nuclear
wave functions are taken into account seem to provide
the most promising path for solution of the nuclear
structure problem. For finite nuclei this suggests that
the Schroedinger equation in optical model and shell
model calculations should be modified to the form

A d, s~ Ds~ h~(58) D~(58) +san —+ca Dss —Dc@

20
40
60
80

100
120
140
160
180
200
220
240

—1.48 0.82—28.40 2.73
—47.58 5.66—59.00 9.39—62.69 13.74—58.64 18.55—46.84 23.72—27.31 29.13
—0.03 34.71
34.97 40.37
77.72 46.06

128.20 51.69

0.90—27.36—48.74—61.20—64.69—59.60—46.41—25.62
2,32

37.00
78.03

125.07

0.91
2.97
5,84
9.35

13.41
17.96
22.94
28.30
34.03
40.09
46.46
53.11

—2.38—1.04
1~ 17
2.19
2.00
0.96—0.43—1.68—2.35—2.02—3.07
3.14

0.09—0.25—0.18—0.04
0.33
0.59
0.78
0.83
0.68
0,28—0.40—1.42

'~ K. A. Brueckner, Revs. Modern Phys. 30, 561 (1958), this
issue.

"H. A. Bethe (to be published)."L.A. Wilets, Revs. Modern Phys. 30, 542 (1958), this issue.
"Haxel, Jensen, and Suess, Z. Physik 128, 295 (1950).
39 M. J. Mayer, Phys. Rev. 78, 16 (1950)."J.P. Klliott and A. M, Lane, "The nuclear shell model, "

IIandbmch der Physi k (Springer-Verlag, Berlin, 1957), Vol.
XXXIX, 241 (a comprehensive recent review of the shell model}.

4' D. M. Chase and F. Rohrlich, Phys. Rev. 94, 81 (1954).
~ R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
4' Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).
"A, Green and K. Lee, Phys. Rev. 99, 772 (1955}.
4' A. Green, Phys. Rev. 99, 1410 (1955).
"A. Green, Phys. Rev. 104, 1617 (1956}.
4' Green, Lee, and Berkley, Phys. Rev. 104, 1625 (1956)~

4' Ross, Mark, and Lawson, Phys. Rev. 102, 1613 (1956).

(A'/2m) 6'P+EP = V(r, r')P(r') dr', (36)

where V(r, r') is a nonlocal potential generated from the
two-body interaction. The complete self-consistent 6eld
problem involves generating the nonlocal potential
from the two-body interactions and an initial set of
wave functions with the use of the so-called E matrix,
then using Eq (36) to. Qnd an improved set of wave
functions and continuing the cycle until convergence is
achieved.

Srueckner et al." have begun eGorts toward pro-
gramming this complete problem for individual nuclei.
A more limited attempt toward relating total nuclear

'9 S. A. Moszkowski, "Models of nuclear structure, " IIandbuch
der I'hysik (Springer-Verlag, Berlin, 1957), Vol. XXXIX (a com-
prehensive recent review).

~' J. H. Van Vleck, Phys. Rev. 48, 367 (1935)."K. A. Brueckner, Phys. Rev. 103, 1121 (1956}.
"Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217

(1954).
"Brueckner, Gammel, and Weitzner, Phys. Rev. 11Q, 431

(1958).
~4 V. F. Weisskopf, Nuclear Phys. 3, 423 (1957)."H. A. Bethe, Phys. Rev. 1QB, 1353 (1956).
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energies for all nuclei to such reasonable forms of non-
local potentials is discussed below.

