- (G52) G. M. Garibyan, Izvest. Akad. Nauk. Armyan. SSR 5, 3 (1952).
- G. M. Garibyan, Zh. Eksptl. i Teoret. Fiz. 24, 617 (1953). G. White Grodstein, Natl. Bur. Standards Circ. 583, (G53) (G57)
- Washington, (1953).
- (H36) H. R. Hulme and J. C. Jaeger, Proc. Roy. Soc. (London) A153, 443 (1936). P. V. C. Hough, Phys. Rev. 74, 80 (1948)
- (H48)
- (H53) I. Hodes, Ph.D. thesis, University of Chicago, 1953 (H54)
- (unpublished).
 W. Heitler, *The Quantum Theory of Radiation* (Oxford University Press, New York, 1954), 3rd edition.
- (J50) (J55)
- Jost, Luttinger, and Slotnick, Phys. Rev. 80, 189 (1950). J. M. Jauch and F. Rohrlich, *Theory of Photons and Electrons* (Addison-Wesley Publishing Company, Inc., Cambridge, 1955)
- (K50) J. Katzenstein, Phys. Rev. 78, 161 (1950)
- (L51) L. Landau and E. Lifshitz, The Classical Theory of Fields, (Addison-Wesley Publishing Company, Inc., Cambridge, 1951)
- (M49) K. Mitchell, Phil. Mag. 40, 351 (1949)
- P. Nemirovsky, J. Phys. (USSR) 11, 94 (1947) (N47)
- (N48)Ρ. Nemirovsky, J. Exptl. Theoret. Phys. (USSR) 18, 891 (1948).

- (O55) (O57)
- H. Olson, Phys. Rev. 99, 1335 (1955). Olson, Maximon, and Wergeland, Phys. Rev. 106, 27 (1957).
- (P33)
- F. Perrin, Compt. rend. **197**, 1100 (1933). J. A. Phillips and P. G. Kruger, Phys. Rev. **72**, 164 (1947) (P49) (P51)
- G. Petiau, Compt. rend. acad. sci., Paris, 232, 153 and 233, 1581 (1951). (R34) G. Racah, Nuovo cimento 11, 477 (1935).
 (R37) G. Racah, Nuovo cimento 14, 112 (1937).
 (R53a) M. L. G. Redhead, Proc. Phys. Soc. (London) A66, 196

- (1953)(R53b) M. L. G. Redhead, Proc. Roy. Soc. (London) A220, 219
- (1953).
- (R55) F. Rohrlich and J. Joseph, Phys. Rev. 100, 1241 (1955).
- (S31) A. Sommerfeld, Ann. phys. 11, 257 (1931).
- (V48a) V. Votruba, Phys. Rev. 73, 1468 (1948).
- (V48b) V. Votruba, Bull. intern. acad. Tcheque sci. 49, 19 (1948). (W35) E. J. Williams, Kgl. Danske Videnskab. Selskab. 13, No.
- 4 (1935).
- (W39) J.A. Wheeler and W.E. Lamb, Phys. Rev. 55, 858 (1939) and 101, 1836 (1956)
- (W47) K. M. Watson, Phys. Rev. 72, 1060 (1947).

REVIEWS OF MODERN PHYSICS

VOLUME 30, NUMBER 2

APRIL, 1958

Summary of High-Energy Nucleon-Nucleon **Cross-Section Data***

WILMOT N. HESS

Radiation Laboratory, University of California, Livermore, California

I. INTRODUCTION

IN the past ten years a considerable amount of in-formation has been published on nucleon-nucleon cross sections at high energies (taken here to mean above 10 Mev).

Different experimenters have used different techniques in collecting the data and deducing absolute cross sections. As time progressed, the methods of obtaining the absolute cross section have become more refined and have yielded more accurate values. The n-p differential cross section is usually obtained by normalizing an observed angular distribution of n-pevents to the separately determined n-p elastic cross section. If an erroneous value is used for σ_{np} elastic, the absolute cross-section scale for the differential cross section is in error. Corrections of such errors should be made to several of the earlier works on $\sigma_{np}(\theta)$.

