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I. EXPERIMENTAL REVIEW

~QUANTITIES which theories of the nuclear surface
seek to describe include the following: (1) surface

thickness, (2) surface energy, (3) relative extent of
neutrons and protons, and (4) extent of nuclear forces
compared with matter. There now exists experimental
information bearing on all of these, although some of it
is still preliminary. All lengths are quoted in units of
10 "em=1 fermi (f).

(1) On the basis of the Stanford electron scattering
experiments, "the nuclear charge distribution may be
described as possessing a central region of rather uni-
form density (although a few percent central depression
or rise is not ruled out) and a surface region in which the
density falls from 90 to 10% of the central value in a
distance D=2.4 f (accuracy about 10'%%u~) independent
of nuclear mass number A. The density distribution is
usually described by the function

p p L1+e (r R) / u]—1—
where D=4.39a. The precise functional form is not
significant, but rather just two parameters, taken to be
the half-density radius R and the falloff distance a or D.
To a 6rst approximation this is also the distribution of
neutrons (the two together forming the matter distribu-
tion) but differences between the two distributions are
of considerable interest.

The Stanford scattering experiments also show that
the proton has a structure. ' ' The charge distribution
has been described by the form factor exp( —r/b),
b=0.23 f. Various workers4 have pointed-;out that the
charge distribution should be a convolution of the
distribution of the proton mass centers and the charge
distribution of the proton. For a large nucleus the
radius associated with the nuclear charge distribution is
nearly equal to the radius of the mass-center distribu-
tion, but the surface thickness of the mass-center
distribution, Do, is less than that of the charge
distribution,

Do D 4b'/u= 2 O——f. — .

Nuclear distortions or surface vibrations lead to an
effective surface diffuseness greater by the order of PR

*On leave from the University of California's Los Alamos
Scientific Laboratory, Los Alamos, New Mexico.' R. Hofstader, Revs. Modern Phys. 28, 214 (1956).

'D. L. Hill. and K. W. Ford, Ann. Revs. Nuclear Sci. 5, 25
(1956).

3Yennie, Levy, and Ravenhall, Revs. Modern Phys. 29, 144
(1957).

4 D. G. Ravenhall, Stanford Conference on Nuclear Sizes and
Density Distributions (1957).
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+Coulomb energy+6(A&). (3)

Values which Green' and Cameron' give for these
quantities are listed in Table I. The variation in the

TABLE I.~

Ev
K, sy

Esq Sf/

Greenb

—15.83
23.52
17.97
0

1.28
0.38

175

Cameron-
Greene

—16.34
30.34
20.96—36.35

1.16
0.49

218

Camerond

—17.04
31.45
25.84—44.24

1.01
0.72

302

a Values above the line are from semiempirical mass formulas, as
defined in Eq. (3).The parameters below the line are derived from Eqs. (28),
(31), and (32) using the added values rtt =1.07 f and D=2.4f. All energies
are in Mev; n and f are dimensionless.

There is a progressive error in the last column (n =1)of Table I, reference
17, which results in an understimate of nuclear compressibility. The derived
falloff distance should be D =2.0 f; the subsequent interpolation to the
observed falloff distance then leads to higher compressibility, compatible
with the table given here.

b See reference 5.
& This column represents a regrouping by Greens of terms in Cameron's

formulas such that terms of order A.& do not appear explicitly. The coeAi-
cients were fixed by a least squares analysis.

d See reference 6.
~ A. E. S. Green, Revs. Modern Phys. 30, 569 (1958);Phys. Rev.

95, 1006 (1954); also private communication.
6 A. G. W. Cameron, Can. I. Phys. 35, 1021 (1951).

than what we may call the intrinsic thickness. (p is a
measure of nuclear deformation, roughly the diGerence
between the semimajor and semiminor axes divided by
the mean radius. ) The results quoted in the foregoing
are obtained from nuclei near closed shells and therefore
have no static deformations. Even near closed shells,
however, some surface thickening may result from sur-
face vibrations. We give no estimate of the eKect here,
since near closed shells the nature of the collective
motion has not been clearly established.