Frahn and Lemmer" have shown that in the case of
almost local.potentials of the form

( r+r' ) (r—r'i'
V(r', r) = V*&( —[vr '*b ' exp —

] [ . (37)&f)
It is possible to reduce Eq. (36) to

t(r) =1
k(r) =expL —(»—a)/d j

for r&u

r&e,
(43)

k(r) =1 for r&e

P(r) = 2 expL —(r a)—/d] ex—p[ 2(—r a)—/d j. (44)

(40) for form factors involving uniform interiors and
arbitrarily shaped surface regions. Most attention has
been given to the forms

1——'.&' V' +2V V+ V' 4
m(r) m(r) m(r)

By turning on and oR the perturbation terms we
establish that the shifts associated with $" are of the
order of +0.8 Mev, the shifts associated with the other
two terms are of the order of —1.6 Mev and that the
net shifts are downward (stronger binding) of the
order of —0.8 Mev. As might be expected the actual
shifts Quctuate, tending to be smaller for s states
particularly. Tentatively ignoring these corrections we
need only to dispose of the terms 8$(r) in the de-
nominators in order to place Eq. (40) in a familiar
form. Let us equate

+V*&()a()=~» (38)
where

(39)m(r) =
1+(b'mo/2A') V*&(r) 1+5&(r)

The radial wave equation for this case may be placed in
the form

v'E(r) P' f(~+1)
G"+ —— — G

1+8$ 1+8$ r'
(k(r)) =1-f'. (45)

p/

+ $"/4 ———$'I' G=O,
1+8$ 2r

where
y'= 2moV*/5',

P,'=2m, (E(/a2
and I' = —G'/G.

The inhuence of the three small terms on the right
of Eq. (40) can be estimated qualitatively. For a
smooth monotonically decreasing form, the function
$' is zero in the uniform region, goes negative to a peak
in the surface region and then decays to zero. P" is
expected to go negative to a large peak, then cross over
to a small positive peak and then decay to zero. For
states of binding F starts out at long ranges at a positive
value which can be estimated from the properties of
spherical Bessel functions. It declines gradually towards
zero at the first peak of the wave function on going
radially inward. Since this first peak is practically
never in the surface region for the case of the bound
states of importance, I' is on the average a positive
quantity in the surface region. Therefore the term $"/4
acts to weaken the eRective wel1 and hence move the
energy levels upward. (This term is not present if one
uses" the form -,'pm(r)-'p for the kinetic energy)
whereas the terms —$'/2» and —$T tend to strengthen
the eRective well and move the energy levels downward.

These eRects have been estimated quantitatively with
the aid of a code constructed for the Oak Ridge Oracle. "
The code accomplishes the numerical solution of Eq.

P,' l(l+1)
G"+ $(») —— G=O.

1+P 1+P r'
(47)

In many qualitative discussions of velocity dependence
one assumes that

V= —V*)(r)+PT. (48)

Inserting this into Schroedinger's equation,

[T V*/(r)+pT E—]/=0, .(—49)

one finds precisely Eq. (47) for the radial equation.
Accordingly we have established contact between the
frequently used approximation and the somewhat better
one arising out of the nonlocal potential. This contact
is established in such a way as to be able to estimate
approximately the eRects of the residual small surface
terms.

Assuming the nucleon-nuclear potential arises strictly
from two-body forces the total energy of a system of
identical nucleons (i.e., same spin and isotopic spin) is
given by

The values of f; are expected to vary from state to state
tending to be smaller than the average in deeply bound

(40) states and larger than the average in outermost states.
It is reasonable to replace f, by an average f
Defining now

(41) p= ~(t(r)&=&(1—f), (46)

(42) the radial equation becomes

~'W. E. Frahn and R. H. Iemmer, Nuovo cimento 6, N3
(1957).

"Ross, Mark, and Lawson, Phys. Rev. 104, 401 (1956).
"A. Green, Bull. Am. Phys. Soc. Ser. II, 2, 25 (1957).