Similarly, several experiments on the p-p differential cross section have used the reaction $C^{12}(p,pn)C^{11}$ as a monitor for the proton beam, and improved values of the cross section for this reaction have recently been published. This new cross section for the carbon reaction changes the values of $\sigma_{pp}(\theta)$ reported earlier.

This paper gathers together all the data and all the corrections to the data, and is an attempt to show that the results form a consistent picture.

Some confusion exists in the literature about the definitions of the different types of cross sections and the nomenclature used to describe them. We use the following system.

For the differential cross section-commonly denoted by $d\sigma/d\Omega(\theta)$ —we use the abbreviation $\sigma(\theta)$. In the experiments summarized in this report the differential cross sections studied in nucleon-nucleon scattering are essentially elastic cross sections. In several cases in which the energy is only a little above the meson threshold the inelastic contribution has been neglected.

Three types of integral cross sections (integrated over the angle θ) are discussed.

The notation σ total is used in referring to the removal of incident particles from the beam by all processes, elastic or inelastic, except Coulomb scattering in p-p events.

The notation σ elastic is used in referring to the scattering of incident particles from the beam by elastic processes only. This cross section refers to nuclear scattering only; Coulomb scattering is not included. In a nucleon-nucleon collision, the inter-

^{*} This work was done under the auspices of the U. S. Atomic Energy Commission.

action must be a two-body reaction throughout. Meson production or bremsstrahlung must be excluded for the event to be elastic. Actually (experimentally) for a 100-Mev incident particles a few Mev could be lost and the event probably would still be considered elastic. For example, when a deuterium-hydrogen subtraction is used to provide a "neutron" target, the 2.2 Mev needed to break up the deuteron would normally be ignored.

The notation σ inelastic is used in referring to the removal of particles from the beam by inelastic processes only. Meson production is the most important inelastic process in nucleon-nucleon scattering up to several Bev. Since threshold for π -meson production is 290 Mev, no distinction is usually made below this energy between σ elastic and σ total.

The three integral cross sections are related by

σ total= σ elastic+ σ inelastic.

Also included in this report are data on the nucleon polarization as determined in double-scattering experiments.

II. σ_{np} (TOTAL) AND σ_{np} (ELASTIC)

The *n-p* total cross section is usually measured by a good-geometry attenuation experiment. Only a relative beam monitor is needed, since only the ratio of before-scatterer to behind-scatterer counting rates is involved. The efficiency of counters need not be known unless this shows a strong energy dependence. Above 300 Mev a distinction must be made between elastic and total cross sections. Table I summarizes the experiments to measure σ_{np} total and σ_{np} elastic. Figure 1 shows measured values of σ_{np} total and σ_{np} elastic and several values for σ_{pn} total.

III. σ_{pn} TOTAL

Here the proton is now the high-energy incident particle. Several values have been given for σ_{pn} total.

FIG. 1. Experimental values of the total and elastic neutronproton cross sections and of the total proton-neutron cross sections.

FIG. 2. Experimental values of the total and elastic protonproton cross sections and of the total neutron-neutron cross section below 600 Mev.

These are obtained by measuring the total cross section for protons on hydrogen and for protons on deuterium, and subtracting. At these energies the deuteron can roughly be considered to be a proton and a neutron acting independently, so subtraction should give the effect from the neutron in the deuteron. There is undoubtedly an interference term in the scattering from deuterium so that the subtraction is not really justified, but it is expected that the interference term will be small enough to make the subtraction give nearly the correct value for σ_{pn} total. Also there probably is an effect similar to eclipsing that reduces the cross section for the proton and neutron in the deuteron (G3). This eclipsing effect has been suggested as a reason why σ_{pn} sometimes is lower than σ_{np} (S1,C4). We take

$$\sigma_{pd}$$
total= σ_{pp} total+ σ_{pn} total+ R ,

where R is the result of the interference term in the deuterium scattering and the eclipsing effect. If we have R=0, then

$$\sigma_{pn}$$
total = σ_{pd} total - σ_{pp} total.

Figure 1 shows that the values for σ_{pn} total obtained in this way fall somewhat below the curve for σ_{np} total. The value of R can be estimated from this, since theoretically we have

$$\sigma_{np}$$
total $\equiv \sigma_{pn}$ total.

The value obtained in this manner, if R is assumed independent of energy, is

$$R=6\pm3$$
 mb.

