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I. INTRODUCTION

FRUITFUL approach toward understanding the
structure of the nucleus has been provided by

measurement of various intrinsic nuclear properties
such as spin, magnetic and electric multipole moments,
charge density, etc. These empirical results are then
compared with values calculated on the basis of an
assumed model of the nucleus in attempts to develop a
comprehensive theory of nuclear structure. This article
presents the theory and experimental results which bear
on the determination of a nuclear property which may
be described as the distribution of nuclear magmetisatiou

(hereafter called DNM). This property is somewhat
more dificult to discuss theoretically and to measure
experimentally than, say, the nuclear magnetic dipole
moment. However, the current nuclear models have
reached a state of sophistication such that any theory
which successfully predicts nuclear moments should
also be capable of predicting the DNM. It is possible
that in a few cases the experimental determination of
the DNM will provide a sensitive test that will differ-
entiate between various theories of magnetic moments.

We discuss the theory of the effects of the DNM
with a view to distinguishing between the various
nuclear parameters that enter into the theoretical evalu-
ation of experimental results. Such results come pri-
marily from accurate measurement of the hyperfine
interaction in which the electronic density at the nu-

clear position is used to probe the DNM. Existing
experimental results in the field are collected in tables
and discussed from the point of view of the single par-
ticle model.

tween the ratios of nuclear moments and hyperfine
interaction constants for the two stable rubidium iso-
topes. A quantitative theory to explain the effects of
the DNM on hyperfine structure was developed by
Bohr and Weisskopf (B050) and enlarged upon by
Bohr (B051a, b). As the number of accurate measure-
ments of this effect increased it became clear that, in
keeping with the improved tl:eories of nuclear moments
it might be possible to calculate it in greater detail
than had been considered justifiable by Bohr and
Weisskopf in their original paper. t We therefore restate
the essential parts of the B-W theory and enlarge upon
those parts that may prove useful in nuclear structure
interpretation.

2. Bohr-Weisskopf Theory

This theory is applicable to nuclei which are heavy
enough so that the protons may be treated as a con-
tinuous charge distribution. The effects of the finite
size of the nucleus on the hfs of an s electron are twofold.
First, the effect of the finite size of the charge distribu-
tion is to make the electron potential non-Coulombic
inside the nucleus. Since the magnitude and radial
dependence of the hfs interaction density are propor-
tional to the specific electron density, the nuclear
charge size results in a reduction of the interaction
relative to a "point" charge nucleus. To demonstrate
this we plot in Fig. 1 the radial probability density for

1.0

II. THEORY

1. General

The most readily observable effect of the DNM is
its effect on the hyperfine interaction with an s electron.
The electron density at the nucleus is in most cases
negligible for p, d, . electrons so we confine this dis-
cussion to electronic s states, except where otherwise
stated.

The hyperfine interaction energy was first calculated
by Fermi and Segre (FE33)*by considering the nuclear
magnetic moment as a point dipole. The inadequacy
of the point dipole assumption for heavy nuclei was
first suspected by Kopfermann (KO40) and was held
responsible by Bitter (BI49) for the discrepancy be-

* Refer to Bibliography at end of paper.
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FIG. 1. Illustrating the effect of a uniformly charged nucleus
of radius E., on the nonrelativistic probability density distribution
of an sg electron near the nucleus (Z).

t Hereafter referred to as B-W.
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an s~ electron in the Schroedinger approximation for
two cases: that of a point charge Ze and that of the
same charge uniformly distributed throughout a sphere
of radius R,

Let us estimate by how much the hfs of a finite
nucleus with a uniform magnetization distribution dif-
fers from that of a point nucleus. The radial variation
of the electron's density in the nuclear volume com-
bined with the second effect of finite size -the dis-
tribution -of nuclear magnetization —reduces the mag-
nitude of the hfs interaction relative to that of a point
magnetic dipole. To estimate the magnitude of the
fractional hfs reduction, ~, we assume a uniform charge
and uniform magnetization distribution throughout a
sphere of radius R,. The hfs reduction is then given by

Is(el I') ~

where P(r) is the electronic wave function, as is the
first Bohr orbit radius, R is the radial nuclear coordinate
from the center of the nucleus and the average is taken
over the nuclear volume. For a relativistic electron ~ is
increased by approximately

E2ZR, )
where p = (1—Z'n'): and a = e'/Ac. For a uniform DNM
the average value of R'/R, 2 is —', so that (1) leads to an
e which is less than 2% for Z=50. Thus even for the
heavier nuclei the fractional hfs interaction reduction
wouM only be a few percent which, unfortunately, is
less than the accuracy to which we know electron wave
functions for large Z.

16m

gr ly(0) I'
3

(2)

(a) Calcglatio»t of 6
I et us, however, compare the hfs interaction of two

isotopes. The point dipole assumption predicts (FE33)
that the hfs interaction energy for one isotope is

nuclear counterpart have a smaller reduction of the hfs
interaction than a uniform (spin) magnetization.

Bohr and Weisskopf (BO50) calculated the inter-
action of a Dirac electron with the nuclear magnetic
vector potentials associated with spin and orbital cur-
rents. Their theory may be summarized as follows. If
F and G are the Dirac radial wave functions for an
electron, the interaction energy for the spin and orbital
cases are given by

16m
a, = g, t (d»~)w(R)s,

'~ nucleus
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where R and r refer to the radial nuclear and electron
coordinates respectively, g, and g& are the nuclear spin
and orbital g factors. w(R) is the nuclear spin mag-
netization distribution and C(R) is the nuclear wave
function. The factor f'* takes into account the angular
asymmetry of the spin distribution (8051b) and is
given by (1/s, )Ls»—3(sr R„)R ]„where s» is the Pauli
spin operator and R„=R/R. l* vanishes for a spheri-
cally symmetrical w(R) and its value averaged over the
nucleus, 1, has been calculated for single particle states
by Bohr (B051b) and formulas for it appear in Ap-
pendix I. Note that (3) reduces to the Fermi-Segre
relation (2) as R-+0.

De6ning

I
1+i.*—lFGd»

&s ( R')

and that the ratio of a„q's for two isotopes should be
equal to the ratio of their gI' s. For the DNM case we
expect the hfs interaction energy of each isotope to be
reduced by an amount e and the ratio of the u's to
di6er from the ratio of the gI's by an amount 6= e&

—e2.

