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T is generally believed that nucleons have some sort
of internal structure. By this we mean that if one

attempts to discuss their interactions with other par-
ticles and, in particular, with the electromagnetic field,
one finds that they cannot be described in terms of
kinematical quantities and static properties such as
charge, spin, and magnetic moment. It is, of course,
possible that in fact these should suffice and that our
theoretical ideas about the fundamental interactions
are so entirely wrong as to have not even phenomeno-
logical, qualitative validity. For example, one could
conjecture that apparent deviations from a description
in terms of point particles in electromagnetic inter-
actions means a breakdown of quantum electrody-
namics. Such arguments are difficult to combat except
with successful, less radical explanations. In view of
the perhaps qualified success of meson theory to cor-
relate, via dispersion relations, much of the data in the
field of w-meson physics, we adopt the attitude that
quantum field theory indeed has some finite domain
of applicability and attempt a description of nucleon
structure based on it.

So long as we confine attention to phenomena which
involve energies very small compared to the mass of
the lightest particles that are strongly coupled to
nucleons we expect that structure will play no important
role. Thus, the scattering of zero frequency light can do
no more than measure the total electric charge. If the
frequency is raised slightly, the scattering amplitude
can be completely characterized by giving beside the
charge the anomalous magnetic moment. It can be
shown quite generally that the next term in the fre-
quency expansion involves the detailed dynamical
structure of the nucleon. For example, one finds for
the coherent forward scattering amplitude the expression

¢ @ o o)
f)=——+— [ o ,
m  2n2/, w'?

—w?—1e

& W K4 (')
o~ + dw —
m 2w 0 w'

where ¢ is the total cross section for the scattering of
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* This paper is based largely on theoretical work carried out in
collaboration with P. Federbush and S. B. Treiman, which will
be published shortly elsewhere. Some of the ideas have been inde-
pendently discussed by G. F. Chew, R. Karplus, S. G. Gasiorowicz,
and F. Zachariasen, and we are indebted to Professor Chew for
very helpful correspondence on this work which will also be
published soon.

unpolarized light. For small frequencies the w under
the integral may be neglected. From a theoretical stand-
point we must know all of the channels into which the
initial system of photon and nucleon may lead and be
able to compute the various cross sections. If the nu-
cleon were a point particle ¢ would be composed entirely
of electromagnetic cross sections—the total light scat-
tering cross section, electron pair production in the field
of the nucleon, production of nucleon-antinucleon pairs,
etc. Thus, ¢ would be proportional at least to ¢! and
thus one would expect only minute deviations from the
Thomson amplitude (—e?/m).

Experimentally this is not at all the case. We expect
and indeed find strong deviations from point particle
behavior as the frequency w approaches the threshold
for real meson production (~150 Mev). Once we admit
the possibility of coupling to the meson field, large
cross sections such as that for photomeson production
enter the picture. We do not discuss the light scattering
data in detail but merely state that a rather satisfactory
understanding of the problem is obtained from dis-
persion relations used in conjunction with experimental
and theoretical knowledge of photomeson production.
Although this process depends very much on nucleon
structure, it is rather difficult to draw detailed con-
clusions from it. The reason is basically that there are
two classes of diagrams which contribute; those in
which the initial and final photons are separated some-
where by a bare nucleon line and those for which this
is not the case. Whereas the processes contained in
diagram (a) involve in a loose sense the nucleon struc-
ture via the I's, those in diagram (b) are hopelessly
far removed from any such simple connection (see
Fig. 1).
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F16. 1. Feynman diagrams for (a) Compton scattering and
(b) electron scattering.
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What we would like to have is a probe which interacts
just once with the nucleon (rather than twice as in the
above mentioned process). The most natural probes
are the electromagnetic and mesonic fields. Of the two,
only the electromagnetic field can be utilized directly,
because of our unfortunate inability to fabricate classical
meson fields. Thus, just as light scattering depends on
nucleon structure, so does meson scattering and for
much the same reasons the scattering of mesons is
difficult to interpret directly in terms of the structure.
One may, however, ask theoretically for the scattering
of a nucleon by a meson field but we shall not discuss
this matter here. We are left, then, with the electro-
magnetic field which proves to be a very useful tool.