This means that the experimental value of σ_{pd} total is

FIG. 3. Experimental values of the total and elastic proton-proton cross sections up to Bev energy range.

 ~ 6 mb less than the sum of σ_{pp} total and σ_{np} total because of the eclipsing and interference effect R. This analysis should be expected to break down for low energies, where R may become large.

IV. σ_{pp} TOTAL, σ_{pp} ELASTIC, AND σ_{pp} INELASTIC

The p-p total cross section is usually measured by an attenuation experiment in which the geometry is such that Coulomb-scattered protons are treated as part of the unscattered transmitted proton beam. Therefore the cross section determined is due to nuclear scattering only. Above 300 Mev inelastic events become important. The total cross section can be measured directly. The elastic cross section of all events that are elastic and multiplying this by the total cross section, or by integrating under the elastic $\sigma_{pp}(\theta)$ curve. Table II summarizes the experiments on σ_{pp} total, and σ_{pp} elastic, and σ_{pp} leastic. Figure 2 shows measured values of σ_{pp} total and σ_{pp} elastic below 600/Mev; in addition,

FIG. 4. Experimental values of the inelastic proton-proton cross section.

the curve has been extended to lower energies by integrating under the measured curves for the p-p differential cross section.

All the experimental values in Fig. 2 have been treated so that they do not include Coulomb scattering but do include nuclear scattering all the way to $\theta = 0^{\circ}$. Also on this graph are values for σ_{nn} total. Figure 3 shows the σ_{pp} total and σ_{pp} elastic data extended to the Bev energy range. There is apparently a drop in the elastic cross section at high energy, which may be related to the structure of the proton. Figure 4 shows values for σ_{pp} inelastic, which primarily represent π -meson production.

V. σ_{nn} TOTAL

Experiments have been performed to measure σ_{nn} total in a manner similar to those that give σ_{nn} total.

FIG. 5. Experimental values of the differential neutron-proton cross section at various energies.

In this case, σ_{nn} total is determined by assigning a value of zero to *I*, the interference+eclipsing term, in the neutron scattering by deuterium; then the neutron scattering from hydrogen is subtracted from that by deuterium to give σ_{nn} . Thus,

 σ_{nd} total= σ_{np} total+ σ_{nn} total+I.

If we have I=0, then

$$\sigma_{nn}$$
 total = σ_{nd} total - σ_{np} total.

Values of σ_{nn} total obtained in this way are plotted in Fig. 2 with σ_{pp} total. According to the charge-independence hypothesis these cross sections should be identical. The values of σ_{nn} total fall quite close to the σ_{pp} total curve. If the interference terms in p-d and n-d scattering are similar—that is, if I=R, as well