The surprising experimental result is that in certain
cases the observed 5 is comparable in magnitude to e,
indicating radically different DNM in the two isotopes.
This result can be understood by considering the diGer-
ence of orbital and spin magnetization distributions. For
example a rotating uniformly charge sphere corresponds
to an inwardly increasing magnetization and since this
resembles more closely a point dipole, it would in its

Kl= (6)

the average values of K, and K~ over the nucleus

Cyg 8)
K~=

represent the fractional hfs reduction due to the finite
extent of the spin and orbital magnetization distribu-
tions, respectively.
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TAsLE I. Values of coeKcients entering into the fractional reduction of the hfs for s~ and pg electrons due to the 6nite size and dis-
tribution of the nuclear spin and orbital magnetization are tabulated for various Z. These are required in Kqs. (7) and (8). The 6 sfor
the sg state are obtained directly from the modified 8-W theory but the p~ coefIIcients have been corrected as indicated in Appendix I.

bs2 be2'
sy (percent)

bi2 bo4 bs4' b~4 bs2'
P~ (percent)

bf2 bs4 bs4' bi4

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

0.065 0.026 0.039 0.007 0.004 0.003
0.11 0.046 0.069 0.012 0.007 0.005
0.18 0.072 0.11 0.019 0.010 0.008
0.26 0.10 0.15 0.028 0.016 0.012
0.35 0.14 0.21 0.041 0.023 0.017
0.47 0.19 0.28 0.057 0.032 0.024
0.61 0.25 0.37 0.077 0.044 0.033
0.79 0.32 0.47 0.10 0.060 0.045
1.01 0.40 0.60 0.14 0.080 0.060
1.27 0.51 0.76 0.19 0.11 0,076
1.58 0.63 0.95 0.25 0.14 0.095
1.98 0.79 1.19 0.33 0.19 0.14
2.44 0.98 1.46 0.43 0.25 0.19
2.98 1.19 1.79 0.56 0.32 0.24
3.62 1.45 2.17 0.73 0.42 0.31
4.33 1.73 2.59 0.93 0.53 0.40
5.07 2.03 3.04 1.16 0.66 0.50

0.001
0.002 0.001 0.001
0.005 0.002 0.003 0.001
0.010 0.004 0.006 0,001 0.001
0.020 0.007 0,012 0.002 0.001
0.034 0.014 0.020 0.004 0.003 0.002
0.058 0.023 0.035 0,007 0.004 0.003
0.093 0.038 0.056 0.012 0.007 0.005
0.15 0.060 0.090 0.021 0.012 0.009
0.22 0.091 0.14 0.034 0.020 0.015
0.35 0.14 0,21 0.055 0.032 0.024
0.51 0.21 0.31 0.088 0.050 0.038
0.75 0.30 0.45 0.14 0.077 0.058
1.06 0.42 0.64 0.21 0.12 0.089
1.48 0.59 0.89 0,31 0.18 0.13
2.04 0.81 1.22 0,45 0.26 0.19

Assuming the potential of a uniform spherical charge
distribution, Bohr and Weisskopf obtain the power
series solutions to the Dirac equation which are re-
quired for evaluating the numerator integrals in Eqs.
(5) and (6). In Appendix I we reproduce these solu-
tions. We evaluated K, and K& keeping all terms necessary
in the series expansion to limit the error to a few per-
cent. In this way we obtain for the average values of
the K's

R.= [b.2(s;)+fb.2'(st) j6tg2

~)——b(2 (sx) 8 (2
—b(4 (s)) (R,4 (8)

with similar expressions for the p; state. (R.2 and 6t,4

are the average values of R'/R, 2 and E4/E.' over the
nucleus. Writing Ry for the nuclear potential radius we
can define Ry2 and Sty4 in an analogous manner. The
(Rv; (i=2, 4) can be calculated on the basis of the
shell model; such calculations are illustrated in Ap-
pendix II. 8,„is then obtained from the relation

In 8-W the (R,4 dependence of K, and K~ is lumped with
(R,2 by making the approximation that (R,4 (6/7)(R, 2~(6/7) (Rr2. We have chosen the somewhat more
elaborate presentation of Eqs. (7)—(9) on the basis
of the following considerations. First, recent work
(AR54, BL53, BL54) has shown that nuclear magnetic
moments may in many cases be accurately predicted
using a single particle plus configuration mixing model.
Secondly, it is clear that the hyperfine interaction re-
duction depends on the moments of both the single
particle radius and the nuclear charge radius, E.„where
the latter is considered to be different from the potential
radius (R056).

ga gr gt
Clg =

gI gs gt

We have now, a formalism for evaluating the fractioeal
reduction of the hfs interaction, but because of the
uncertainty in the normalization of the entire elec-
tronic wave function we do not have, with a few ex-
ceptions discussed below, accurate knowledge of the
absolute magnitude of the interaction for the point-
dipole case. However, by comparing the ratio of the
hfs interaction for two isotopes this uncertainty largely
disappears. Denoting the two isotopes by 1 and 2, and
de6ning the so-called hfs anomaly as

6= EI

then
~1 g2

1)
~2 g1

(12)

in which the squares of quantities of order e are neg-
lected. ] Since the b s show little isotopic variation, 6

f. See footnote y of Table III for a consequence of this
approximation.

The coeKcients b needed for Eq. (7) and Eq. (8)
and their equivalents for the P1 state are given in Table
I; the procedure used in evaluating them appears in
Appendix I. In calculating the b's, E,=r&~ with
ro = 1.20 &( 10 " cm, was used. They reduce to the b's

given in B-W when suitable approximations are made
and B-W's ra=1.5X10 "cm is substituted.

The fractional hyperfine interaction reduction for a
given isotope is then

K8CL& K ~(X ~ (10)

where o., and n~ are the fractional contributions of
spin and orbital moment to the magnetic moment
(n, +n~=1). When expressed in terms of the nuclear

g factors n, is given by
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measures the difference in the distribution of mag-
netization for the two isotopes. Various factors can
cause 6 to be anywhere between zero and of the same
order of magnitude as ~. Neglecting the spin asymmetry
for the moment, bh is less than 5„.so that spin and orbi-
tal magnetization differences in two isotopes will be
weighted differently in their contribution to h. In
addition, large asymmetries in the spin magnetization
of certain nuclei weight the spin contribution to 6 of
these isotopes even more strongly.