1+1P V4
= ——,'A V*+ Eo Q e,2+-,' Q f;, (50)

1+P 1+P
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where

e„'= E,—/Ep, ep'= V*/Eo, e;o= eo' —e ' (51)

Eo= A'/2m*a'= U p(1+/)/o', (52)

and where u is a convenient scale factor and Up= 20.734
Mev. The problem is thus reduced to that of evaluating
the sum of the dimensionless eigenvalues e,' and the
leakage factors f;

The writer and a number of his associates" 44 "have
investigated the eigenvalues and approximate analytic
solutions of radial wave equations for the form function
given by Eq. (43). Working backward from the
systematics of last neutron binding energies and the
nuclear size resonances at A =55 and 170, a family of
static wells was inferred which is defined by Eq. (43)
and the parameters

Vp=40 Mev a=1.32A' —0.8 d=1. (53)

Summarizing some of the main results of these studies,
we may say:

(1) Static potentials arrived at in this way are quite
similar to those obtained independently from low energy
optical model analyses of neutron scattering. "

(2) With such a potential one can secure good
neutron shell structure4' throughout the entire mass
range by the simple inclusion of a term about 45 times
as large as the Thomas-Frenkel spin-orbit term.

(3) To bind protons at known binding energies after
the Coulomb potential is turned on, it is necessary to
increase the well depth of the nuclear potential aGecting
the protons. "This proton potential anomaly is about
one-half the magnitude of the Coulomb potential. An
even better characterization of the anomaly is"

o= —Z(1~AD/A) V,t(r), (54)

where P =0.125, 4 =5.6, with the upper sign for protons
and the lower for neutrons. The neutron excess depend-
ent term in Eq. (52) has the form appropriate for a
Heisenberg force" although other explanations for such
a term can be given. "The constant term which corre-
sponds to a deepening of the nonexchange potential was
chosen to preserve on the average the carefully adjusted
features of the neutron well. Several investigations""
suggest that these changes in the neutron well (deeper
than 40 Mev in light nuclei, shallower than 40 in heavy
nuclei) are demanded by experimental evidence. The
problem of the origin of the proton potential anomaly is
one of discriminating between many possible explana-
tions rather than that of finding an explanation. We
return to this question later. "

(4) The proton densities and radii (R= 1.181A &

+0.317= 1.24A &) computed on the basis of these
potentials, are in good agreement with the Stanford

"Beyster, Walt, and Selmi, Phys. Rev. 304, 1319 (1956).
'0 A. Green, Bull. Am. Phys. Soc. Ser. II, 1, 269 (1956).
6~ S. Drell, Phys. Rev. 100, 97 (1955)."J.L. Fowler and H. A. Cohn, Bull, Am. Phys. Soc. Ser. II, 2,

32 (1957).

electron scattering results although they show a greater
degree of density fluctuation.

(5) The neutron densities and radii based upon
these potentials lead to a result (8=1.291A'+0.0561
=1.30A&) which suggests that heavy nuclei have a thin
film of neutrons ( 0.06A&). The experimental evidence
on this point is not conclusive. If this eGect is not real it
suggests that the form of the proton potential anomaly
is such as to concentrate protons nearer the surface
rather-than a form comparable to the neutron potential
as assumed.

(6) The equivalent uniform radius for the nuclear
potential extends to about E,= 1.2 9A'+0. 45=1.3 8A'.
This on the average is about 0.61 fm beyond the neutron
density and somewhat more beyond the proton density.

It would be extremely desirable if a derivation of the
nuclear mass surface might be related to this eGort. This
is the concern of the balance of this work.

A previous attempt using the shell model was based
upon a strict independent particle model. The total
energies were computed simply by summing eigenvalues
in a static nuclear potential. "~ The resulting mass
surface gives too large a volume energy and too small a
symmetry energy. Self-consistent field methods suggest
that Eq. (35) must be used for total energies, in which
case, a static well leads to too small a volume energy and
again the symmetry energy is too small. Use of a
velocity dependent potential has been looked to as the
solution for both of these problems. ""

It is possible to make use of the eigenvalues and eigen-
functions obtained in studies of last particle binding
energies with static potentials by utilizing the dimen-
sionless forms of the wave functions and eigenvalues and
by embodying the reduced mass in the energy unit. In
essence, what is available"" are the eigenvalues and
eigenfunctions for a dimensionless well with a boundary
at p=1 ancl. a depth parameter ep' extending to about
140. The diffuseness parameter is related to the depth
parameter in a particular way. Figure 9 shows the dimen-
sionless wells. For more general applications, A may be
regarded simply as a parameter serving as an index to
the particular dimensionless well being used, the con-
nection is ~p=i.833A&—1.111, which insures that the
3s and 4s low velocity neutron cross-section resonances
occur at A =55 and 170 in static potentials. With the
velocity dependent casey, because of surface effects
which are expected to act more drastically on zero
energy s-wave neutrons, this built in feature of this
family of potentials might be lost. However, we proceed
in a way that holds last particle binding energies in
approximate agreement with experimental values and
holds radii of the various distributions close to those
derived from the static potentials.