Referenc	e Authors	Energy (Mev)	Cross section (mb)	Remarks	Source quoted e	of rror Detector
\$3	Sleator (Michigan)	E = 9.3 E = 10.6 E = 12.8 E = 14.8 E = 16.5 E = 18.1 E = 19.6 E = 21.1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Counting statistics	Ion chamber to count re- coil protons
A1	Ageno, Amaldi, Bocciarelli, Trabacchi (Rome)	E = 12.5 E = 13.5	690 694		Counting statistics	Proportional counter proton-recoil telescope
L1	Lasday (Carnegie Tech)	E = 13.9	770 ± 40		Counting statistics	Proportional counter telescope
P1	Poss, Salant, Snow, Yuan (Brookhaven)	$E = 14.10 \pm 0.05$ T(d,n)He ⁴ source	689 ± 5		Counting statistics	Scintillator to count neutrons
M2	Meyer, Nyer (Los Alamos)	E = 14.2	675 ± 20		Not given	Cu ⁶³ (n,2n)Cu ⁶²
S4	Salant, Ramsey (Carnegie Inst. of Washington)	$\begin{array}{rcl} E = & 14 \\ E = & 15 \end{array}$	$700 \pm 60 \\ 660 \pm 70$		Not given	Cu ⁶³ (<i>n</i> ,2 <i>n</i>)Cu ⁶² , 13-Mev threshold
D3	Day, Mills, Perry, Scherb (Los Alamos)	$E = 19.655 \pm 0.035$	495 ± 3		Not given	Scintillator to count neutrons
D2	Day, Henkel (Los Alamos)	<i>E</i> = 19.93	504 ± 10		Repro- ducibility	Scintillator to count neutrons
S5	Sherr (Harvard)	E = 25	390		Not given	$C^{12}(n,2n)C^{11}$
H2	Hildebrand, Leith (Berkeley)	E = 42	203 ± 7 $\sigma_{\rm D} = 289 \pm 13$	Energy not measured Used in σ_{nn} total	Counting statistics	$C^{12}(n,2n)C^{11}$
H3	Hadley, Kelly, Leith, Segrè, Wiegand, York (Berkeley)	$\begin{array}{rcl} E = & 90 \\ E = & 42 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Energy not measured	Counting statistics	Proportional counter telescope
H1	Hillman, Stahl, Ramsey (Harvard)	E = 88 E = 47.5	$86.1 \pm 2 \\ 84.5 \pm 2 \\ 196 \pm 10$	Liquid H target $CH_2 - C$ target	Total	Scintillator to count neutrons
Т3	Taylor, Wood (Harwell)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Not given	Proton-recoil propor- tional counter telescope
T1	Taylor, Pickavance, Cassels, Randle (Harwell)	$E_{max} = 45 \\ E_{peak} = 39 \\ E_{cutoff} = 34 \\ E_{max} = 74 \\ E_{peak} = 64.5 \\ E_{cutoff} = 59 \\ E_{max} = 107 \\ E_{peak} = 97 \\ E_{cutoff} = 91 \\ E_{max} = 169 \\ E_{peak} = 156 \\ E_{cutoff} = 149 \\ \end{bmatrix}$	223 ± 7.6 126 ± 3 73.9 ± 3 46.4 ± 1.2	Data fit equation: $\sigma_{np} = \frac{10.342}{E}$ $-45.7 + 0.157E$ $(E = \text{Mev}, \sigma = \text{mb})$	Not given	Proton-recoil propor- tional counter telescope
C5	Cook, McMillan, Peterson, Sewell (Berkeley)	<i>E</i> =85	83 ± 4 $\sigma_{\rm D}=117\pm 5$	Used in σ_{nn} total	Counting statistics. $+1\%$ for others	$C^{12}(n,2n)C^{11}$

 TABLE I. A summary of experiments on the neutron-proton total and elastic cross sections.

 Also given are some data on the neutron-neutron total cross section.