During the past few years Hofstadter and his col-
laborators have carried out very precise experiments
on the scattering of electrons by protons, deuterons and
heavier nuclei. The process of electron scattering may
be described to lowest order in the electric charge by
the Feynman diagram shown in Fig. 1. We see that
there is a single interaction between the nucleon and the
virtual electromagnetic field caused by the deflection
of the electron. Our interest is in the nucleon vertex
function T',(p’,p) which enters the matrix element for
the scattering amplitude in the form %(p")T'.(p"p)u(p)
with #(p) a Dirac spinor for a nucleon with four mo-
mentum p=[p, i(m?*+p? . In general, the relation
between the above matrix element of I',(p’p), the
vertex operator, and the current density operator of
the system j,=—[4, is (disregarding for a moment
the isotopic spin of the nucleons)
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where Dp, is the complete renormalized photon pro-
pagation function and e is the renormalized electric
charge. In our approximation, i.e., lowest order in e,
(p'—p)?*Dr. is to be replaced by unity. A failure of
electrodynamics as well as radiative corrections to
photon propagation would appear in this formalism
by having (p’—$)*Dy. different from unity and as such
would multiply into any structure effects.

It is conventional to write J, in terms of two in-
variant functions F; and F, called the charge and mag-
netization density, respectively. These are defined as
follows:

Ju=1a(p ) {vuF1[ (p'—$)*]
—i0u(p'— ) Fa[ (p'— p)* yu(p),

where now taking isotopic spin into account, F; and
F, contain an isotopic scalar and an isotopic vector
part, e.g., Fi=F5473F,". The experimental data on
electron scattering are usually expressed in terms of
these functions. There are certain things known about
all four functions for small momentum transfers g2
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=(p"— p)2. In particular for ¢>=0, we have
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where the u’s are the anomalous static moments. The
frequently referred to mean square radii are defined
from the power series expansion in ¢2 of the F’s, e.g.,
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In terms of these “isotopic” radii, one may write for
the charge radii {(r®)w=2[{(#1%)n={(r1")*)a] where
the upper sign refers to the proton and the lower to the
neutron. The magnetization radii are similarly defined
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It has been known for a long time that the mean square
radius associated with the neutron charge density
function, F1¥ is almost zero and this poses one of the
most difficult theoretical problems in understanding
nucleon structure. The reason is that the analysis of
the Stanford electron scattering data seems to indicate
that ((r1P)?)w is very large, not less than 0.18/u? and
perhaps more likely to be 0.32/u2. In order to reconcile
these facts, one must conjecture that there exists a
large isotopic scalar contribution to {r1*)a so that the
proton is sizable and the neutron cancels. In view of
the fact that the contributions to this scalar part, as
we shall see, would appear to be of rather short range,
it is difficult to see, in detail, a way out. The other
facts which are also obtained from the electron scatter-
ing experiments are that for large momentum transfer
(¢*>4u?) for protons Fi/e~Fs/u, and there is no evi-
dence for any large difference between neutron and
proton F3's. The proton datahasbeen generally analyzed
in terms of the assumption Fi/e=F,/u, and F taken
to be the Fourier transform of an exponential
~(a?+¢%»~2 There were many tries made, but this form
fits the data admirably and leads to

)= (0.322:0.032) /u2.

Such distributions are very unnatural from a theoretical
standpoint and it would be very nice if the mean square
radius could be measured in a truly model-independent
fashion. This may in fact be done for F; by doing
electron-proton scattering experiments in which the
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momentum transfer is very small; it is not so easy to
get (rs*)a directly.

In spite of the fact that there are some theoretical
difficulties in giving a rigorous proof, it is probably
true that the F’s can be represented in the following
dispersion form:
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In the dispersion relation for F; we have been con-
servative and have subtracted a constant in order to
minimize the contribution from very large mass (i.e.,
£%) values. From these formulas alone it is very difficult
to come to any conclusions about mean square radii or
asymptotic behavior unless definite assumptions are
made about the various p’s. The p’s stand for the ab-
sorptive parts of the F’s in the sense of dispersion theory
and the parameter £2 represents the total (mass)? of the
intermediate states contributing to the absorptive
parts. The fact that the scalar and vector parts have
different lower limits comes from simple isotopic spin
considerations; one finds that the p’s have one contribu-
tion proportional to the matrix element (0| j,| #), where
|n) is a state with % w-mesons, and it is easy to show
that under the symmetry operation which carries each
component of the meson field ¢, into —¢, the scalar
part of j, changes sign whereas the vector part does not.
Thus, the vector part of j, is connected to states with
2,4, - - - pions and the scalar part to states with 3, 5, - - -
pions. It is the least massive state in each case which
sets the lower limits.

