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potential radius over density radius by about 1.35
fermis, independent of atomic weight. This corresponds
to somewhat larger difference in the half density radii.
While the closeness of this theoretical estimate to the
experimental result might be fortuitous, it is encourag-
ing to note that the results of the phenomenological
theory can be tested by direct experiments. The non-
linearity e6ect of Wilets should not be seen by pions,

and this has been experimentally verified by Cool et ul. 33

Drelp' has also suggested recently that the part of the
difference which arises from finite range of nuclear
forces should approach zero for incident protons or
neutrons of several Sev energies. No clear-cut measure-
ments of the nuclear potential radius by elastic scatter-
ing are available as yet in this region of interest,
however.
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INTRODUCTION

''T was suggested by Bethe' that the diGerences in
~ ~ Coulomb energies between adjacent pairs of mirror
nuclei be interpreted as the Coulomb energy diBerence
for homogeneously charged spheres of the appropriate
charges. The resultant radius of the sphere is then a
measure of the nuclear radius or more precisely the
radius R of the equivalent sphere

R'= (5/3) (r'),„.

The classical Coulomb energy of a homogeneously
charged sphere is given as

E,= -', (e'Z'/R),

where E is the radius and eZ is the charge. The Coulomb
energy di6'erence between nuclei of the same radius but
charge values Z and Z+1 is consequently given by

whereby (4) and (5) are mutually consistent. Also (4)
is in better agreement with shell model ideas than the
expression,

3 e'Z(Z —1)E—
5 R

(2a)

INCLUSION OF THE 4n+2 NUCLEI

often applied in order to take into account the fact
that charge is applied in integral units of e.

Since Bethe's first application of this method it has
been used several times' and calculations have also
been made using quantum mechanical descriptions. ' '
This article reviews the empirical results and gives a
description of the methods for interpretation.

2Z+ 1
E,(Z+1, Z) =0.6 e'. (3)

Making the assumption that

E=rpd &,

and

E,=E '"+1.804 Mev for P+ decay

E,=E '*+0.782 Mev for E capture ',
E,=E '"—0.782 Mev for P decay

' H. A. Bethe, Phys. Rev. 54, 436 (1938).

This formula includes a term E(1,0) which would give
rise to a radius for the proton from the proton self-
energy. This point lies outside the scope of the present
paper and we shall prefer to subtract this, energy, i.e.,
the n-p mass difference in all subsequent considerations
i.e., we shall use instead the formula,

2Z+1
E,(Z+1, Z) =0.6 e' E(10)—

E
together with the de6nitions of Coulomb energies

and furthermore assuming a negligible variation in rp

from A to 2+1, we may also utilize the data from the
relative position of the T=1 states in the 4n+2
nuclei for the determination of mirror nuclei Coulomb
energies. We consider the change in E, as being due to
a volume change only caused by the addition or sub-

traction of one neutron, i.e., for a 4n+ 2 Coulomb energy
defined by (5) and obtained for a T=1 transition we

'K. P. Wigner, Phys. Rev. 56, 519 (1939); White, Creutz,
Delsasso, and Wilson, Phys. Rev. 59, 63 (1941);K. Feenberg and
G. Goertzel, Phys. Rev. 70, 597 (1946);R. R. Wilson, Phys. Rev.
88, 350 (1952); D. C. Peaslee, Phys. Rev. 95, 717 (.1954).' L. N. Cooper and K. M. Henley, Phys. Rev. 92, 801 (1953).

4 B. G. Jancovici, Phys. Rev. 95, 717 (1954).
~ B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
6 0. Kofoed-Hansen, Nuclear Phys. 2, 441 (1956-1957).' P. C. Sood and A. K. S.Green, Nuclear Phys. (tobepublished).
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TABLE I. Mass nuIQber Rnd IncRsured CouloInb energies foI'
Inlrror transltlons, Rl'c glvcn as dcduccd fI'oIQ p-decay data and Q
vRlucs boy for Inirrol tI'RQsltions Rnd foI' 4l+2 nuclei according
to Eqs. (7) and (8) and Table II.

corrections Rx'c taken 1Dto RccoUnt Rs discussed ln coll-
nection with Eq. (19).