Reference	e Authors	Energy (Mev)	Cross section (mb)	n Remarks	Source quoted e	of error Detector
D4	DeJuren, Knable (Berkeley)	<i>E</i> = 95	$73 \pm 1.5 \sigma_{\rm D} = 104 \pm 4$	Used in σ_{nn} total	Counting statistics	Bi fission counter
C2	Cullar, Waniek (Harvard)	$\begin{array}{rcl} E = & 93.4 \\ E = & 97.2 \\ E = & 101.1 \\ E = & 106.8 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Counting statistics	Proton-recoil scintillation telescope
M1	Mott, Guernsey, Nelson (Rochester)	$\begin{array}{l} E = & 220 \pm 10 \\ E = & 180 \pm & 7 \\ E = & 156 \pm & 5 \\ E = & 140 \pm & 5 \\ E = & 117 \pm & 5 \\ E = & 97 \pm & 5 \end{array}$	$\begin{array}{rrrr} 41.3 \pm & 3.5 \\ 44 \ \pm \ 12 \\ 50.5 \pm & 8.3 \\ 48.5 \pm & 5.6 \\ 61.5 \pm & 8.6 \\ 74 \ \pm \ 10 \end{array}$	Pulse-height analysis allows determination at several energies at the same time	Counting statistics	Proton-recoil scintillator telescope
A2	Alphonse, Johansson, Taylor, Tibell (Uppsala, Sweden)	$\begin{array}{l} E = & 169 \\ E = & 149 \\ E = & 132 \\ E = & 117 \\ E = & 109 \end{array}$	$\sigma_{D-H} = 23.1 \pm 2$ $\sigma_{D-H} = 24.8 \pm 2$ $\sigma_{D-H} = 25.3 \pm 2.4$ $\sigma_{D-H} = 27.2 \pm 2.4$ $\sigma_{D-H} = 29.1 \pm 3.6$	Used in σ_{nn} total	Not given	Proton-recoil scintillation counter telescope
T4	Taylor, Pickavance, Cassels, Randle (Harwell)	<i>E</i> = 153	46.4 ± 1.2 $\sigma_{D-H} = 24.3 \pm 2$	Used in σ_{nn} total	Not given	Proton-recoil propor- tional counter telescope
T2	Taylor (Uppsala, Sweden)	<i>E</i> = 169	49.2 ± 1.6 $\sigma_{D-H} = 23.1 \pm 2.0$	Used in σ_{nn} total	Counting statistics	Proton-recoil scintillation telescope
D1	DeJuren, Moyer (Berkeley)	$E = 220 \\ E = 160$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Counting statistics	Bi fission counter
D5	DeJuren (Berkeley)	<i>E</i> = 270	$38 \pm 1.5 \\ \sigma_{D_{-H}} = 19 \pm 2$	Used in σ_{nn} total	Not given	Bi fission counter
F1	Fox, Leith, Wouters, MacKenzie (Berkeley)	E = 280	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Used in σ_{nn} total	Counting statistics	Scintillator proton- recoil telescope
D6	Dzhelepov, Golovin, Satarov, (Moscow)	<i>E</i> = 380	40 ± 4	Mentioned in D9	Not given	
N1	Nedzel (Chicago)	<i>E</i> = 410	33.7 ± 1.3 $\sigma_{D-H} = 28.3 \pm 4.0$	Used in σ_{nn} total	Total	Scintillators +Čerenkov counter counting recoil protons
D12	Dzhelepov, Satarov, Golovin (Moscow)	E = 380 E = 500 E = 590 E = 630 E = 380 E = 500 E = 590 E = 630 E = 590 E =	$\begin{array}{r} 34 \pm 2 \\ 35 \pm 2 \\ 36 \pm 2 \\ 37 \pm 4 \\ \sigma_{D-H} = 23 \pm 1.5 \\ \sigma_{D-H} = 30 \pm 2 \\ \sigma_{D-H} = 36 \pm 2 \\ \sigma_{D-H} = 40 \pm 3 \end{array}$	Total cross section includes inelastic events Used in σ_{nn} total	Counting statistics	Scintillators
C4	Coor, Hill, Hornyak, Smith, Snow (Brookhaven)	E=1400	42.4 ± 1.8 $\sigma_{D-H} = 42.2 \pm 1.8$	Total cross section includes inelastic events	Counting statistics	Scintillator telescope with converter to make protons

TABLE I.—(Continued).

might be—then according to the preceding analysis one should add about 6 mb to the values for σ_{nn} total to get the proper values. It would appear that σ_{nn} total agrees quite well with σ_{pp} total without addition of the 6 mb.

VI. $\sigma_{np}(\theta)$

To measure this cross section usually the angular distribution of either protons are neutrons is determined from the n-p interaction, normalizing the area under

the angular distribution to the total cross sections. Table III gives a summary of the measurements of $\sigma_{np}(\theta)$. Table IV lists the experimental values, and also the new values for those cases in which a renormalization has been performed. The renormalizations were usually done because the value for σ_{np} total now available is better than the one used by the original authors. In one case (GI), the renormalization is called for because the angular distribution was not measured to very small angles and an extrapolation to 0° was