' K. Lee and A. Green, Proc. Intern. Conf. Peaceful Uses
Atomic Energy 2, 113 (1956).

'4K. Hammack, Ph.D. dissertation, Washington University
(1951}.

'~ M. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).
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2.5W the surface region and S„(k) is a function defined in
reference 27. The only additional information one now

needs to correct for the existence of two-body forces is
the value of the P; f, Th. ese sums have been evaluated
for various occupation numbers and are fitted quite well

by the expression"

60—
Ioo 54.7 where

2' f*=f&"'I«'

fp=0 87.
(57)

(58)

80—
150

200

74.4

92.3

Using the foregoing expressions in connection with

Eq. (50), the total energy of A-identical particles in a
velocity dependent well is"

too
250 108.9

soo isis

Er (A) = ——',A V*+Upu '(1+-',P)A"'

&((gp+giA & gppp ')—', fpUpA—'"—a ' (59)

i40 350

qR I

Fro. 9. Dimensionless potentials corresponding to the realistic
potentials characterized by Eqs. (53) and (43) when scaled using
the radius parameter a. Eigenvalues and eigenfunctions for these
wells are given in references 27 and 46.

Previous studies" dealing with outermost neutron
states indicated that to maintain last particle binding
energies at approximately the experimental values at
the fixed radius parameters one must relate V* and P
in a sharply restricted way. To a good approximation
this prescription may be expressed by the relation

V*= Vp+ ViP= Vp(1+k.P), (60)
Returning to Eq. (47), the quantity pP is a convenient

one for forming eigenvalue sums since, being measured

relative to the bottom of the well, it is rather insensitive

to changes near the top. Furthermore, this quantity is

expected to correspond closely to the dimensionless

kinetic energy of particles and hence statistical expres-

sions based upon the Fermi gas model might be used as
a guide to fitting sums of e . Using the eigenvalues

shown in Fig. 7 of reference 27, sums were constructed

by weighting each eigenvalue by 2t+j., the degree of

degeneracy of the state. An expression was found"
which fitted eigenvalue sums in dimensionless wells with

a variety of well depths and surface diGusenesses. In the

dimensionless model now considered for which eigen-

functions have been determined, the well depth and

diGuseness parameters are related. The modified ex-

pression for these eigenvalue sums are"

P pal=A"'(gp+giA —gp« '), (55)
%=1

where
go= ~ 50 gl=4.40 and g~= 12.60.

[ll l I l I l

ae—
Co

IOA37

9609

8.629

7400

5.640

3.0

where k„=0.7625. Use may also be made of the corre-

The fits of these expressions to the actual sums are
shown in Fig. 10.

Since the wave functions have been determined for
our realistic potential, it is possible now to evaluate

f, defined by Eq. (45). Using the dimensionless wave

functions, one finds that

f;=P,[1—S„(k)j, (56)

2.5

2.0
02 A' 0.3 0.4 0;5 0.6 0.7

where I', is the probability of a particle being found in

"K. Lee and A, Green, Bull. Am. Phys. Soc. Ser. II, 1, 16
(1956).

FIG. 10. A ~t3 Z e; 'fls h.'t' for various potential parameters cp.

The straight lines correspond to Eq. (55). The horizontal line
corresponds to the constant go predicted for the kinetic energy on
the Fermi gas model. (From Lee and Green, reference 66.)
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sponding approximate relation

gs(1+-,'P) eo '= a 'js(1+ksP),
where

j2= 9.135 and k2= 0.5862.