3
5
7

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41

0.000
0.764+0.001
0.835&0.050
1.646&0.002
2.032~0.006
2.761+0.003
3.006&0.005
3.539&0.006
3.550~0.006
4.027&0.008
4.266+0.006
4.841+0.010
5.062&0.008
5.584+0.010
5.749+0.010
6.220+0.060
6.360~0,030
6.760+0.040
6.920+0.110
7.294+0,030
6.740~0.050

0.500
1.040
1.462
1.830
2.163
2.473
2.764
3.041
3.306
3.560
3.806
4.044
4.275
4.500
4.720
4-.934
5.144
5.350
5.552
5.750
5.945

Experimental values for mirror nuclei P-decay en-
ergies and/or Q values are given in Table I. A value is
given for E, at each value of Z= 2++1.In these values
are also included 4n+2 nuclei data interpreted as
described in Zqs. (7) and (8). New results have been
Rdded to tbc dRta which hRvc bccn summarized
px'cvlou sly.

Thus, the 0'4—N" decay has been investigated by
Bromley ek cl. by a study of the Q value fol' the reactton
Crs(He'rs)0'4. By comparison with other Q values in
this mass region the value E ""=1.810+0.008 Mev is
derived, This value is lower than the P-spectroscopic
value given previously but leads to a considerably more
acceptable ft value. The new value is also adopted
by Gerhart who carried out the P-spectroscopic in-
VCStlgRtlOD

The most recent evidence on the 4n+2 nuclei is
given by Gerhart. '0 To this we add a few remax'ks on
thc most uncertain E determinations.

4n+2 1'

&.'"+'(Z= 2e+2, Z= 2e+1)
4N+3

Z'/A i=-', t 4N+ 3]:
if the transition. is' of the type Z=2N+~Z=2rs+1,
and Rs

4e+2 '*

E,'"+'(Z= 2e+1, Z= 2N)—
4e+1

Z'/A &= -', L4rs+1 j'
if the transition is of the type Z=2e+1~~Z=2m. This
should then give results comparable with mirror transi-
tloIls on plotting the lattcx' Rs R function of

1 2Z+1
Z'/A&=- =-,'A'

2 A~

which is the natural procedure when one wants to
compare with the expressions (4) and (6).

Small corrections to this procedure occur when more
detailed theoretical considerations are applied. These

TABLE II. Comparison of Incasured mirror nuclei Ee vRlucs
auth those inferred from 4e+2 nuclei according to Eqs. (7) and
(8) and in the last column including the correction from Eq. (19).

@ ge4rs e

Ze mirror
A, 4ss+8 Me V Mev Mev

/

0
0 "

I
$ A~h

Fxo. 1.Experimental Coulomb energy diGcrences as a function
of ~~A&. Individual lines are drawn inside each subshell according
to Arnell ek al.13

2.763&0.003
3.006~0.005
3.537+0.006
4.300+0.030
5.084&0.025

2.63la0.030
3.014~0.005
3.532~0.014
4.281'0.006
5.071&0.008

2.653&0.030
2.999~0.005
3.547,&0.014
4.245 &0.006
5.044&0.008

s F. Ajzenberg and T. Lauritzcn, Revs. Modern Phys. 27, 77
(1955); P. M. Endt and J. C. Kluyver, Revs. Modern Phys. 26,
95 (1954).

98romley, Almqvist, Gove, Letherland, Paul, and Ferguson,
Phys. Rev. 105, 957 (1957)."J.3. Gerhart, Phys. Rev. 109, 89'I (1958).
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Flo. 2(a). Experimental Coulomb energy differences as a func-
tion of $A &. The dotted line shows the average classical approxima-
tion. The curved lines are discussed in connection with the
spheroidal model. (b) Second Coulomb energy differences as as a
function of A. Full drawn line represents expectation from formula
(4). (c) Third Coulomb energy differences ae as a function of A.
Full drawn line represents expectation from formula (4).
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In the case of C"the energy is very poorly known and
a much better estimate may be obtained f'rom the half-
life by assuming ff=3100 and using the f tables of
Moszkowski and Jantzen" for the E '* determination.
The lesult ls E =0.927+0.030 Mev which ls quite
reasonable compared with the older values 1.08&0.10
Mev and 0.827&0.050 Mev. The weighted mean of
these values is 0.912+0.030 Mev, which is adopted here.

Also in the eases of Sc",V'~, Mn", and Co" the same
procedure as for C" might be used but here possible
branching ratios have a considerable influence on the
result and the procedure is deemed too uncertain.