Reference	Authors	Energy (Mev)	Cross section (mb)	Remarks	Source of quoted error	Detector
C16	Cook, Hartsough (Berkeley)	<i>E</i> = 9.7	345	Obtained by assuming $\sigma_{pp}(\theta) = 55 \text{ mb/sterad}$ flat to zero degrees $\therefore \sigma_{tot} = 55 \times 2\pi$		Scintillators
Y1	Yntema, White (Princeton)	E = 18.2	175	Obtained by assuming average $\sigma_{pp}(\theta) = 27.8$ $\therefore \sigma_{tot} = 27.8 \times 2\pi$		Scintillators
B6	Burkig, Schrank, Richardson (UCLA)	<i>E</i> = 19.8	152	Obtained by assuming average $\sigma_{pp}(\theta) = 24.2$ $\therefore \sigma_{tot} = 24.2 \times 2\pi$		Scintillators
Р2	Panofsky, Fillmore (Berkeley)	<i>E</i> = 29.4	102	Obtained by assuming average $\sigma_{pp}(\theta) = 16.2$ $\therefore \sigma_{tot} = 16.2 \times 2\pi$		Nuclear emulsions
F3	Fillmore (Berkeley)	<i>E</i> = 30.14	94	Obtained by assuming average $\sigma_{pp}(\theta) = 15$ $\therefore \sigma_{tot} = 15 \times 2\pi$		Nuclear emulsions
С9	Cork, Johnston, Richman (Berkeley)	<i>E</i> = 31.8	88	Obtained by assuming average $\sigma_{pp}(\theta) = 14$, $\therefore \sigma_{tot} = 14 \times 2\pi$		Proportional counters
К2	Kruse, Teem, Ramsey (Harvard)	$\begin{array}{rrr} E=&70\\ E=&95 \end{array}$	39.6 30.2	Obtained by assuming average $\sigma_{pp}(\theta) = 6.3$, $\therefore \sigma_{tot} = 6.3 \times 2\pi$. Obtained by assuming average $\sigma_{pp}(\theta) = 4.8$ $\therefore \sigma_{tot} = 4.8 \times 2\pi$		Scintillators
C1	Chamberlain, Pettengill, Segrè, Wiegand (Berkeley)	E = 330 E = 230 E = 160	23.9 ± 1.0 22.5 ± 1.0 26.1 ± 1.0	From $\sigma(\theta) = 3.81 \times 2\pi$ at 330 and $\sigma(\theta) = 3.58$ $\times 2\pi$ at 225 $\sigma(\theta) = 4.16 \times 2\pi$ at 160	Counting sta- tistics plus target-thickness uncertainty	Scintillator telescope
C3	de Carvalho (Chicago)	$E = 315 \pm 8$ $E = 208 \pm 4$ $E = 315 \pm 8$ $E = 208 \pm 4$	$24.3 \pm 1 \\ 25.8 \pm 2 \\ \sigma_{D-H} = 32.5 \pm 4 \\ \sigma_{D-H} = 37.0 \pm 2$	Used in σ_{pn} total Used in σ_{pn} total	Counting statistics	Scintillator telescope
М3	Marshall, Marshall, Nedzel (Chicago)	E = 408	24.0 ± 1 $\sigma_{D-H}=31.6\pm2$	No corrections for meson production Used in σ_{pn} total	Not given	Scintillator telescope
D11	Dzhelepov, Moskalev, Medved (Moscow)	$\begin{array}{l} E = \ 410 \\ E = \ 460 \\ E = \ 500 \\ E = \ 540 \\ E = \ 580 \\ E = \ 600 \\ E = \ 620 \\ E = \ 640 \\ E = \ 640 \\ E = \ 540 \\ E = \ 540 \\ E = \ 580 \\ E = \ 580 \\ E = \ 600 \\ E = \ 640 \\ E = \ 640 \\ E = \ 640 \\ E = \ 660 \end{array}$	$\begin{array}{c} 26.9 \pm 0.7 \\ 27.6 \pm 0.4 \\ 29.9 \pm 0.4 \\ 32.1 \pm 0.5 \\ 35.6 \pm 0.5 \\ 36.6 \pm 0.5 \\ 38.6 \pm 0.5 \\ 39.8 \pm 0.6 \\ 41.4 \pm 0.6 \\ 3.9 \pm 2.1 \\ 4.6 \pm 2.0 \\ 9.1 \pm 2.1 \\ 12.6 \pm 2.1 \\ 13.6 \pm 2.1 \\ 15.6 \pm 2.1 \\ 18.4 \pm 2.1 \\ \end{array}$	Total cross sections Includes inelastic events Inelastic cross section only obtained by sub- tracting $\sigma_{\text{elastic}} = 23 \pm 2$ mb from measured values of σ_{total}	Total	Proportional counters and a liquid scintillator
В5	Meshcheryakov, Bogachec, Neganov (Moscow)	$\begin{array}{rrrr} E = & 460 \\ E = & 560 \\ E = & 660 \\ E = & 460 \\ E = & 560 \\ E = & 660 \end{array}$	24.0 ± 0.6 25.2 ± 0.8 24.7 ± 1.0 3.6 ± 0.7 8.8 ± 0.9 16.7 ± 1.2	Elastic cross section Inelastic cross section by subtraction of B5 data from D11 data		

 TABLE II. A summary of experiments on the proton-proton total elastic and inelastic cross sections.