The theory as thus outlined only suffices to deal
with a single si, or p, electron. In cases in which the
atomic ground state of the atom involves the coupling
of two or more electrons the fractional s;(p;) character
of the electronic wave function must be determined.

(b) Additional Effects Contriblting to 8„„,
Since one wishes to extract from the measured 5, ~

for a pair of isotopes, information concerning the dif-
ference in the DNM, one must estimate the nature and
magnitude of those contributions to h,„~ which arise
from isotopic variation of the electron's wave functions
and of the dipole interaction (SC57).

Isotope shift. —The reduced mass correction to the
electrons wave function is (1+m/AM) ', which, for
two isotopes diGering by two neutrons, will give a cor-
rection to 0, ~ of order 3m/M(2/A'), which is appreci-
able for the lightest isotopes but of the order of 10 '
for A=50.

Breit Rosenthal eff-ect.—The charge distribution and
hence the non-Coulombic part of the potential which
affects the electron will, in general, be different for two
isotopes. This affects the value of the hfs "a"and there-
fore contributes to 6,„, (Breit-Rosenthal effect). Theo-
retical estimates (RO32, CR49) indicate that its con-
tribution to 6, ~ is always less than one part in 104.
In some cases (cf. TPN "') it may, however, exceed the
Bohr-Weisskopf effect. Considerable uncertainty in
calculating the Breit-Rosenthal effect Lmainly due to
lack of knowledge of the difference in the nuclear radii
of the two isotopes (WI53)] exists, thereby placing an
upper limit on the precision with which experimental
values of 6 may at present be compared with theory.

Orbital corrections to the electron's orbital g factor
Schwartz points out (SC57) that reduced mass correc-
tions to the electron's orbital g factor give an additional
contribution to 6, ~ for non-s electrons. It is dificult to
estimate this, in general, but again the e6ect will be
important only for very light nuclei.

Perturbations resllting from neighboring electronic
levels. —For single p*, electrons for example, the presence
of the neighboring fine structure level (pt) will, in
second order, perturb levels of the same F(F=I+J)
and modify u. The resulting contributions to 6, , will

be important for light atoms where the fine structure
doublet spacing is smallest, and the DNM contribution
to 6, ~ for light nuclei is unfortunately small. This

same perturbation enters into measurements of the
ratios of gr's in the p~ state (F050, CL54) (see Sec.
III-3).

These considerations indicate that measurements of
5 for atoms in s~ states for which the difference in the
DNM represent major contributions are subject to the
fewest uncertainties in theoretical interpretation.

(b) Magnetic Octlpole Moments

Just as the electric quadrupole moment gives a
measure of the second radial moment of the electric
charge distribution in a nucleus so does the nuclear
magnetic octupole moment, 0, give a measure of the
nuclear magnetizationtI distribution. Following the
observation (JA54) of the effects of a nuclear magnetic
octupole moment in the hfs of P", a detailed theory of
hfs (SC55) was given in which, among other things,
the character of 0 was discussed. If one defines

0—:(2 (5Zi —3ZR') divM)r, r, (13).

where M is the volume density of nuclear dipole mo-

$ Unlike the magnetic dipole moment the existence of a 0
implies a 6nite DNM.

3. Other E6'ects of the Distribution of
Magnetization

(a) Internal Conversion Coegcients

Information about the DNM may also be obtainable
through accurate determination of certain internal
conversion coefFicients. No such experiments have been
published to date and no attempt will be made here to
give the complete relevant theory.

Following the calculation of internal conversion co-
eKcients by Rose et al. (RO49, 51) who made the point
charge nucleus assumption, Sliv et aL (SL51, SL52)
pointed out that important corrections are necessary
due to the finite size of the nucleus, which'affects the
shape of the radial wave functions of the initial and
final state of the conversion electron. Existence of a
further correction, which is or particular interest from
the point of view of DNM, was pointed out by Church
and Weneser (CH56a, b). It arises from the fact that
penetration of the electron inside the charge and current
distribution of the nucleus gives rise to additional in-
ternal conversion matrix elements, which have an
essentially different form from the leading matrix
elements and are sensitive to the details of the nuclear
magnetization (cf. EW57). These structure-sensitive
matrix elements are particularly important when the
normal gamma-ray emission matrix elements vanish for
one reason or another. In such cases measurement of the
conversion coefFicient may lead to important conclu-
sions about the DNM. Several instances of forbidden
or inhibited gamma-ray emission are discussed by
Church and Weneser (CH56b).
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ment, one can show for single particle orbits

3 2I—1
Q=p, — f(I,g(,g,)(Rr2Rr',

2 (2I+4) (2I+2)
(14)

f(Ig g.)=
(I+2)(I—s)(gt+g.); I=i+2

(I—1)(I+2) (g~
—g.)

The octupole moment manifests itself principally in its
hfs interaction with atomic p; electrons. (The existence
of a multipole moment of this order and its observation
through a study of hfs require that I&-', and I&-', .)
The magnitude of 0 calculated from the observed hfs
interaction is subject to uncertainty, principally, be-
cause of lack of knowledge of the radial electron wave
functions. The several moments that have been meas-

ured seem to con6rm the single particle character
associated with nuclear magnetism, especially if in-

terpreted (SCSS) in terms of a particle-core coupling
reduction effect predicted by the collective model

(B053).
In view of the success of the configuration mixing

model (AR54, BL53,BL54) in accurately predicting odd-

even nuclear magnetic dipole moments, it might be
interesting to calculate 0 from the same point of view.
If one compares the ratio of the magnetic octupole hfs
interaction for two isotopes (after each has been cor-
rected for the dipole-quadrupole pseudo-octupole terms
which are easily evaluated) the difference in the dis-

tribution of nuclear magnetization of the two isotopes
could be obtained, and the principal uncertainty associ-
ated with the lack of knowledge of electron wave

functions mould be removed. As with nuclear magnetic
dipole moments, one might expect dHkrent predictions
for 0 from the collective model and the con6guration
mixing model.

References to octupole moment measurements have
been collected in (SC57).