Before analyzing the structure of these representa-
tions further it should be noted that the experimentally
favored exponential, for F,", say, corresponds to a
p2¥ (89) =0’ (£2—a?) which is fantastically unlikely from
a theoretical standpoint. One may go further and ask
that making, say, the superficially unwarranted as-
sumption that for the proton F(¢?)/F1(0) = F2(g?)/F2(0)
one represent the data with a positive definite p(£2). If
one looks at 1/F,(¢? it is easy to show that it should
be concave downward, but experimentally one finds it
to be concave upward (see Fig. 2). The fact that the
p’s may not be positive precludes any elementary state-
ments about the various F’s.

It is our feeling that it would be very worthwhile to
re-examine the experimental data from the standpoint
of our dispersion representations. In particular the
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F16. 2. Form factor for the proton obtained by assuming
F1/F1(0)=F;/F2(0). The points are the experimental data and
the 3c:él/rve corresponds to an exponential distribution with #2
=0.32/u2.
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simplifying assumption that
F1(¢")/F1(0) = F(g%)/F2(0)

should be studied with different classes of form factors
than have been heretofore used. The most natural form
of trial function would be obtained by choosing p(£2)
=30 (8—a?) which would simulate the contributions
from various classes of intermediate states of various
masses of the variety to be discussed below. We have
explored briefly one very simple example, namely with
two terms only and a;=—a= (afas?/as?—a;?). One
finds then, say, F3(¢?)/F1(0)=aras?/ (a:*+¢% (as+¢?).
The case of a;?=as?~37u? corresponds to the favorite
Stanford exponential with a mean square radius of
0.32/u. If, however, one takes a:®=100u2, as?=20.5u2
one obtains a function which is essentially indistinguish-
able for most of the range from the first and which has
only a slightly different mean square radius, 0.35/u2.
It is obvious that with more parameters one could get
agreement with these for large momentum transfers
and get a radically different mean square radius. It
may be, incidentally, that the approximate and un-
expected equality of F; and F, for large momentum
transfers comes about in some manner as indicated by
our example.

Let us look now more closely into the structure of
the vertex operator and its relation to the representa-
tions written. For the sake of definiteness let us de-
scribe in diagrams the structure of the vector part of
the vertex. These are shown in Fig. 3; there are, of
course, an infinite number of graphs which have been
left out. They are mostly too horrible to describe,
undoubtedly uncomputable, and we hope they are
numerically unimportant. We see by referring to Fig. 3
that we are instructed to add the amplitudes for
processes in which the (virtual) photon interacts with
a “bare” nucleon, in which a virtual pair of pions is
produced at a complicated vertex which then scatter
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Fic. 3. Dispersion theory diagrams showing the structure of
the contributions to the form factor for the proton J, and the
meson M.

on the nucleon and finally a process in which the photon
produces a nucleon-antinucleon pair (through the full
vertex we are trying to compute) which then interacts
inside a “black box’” with the nucleon. There are a few
other diagrams which are simple enough to describe:
We could have produced a pair of K mesons instead of
« mesons or a hyperon-antihyperon pair rather than
nucleon-antinucleon. We comment on these later.

We are inclined to think that the contribution from
the two-meson intermediate state could be the most
important insofar as the low momentum transfer
phenomena were concerned. This follows from our
dispersion representations simply from the fact that
only the less massive intermediate states can feel small
changes in ¢% This is not a very sharp conclusion since
the weight functions are not necessarily smooth or
positive definite. To evaluate this contribution, how-
ever, requires a knowledge of the continuation into the
unphysical world—a sort of never-never land where
momenta become imaginary—of pion nucleon scatter-
ing amplitudes, or if you prefer, the amplitude for the
annihilation of a nucleon-antinucleon pair into two
pions, the total energy of which is less than that of the
pair. Neither of these processes can be calculated
theoretically with much confidence for the relatively
extensive excursions into “never-never land”” which are
required. It has been argued by Chew ef al., that one
may be able to treat the processes in perturbation
theory in which case the continuations are easy.T If that
be done, then except for the appearance of the meson
vertex this would be old-fashioned perturbation theory.