(2) The usual Weizsa, cker semiempirical mass for-
mula contains a term which varies as A& that is iden-
tified with the nuclear surface energy. Surface energy is
also a function of the neutron excess, however, and more
recent mass formulas have included a surface symmetry
term which gives some small improvement in its to
mass data. Quantities in the mass formula needed later
are defined by

(X—Z)'
binding energy= E.+E...„A

A'
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parameters among the various formulas indicates that
a fair margin of choice is possible. Although all three
of the formulas give good fits to empirical masses,
differences in the parameters are of significance in the
theoretical interpretation of surface effects. The surface
energy may be expressed in terms of the surface tension
parameter S, which has dimensions energy —'. area,

E,=4n-r p'S,

where the nuclear radius is given by R=r&'.
(3) Direct measurements of the neutron density

distribution remain very dificult, although there is
some hope of distinguishing a difference between
neutron and proton distributions. The best determina-
tion of a neutron-proton radius difference has been made
by Abashian, Cool, and Cronin utilizing the asymmetry
between neutrons and protons in scattering by + and
m+ mesons. These experiments indicate only a small
difference in the radii of the distributions with the
protons slightly more extended. The numbers given-are

R„R=(0.3—&0.3) f. (5)

(4) Analyses of neutron and proton nuclear scattering
experiments in terms of the optical model yield parame-
ters characterizing the nuclear potential. While both
neutron and proton scattering experiments give similar
parameters, the proton experiments are generally more
precise. Because a large number of parameters (from
four on up) are available, there is about 4'%%uz margin of
choice in the radial parameter. There is also some
arbitrariness in the representation of the radius as a
function of A. The point of view taken in this paper is
that the difference between the potential radius and the
matter radius is independent of A and will be evaluated
for heavy nuclei. ' "This gives

R„R„=(1.0&0.3) f. — (6)

The potential surface thickness is given by a=2.85 f,
or a= (0.65&0.05) f.

II. THEORETICAL CONSIDERATIONS

A complete theory of the nuclear surface must deal
with all of the complications of the finite nuclear many-
body problem. Such a theory is not available in cal-
culable form, but there remain nevertheless semi-
empirical models which give insight into the physical
problem and correlate quantitatively the above surface
quantities with other observable nuclear properties. We
return to the basic question of a theory from first
principles in Sec. VII.

In order to isolate surface eGects, it is frequently

' Abashian, Cool, and Cronin, Phys. Rev. 104, 855 (1956}.See
also W. ¹ Bess and B. J. Moyer, Phys. Rev. 101, 337 (1956);
R. W. Williams, Phys. Rev. 98, 1387 (1955).' Melkanoff, Moszkowski, Nodvik, and Saxon, Phys. Rev. 101,
507 (1956).' S. Fernbach, Revs. Modern Phys. 30, 414 (1958).

"A. E. Glassgold, Revs. Modern Phys. 30, 419 (1958).

useful to consider a semi-infinite nuclear medium
bounded by a plane surface. This permits investigation
of the four quantities listed above, but neglects specific
shell eGects which may be important in the real nuclei.
The inclusion of Coulomb energy also requires special
consideration.

It is useful to have available a definition of the surface
energy in the semi-infinite model to identify with S of
Eq. (4). This quantity is given by the difference per
unit area between the energy of the medium and the
energy the same number of particles would have if
all were located in the asymptotic (normal density)
region of the nucleus,

00 ho
S= i h(x) ——p(x) dx

00 po

h(x) p(x)
dx,

ho- Pp

where 80——h (—~ ) and po ——p (—~ ). The x direction is
taken normal to the nuclear surface with the nuclear
density falling oG toward positive x values. The integrals
are convergent for properly saturating nuclear forces.
The quantity B(x) is the energy density (dimensions:
energy —.volume) of the nuclear medium. ho/po is the
average binding energy per particle for an infinite
nucleus, and is to be identified with the coefficient E, of
the term linear in A in the mass formulas (3).
pa= (4lrroa/3) ' can be obtained from the Stanford
scattering experiments. Thus only the functional de-
pendence of b(x) and p(x) and not their absolute
magnitudes are required to determine S.Such considera-
tions make a semiempirical model of the nuclear
surface feasible.