III. EXPERIMENTAL TECHNIQUES

1. Measurement of 6
The most successful method of exploring the DNM

has been the precise determination of the hyper6ne
interaction constants and the nuclear g factors for two

(or more) isotopes of the same element. The so-called

"hyper6ne structure anomaly" 6 is then a function of

the DNM of isotopes 1 and 2 and. is given by Eq. (11).
Because 6 is in general a quantity of order of magnitude

of 10 ' or less one needs at least an over-all accuracy

(c) Scattering Experiments

It was recently pointed out by Newton (NE56) that
the DNM of aligned nuclei can be measured in scatter-
ing experiments using polarized electron beams. Un-

fortunately such experiments are not feasible at the

present, time.

of about 10 ' in all experimental quantities to obtain
values accurate to 10% for d. Several experimental
methods have been used to obtain accurate values of
(a&/a2) and (g~/g2). The necessary precision is attained
by employing resonance techniques in which the crucial
measurement is that of the ratio of two frequencies.

2. Measurement of c,/a,

(a) Atomic Beam 3Iagnetic Resonance

The requisite accuracy in the measurement of a' s
has been achieved, principally, by use of atomic beam
magnetic resonance measurements (ABMR) of the
ground states of free atoms. The ABMR methods have
been reviewed in (RA56) and (KI56). The requirement
of having an Sy or I'; electronic ground state has with
a few exceptions limited experiments, to Group I and
Group III elements, all of whose stable isotopes have
been measured by ABMR. Recently (NI56, HU56) spin
measurements have been made with as few as 10'
atoms by using radioactive detection techniques in
conjunction with the ABMR method. This seems to be
a promising method for measurement of the ratio of a' s
for several isotopes in a given odd-proton species,
especially for the short-lived isotopes. Measurements of
the hfs interaction in isomeric states (GOSS, GI55) of
certain nuclei have been made in this way, so that one
may obtain information in the near future about the
difference in DNM in two nuclear states of a given
isotope.

(b) Paramagnetic Resonance

Accurate measurements of the hfs interaction have
been made using PR techniques in free atom gases
(RO46, WI56) but, as yet, not on isotopic pairs. In
general, PR measurements require upward of 10"
atoms.

It has recently become possible to measure a~/a2 in
solids to considerable accuracy by means of paramag-
netic resonance (PR). The precision is greatly increased
through the use of electron-nuclear double-resonance
techniques (FE56) which are capable of reducing the
usual line widths in solids by several orders of magni-
tude. By applying this method. to donor atoms in silicon
(EI58) it was possible to measure hfs interactions in the
S~ state for atoms whose free atom ground state hfs may
not be amenable to a simple analysis (SM57). For
example the free Sb atom is in a '51 ground state (which
involves the coupling of 3 p; electrons) whereas Sb as
a donor in a silicon crystal is in a '5~ state. The absolute
value of "a" for the donor atom is diferent from the
hfs interaction of the free atom but a~/a2 should be
unchanged (EI58).

3. Measurement of g,/g,

%here isotopic abundance is not a problem the now
standard Bloch-Purcell techniques of nuclear magnetic
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TABLE II. Experimental results of measurement of the hfs and magnetic moment ratios of some light elements.
Numbers in parentheses indicate the uncertainties in the last quoted figures.

Atom

H'('S))
H2('s&)
H'('Sg)
He'('S )
He'+('S))
Li6(2S,)
Li'('S, )

Av (Mc/sec)

1 420.405 73(5)
327.384 302 (2)

1 516.701 70(7)
6 739.71(5)
1 083.354 99(20)

228.208 (5)
803.512(15)

Reference

a,b
a
e
g
h, i
l
l

lM, ratios

y, /p, „=658.228 8(6)
p,H1/pyP =3,257 199 86(45)
pH3/pII' = 1,066 636(10)

@II,3/p~' =0.761 812(1)

gL;&/gi. ;&=2,640 91{1)

Reference

a P. Kusch, Phys. Rev. 100, 1188 (1955).
b J. P. Wittke and R. H. Dicke, Phys. Rev. 96, 530 (1954).
& Koenig, Prodell, and Kusch, Phys. Rev. 88, 191 (1952).
d Smaller, Yasaitis, and Anderson, Phys. Rev, 81, 896 (1951).
"A. G. Prodell and P. Kusch, Phys. Rev. 106, 87 (1957).
f Bloch, Graves, Packard, and Spence, Phys. Rev. 71, 551 (1947).I G. Weinreich and V. Hughes, Phys. Rev. 95, 1451 (1954).
& R. Novick and F., Commins, Phys. Rev. 103, 1897 (1956).
' F.. D, Commins and R, Novick, Columbia Radiation Laboratory Report (September 15, 1957).
& H. L. Anderson, Phys. Rev. 76, 1460 (1949).
k N. F. Ramsey, Phys. Rev. 78, 699 (1950).
1 P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).

G. D. Watkins and R. V. Taub, Phys. Rev. 82, 343 (1951).

resonance (NMR) have been employed to measure the
ratio of the g values of two isotopes embedded in a non-
paramagnetic material. A precision of one part in 10'
is not uncommon but at least 10' nuclei are required
for NMR. The NMR method has been reviewed in
(AN55).

The ABMR method has been employed to measure
the ratio of the nuclear g values of radioactive isotopes
of relatively low abundance (EI53, ST57) and the elec-
tron-nuclear double-resonance method can also be used
to determine g,/g 2Since these methods of measurement
of g values are less familiar we summarize them briefIy.
Considering a nucleus whose spin I is coupled to an
electron with J=2 in an external field Ho, the eigen-
values of the "high-field" Hamiltonian, E, are given by

E(51 mrs) = arwrmr+rrrrgrv 0II0+mrgrli H p, (15)

where terms quadratic in the m's, and the field have
been omitted. If one observes a transition which corre-
sponds to a reorientation of the nuclear moment with
respect to the external field but leaving the electron-
external field coupling unchanged (Arrrr= &1, Amr=0)
in each of the two electron states (mr= &—,'), then the
difference in energy of the two transitions is equal
to 2glIJ„„Hp. The precision is comparable with NMR
techniques wherever applicable and is very useful for
isotopes of low abundance.