S. A. Moszl|'owskj and K. M. Jantzen) UCLA Tech. Rept,
No. 10-26-55.

0", A", and Ca" have been remeasured by Kistner
et cl."The new values are used in Table I.

The values included in Table I are obtained as a
best fit to the data inc1uding the corrections P} and
(8) fol' 4%+2 lluclel and lllcilldlllg So%% of 'tile hal'-

monic osciHator correction mentioned in connection
with Eq. (19).In those cases where a detailed compari-
son between actual mirror nuclei E, values and the
4ts+2 extrapolated values can be made the detailed
results are given in Table II. It is seen that the agree-
ment is good except in the case of C" where no very
accurate experimental E. exist and where the value is
obtained from the theoretical ff as described previously.

The values in. Table I are obtained as weighted mean
values of column 3 and the average of columns 4 and 5.

%hen. the data given in Table I are plotted in a
diagram of Eq 'vs pe~» tlm results ln Figs, 1 and 2 are
obtained. It is interesting to note several peculiarities
in this diagram.

Firstly, sharp breaks in the Coulomb energies occur
at major closed shells, i.e., at A =4, 16, and 40.

Secondly, a marked di8erence appears between the
4m+1 cases and the 4m+3 cases to such an extent that
it appears possible to draw separate curves for each of
these cases. It is reasonable to attribute this difference
to a Coulomb pairing energy difference between proton
pall's.

Thirdly, two diferent procedures for joining the
points are given in Figs. 1 and 2, respectively. In Fig. 1
straight lines are drawn through individual points inside
each subshell. This procedure has been adopted by
Arnell et u/. "who arrived at the possibility of breaks

'~Kistner, Schwarzschild, and Rustad, Phys. Rev. 105, 1339
(I957); 104, 154 (1956) and private communication.

"Arnell, Dubois, and Almen, Nuclear Phys. (to be published).
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quite reasonable, certainly the Ne" anomaly is very
clearly explained. Also, this general agreement is worth
remembering for any calculations on nuclear structure
in this region.

The second approach is to draw curved lines through
the points between successive major shells, as in Fig. 2.
In both cases, the general conclusion is that the E,
breaks at major shells constitute an appreciable effect
whereas the breaks at subshells are doubtful and if they
are real it must be concluded that they are very small.
This is further illustrated in Figs. 2(b) and 2(c) where
second and third Coulomb energy diGerences are given
according to the dehnitions

/spy

and

A2 (Z) =E,(Z+1, Z) E, (Z, Z——1)

~~(Z+ ', )=~.(Z+1)--~.(Z)

11 13 1517 . 19 21 23.25 27 29 31 33-3M73941 43
I I t I l t I l l I I [ I.I I

I I l I

07 08
tog„A'~&

0,9 t,0 I,&

FIG. 3. Mirror decay log&0t as a function of log&OA&

according to Arnell et al."

in the E, values at subshell magic numbers from a study
of mirror decay half-lives. They remark that these
half-lives vary roughly as (E '*) ' so that any little
deviation in E, values will be magnified by a factor 5
in the half-lives. They then plot half-lives vs A'. as
shown in Fig. 3 and find distinct breaks at 2=12.28
and 32 in addition to the breaks at major shells. How-
ever, part of these eGects are certainly due to the fact
that t is also inversely proportional to the square of the
P-decay matrix elements which varies somewhat from
nucleus to nucleus. Actually, a reasonably good fit to
most of the variation is obtained by comparison with
the semiempirical matrix element formula given
previously"

Also, in these diagrams, major shell eGects at 3=4.16
and 40 are evident whereas no certain evidence for
shell eGects at subshells is found.