"H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 83
(1956), especially p. 164.

'~ E. Feenberg, Phys. Rev. 60, 204 (1941).
"W. J. Swiatecki, Proc. Phys. Soc. (London) A64, 226 (1951);

Phys. Rev, 98, 203 (1955};Proc. Phys. Soc. (London) 468, 285
(1955); unpublished formulas and graphs in connection with
lectures held during 1956-1957 at The Institute of Physics,
University of Aarhus, Denmark.

III. INDEPENDENT PARTICLE MODEL

That the nucleus should have finite surface thickness
and surface energy follows from simple wave mechanical
considerations, as pointed out by Bethe and. Bacher, "
Feenberg, " and others. Swiatecki's" development,
which is the most complete, is followed closely in this
section. In analogy with the nuclear shell model, it is
assumed that in the first approximation the nucleons can
be treated as moving in a given external potential. The
external potential which Swiatecki considers contains a
constant region plus a linearly increasing region. The
slope is a parameter which can, for self-consistency, be
adjusted to yield minimum surface energy.

Deviations of the wave function from that of in-
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0, $&0,
V(x) =

$&0.
(8)

dependent particles could, in principle, be treated by
perturbation theory, but in the case of strong or singular
potentials the expansion may be either slowly con-
vergent or nonconvergent. Nevertheless, insight into
the problem may be gained by using well-behaved
potentials which reproduce low-energy nucleon-nucleon
properties and yield the proper nuclear binding energy
E„=hp/pp. The discussion here does not go beyond first
order.

Consider erst a potential well bounded by an infinitely
high plane wall:

p
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Fio. 1. Independent particle model: nuclear densities in a semi-
in6nite well with sloping wall (after Swiatecki"). The Fermi energy
is 32.5 Mev (E= 1.25 f '). The curve marked xp=0 is for a vertical
wall; the position of the mean density radius is marked by —b, Tbe
broken curve labeled @0=3.1 is the Thomas-Fermi distribution.

The independent particle wave functions are

fa,x,a3 2* sink——&x expi(kpy+k3s) (9)

If the states are filled four each up to the Fermi
momentum AE, the density will be given by w0

) $&0,

positive. Swiatecki ascribes this to the more eGective
penetration of the surfac"- region by faster particles.

Now consider the more general potential,

p(x,y,s) =p(x) =
~'

~
~fk3koap~pdk3dkpdk3

(2m)3"' (10)

V(x) =~ x
Tp—, $&0.

$o

(15)

=po{1+33X 'cos2X —pX 'sin2X},

where X=Ex and pp ——p( —~)=2E3/3'. The function
p(x) is given in Fig. 1(xp=0). The mean position of the
surface is given by —b, where

0

b= I {1—p(x)/podx}=3~/(8E).

The independent particle wave functions for this
potential can be written down as trigonometric func-
tions in the constant potential region and Bessel
functions of order 3 in the linear region. Swiatecki"
has obtained the density and surface kinetic energy for
this problem exactly; we refer only to his results here.
However, in the limit of small slope (Exp)&1) the den-
sity and kinetic energy in the surface region approach
the values given by the Thomas and Fermi model:

The surface thickness is characterized by the wave-
length of the most energetic particle, X=X ', which for
a Fermi energy of 32.5 Mev is 0.8 f. Because the density
oscillates, the 90—10%falloff distance is not appropriate.

The kinetic energy density is given by

p(x) (xp —x)'
xo jpo

t'o po

t(x) -p(x) 3'3 t'xo —x"
E xo)'

(16)

t(x,y,s) =t(,) =
(2m)3& " " 42M

5 15
=tp 1+—X 'cos2X ——X 'sin2X

4 8

15 15——X 'cos2X+—X 'sin2X, (12)
8 16

Tp koK'/23f. —— (14)

The surface kinetic energy for the infinite well is

while the surfacekinetic energy, according to Eq. (7), is
given by

t(x) p(x)
T,=to — dx=to2~/(32E), (13)

~o po

where to t( ~)=0.6——Tap—o and

and

fxp x) '—(xp —x) ' 4
dx= —xoto (18)

"o -&xp) E xp). 35

A plot of the density corresponding to a fallo6
distance of 2.4f is shown in Fig. 1(xp=3.1 f) obtained
both from exact wave functions and from the Thomas-
Fermi distribution, Eq. (16).