IV. DISCUSSION OF RESULTS

To date all experimental results bearing on the
DXM have been obtained through a study of the
hyperfine interactions and the nuclear g factors by the
methods outlined above. These results are collected
below and discussed in some detail. %e treat separately
the measurements involving light nuclei (A(20) and
those of medium and heavy nuclei, since the theoretical
treatment of the results is essentially different for
these groups.

l. Exyerimental Results: A (20
The nuclei in this group contain too few nucleons to

permit consideration from the point of view of a con-
tinuous nuclear charge distribution. It is possible, on
the other hand, to set up detailed nuclear wave func-
tions for the lightest nuclei whose predictions for the
distribution of nuclear magnetization can be compared
with the measured values of the hyperfine structure.

Table II shows the results of the measurements.
Since the pure s~ hydrogen wave function is still the
only one which can be calculated to sufhcient accuracy,
the three hydrogen isotopes (and the He'+ ion) offer
so far, the only opportunity, of obtaining an absolute
value of e.

The contribution of nuclear structure to the hyperfine
splitting (hv) of very light nuclei was first considered
by Bohr (B048).He pointed out that the electron wave
function in H' will have a characteristic motional fre-
quency much higher than the corresponding nuclear
frequencies so that the electron orbits will adjust to
the instantaneous positions of the nucleons. In calcu-
lating de from the magnetic moment, the spatial dis-
tributions of nuclear currents and moments must
therefore be taken into account. The deuterium calcu-
lations were subsequently refined by Low (LO50) and
relativistic effects were taken into account by Salpeter
and Newcomb (SA52). Similar analyses for H' and
He' were un. dertaken by Adams (AD51) and Sessler
and Foley (SK54, SE55). Recently the effect of nuclear
structure on the hyperfine structure of H' was pointed
out (MO55) and calculated (ZE56) and corresponding
corrections for H', H', and He' obtained (SE58a).

A comparison of calculated and observed values of
Av(H') may be made, following the work of Zemach
(ZE56). Using the values of Av and p in Table II and
the size of the proton Lwith (r'), '=(r') '=0.8X10 "
cm (GO58) the proton size correction is of the order of
40 ppmj and all other known corrections (ZK56) one
finds a discrepancy of 20 ppm between theory and
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experiment for the hyperfine structure of H'. The recent
modi6cation of the theoretical value of the fourth-order
contribution to the magnetic moment of the electron
(SO57) does not affect the calculated value of Dv since
there is a compensating change in the 6ne structure
constant.

The hyperfine structure of H' was recently discussed
by Sessler and Mills (SE58a). After allowing for proton
and neutron structure effects (128 and 17 ppm, re-
spectively, in H'), and other corrections, and comparing
the calculated and experimental values of fhv(H')j/
Lhv(H') j (Table II), a hyperfine structure anomaly of
208&32 ppm remains. They observe that this is con-
sistent with 3.9% D state and no relativistic or inter-
action moment contribution to the magnetic moment.
The experiments are also in agreement with the (3&1)%
D state obtained by Sugawara (SU55a, b) using field-
theoretic arguments.

The hfs of H' was analyzed by Adams (AD51) and
Sessler and Foley (SE55). Since the two neutrons
couple to zero spin they are not expected to contribute
to the hyperfine structure. The proton size contribution
will be almost the same as for H' so that the hfs
anomaly, 6, will be small. Using the experimental data
of Table I, one finds that ~A( = ~e(H') —e(H')

~
&12

ppm.
The hfs of He' in the 'S~ ground state has been meas-

ured (WE54) and many of the corrections required for
a theoretical value of Av have been calculated (SE55).
The triplet electronic wave function is not well enough
known for a comparison with the experimental value
in the table. Novick and Commins (NO56, CO57) have
recently measured hv of He'+(S;) to great precision.
and since the electronic wave function is hydrogenic,
Dv can also be computed. Novick (NO58) reports a
hyperfine discrepancy e(He') =1—(hv, »/hvv&) of 186.5
+9.2 ppm. Several proposed three-body nuclear wave
functions predict values of e(He') which are all too small

by 20 to 40 ppm. This can probably be accounted for
by nucleon structure and interaction current eGects.
Some forms of the latter have been considered by
Sessler and Foley (SE55) and it appears that velocity-
dependent nucleon interactions can be excluded on the
basis of experimental results for H' and He', since they
would lead to interaction current terms of about 230
ppm. None of the calculations to date has taken into
account eGects of the spin-orbit contribution of nuclear
forces and some of the above conclusions may have to
be modified if this eGect should turn out to be
appreciable.

The experimental values of Av and p, for the Li iso-
topes lead to a hfs anomaly of 70&30 ppm. No detailed
comparison of this value with one calculated on the
basis of nuclear wave functions has been published. At
the same time Li is too light to be treated by the Bohr-
Weisskopf theory.

2. Exyerimental Results: A &20

Table III .lists measured ratios of hyper6ne inter-
action constants "a" and nuclear g factors for pairs of
isotopes and values of 6 obtained from them. Since 6
contains only information about the difference of the
eBect of the DNM for the two isotopes it is clear that
such measurements would be most useful if performed
for a series of isotopes of the same element. This has
been done so far only for four Cs isotopes and three K
isotopes.

In many cases, the experimental 6 was compared to
a computed value by those who made the measurement.
These theoretical values are usually based on one, or
several, of a variety of nuclear models. It is desirable
that the chosen models in addition to reproducing the
correct 6, be also capable of predicting the correct
magnetic dipole moments. This requirement has some-
times been met by a fairly arbitrary procedure such as
ascribing to the odd nucleon an intrinsic moment
different from the value for the free nucleon, chosen to
make the single particle moment agree with the experi-
mental value rather than the Schmidt value. awhile
these calculations served their original purpose of con-
firming the single particle model as opposed to, say, a
model of a nucleus in which all protons contribute to
the orbital moment (g&

—Z/A), they are inadequate for
gaining detailed information about the DNM. If we
require of a theory (BL56) of nuclear moments that it
explain the deviati. ons from the Schmidt lines of all or
nearly all nuclei in a systematic way there seem to be
only two theories which need to be considered at
present: the collective model of Bohr and Mottelson
(BO53) in which the odd nucleon is coupled to an
asymmetric nuclear core, and the conhguration mixing
model which has been described by Arima and Horie
(AR54) and Blin-Stoyle and Perks (BL53,BL54).These
two theories attempt to account for the observed mag-
netic moments by ascribing the deviations from the
Schmidt limits to angular momentum sharing between
the core and external nucleon, and to admixtures of
near lying "valence" nucleon states, respectively. The
collective model. should be most satisfactory in regions
of large nuclear distortions (150&A =190 and A) 225)
where no measurements of 6 have yet been made. The
configuration mixing model has been very successful
for odd-A nuclei in reproducing almost all observed
magnetic moments. A systematic calculation of 6 based
on this theory, for the measured isotope pairs, is being
undertaken (ST58). In the following we confine our-
selves to qualitative comparison between theory and
experiment and illustrate the methods of calculating 6
by a few examples (cf. Sec. 3).