The total energy now takes on the form

(61)

TABLE III. Mass surface parameters (in Mev) derived from an
IPM model with a velocity dependent disuse boundary potential
[see Eq. (67)j. The numbers in the second column correspond to
the parameters for the case P=O. The numbers in the fourth
column give the values for P=1. The experimental values for n4
and a5 are rough estimates based upon this study of perturbations
of the Weiszacker equation and the work of Cameron.

exp

E (A) = ,'A—V—o+Uoa 'As-~'[(go ,'f—o)—+g,hl -.j,a—-']
+PL——s'Ak. Vo+ Uoa 'As"

X (sgo+pgr& '—jsksa ')]. (62)

C1

82
Att

0,'4

A5

4.92
12.80
6.92
9,27

11.73

6.38
2.20
3,73
5.37
8.19

11.30
15.01
10.66
14.65
19.93

15.826
17.970
23.52

~31.5
~40.0

The factors u 'and a 'require special consideration. To
arrive at a result in a form comparable to a Weiszacker-
type equation we must handle the corrective term to
the approximate representation, u=roA&, with some
care. Anticipating how these corrective terms will
inQuence the mass equation, it is reasonable to choose
them so as to "feed back" into the volume or surface
terms rather than generate new terms in the mass
equation. By least square fitting to the actual values
of u ' we find to a very good approximation that

a '=loA &+ltA '

with /0= 0.5220 and l» = 1.116,

and to fairly good approximations

a '=mpA r'+mrA &

(63)

and
with mo ——0.9838 and mr ———0.0467, (64)

a s=npA '+rstA &

with no= 0.9563 and n» = —0.0611. (65)

E=2Er(A„)+2Er(A„). (66)

Neglecting terms of the order of D'/A' the total energy
may be placed in the form

To derive a mass surface (in the absence of
the Coulomb potential) for an even-even nucleus,
one considers now two independent systems with
A=sA(1&D/A) where the upper sign is for neutrons
and the lower sign for protons. Assuming D/A is small,
one expands (1&D/A)" and inserts the series into Eq.
(62). The total energy is then V. INFLUENCE OF PERTURBATIONS

Perturbing the potential by addition of a function
of the form

s= op&(r), —(69)

symmetry energy particularly falls far short of the
experimental value.

Thus we are encountering again a difficulty closely
related to the need for introducing a proton potential
anomaly in static wells. According to the mass equation
for nuclei near the line of beta stability

8„—Bp=2a3ZA &—a4DA '. (68)

A weakness in the symmetry energy parameter thus
would lead a large diGerence between neutron and
proton binding energies. This situation arose in static
well studies" and could be corrected by introducing
perturbations of the type given by Eq. (54). In par-
ticular the terms &XkVp)(r)D/A might be expected to
help the symmetry energy.

In an unpublished note, Brueckner finds that if, as is
done here, one identifies eigenvalues with the separation
energies then in an infinite saturated system one must
modify Eq. (35) to incorporate a "rearrangement
energy. "It is possible that the rather large deficiency in
the volume energy found here at p 1, which corre-
sponds to a reduced mass of 0.5 might be related to the
neglect of such a term. In any event the perturbation
term —XVp/(r) contained in Eq. (54) helps the volume
energy perhaps by compensating for this effect, although
this question is unsettled.

where

E= a,A+ a—,Ai+n4D'/A npD'/A—',

al nlp+nllp, as nsp+nslp etc.

this perturbation enters the expression for the total
energy directly through the main potential energy term
and indirectly through the e()

' surface term. To a good
approximation one may expand

For convenience, the divisor 4 in the usual symmetry
term has been suppressed.