The kinetic surface energy in this limit is negative
since the surface region contains an excess of low-energy
particles. A plot of the kinetic surface energy as a func-
tion of xp is shown in Fig. 2. (The Fermi energy is taken
as 32.5 Mev. Leveling oG the potential at say 8 Mev
above the Fermi energy would not appreciably change
the results. )

Shown also in Fig. 2 is the contribution of the poten-
tial interaction to the surface energy. Calculations were
made by Swiatecki for a Gaussian interaction. The
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parameters are given in the caption and are chosen to
reproduce the mean binding energy E„and to approxi-
mate low-energy scattering data. Exact calculations
were made in the limits @0~0 and Exo&&1, and for
several intermediate points. The minimum in the curve
falls well below the observed surface energy of 18
to 26 Mev, but this example is only illustrative of the
method. A more general study would seek to find a
two-body effective (or pseudo-) potential which re-
produces the observed surface energy and thickness as
well as the mean binding energy. From such a potential,
one might then hope to deduce other nuclear properties.
Possible trial forms include velocity-dependent func-
tions such as Brueckner's reaction matrix. The wave
functions considered would then be reinterpreted as
model wave functions, rather than true independent
particle functions.

Self-consistt':nt Hartree-Fock calculations have been
carried out by Rotenberg" for the spherical nucleus
S=Z=92. Yukawa and Gaussian wells were used, the
latter yielding a somewhat more di8use surface.
Swiatecki's results are in general agreement with this
work, although the latter displays specific shell e6'ects.

IV. STATISTICAL MODEL

In an attempt to apply methods which have proved
very successful for electrons in atoms, Gombas" applied
the statistical model to the nucleus. The energy is
written in the form

1.815' h' (~p)'
tE=

)
~ hy(p)+ p"'+— d r, (19)

M 8M p I

where the first term in the integrand is the interaction
energy density computed as a function of density from
plane waves. The second term -'," the Fermi kinetic
energy. The third term is an inhomogeneity correction
to the kinetic energy first suggested by Weizsacker. "
(The term is in error, see Sec. V.) Gombas worked with
finite, spherically symmetric nuclei. By choosing a
functional form for the density, the energy of the
nucleus can be minimized (subject to keeping the
number of nucleons fixed) by varying parameters in the
density function. Gombas tried several two-body
potentials, but worked especially with Yukawa wells of
range given by the mesonic mass. Saturation was
obtained by exchange. The strength of the interaction
was left as an adjustable parameter.

Gombas was able to fit binding energies (including
surface effects) over the entire range of nuclear masses
fairly well with only one adjustable parameter. His
density distributions, however, were unrealistic. He

'4 M. Rotenberg, Phys. Rev. 100, 439 (1954).
'5 P. Gombas, Acta Phys. Hung. 1, 239 (1952);2, 223 (1952);3,

105, 127 (1953);Gombas, Magori, Moln6, r, and Szabo, Acta Phys.
Hung. 4, 267 (1955);Gombas, Szepfalusy, and Magori, Acta Phys.
Hung. 7, 251 (1957)."C. F. von Weizsacker, Z. Physik 96, 431 (1935).

Fzo. 2. Independent
particle model: contri-
butions to the surface
energy in a semi-in6nite
well with sloping wall
(after Swiatecki"), The
kinetic energy is com-
puted exactly. The po-
tential energy is com-
puted exactly in first
order in the limits x0~0
and ICxo&)1, and for
several intermediate
points. The two-body
interaction is a Gaussian
of range 2.073 f. The
strength of the even
interaction is —42.94
Mev; the odd inter-
action is repulsive and
0.6 times the strength
of the even. This inter-
action leads to a bind-
ing energy of —15.75
Mev and an equilib-
rium radius constant of
r0= 1.216 f.
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obtained Gaussians for light and medium weight nuclei,
and slightly flattened Gaussians for the heavy nuclei.
The central density was an order-of-magnitude greater
than observed. The general method has much value,
however, if not approached from first principles.