CLASSICAL MODEL

In Fig. 2 a dotted line has been drawn through the
midpoints of the E, breaks at magic numbers. The
data for this line lead to the result,

r0=1.30X10 "cm,

when compared with Eqs. (4) and (6). This value is
lower than the older determinations. This is simply
due to the experimental accuracy being considerably
improved and to the application of the modified for-
mula (4). The result (11) is also in excellent agreement

with electron scattering data in this mass region as
illustrated in Fig. 5(a). It shouM be noted that the

application of Eq. (2a) yields r0——1.47X10 "cm which

is the result that has lead to so much confusion when

compared with electron scattering and p,-mesic atoms.

r
' 2+1 (p, —gg~) '

e =4
(g —

gy ) (10)

0 from p
x empiricat

single porticte
es 1'mote

where
~
J'e~ ' is the square of the Gamow-Teller matrix

element, J the nuclear spin, p, the magnetic moment, g~

the orbital angular momentum gyromagnetic ratio for
the last particle, and g, that for the spin. The empirical

~ J e
~

' values derived from the experimental ft values"
and the (B,x) diagram information" are compared with
the values calculated from Eq. (10) and empirical
magnetic moments in Fig. 4. The general agreement is

t 0

tb

X0 Q
x o x
0 x ~ 0

'4A. Winther and O. Kofoed-Hansen, Kgl. Danske Videnskab.
Selskab. Mat-fys. Medd. 27, No. 14 (1953).

"O. Kofoed-Hansen and A. Winther, Kgl. Danske Videnskab.
Selskab. Mat-fys. Medd. 30, No. 20 (1956). The values 8=2820
and =0.545 have been used taking into account the neve 0"data.

20 40

FIG. 4. Mirror decay Gamow-Teller matrix elements
as a function of A.
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BASIC FORMULAS FOR QUANTUM
MECHANICAL APPROACH

The quantum mechanical Coulomb energies have
been calculated by different authors using difI'erent

models. Thus, Carlson and Talmi' used the harmonic
oscillator potential and Cooper and Henley' used the
in6nite well. Both of these models are based on a single
parameter which is then related to rp. Jancovicis calcu-
lated for A =15 and 17 with a finite well and recently
Sood and Green~ used a more detailed potential.

In all of these cases we may use the formulas for
Coulomb energies given by Condon and Shortley"
from which we deduce the following equation for the
Coulomb energy e2C measured in units characteristic to
the model.

e'C(n, l, li) =e2 P 2 (2l'+1)
lower shells

XLF (nl, nV)+P Clliir G (nl, n'l') j

where R„l(r) is the normalized radial wave function for
a particle in the nl shell. Similarly the integrals G~ are
given by

00 pr2

G"(nl, n'1') = 2e' R„l(rs)R„ 4 (r2) rl"R„l(r)
O

~2'+' ~
O

XR„4 (rl)drldr2. (14)

The coe%cients C~~ t,
' are geometrical factors which

depend on the angular momentum coupling scheme. In
some of the following calculations we use the simple
approach of assuming an equal sharing of each single
particle in this contribution as it may be calculated for
a complete shell, i.e., assume independence of nzm'. In
this case the C~~ f,

"may be found directly from tables
in Condon and Shortley. It should be noted that Il' and
k must fulfill a triangle relation.

It is also necessary to calculate the equivalent sphere
radius which is given by

2l+1
+li P'(nl, nl)+ Q Clip""'Il "(el,nl)

4l+1 2&o
(12)

B2(n,l, li) = 5
4(2l'+1) ' r2R„4'dr

3A lower shells J p

for the Coulomb energy of the (ii+1)th proton in the
e, l shell and where the integrals F~ are given by

F'(nl, nV)

+ (22i+1) t r'R„Pdr, (15)
0

again in units appropriate to the model applied.
Expressing 8 as

g2

pr2

R P(rs)
~

rl"R 4'(rl)«rdrs
& f4+1

we see that

B(n,l, li) = rpA',

1
+e' R„ 4 '(r2) rr"R„P(rr)drldr2, (13)

r 2+1 J

C(n, l,w)B(n, l, li) e2

z, (z+1, z) =
A& rp

(17)

18
1A

~ M
p" 1,2

AS

1,4

1.3
fr2

f,S
1A

f,3
1.2

a.Stanford e scattering

b. Harmonic osci llator

c.infinite square well

0=z— P 2(2l'+1).
lower shells

(18)

Furthermore, if we want to use the A =4e+2 nuclei
then our correction factor given in Eqs. (7) ands(8)
must be replaced by

p
A4o+2

~
$ ~Bmirror~

g 4o+2(

(A mirror) ( B4n+2 ) (19)

where e2/r p is an energy unit and where (17) has a form
similar to (4). Here, the relation between Z and li for
mirror nuclei is given by

1.5 '

1,4

f.3

~, 1,2

10 20

d. Sood and Green

~ ~ ~ ~ ~ ~ ~ ~

FIG. 5. Radius constant r0 as a function of A for different
methods of determination.