(o) QN68, 65 +$138,135 +$135,13'I
)

Each of these three pairs of isotopes has the same
spin and similar magnetic moments. All are even E-odd
Z nuclei. According to the single particle model (SP)



Tax,E III. Experimental results of measurement of the hfs and nuclear g-factor ratio for some medium and heavy atoms. Numbers
in parentheses indicate uncertainties in the last quoted figures. The experimental techniques are identified by ABMR, NMR, and PR.
All atomic beam measurements of the hyperfine interaction constant "a"were done with the atom in the Sy state unless otherwise in-
dicated. The last column shows the hfs anomaly as de6ned in Kq. (12).

i7C/35 (4)
igK"{r),
igK39($),
ggCu63(-,'),
3ioasg(4),
37Rb'~(+)
47Agm'(-')
4gIn"3(9/2)
51Sb'"(-')

Cs'"(~),
Csl33 (7)
Cs»&(r')
Ti203 {4)

CPV(3}
I'0(4)I"(4)
Cu«(-;)
Ga" (-,')
Rb"(-,')
Agl09 P,)
rn»~(9/2)
Sb123(j)
Csl34 (4)
Cs13f8 (&}
{ si37(7)
TlM5 {1)

Isotopes (1,2) and
their spina (I) gf/gS

1.20135(8)
0.800421{16)
1.82185 (16)
0.933424(19)
0.7870147(12)
0.2950737(11)
0.86985 (1)
0.9978609{12)
1.84661(1)

O.98S74{29)
0.945001{8)
0.961492(8)
0.9902578(jo}

Method

NMR~b
ABMR~
NMRf g

NMRh
NMR~
NMR&' I
NMR~
NMR'
NMRt

ABMRv
ABMR"
ABMRv
NMR"

61/Cg

1.20136(1)
0.8007962 (4)
1.81768(i)
0.933567{2)
0.7870196(6)
0.2961104(6)
0.86627(3)
0.99786841(28)
1.84012 (9)
1.84076(5)
0.987405 (2)
0.9453527 (15}
0.9612967(15}
0.9903622 (5)

Method

ABMR(E))'
ABMRd '
ABMRe,
ABMRi
ABMR(E)) i'

ABMR '
ABMR~
ABMR(E)) '
PR (Sy) ~

ABMR(4'}~
ABMR
ABMRv, w

ABMR
ARMR(P))"

4 = (al/a2) (gs/g1) -1 (/)
0.000(8)
0.467(19)
0.229(9)
0.015(2)
0.00062 (23)
0.3513(6)&

—0.412{4)
0.00075(13)—o.352(s)—0317(3)
0.169(30)
0.037(9)—0.020(9)
o.oios(15}
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The discrepancy arises from an err'' in sign and from the approximation made

the moment is therefore wholly due to the proton and
thc addition of two ncutlons to thc lighter isotope
should not aGect the DNM. The foregoing pairs do
indeed exhibit small 6's in spite of the fact that the
atomic ground states have 5g character.

The experimental 6 for Cs"' "' is negative (ST57).
If in the $-% theory one assumes the appropriate If's

to be the same for both isotopes, 1 and 2, then

golgia= tt 8. g87 )
— —

~, (16)
g.—gi &g(1) g(2) &

where k„k~, g, and g~ are always positive quantities with
ff:,&k~ and g, &g~. It follows that if

g(1) (g(2) with g(1)=g(2)) 0
Ol'

g(1))g(2) with g(1)=g(2) (0
then h&0. From Table III Cs"'"' appears to. be thc
only measured exception to this rule, which apparently
can only be explained by the configuration mixing
model. Slncc' SgCS82 ls neutron magic onc might
think the anomalous sign could be explained by assum-

ing the charge radius to be smaller for this isotope than
for Cs"'. This would require a difference in the two radii
of the order of 10% which seems most unlikely.

($) +89,41 g glOTM9,

These two pairs again have odd protons in the same
state for both isotopes. - Here the discrepancy between
observed moments and between the diGcrences of
their distributions with the predictions of the SP model
are more striking. The measured 6's are appreciable
and can be explained approximately, using both the
collective model (3051b, WE53) and the configuration
mixing model (ST58).

(5) QP5, 82 Gg89, 'B 128118,115 TP08,205

These pairs of isotopes are similar to groups u and. h

as far as their nuclear properties are concerned but
differ from them in that the hfs measurements were
performed on the atoms in the I'~ states. The reduced
electron density at the nucleus precludes a large 6
except in the heaviest elements and it is dificult to
draw conclusions from the measured small 6's about.
the DNM except that they do not contradict the theory.

(d) +$85,82 /$121, 128

These two pairs have di6erent spins so that the
addition of two neutrons to the lighter isotope seems
to have afkcted the nuclear structure profoundly. Herc
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the strict SP model is not applicable at all. The spin
change points to the closeness of two incomplete shell
levels resulting from strong-spin-orbit coupling. This
leads to diferent DNM for the two isotopes and since
the hfs was measured in an 5~ state, 6 is expected to be
large (BO51b, EI58). The calculation of 6 for Rb""
according to the two models is given as an example in
the following section.

Smith has recently measured "u" for Sb"' and Sb'"
in the 4S; ground state by an atomic beam method
(SM57). His value of 6 is of course not comparable to
6('S») (EI58) but it may be possible to obtain a theo-
retical value for A('S») in the future.