As we can see from Fig. 3, the structure of the meson
vertex can be analyzed in a similar fashion to that of
the nucleon vertex. (This quantity, call it My, is essen-
tially the form factor for electron meson scattering

t Note added in proof.—A more careful investigation of the two
meson contribution has shown that this argument is probably not
accurate. The corrections to perturbation theory are in fact so
large that they cannot be reliably estimated. The direction of the
effects is such as to maintain the fairly quantitative agreement
with the anomalous moment, increase the magnetization mean
square radius over the perturbation theory value, and to dras-
tically reduce the charge density radius. These results will be
discussed in detail elsewhere.
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which is unfortunately not very accessible experi-
mentally. One can, of course, scatter pions from electron
targets, but the mass ratio makes it impossible to trans-
fer sufficient momentum to make such an experiment
worthwhile. It is possible that the meson form factor
plays a role in pion production in electron-proton
collisions.) The first thing we encounter aside from the
production of a pair of bare pions is the vertex M itself
producing a pair of pions which undergo ‘“black box”
scattering before emerging. If all higher states (includ-
ing that involving the nucleon vertex shown in the
figure, the neglect of which can be rigorously justified)
are neglected this problem can be very completely
analyzed. It is easy to show from gauge invariance
considerations that only p-wave pions are involved (in
the center-of-mass system, of course) so that we need
know only the p wave, isotopic spin one, phase shift
for pion-pion scattering as a function of energy. This is
not a very well-known quantity but it is reasonable to
expect that the interaction has a very short range so
that for moderate energies a presentation like tané
=k3a® with & the center-of-mass wave number and a
the scattering length seems reasonable. Perturbation
theoretic estimates (with g2/4w~15) indicate a2 1/m
with m the nucleon mass. The integral equation implied
by our diagrams may actually be solved for any (in
general complex) phase shift with the result (given for
real )
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With our particular model this leads to a pion mean
square radius given by
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where a=pa. For a=2/m, (r2)#=0.4X10"% cm which is
quite large.

The quantity of relevance for the nucleon vertex is
the real part of M which is shown in Fig. 4, again for
the choice a=2/m. This shows that ReM (£?) falls off
rather rapidly for negative argument. The way that M
enters the dispersion relations is as follows: if the con-
tribution to p(£2) from the two pion intermediate state
for point pions is called p, then the correct contribution
including meson structure is obtained by multiplying
pp essentially by ReM (—¢?). Setting ReM (—£3)=1,
i.e., neglecting the meson structure, gives entirely
undeserved weight to large values of £2. It may even
be true that the pessimism about the high mass (large
£%) values which led to using the conservative forms
for FyS and F," is unwarranted. Since we cannot reli-
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ably calculate p, for these values it is hard to test this
point.

If a calculation of the two meson state is made on
the basis of perturbation theory and the meson vertex
function given in Fig. 4 is used, we get a rough idea
about the importance of this particular intermediate
state and of the effect of the meson vertex. One finds
for the vector magnetic moment and magnetization
mean square radius the values 1.65¢/2m and 0.125/u?,
respectively, for point pions. Taking account of the
vertex we find 1.8¢/2m and 0.16/u?. The charge density
function is in principle much more susceptible to influ-
ence by the meson form factor by virtue of the fact
that large intermediate mass contributions are expected
to be rather more important than for the magnetization
density. Again using perturbation theory, we find
((r1V)®)n=0.24/u? for point pions and 0.18/u? with the
pion vertex. These numbers are to be regarded as only
illustrative and have only semiquantitative significance.

The comparison with experiment at this point is as
follows: The vector magnetic moment is about 1.8¢/2m
which agrees exactly and no doubt fortuitously with
our theoretical value. The magnetization mean square
radius for the proton (and neutron also if only this
two pion state is included) on the other hand is only
about % of the apparent experimental value. It should
be emphasized, however, that the “experimental”” value
is obtained very indirectly. The magnetization form
factor plays an important role in electron scattering
only when the momentum transfers are so large that
one is well beyond the range where the characterization
of the form factor by a mean square radius is adequate.
That is, one cannot write in the relevant region F2(q?
=F,(0)[1— (¢**/6)] and determine (r*)» from experi-
ment. What has been done is to attempt to fit an
analytic curve to F(¢? for large ¢* and to calculate
from this 72 Unless one has enormous confidence in
one’s ability to guess really the correct curve it is hard
to see how one can be very sure of the behavior of F
for the small ¢* values which define the mean square
radius.