A. Equal Numbers of Neutrons and Protons

Consider first a nucleus with E=Z and neglect
Coulomb forces. It is assumed that the energy of the
nucleus can be written in the form

f'&' (vp)'E=
) h(p)+ —dr

8M p

The integrand is to be considered the beginning of an

(20)

"R. A. Berg and L. Wilets, Phys. Rev. 101, 201 (1956)."L.Wilets, Phys. Rev. 101, 1805 (1956)."E. Wigner, Bicentennial Symposium, University of Penn-
sylvania (1940)."E.Feenberg, Phys. Rev. 59, 593 (1941);Revs. Modern Phys.
19, 239 (1947)."W. J. Swiatecki, Proc. Phys, Soc. (London) A63, 1208 (1950).

2' D. P. Hale and R. D. Present, Phys. Rev. 104, 448 (1956)."T. H. R. Skyrme, Phil. Mag. Ser, 8, 1, 1043 (1956);F. Villars
(private communication).

V. SEMIEMPIRICAL STATISTICAL MODEL

A statistical model of the nucleus utilizing several
pieces of experimental data has been studied by Berg
and the author. ' " No explicit assumptions about
nucleon-nucleon forces are made, and details of the
many-body wave function are not required. Semi-
empirical approaches had been used previously" " to
study the interior distribution of nuclear matter, and
subsequently"" to study surface phenomenon. This
section follows the development of Berg and filets. ""



expansion for the energy density of nuclear matter in
powers of various derivatives of the density.

The first term in the integrand, $(p), represents the
energy density of a uniform nuclear medium. It includes
both potential and kinetic energies and should, in
principle, be derivable from a complete solution of the
infinite many-body problem. %eare primarily interested
in the following properties of h(p) (see Fig. 3). The
energy per particle, 8/p, as a function of density, has a
minimum at the observed density of nuclear matter, and
the value at minimum is the mean binding energy per
particle, E„(C oui omband symmetry effects are ac-
counted for separately in the mass formula (3)]. The
curvature of h/p at the minimum is related to nuclear
compressibility E, defined by

R' O'E 8'(h/p)X=- =9p'
A BE. Bo Bp

(21)

where Ro is the normal radius and po is the normal
(central) density of the nucleus. The quantity E is not
readily obtainable from experiment, and is considered
a parameter of the theory. Its value can then be Axed

by comparison with experimental predictions of the
model. Further details in the form of 8(p) are not
important for present considerations, since at low
density the energy is governed by the gradient term.

The appearance of a gradient term arises from two
sources. Firstly, as proposed by %eizsacker)' there
is a correction to the (Fermi) kinetic energy when
the density is not constant. Although %eizsacker's
derivation of the inborn ogeneity correction term,
(AVp)'/(gap), has been shown to be in error 2' the
form of the term is such as to give qualitatively
meaningful resul. .'-s; these results can be made quantita-
tive if the term is reduced by a factor between —,

' and g,
depending on the details of the potential. Secondly, a

where N=p' and Eo is a Lagrangian multiplier (see
below).

Although Eq. (22) has the appearance of a Schroed-
inger equation, it is nonlinear since the "effective
potential" 88/Bp depends on p (or u). Furthermore,
88/Bp should not be interpreted as a potential since it
i.ncludes kinetic energy.

For the case of the plane surface, we seek solutions
of the form

N~No=pp~) I~0) Q ~0) as s~—)
I'—+0, I"—+0, as x-++ ~. (23)

Equation (22) can then be integrated once to yield

1 k'
(I')'= h (p) —EON'.

2M
(24)

gradient term should also arise from eGects of the 6nite
range of nucleon-nucleon forces. The form of such a
term could be (Vp)' or V'p multiplied by a function of
density. Since the energy cannot depend on the sign
of the gradient, 6rst derivatives should not enter. A V'p
term can be converted to (Vp)' (plus other terms) by
partial integration. The form chosen to simulate both
effects was that of the Weizsacker inhomogeneity
correction term multiplied by the single adjustable
constant f'.