Table III shows the mass parameter coe%cients
obtained. We have introduced the symmetry coeKcient
n, =n4 —ns/Ai with A'=5 to compare the results with
the usual form of the Weiszacker equation. The table
shows that desired values of mass parameters would
only be reached at very large values of p and that the

(V*+sp) '*= (V*) '*(1——',ep/V*). (70)

Thus the extra terms associated with an attractive
perturbation of magnitude vo are

——',spA+-,'Voa 'js(1+kpP)soV* '. (71)

Using approximate techniques which have been de-
veloped in last particle binding energy studies let, us
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now assume that a static perturbation is added of the
form

v„= —X(1—kD/A) Vot(r)

v, = —X(1+kD/A) Vo&(r)+2U, (Z—1)n,g(r) a '
+2U,P, (Z—1)a ', (72)

where u, and P, are parameters depending upon the
diGuseness and radii. They may be determined by the
considerations given in reference 27 so as to approximate
the inQuence of the classical Coulomb potential arising
.from a distribution of (Z—1) protons when acting upon
another proton in the nucleus. The extra terms which
now enter the total energy expression are

Ep„,t,= ——,'X VOA+-,'Xk VOD'/A+Z(Z —1)U, (n,+P.)a '
—Upa 'j2bZ"'(Z —1)U~a 'Vo
—(5/9)(4) *XUoa 'j2bD'A &

+Uoa 9bA"', (73)
where

b= b, by =—(1+kg)/(1+k.P)
=0.95675—0.05675P. (74)

The first three terms arise from the direct eGect, the
last three through the eo ' term. The Coulomb term
contains the classical result and an additional quantum-
mechanical term. The latter might be described as the
inQuence of the perturbation upon the wave functions
causing a weakening of proton interactions. The com-
bination U,A&(n.+P.)a ' might be compared to the
usual Coulomb energy constant. The calculated values
for this number at various A values turn out to be
practically constant at 0.697 Mev in rather good agree-
ment with the desired value of about 0.71. Exactly
what to do with the nonclassical Coulomb term is an
open question. If one manipulates it into the form of
the regular term and combines the two together for
nuclides near the line of beta stability, one finds that
now the Coulomb energy coefFicient runs from about
0.64 to 0.67 from light to heavy nuclei which is still in
fair agreement with the demands of the semiempirical
equation.

To study the inQuence of the other perturbation
terms we must 6x the values of X and k. We could of
course choose these constants and P so as to arrive at
desired values of a~, a2, and n, . However, this ud hoc

approach is rather repulsive and it would be more
signi6cant to use other information. Recent studies of
the proton potential anomaly have suggested" that the
absolute difference in the constant part of the proton
and neutron wells needed to keep last particles at
approximately the experimental values is rather in-
sensitive to the degree of velocity dependence. Accord-
ingly it is reasonable to examine the result of letting
X=0.125 and k=5.6, the values used in the static case.
Table IV shows the mass parameters now obtained.

' A. Green and P. C. Sood (unpublished).

Each of the mass parameters has been brought into
the proper range by this perturbation at P= 1, a value
which corresponds to an average reduced mass of 0.5.
This is about the same order of magnitude that has
arisen in many recent studies of infinite nuclear matter.
It is also satisfactory that the average slopes of
isobaric mass diGerences" are approximately in accord
with the requirements of experiment when P=1. The
calculated beta-decay energies, however, Quctuate
markedly from their experimental values, an eGect
probably characteristic of an I.P.M. model which neg-
lects interparticle couplings.

Using techniques familiar in uniform model calcula-
tions' ' one might derive a pairing energy function from
our expression for the total energy of a system of
particles. The result is

H(A)=29A '—40A &. (75)

This is too small by a factor of about four and
hence the pairing energy remains to be accounted
for in another way.

TABLE IV. Mass surface parameters (in Mev) derived after the
inclusion of a perturbation inferred from last particle binding
energies. The numbers in the second column give the parameters
for the case P=O. The numbers in the fourth column give the
values for P= 1.

81
82
83
&le

414

Clg

7.70
17.10

~0.66
15.79
25.68
49.46

6.36
1.95

~0
4.04
5.23
5.96

14.06
19.05
0.66

19.83
30.91
55.42

exp

15.826
17.970
0.7183

23.52
~31.5

40.0

' R. J. Walker and A. Green, Bull. Am, Phys. Soc. Ser. Il, 2,
288 (1957}.