(e) /39, 40 Cs133,134

These are comparisons between an even-odd and an
odd-odd isotope. The spin and moment of the latter
depend on the coupling of the unpaired neutron and
proton and the diGerence in DNM should be consider-
able. The experimental results bear this out. Theo-
retical values (EI53, ST57) of 6 based on the collective
model are in approximate agreement with the observa-
tions. A configuration mixing theory of nuclear mo-
ments of odd-odd nuclei has not been developed yet.

(f) Odd Xegtron Even -Proton Isotopes

It is unfortunate that there have been no measure-
ments to date of odd neutron-even proton isotopic
pairs. Since the e6ect on the hfs of the diBerence in
DNM arises, mainly from the diferent weighting given
to spin and orbital magnetization, the prediction of
the B-W theory using the extreme SP model (g&=0)
is that d would be very small. In fact, even if the two
isotopes had diferent spins, we would expect 6 to re-
Aect principally the difference in the spin magnetiza-
tion asymmetry for the two isotopes. In the CM model
there may also be contributions to the orbital moment
distribution difference arising from virtual proton
excitations.

3. Comparison with Theory

As an illustrative example we compare the predic-
tions of the two most promising theories of nuclear
magnetic moments as applied to the two stable isotopes
of rubidium) Rb" '.

(a) Collective or Asymmetric Core Model

The collective model (C) was suggested by Bohr and
Mottelson (BO53). It has been successful in explaining
rotational level spacings, electric quadrupole moments
and other features of nuclear structure. In its applica-
tion to magnetic moments one considers the odd nucleon
coupled to an asymmetric nuclear core whose angular
momentum operator and g factor are R and g sZ/A

respectively. Writing g, and gl for the spin and orbital

g factors of the odd particle and S and L for the corre-

sponding angular momentum operators we have for the
nuclear moment,

tso=(+~ g.S+gk+gsR~+)r, r (17)

(b) Confrguration Mixing Model (CM)

Blin-Stoyle (BL53) and Arima and Horie (AR54)
have accounted for the deviation of the magnetic
moments of odd-even nuclei from the Schmidt limits,
in the majority of cases, by configuration admixing of
SP model states with the ground state. The inter-
con6guration mixing is presumed to result from a short-
range internucleon force, for which previous evidence
existed in "pairing-energy" sects. The wave function

Since in this model the nuclear wave functions are not
uniquely determined by I and mr, (15) can only be
evaluated by making an assumption about the coupling
strengths. Denoting the spin-orbit coupling strength by
X, the coupling of particle to core (I R) by P and the
core rotational level spacing parameter by ez one can
discuss the moments by using certain "intermediate"
coupling schemes (since the observed moments do not,
in general, correspond to any of three extreme coupling
cases). Having chosen the coupling scheme to fit the
observed moments, the observed DNM becomes a test
of the theory.

Eb".—Nuclear properties are given in Table III.
Bohr (BO51b) treats this nucleus as a single f» proton
coupled to an asymmetric core. For the intermediate
coupling scheme that 6ts the moments, X=P»es. The
fractional spin and orbital contributions to the mag-
netic moment o,, and o.~ are more difficult to establish
than in the SP model, since the coupling of l and s to
the nuclear axis for the case of I=l——,

' depends on the
relative admixture of spin "up" and spin "down" wave
functions, which is not uniquely determined as it is in
the SP model. A similar difhculty arises in calculation
of the spin asymmetry parameter. Bohr finds that
t =1.25 and n, = —0.71. (The negative value of n, cor-
responds to spin and total angular momentum being in
opposite directions. ) From Table I we have then

b.2= 0.53% b, 2= 0.21% b,4= 0.065%
b~4= 0 037% b&& =0 32% b&4=0 028%.

Using these values in Eq. (7) with (R,s=0.73, and
R,4=0.69 obtained by methods outlined in Appendix
II, we 6nd e (Rb")= —0.01%.

Eb".—The coupling scheme capable of fitting the
moment requires p) X»ca with the odd proton in a p;
state. The parameters are /=0 2, n, =0 6, an. d u. ~=0.4.
With the b's given above and R,2=0.58 and (R,4=0.56
obtained in Appendix II, we obtain ec(Rb") = —0.24%.
We have Anally 4c= ec(Rb") —ec(Rb")=0.23% which
is in only approximate agreement with the experimental
value. The lack of agreement may be ascribed, in part,
to failure to consider the motion of the several equiva-
lent odd particles.
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in the presence of configuration interaction may be
described by

+~=xi+Z ~A', (18)

The smallness of u, (n;&0.1) enables one to limit the
contributions to the magnetic moment to terms linear
in n, . Tai-en in conjunction with the single particle
character of the magnetic moment operator, this
further restricts one to those states for which y; and
4;& dier by one particle and for which hi=0. For such
states a single particle is transferred from a (j=l+~i)
state to a (j=r'——,') state. For I=/+-,' and I=/
nuclei this requires that there is more than one nucleon
or more than one hole in the respective odd particle
ground states. There also exists the possibility in a
closed j'=P+ ,' subs-hell of exciting a nucleon to an
incomplete j'=I' —~ subshell. The sole problem is to
determine the strength of the short-range interaction
and its A dependence. Having done this Arima-Horie
predict for the ii's of interest pcM (Rb")= 1.32'„
(p,„~= 1.35@„) and pcM (Rb") =2.79@„(p,„~= 2.75'„).
Stroke and Jaccarino (ST58) have used a CM model
to predict the DNM. The calculation of h(Rb" ')
based on their procedure is given below.

Rb8'.—The proton and neutron configurations are

(p;)'(fy)' and (g~~2)', respectively, where only the
possible admixable valence states are listed. The frac-
tional contributions of spin and orbit to the magnetic
moment n, ' and ni' for each of the states (i) involved

may now be calculated, where now, P,~,"'+ni'=1.
Each excited state is characterized by a definite l so
that the corresponding (R,~ and R,4 for each may be
found (see Appendix II). These, together with the
appropriate values of the k's (Table I), yield ecM(Rb ')
=0.13%.

This procedure neglects the fact that the spin asym-

metry operator will admix states of a diGerent l, 61=2,
and that there also exist oG-diagonal elements connect-

ing states of different e and j (SC58).
Rb".—The proton configuration is (p;)'(f;)' and the

neutron configuration is (ggi2)". Proceeding as before
we find ecM(Rb")= —0.21% so that AcM=0. 34%,
which is to be compared to an experimental value of
6= (0.3513&0.0006)%.