'~E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra l(Cambridse University Press, New York, j.935), p. 177 6.

which leads to the last column in Table II where calcu-
lations have been made for the harmonic oscillator and
finally in Table I the 4n+2 data have been included
with 50%%uq of the harmonic oscillator contribution'which
seems more realistic if one compares with 8 variations
in more reasonably models like that applied by Sood
and Green. Finally, if rp varies appreciably from
A=4n+2 to the mirror nucleus this has to be taken
into account. Only in the case of C"is the effect appreci-
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5

3

value of /. Thus, none of these models explains the
possible curvature indicated in Fig. 2.

HARMONIC OSCILLATOR WITH DETAILED
COUPLING SCHEMES

Carlson and Talmi' have carried out a careful analy-
sis of the results to be expected from a harmonic
oscillator potential assuming jj coupling and LS coup-
ling. Using Feenberg and Goertzel's' expression for the
Coulomb energy

E,(Z+1, Z) =aZ+xsL1+ (—1)s+'jb. (20a)

Carlson and Talmi determine the magnitude x= (u b)/—
(u+b) from theory. For the states of lowest proton
seniority in jj coupling they And x=0.55. With LS
coupling and lowest proton seniority their result is 0.44
whereas averages over all states of the same proton
spin in LS coupling leads to @=0.83. Experimentally,
we may 6nd the second differences E,(Z+1, Z)
—E.(Z, Z—1)=As(Z)=a+(—1) +'b which split into
two relatively smooth curves )see Fig. 2(b)j when the
new data are used and from these curves determine
(u b)/(e+—b). The results of this procedure is (0.5 in
reasonable agreement with theory. A detailed variation
through each major shell is evident and actually
(a b)/(a+b) —~0 near major shells and here 100
kev of the 4m+1, 4m+3 effect is unaccounted for by
the detailed calculations.

0
D 1 2 3 4 $6 7

$A"

FIG. 6. Harmonic oscillator E, values in units e'/r0 as a
function of 2'A&.

able and would actually account for most of the devia-
tion found in Table II in this case.

HARMONIC OSCILLATOR AND INFINITE WELL

In both the harmonic oscillator and the inhnite well
the essential model parameter is eliminated from our
Coulomb energies by forming the expression (17). In
the harmonic oscillator the parameter is the frequency
co and in the inhnite well the parameter is the well
radius p. If the simple assumption of averaging over
closed shells is used, it is easy to carry out the calcula-
tions of 8 and C and for the harmonic oscillator. All
integrals can be given in closed form in a simple
manner by applying the equation

HARMONIC OSCILLATOR WITH SPIN-ORBIT
INTERACTION

If we add an / s interaction to the harmonic oscillator
a splitting occurs between the l~-,' states in the well-
known fashion. We may treat the eGect by adjusting
the harmonic oscillator cv appropriately so as to account
in each case for this eQ'ect; i.e., we may take the effect
of the spin-orbit interaction into account by intro-
ducing frequencies ru(e, l,j) which are close to the
original cv but accounts for the amount of the splitting.
If this is done we may still use our formulas with a

ptas gn isa
t'1

= (—1) +" ' rt exp( —Prts) exp( —yr')drdrt
re it7""o 0

g2

a Hormonic oscitiotor tttrith

spin orbit interaction
b.Detailed potentiat

Sood and Green A:40

00 r

F, (P,y) = ~ rt'"+' exp( —PrP) ~ r'" exp( yr')drdrt—
0

gm, gn +~ (1 1=(-»™+-
riPm clean. 4 (p (p++) $)

7

6

Aa40

The results for the harmonic oscillator are shown in
units es/rs in Fig. 6 with the rather arbitrary order of
filling of the shells of 1s, 1p, 1d, 2s, and 1f. It is evident
that this model yields major breaks at magic numbers
A =4, 16, and 40. Exactly the same results are obtained
when the square well potential is used. ' In both cases ro

values may be obtained by individual comparison with
the experimental Coulomb energies. The results are
given in Figs. 5(b) and 5(c).