VI. DISCUSSION

We have carried this e8ort to a point at which rather
reined treatments and approximations are needed to go
further. Before considering some of these 6ne details, let
us return to the major consideration of the foregoing
derivation of the Weiszacker equation, namely, its
bearing upon the question of nuclear sizes and density
distributions. In this derivation the same scale factor
used in the static well case was chosen in order to
retain the rather satisfactory distributions obtained in
a study based upon the static well. These are shown in
Figs. 11 and 12.4' In actuality a small decrease in the
predicted matter radii ( 3% in heavy nuclei) would

appear to be desirable to improve agreement with the
Stanford densities. Such a decrease would tend to
increase the kinetic energy by about 6%%u~ and hence
would require increasing the well depth by a comparable
amount. It is likely that the net e6ect of all of these
readjustments would. be to increase the volume energy
and improve somewhat the derived mass surface.



NUCLEAR SIZES AN 0 HEI SZACKER MASS FORM ULA

Fro. 11. Proton den-
sities vs radius. 47 The
solid curves are proton
density distributions for
mass numbers 25, 50,
100, 150, 200, and 250
calculated on the basis
of the family of poten-
tials arrived at in an
earlier work. The dashed
curves are density curves
inferred from the Stan-
ford electron scattering
experiments. To avoid
overlap, the curves for
successive mass num-
bers are shifted upwards
by 0.03 scale unit. The
heavy markers denote
the ordinates at which
the scale is broken. The
dotted line for mass
number 250 represents
a density curve with a
radius parameter 5%
larger than the radius
parameter extrapolated
from the Stanford ex-
perimental results.
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"K.A. Srueckner and J. Gammel (to be published).

Quantitative estimates of this effect are rather diScult
to make since it would also depend upon the slight
reshaping of the well needed to restore the last particle
binding energies.

The contributions of extra terms to the right of
Eq. (40) are expected to increase the volume energy
coeS.cient by about 0.5 Mev, a helpful increase. In
addition the approximation of replacing of bP in the
denominators of Eq. (40) by the average P might be
corrected by giving consideration to departures of f,
from f t see Eqs. (45) and (46)j. On the basis of
Eqs. (57) and (58), f, is estimated to be about 0.14.
Individual state estimates using Eq. (56) range from
about 0.05~.3. This variation in the effective P
corresponds to the type of variation of the reduced
mass m* found by Brueckner and Gammel. "Possibly
these additional considerations related to the non-
locality of the effective potential will further improve
the volume energy. It is unlikely that these fine features
would change the over-all density distributions very
greatly although they probably would act in a diGer-
ential way upon the individual states.

The influence of the proton potential anomaly which
is essential to the explanation of last particle separation
energies, and to the attainment of a reasonable mass
surface, also has a direct bearing upon nuclear sizes and
density distributions. Using a representation of this
anomaly involving a form factor similar to the neutron
well, the anomaly has been found to cause a slight
shrinkage of the charge radius. " This shrinkage is
enough to upset the balancing effects of the Coulomb
repulsion and the presence of extra neutrons which

would otherwise lead to the approximate equality of
proton and neutron radii. The net neutron skin thick-
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Fro. 12. Total particle densities and potentials vs radius. "The
solid curves are calculated total particle densities. The dashed
curves represent the form of the potential functions which
underly this work. The heavy markers indicate ordinates at which
the scale is broken by 0.06 scale unit.

"M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954)."L.filets, Phys. Rev. 101, 1805 (1956)."R.L. Cool, Revs. Modern Phys. (to be published).
7g 3.Margoles and V. F. Weisskopf, Phys. Rev. 107, 641 (1957).
7' S. Fernbach, Revs. Modern Phys. 30, 414 (1958), this issue.
7' A. E.Glassgold, Revs. Modern Phys. 30, 419 (19583, this issue."J.P. Schi6er and L. L. Lee, Jr. (private communication)."Johnson, Galonsky, and Ulrich (private communication).