It should be stressed that the energy density can
include e6ects due to correlations, velocity dependent
forces, etc.

Minimization of the energy (20) with respect to p,
subject to the condition that the total number of par-
ticles A =J pdv' remains fixed) leads to 'tile differential
equation

(22)

Og

v)

PIP The following integrability conditions can be derived
from Kqs. (22) to (24):

~0=
BP &o P lI)0

(25)

K 9 Ih'(8/P)
P gpR

Fzo. 3. Energy per particle as a function of density. The curve is
schematic, representing the form given by Eq. (27), e=1. The
main features of the curve are the minimum at p=p0, the value
E0 at p0, and the curvature at p0 vrhich is related to compressibility.
Low density behavior of the curve is not important to the B-W
theory.

2' R. A. Berg and L. filets, Proc. Phys. Soc. (London) A68, 229
(1955).

which are restatements of the saturation conditions. %e
note that Eo is equal to both the energy of the "last"
particle and to the mean energy per particle, E,.

The surface energy, de6ned by Eq. (7), can be shown
to be given by

Equal contributions to the surface energy come from
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the gradient term and from the loss of binding energy
of particles in the surface region.

The differential equation (22) or (24) can be inte-
grated analytically for particular choices of h(p). A
convenient one-parameter family of functions is

)~pl/n |+~2/m
h(/)= IEoI/ —21 —

I +I —
I( Po) ( Po&

(27)

which clearly satisfy the saturation conditions (25). To
the extent that we are only interested in the properties
of h(p) discussed in the foregoing, we think of the
members of this family as differing only in the
compressibility,

X=18IEOI/m'.

The density functions are given by

p/po= (1+expL+/(II~)3

where /I'= fk'/(8M
I EOI). The surface energy is

po EOI III' '
S=

m+1 2M

(28)

(29)

(30)

and the surface thickness

where

I'k' '* S )m+1~D= X(N) = —
I IX(~),

8MEo
I EOI po ( 2

(31)

B. Unequal Numbers of Neutrons and Protons

The extension of the above methods to finite, spherical
nuclei, including Coulomb eGects, with unequal num-
bers of neutron and protons has also been investigated. "
The coupled differential equations corresponding to
(22) are

t h' cia——V I/l + II =EON2' Bp„
(33)

where the index/I stands for I (neutrons) or p (protons).

2' K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).' Gammel, Christian, and Thaler, Phys. Rev. 105, 311 (1957);
J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957).

(01) ""—1
X(n) =nln =4.39+2.89(e—1). (32)

(0 9)
—'/" —1

Equations (28), (30), and (31) relate EO=E„, pp, S, D,
and X.

Values of the compressibility E(along with e and I )
derived from three different mass formulas are given in
Table I (see caption for discussion of an error in refer-
ence 17). The value of II. obtained by Brueckner and
GammeP' using Gammel-Thaler" hard core potentials
is 172 Mev. This number agrees well with the value
derived from Green's mass formula but is considerably
less than that derived from Cameron's formula.

The Lagrangian multiplier has been set equal to the
same value for both neutrons and protons to insure
stability against beta decay; i.e., the binding energies
of the last neutron is equal to that of the last proton.

The energy density function $(p„,p„) is assumed to
be of the form

&(/ -,/. ) = ~(/)+&(/- /.—)'+~./' (34)

Ey ly/pp (35)

At low density, only the gradient term is important
anyway.

The third term on the right-hand side of Eq. (34)
represents the Coulomb energy (taken here as given by
the proton interacting with an external potential).

Numerical integration of the coupled differential
equation (33) leads to neutron and proton distributions
which are very similar (Fig. 4). The proton distribution
is slightly more peaked near the surface than the

E
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FIG. 4. Neutron and proton densities and potentials. ' The
graph illustrates the type of densities and potentials obtained from
integrating Kq. (33) in spherical symmetry. The example depicted
is for an hypothetical nucleus of A =225 and Z= 93.The potentials
were derived using an e6ective mass approximation (&*=0.6 M)
and were not carried to low density since the potential energy i,s
not signifIcantly approximated a& low density,

The function 8(p), where p= p„+p„, is taken equal
to the B(p) of the previous subsection.