In both cases also the resultant E, curves as a func-
tion of ~~A& are very nearly straight lines for a 6xed

1
Ee

0 1
)A~

2 3 4 5 6

2 Aa

Ee
I

0
gA&

2 3 4 5 6

(b)

Fro. 7(a}.Same as Fig. 6 but including spin-orbit interaction.
(b) E, values as a function of $A& as calculated by Sood and
Green. ~
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slightly changed interpretation of shells and also for-
mula (20) for the radial integrals. The result of this
procedure is shown in Fig. 7(a) again in units e'/rs and
now with the sequence of shells 1st/&, 1ps/s ip1/s ids/s,
2st/s, 1ds/s, and 1fr/s. The magnitude of the sPlitting
has been adjusted so that the combined movements of
the fs/s shell and the gs/s shell equals ashes which seems
reasonable in order to account for the closed shell cGcct
at Z and Ã equal to 50.

The breaks at subshclls are clearly much too large
compared with the experimental data although their
appearance supports the general idea of subshell breaks
put forward by Arnell et al."

(ll I V. Ilt) (23)
is calculated.

Next, the CGect of the exchange integrals is calculated
using the harmonic oscillator potential essentially as
described here and the result is applied as a correction
to Eq. (23). Tile results fol' E al'e glvell 111 Flg. l(b).
Also the radii obtained by Sood and Green with this
procedure are given in Fig. 5 (d).

Sood and Green draw the important conclusion that
there is no need to introduce a difkrence between the
proton and neutrons nuclear potential for the region of
mirror nuclei, i.e., that there is no need for the so-called
proton potential anomaly in this mass region.

However, as regards the detailed shell systematics
in the mirror nuclei E, values, the model is clearly
incGcctivc, giving much too large subshell breaks and
even major shell breaks of the wrong sign when pic-
tured as in Fig. 7(b).

DETAILED POTENTIAL WELL

In a recent article Sood and Green~ have applied a
Inodcl with thc single particle potential

V(r) = —Vs for r&a t

(21)
V(r) =—Ve expI —(r—u)/dj for r&/1. 1

They have furthermore used a spin-orbit interaction
of the Thomas form but 45 times larger in order to
account for the empirical spin-orbit splitting. Also the
CGect of the Coulomb interaction on the wave functions
is introduced. The potential is so adjusted that u varies
with 2 as a= (1.32ri&—0.8)X 10 "cm and Ve is taken
as 45 Mev and d=10" cm. These values are used in
order to get agreement with experimental binding
energies for 11&A &39.

In order to calculate Coulomb energies a charge
density in this potential of the form

p(r) =po

p(r) =pe exp)2(r a)/d] —for r) //

is assumed with total charge Z. The potential V, of
this distribution is calculated from classical theory. A
single particle wave function ld/ is then obtained for the
(Z+1)th proton and the magnitude

F00

200

200

Fxo. 8. The Coulomb energy diGerence between the lowest lying
spin $ and —*, states in the p shell.

3Zse' 5 t' Qs )'
I+

5 Z, 36IZZ, ) (24)

as compared with Eq. (2). Here Rg is the radius of the
sphere of the same volume as the spheroid and Qe is
the intrinsic quadrupole Inoment of the nucleus. For
the nuclei of largest Qe in the d shell this might give rise
to a correction of the order -30 kev. This is smaller
than the CGects we are looking for.

The extra term in (24) may be considered a second
order term in Qs. H the Bohr-Mottelson modePs is
applied also, a erst-order term appears from the specific
coupling of the last proton to the deformed nucleus.
This ls of the form

r j
E,= ~p(r)r'Ps(cosel)/EV i p'(r')I's(cost'/')d V—', (25)

rs

where p is the charge distribution of the last nucleon
and p' that of the deformed core. A rough estimate of
(25), valid for strong deformations, may be obtained by
application of the asymptotic wave functions, "which
also have been used quite successfully by Rakavy" for
the comparison of levels of nuclei in the beginning of the
/g shell. Neglecting higher order terms (25) reduces to

8 A
8,=xtQe (3ts,—Ã)

805 Mco

in the notation used in references 19 and 20. From Eq.
(15) we find f1/Mo/=Re'/B' and, consequently, for
2=23 we obtain the results E,=1IO kcv using the

"N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).
'SA. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.

Selskab. Mat-fys. Medd. 27, No. 16 (1933)."S. G. Nilsson, Kgl. Danske Videnskab. Selskab. Mat-fys.
Medd. 29, No. 16 (1955).~ G. Rakavy, Nuclear Phys. 4, 373 (1931').