The agreement between theory and experiment is

quite satisfactory. To demonstrate the sensitivity of the
theory to the model used, one may compute a 6 based
on nuclear model in which all protons contribute to
the orbital moment, i.e., gi=Z/A. This leads to 6
=0.10% for Rb"' in disagreement with the observed

where x; and C,& are the ground state and excited SP
state wave functions, respectively, and 0.; is the aug-
mentation parameter. The magnetic moment is given by

ycM= &+ I X(g "S+gi"I)I+)r, r (19)

The values of ec(Rb") and ecM(Rb") and those of
cc(Rb") and EcM(Rbs') diRer considerably more than
the values of A~ and hgM. The measurement of another
Rb isotope might therefore provide a crucial test of
the C and CM theories.

APPENDIX I

Assuming the proton charge distribution to be that
of a uniformly charged sphere, of radius R„ then the
"interior" potential is

A series solution to the radial part of the Dirac equation
yields in that case

F(s~)

—G(p~)

and

f1 9
= )kyx 1+L

I
+~2 Ix2+i'Oy2x4' '

Es 40)
(I-2)

where

G(s;)

F(p;)
=k[1——',y'x'+ —,',y'x4 j, (I-3)

r P for s; electrons

I.=~ 4R, mc
for p; electrons.3 y

and y=nZ. The R-dependent integrals in Eqs. (5) and

(6) are

(R' )
FGdr = (&)ikmpR, (1+L) I

——+I —+—I" I, I
(I-4)

10 &10 16) (R,'i l

t'R'y
FGdr= (a)4k'yR, 5

—(1+L)I

ER,'i
2 (6 3L) (R''t——+I —+—I~'

I

35 &35 28 & & R,')

where the upper and lower sign refer to the si and p~

states, respectively. The error introduced by neglecting
terms containing powers higher than R4/R, ' is less than

2%. The denominator integral J'o"FGdr was evaluated
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odd pl otons thc blndlng encl gy is lncrcasccl. by a
Coulomb potential barrier which we approximate by a
Qat potential of height E,=(Z—1)e'/R, . Since the
proton is inside the nucleus most of the time this
approximation introduces a negligible error. For odd
protons then E=S+E„and for odd neutrons E=S.

For any given nucleus one may obtain y from Eq.
(II-4) above by using the appropriate values of E and
Rz. For this purpose (II-4) may be conveniently
written as y=0.219RvEl where Rv is in fermis (10 "
cm) and E in Mev. From (II-2) one can now derive the
appropriate eigenvalue x to make the wave function
well behaved over its entire range of R. These solutions
are shown in Fig. 2. The potential we,'1 depth corre-
sponding to any given x can be determined from Eq.
(II-3). It is approximately constant (=60 Mev) for
all nuclei (F056).

{R&;is given by the expressions (Rv~= (R')Av/Ry',
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and collaborators (HO53, HO54, HA55) and is in agree-
ment with the p,-mesonic charge radius. The experiments
and methods of analysis used to obtain ~0 have recently
been reviewed by Ford and Hill (F055).

Solutions of the radial wave equation of a particle
in a square well potential are well known (SC49), and
can be expressed as spherical Bessel functions for
E&E~ and spherical Hankel functions for R&E~.
The eigenfunctions are obtained by making the value
and the first derivative continuous at R=Ey. This
condltlon caIl bc wI'lttcn as
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where / is the angular momentum of the odd nucleon,
jg and h~ are the spherical Bessel and Hankel functions,
respectively, and
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y=PRv,

n=h —'L2M(V —S)g'

p=h 'L2MEj',

where M is the nucleon mass. The binding energy E for
odd neutrons is simply the separation energy S. For

FIG. 4. The value of the parameter y for the unpaired nucleon
in even-odd nuclei /see Kq, (II-4}j as a function of A. The curves
for neutrons and protons are obtained by assuming a smooth

. relationship between the separation energy 5 and A as given by
the empirical masses of the nuclei. The Coulomb barrier is
I'Z —. 1}e/Ee& +e=tgA~ &0= 1.,20 fermis, Ry'= j..iRe and an em-
pirical "stable valley" relationship between Z and A is used.
More accurate values of y for 1gK~ 4', 3qRb8~ 87 yoAu'97 42Mo95 and
80Hg'99 computed from the measured binding energies of these
nuclei are indicated.

(Ry; is a function of x, y, l, and e where e is the principal
quantum number and n= 1, 2, etc. refers to the first,
second, etc. root of Eq. (II-2). (Itv, was computed with
the aid of an IBM-640 computer by using power series
expansions for jg and h~. Solutions were obtainedtt for
l= 0, 1 ~ 6 with 2 &y &9 and values of e which would
be of interest in real nuclei. These are displayed in
Flg. 3.

Using the empirical mass formula to calculate
5 (8152), it is found to vary between 9 Mev and 4.5
Mev when 2 goes from 40 to 220. With this and the
usual formulas for Rv(= 1.10R,) and E, one can derive,
with the aid of Eq. (II-4), an approximate value of y for
any given A. This relation is given in Fig. 4 and with it
and Fig. 3 one can obtain values of (Ry; that are good
to a few percent for most odd-proton nuclei. For odd-
neutron nuclei y is more sensitive to variations in 5 since
E,=O and y should be obtained by the more precise
procedure outlined above.

We illustrate this method by determining Sy; for
Rb". The odd proton is in a 2p; state so that 1=1,
m=2. From the binding energies of Rb ' and Kr 6

tabulated by Wapstra (WA55) we find 5=8.8 Mev.
The Coulomb barrier is E.=9.8 Mev so that E= 18.6
Mev. Using Ay=5. 8 fermis one obtains y=0.219EyE&
=5.5. Finally, from the appropriate curve of Fig. 3,
we find (Rr2=0.48 and 6tv4=0. 38. If Rv/R, .=1.10, this
leads to N, ,2=0.58 and (R,4=0.56.

tt We are indebted to Dr. M. C, Gray for suggesting the re-
cursion formulas and expansions required for the evaluation of the
integrals of Kq. (II-5).
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