As to the proton charge density mean square radius,
there may soon be a reliable, model independent deter-
mination from experiments done at rather small mo-
mentum transfers. The first results from these experi-
ments seem to indicate that this is quite large, perhaps
as much as 0.32/u2. The two pion state predicts only
about 0.09/u? and even if one uses the empirical fact
that the neutron radius is zero, i.e., assume 7g?*=7ry2, one
finds only 0.18/u% If the meson vertex were less im-
portant than we have estimated 0.09/u? would be in-
creased to 0.12/u? and again assuming zero neutron
radius to a value of 0.24/u?. Life would be considerably
simpler if it were to turn out that the proton charge
radius were actually much smaller and it would be
worth the effort to do the difficult low momentum
transfer experiments with high accuracy. If the proton
radius were smaller there would be less burden on the
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F1G. 4. The real part of the meson form factor evaluated under
the assumption that the pion-pion p-wave phase shift is given by
tand = k%3 with a=2/m.

isotopic scalar part of the vertex to yield the small
neutron radius. It is very difficult, incidentally, to see
how the latter experimental determination could be
wrong since the same result has been found in many
ways.

Nothing we have described as yet makes any con-
tribution to the isotopic scalar part of the vertex. The
problem here is to understand the very small
(~—0.06¢/2m) scalar magnetic moment and the
apparently large mean square radius for the charge
density. Unless the magnetization density were anom-
alously large, if the magnetic moment comes out right
the magnetization mean square radii for neutron and
proton would be relatively unaffected because of the
weighting factor us/uw, p.

The most conspicuous contributor, historically, to
the scalar part is the intermediate state involving a
nucleon-antinucleon pair. This state enters in perturba-
tion theory on an entirely equal footing with the two
pion state, and if it is included we obtain ridiculous
answers to all questions. Whereas it may be possible
to justify the use of perturbation theory for the two
pion state, it cannot be done for the pair state. We have
been able to show, however, using unitarity limitations
on the nucleon-nucleon scattering amplitudes, that is,
what goes on inside the last black box in Fig. 4, that
this state actually makes entirely negligible contribu-
tions to both the magnetic moment and mean square

radius:
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This conclusion is not based on a particular theory but
follows from general quantum mechanical principles
and our dispersion formalism.

Where then does the isotopic scalar vertex come
from? The most natural sources from states of finite
degree of complexity are those involving two K mesons
or three pions. We have calculated the two K contribu-
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tion using perturbation theory and find that even if the
K-baryon coupling constants were as large as the pion-
nucleon constant, they would make a negligible con-
tribution to the moments and radii. We include here in
the language of perturbation theory only the K-current
contribution. The usual simultaneous inclusion of the
baryon current would yield large and erroneous effects
but we can again kill this contribution by a unitarity
argument so it should not be included. Unless perturba-
theory for the K current is wildly off, we must look
elsewhere.

This leaves us with the three pion state. Our analysis
of this contribution is not very conclusive since its
evaluation requires a knowledge of matrix elements for
rather scary processes like nucleon-antinucleon anni-
hilation into three pions as well as a vertex correspond-
ing to the production of three pions by a virtual photon.
From general principles such as angular momentum,
conservation and charge conjugation invariance a few
things can be said but scarcely enough to make any
quantitative statements at present. Barring weird
behavior in the high mass region which isn’t impossible,
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this state is the only one which has a reasonable chance
of explaining the facts. Arguing dimensionally it might
be expected to contribute about 4/9 the mean square
radius of the two pion state or roughly speaking about
the same order of magnitude (the two pion contribution
is rather smaller than one would intuitively expect,
that is 1/mu rather than 1/u?). Unfortunately, it will
probably be rather hard to make a sharp statement
about this contribution.

In summary, then, the situation seems to be as
follows: we seem to be able to understand in a semi-
quantitative way the isotopic vector contributions to
both the charge and magnetization density form factors
for small momentum transfers. The old bugaboo of the
nucleon pair contributions has been laid to rest. The
most likely candidate for the isotopic scalar contribu-
tion is the at present uncomputable 3 pion state.
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