SPHEROIDAL MODEL

If the nuclear deformations occurring between closed
shells be taken into account the erst approach leads to
the nuclear Coulomb energy given by Bohr and
Wheeler"
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data given in reference 20. A more detailed calculation
giving similar results has been carried out by Mottelson. "

UNCERTAINTIES IN THE r DETERMINATIONS

It is evident from the model calculations indicated
here that rather large unexplained efI'ects are present
in the empirical E, values.

The 4m+1, 4N+3 effect amounts to as much as 250
kev of this only 150 kev have been obtained in single
particle models.

From simple models including spin orbit interaction
E. breaks at subshells of 300 kev are expected the
maximum observed at subshells could be ~150 kev
but the effect is not at all well established.

2' B.Mot telson (private communication).

The estimate of quadrupole effects leads to a possible
contribution of 100kev to E,.This is a rough estimate
Rnd docs not tRkc into RccouIit change ln thc quRdl'u-

pole moment due to the added charge.
So far we have considered ground states only. In the

p shell the experimental data permits an estimate of
the Coulomb energy difference between the lowest —,

'
and —,

' states. The results are indicated in Fig. 8, roughly
speaking an effect of the order &200 kev is observed.

There is no doubt that more refined theories will
explain all of these small CQ'ects, but at present I think
wc ought to consldcI' them unccr'tmntlcs Rnd stRtc that
a reliable result from mirror nuclei Coulomb energies
can be expressed as

rs ——(1.28+0.05)X10 "cm.
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INTRODUCTION

~~NK of the modes in which neutral mesons can be
photoproduced from nuclei is the so-called

"elastic" production in which the target nucleus recoils
as a whole in its ground state. This coherent production
may be used to determine nuclear radii. Since the x'
production from neutrons and protons is essentially
the same, what is measured is the distribution of nuclear
matter as distinct from the electric charge distribution
measured in electron scattering experiments.

Previous measurements' ' have shown the cohercn
production to be a major contribution to the photo-
production. Goldwasser' pointed out that in helium the
elastic production has a threshold about 20 Mev lower
than other modes and demonstrated that the production
of z"s in helium occurs largely in this elastic mode at
low energies. Due to the high thresholds for (y,p) and

(y,rt) reactions this should also be true in carbon.
Measurements at higher energies by the Massachusetts
Institute of Technology group" indicate that the
elastic production is still a predominant CGect in photo-
production by 250 Mev photons, although the amount

~ This work supported by the U. S.Atomic Energy Commission,
' Goldwasser, Koester, Jr., and Mills, Phys. Rev. 95, 1692 (I.)

((954).' G. De Soussure and I.S, Osborne, Phys. Rev. 99, 843 (1955).
'Osborne, Barringer, Maunier, Mass. Inst. Technol. Progress

Report, February 29, 1956.EroceeChegs of Cere Symposium on High
ENergy AcceIerutors used I'ion I'bye s (June, 1956), Vol. 2, p. 282.' J. E. Leiss, Bull. Am. Phys. Soc. Ser. II, 2, 6 (1957).

of inelastic production and of internal absorption of the
mesons before leaving the nucleus is not clear.

It is desirable to study the coherent production in an
energy region where absorption and scattering of the
outgoing mesons as well as inelastic +' production will

be small CGccts. This is clearly the region near the
production threshold. For carbon, if we neglect the
possibility of leaving the nucleus in an excited state,
the energetic threshold for inelastic production is
about 152 Mev compared to a threshold for elastic
production of 135.6 Mev. Consideration of barrier
effects, internal momentum distributions and the energy
dependence of the m' cross section make it unlikely that
the inelastic cross section will be an appreciable contri-
bution even at 180 Mev. This supposition is borne out
by this experiment.

An idea of the effects of meson absorption can be
gained from Fig. 1 taken from Tenney arid Tinlot. '
This is a plot of the mean free path for absorption in
nuclear matter as a function of meson energy from
charged meson scattering experiments. For carbon, on
which our measurements have been made, and for meson
energies of less than 40 Mev, the nucleus should be
quite transparent, CGects due to absorption being less

than 20'Po. We thus assume that to the accuracy of the
work we are reporting, this absorption might be neg-

lected. For a spin zero element the results of R Born

' F. H. Tenney snd J. Tinlot, Phys, Rev. 92, 974 (1953).