ness calculated is small, however, ( 0.062&) when
compared to the earlier neutron skin estimates ( 1) of
Johnson and Teller. "This smaller result is close to that
found recently by filets" using diGerent theoretical
techniques. The most recently reported experimental
evidence by Cool" suggests the equality of the neutron
and proton radii and appears to rule out a thick neutron
skin. Further experimental clari6cation of this question
should be of help in determining the exact origin of the
proton potential anomaly. This anomaly unfortunately
seems to have a large number of possible explanations
(including the possibility that it doesn't exist"). On the
basis of the reports of Fernbach" and Glassgold, " the
considerations in the previous sections and other
studies" ""it appears quite conclusively that there are
indeed diGerences in the proton and neutron well
depths. Derivation of the Weiszacker formula and
further detailed study of last particle binding energies"
strongly suggests that the bulk of these differences are
related to the neutron excess rather than the nuclear
charge or to the velocity dependence of the potential.
Since extra neutrons in heavy nuclei tend to lie in the
outer' regions of the nucleus, it is quite possible that the
potential anomaly form factor should have a maximum
near the surface and hence Lsee Eq. (72)j provide a
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local trough for protons and hill for neutrons near the
surface. Whether the hill and trough would be sufFicient
to equalize the proton and neutron radii would depend
critically upon the detailed relationship of the potential
anomaly to the neutron excess density. Drell" points
out the equality of the proton and neutron radii in
conjunction with the larger potential radius would
impose highly restrictive requirements upon the per-
missible two-body interactions. One might also expect
an involvement of the sizes of the proton and neutron
themselves" in the origin of the anomaly although the
exact nature of this is unexplained. Finally one would
also expect an involvement of the "rearrangement
energy" question" ""since the final adjustment of the
well parameters would depend upon the siae of this
eRect in finite nuclei.

VII. CONCLUSIONS

It appears that a Bethe-Weiszacker type mass surface
provides its best account of nuc1ear masses at a Coulomb
radius parameter in agreement with the equivalent
parameter inferred from Stanford electron scattering.
There is opportunity for further improvement, both in
the form of fluctuating shell and pairing corrections, and
in smooth statistical corrections.

The second portion of this work is devoted to an
eRort to relate the Weiszacker equation directly to
potentials obtained from scattering and shell models.
Working with nonlocal or velocity dependent nuclear
potentials such as might arise from Brueckner-Bethe
self-consistent field methods, one can derive fairly
directly a mass surface similar to the Weiszacker
formula by going to a reduced mass near the value
determined in studies of infinite nuclei. The parameters,
however, particularly the symmetry term, which in-

cludes a negative surface component, are not satis-
factory. By adding an appropriate perturbing potential
one gets a fairly satisfactory mass surface. This is
accomplished at density distributions in good corre-
spondence with experimentally inferred distributions.
While many considerations have been left open, par-

'Hofstadter, Bumiller, and Yearian, Revs. Modern Phys. 30,
482 (1958), this issue.' K. A. Brueckner (unpublished note).

"D.J. Yhouless, Bull. Am. Phys. Soc. Ser.' ll, 3, 20 (1958).

ticularly questions of the self-consistency, stability, and
"rearrangement energy, " this type of analysis involving
the use of deeply bound states may serve as a useful
link in exploring characteristics of nucleon-nucleus
potentials.

An interesting aspect of this derivation of the
Weiszacker equation from the IPM is the rather mixed
origin of the terms which normally referred to as volume
and surface terms. This mixing is occasioned largely by
the fact that nuclear radii do not vary simply as A &, and
suggests that we must not be too literal in the inter-
pretation of the separate terms as volume, surface, etc.
energies. Perhaps some of the difhculties in the applica-
tion of the mass surface to the interpretation of the
theory of fission have been occasioned by this confusion.

In conclusion, atomic mass data constitute one of the
most precise and extensive arrays of experimental
information available for the interpretation of nuclear
phenomena. When interpreted in the light of current
theoretical ideas and other types of experimental
information, these data can lead to rather detailed
conclusions concerning nuclei. As our understanding of
complex nuclei progresses, nuclear masses will play an
increasingly important role in nuclear physics.
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