The second term on the right-hand side of (34) is
identified with nuclear symmetry energy, which can
arise from several effects: (a) The Fermi kinetic energy
can be written in the form (1.81A.'/M) p'/II 1+6 (p„—p„)'/
p'+ ]. (b) Because of the antisymmetrization of the
wave function, nucleons have more bonds with unlike
rather than with like nucleons. Thus when a neutron
excess occurs, the protons experience greater potential
than the neutrons. (c) If the effective (or pseudo-)
potential is velocity dependent, the excess nucleons
will experience less potential because of their greater
kinetic energy. These three eBects are probably not
independent. Although the coeKcient k should probably
be density dependent, it was evaluated near normal
density from the semiempirical mass formula (3):
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Eo

Pp

Vp=V„+V,

potential. "" This, coupled with variation of the
' Coulomb potential inside the nucleus (which does tend
to concentrate protons at the surface), results in only a
small difference between the radii.

The conclusions of this subsection are mainly directed
to heavy nuclei near the stable valley. If one considers
mirror nuclei (X=Z) including Coulomb effects, the pro-
tons would lie outside the neutrons. Finally, nuclei with
greater neutron excess would find the neutrons extend-
ing beyond the protons.

VI. NUCLEAR POTENTIALS

FIG. 5. Schematic representation of the Johnson-Teller effect.
The proton potential is taken to be the neutron potential plus the
Coulomb potential. This leaves the classical turning point of the
fastest proton inside that of the fastest neutron. The densities are
given in Thomas-Fermi approximation, and the proton distribu-
tion is seen to lie inside the neutron distribution. The effect is
enhanced when barrier penetration is included, since the proton
barrier is higher than that of the neutrons. The effect is strongly
decreased with the inclusion of symmetry energy, which cuts the
difference between the neutron and proton potentials by roughly
one-half.

neutron distribution, but the neutrons have a slightly
longer tail. At the midpoint of the distributions, the
radius associated with the neutrons is about 0.2 f
larger than that associated with the protons.

This result is to be contrasted with earlier specula-
tions about neutron and proton distributions. Earlier it
was believed that protons would be concentrated in a
shell near the surface of the nucleus because of Coulomb
repulsion. Johnson and Teller" pointed out another
consequence of Coulomb forces operating in the reverse
direction: Consider an independent particle model in
which neutrons and protons experience the same
potential except for Coulomb forces (Fig. 5). Then the
proton potential will l', above the neutron potential by
the amount of the Coulomb potential. The neutrons and
protons fill their respective wells to the same maximum
energy Eo. Because of finite surface thickness, the
proton potential crosses the maximum energy Eo inside
the neutron crossing. In the Thomas-Fermi model this
would confine the protons inside the neutrons. Further-
more, the Coulomb repulsion acts as a barrier which
restricts proton penetration beyond the crossing. These
effects are related to neutron excess (which is also a
consequence of Coulomb forces) and may also be
interpreted as due to the greater penetration into the
surface region of the more energetic particles (neutrons).

The Johnson-Teller effect is modi6ed by symmetry
energy. In the language of the independent particle
model, the protons experience a deeper nuclear potential
than the neutrons, and it turns out that the difference in
in total potential is cut to about half the Coulomb

2' M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).

The methods of Sec. V avoid separation of the energy
into potential and kinetic parts. A more detailed
nuclear model is required for that. The independent
particle models for nuclear levels (shell model) and
scattering (optical model) provide the framework
within which the nuclear potentials can be discussed.

A general consequence of any independent particle
model which leads to saturation is that the potential is
a nonlinear function of density. In fact, the potential
must eventually increase less rapidly than the kinetic
energy, which varies as p:. This means that the potential
falls off less rapidly with radial distance than the
density, leading to a larger potential radius.

Calculations" have been made using the semi-
empirical energy densities of the previous sections. The
effective mass approximation was introduced so as to
allow identification of the potentials for normal mass
nucleons:

M*' 88 19.14k'

M . Bp„M* (36)

U(r) =) p(r')s, (tr —r't)dr'. (37)

If the range of the effective two-body potential were
independent of density, the only effect would be a
thickening potential surface with respect to the density
surface (as was seen to be the case for the effect of the
proton size on charge distribution). But the range of the

Ross, Mark, and Lawson, Phys. Rev. 102, 1613 (1956).
'9 K. A. Brueckner, Phys. Rev. 103, 1121 (1956).

The nuclear part of the neutron and proton potentials
were similar in depth and radius, each extending about
0.7 f beyond the matter distributions at half-maximum.

Brueckner" has used s, local reaction matrix (as well
as two-body potentials in erst order) to calculate the
nonlinearity effect. He has found the potential to
extend about 0.5 f further than the matter.

In addition to the nonlinearity effect is a specific
finite-range effect. In first approximation, this can be
estimated by folding the effective nucleon potential,
v, (t r—r t), into the density distribution"
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effective potential increases with decreasing density,
which results in a longer tail.

Combining the nonlinearity and finite-range effects,
Brueckner" estimated the potential rms radius to be
about 1.35 f greater than that of the density. This is
more than adequate to explain the experimental dif-
ference of (1.0&0.3) f.

The foregoing arguments show how, given a density
function, the potential may be seen to extend farther.
From the point of view of self-consistency, it is.encour-

aging that given a potential, the density can be shown
to lie inside. Swiatecki's" independent particle model
illustrates the point. In the Thomas-Fermi approxima-
tion, the mean density radius lies 0.6xp inside the
classical turning point for the last particle Lcf. Eq. (16)].
Noting that the potential rises another 8 Mev beyond
the turning point, the difference between the mean
potential and density radii becomes L0.1+—', (8/32. 5)]xo
=0.223$p, or inserting Swiatecki's value xp=3.1 f, the
difference becomes 0.7 f.

VIl. MANY-BODY PROBLEM

The most successful approach to the nuclear many-
body problem has been that of Brueckner and co-
workers. The infinite nuclear problem has been cal-
culated numerically by Brueckner and Gammel" using
the empirical two-body potentials of Gammel and
Thaler. "The minimum in the binding energy curve was
found to fall at very nearly the observed density and at
very nearly the observed energy.

Although the nuclear surface problem as defined in

Sec. II is infinite, it has many of the complications of

the finite problem. The finite problem has been formu-

lated in Brueckner theory, " but complexities have
prohibited numerical calculations.

Brueckner, Gammel, and Weitzner" have proposed
an approximation which uses the reaction matrix of the
infinite medium, calculated as a function of density.
It appears to be most convenient to treat the finite
problem and the surface problem in configuration space.
The reaction matrix, then has the form of a nonlocal
potential, (r~t~r'), which is evaluated at the local
density. The nuclear problem is then solved by the
Hartree self-consistent approximation. The basic as-
sumptions are that the correlations in regions of varying
density are the same as in infinite media of the same
(local) density, and that the range of correlations is
short compared with (say) the surface thickness.

There remains some question as to whether the
reaction matrix is sufficient for handling nuclear matter
considerably below normal density. Higher order
clusters become more important as the density is de-
creased. For example, at very low density, the matter
would separate into clusters of alpha particles, oxygen
nuclei, or, most preferably, iron nuclei. Such correlations
do not come out of the reaction matrix, which treats
fully only two-body correlations. (Correlations of order
higher than two are not important near normal density. )

In spite of some unanswered questions, it seems clear
that the Brueckner-Gammel-Weitzner proposal could
provide a fundamental advance in our understanding
of the surface problem from first principles.

'0 K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
{1955);R. J. Eden, Proc. Roy. Soc. (London) A235, 408 (1956);
J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957);
H. A. Bethe, Phys. Rev. 103, 1353 {1956)."Brueckner, Gammel, and Weitzner, Phys. Rev. (to be
published).