 Also given are some data on the proton-neutron total cross section.

TABLE II—Continued.

Reference	Authors	Energy (Mev)	Cross section (mb)	Remarks	Source of quoted error	Detector
S2	Smith, McReynolds, Snow (Brookhaven)	E = 440 E = 590 E = 800 E = 1000 E = 440 E = 590 E = 800 E = 1000	$\begin{array}{c} 23.5 \pm 1.2 \\ 25.2 \pm 2.0 \\ 21.5 \pm 2.0 \\ 19.2 + 3 \\ -2 \\ 3.5 \pm 2.3 \\ 10.8 \pm 3.6 \\ 25.5 \pm 2.8 \\ 28.8 \pm 3.2 \end{array}$	Elastic cross section. Normalized to data of Sutton, S9, obtained by integrating under $\sigma_{pp}(\theta)$ curve Inelastic cross section, obtained by subtract- ing $\sigma_{elastic}$ from σ_{total} of Shapiro, S1	Not given	Scintillators
S1	Shapiro, Leavitt, Chen (Brookhaven)	E = 410 $E = 535$ $E = 615$ $E = 740$ $E = 830$ $E = 850$ $E = 1075$ $E = 1275$ $E = 1295$ $E = 1490$ $E = 2000$ $E = 2600$	$\begin{array}{c} 26.5 + 1.4 \\ -1.3 \\ 29.8 + 1.3 \\ -1.1 \\ 37.7 + 1.4 \\ -1.0 \\ 44.4 + 2.8 \\ -2.6 \\ 47.8 + 1.6 \\ -1.2 \\ 47.6 + 1.7 \\ -1.2 \\ 48.3 + 1.6 \\ -1.1 \\ 47.5 + 1.6 \\ -1.1 \\ 47.5 + 1.6 \\ -1.1 \\ 47.5 + 1.6 \\ -1.2 \\ 49.4 + 1.6 \\ -1.2 \\ 49.4 + 1.6 \\ -1.2 \\ 41.4 + 3.2 \\ -1.4 \\ 41.6 + 4.0 \\ -1.6 \end{array}$	Total cross sections includes meson pro- duction as well as elastic events	Total	Scintillator telescope
		E = 380 E = 590 E = 810 E = 1060 E = 1260 E = 1480 E = 2000 E = 2600	$ \begin{split} \sigma_{D-H} &= 31.0 + 1.5 \\ &= 1.3 \\ \sigma_{D-H} &= 31.5 + 1.9 \\ &= 1.7 \\ \sigma_{D-H} &= 28.4 + 1.3 \\ \sigma_{D-H} &= 28.4 + 1.3 \\ \sigma_{D-H} &= 27.0 + 2.0 \\ &= 1.9 \\ \sigma_{D-H} &= 32.1 + 1.5 \\ \sigma_{D-H} &= 32.1 + 1.5 \\ \sigma_{D-H} &= 33.6 + 2.0 \\ &= 1.7 \\ \sigma_{D-H} &= 34.3 + 2.3 \\ \sigma_{D-H} &= 31.4 + 2.2 \\ \sigma_{D-H} &= 31.4 + 2.2 \\ &= 1.3 \end{split} $	Total cross section includes inelastic events used in σ_{pn} total		
B9	Batson, Culwick, Riddiford, Walker (Birmingham)	$E = 650 \pm 100$	$\sigma_{\text{elastic}} = 26.3 \pm 1.8$ $\sigma_{\text{inelastic}} = 14.4 \pm 1.4$	Cross section nor- malized to $\sigma_{tot} = 40.6$	Not given	Cloud chamber
M10	Morris, Fowler, Garrison (Brookhaven)	E = 800	$\sigma_{\text{elastic}} = 24 \pm 3$ $\sigma_{\text{inelastic}} = 24 \pm 3$			Cloud chamber
H6	Hughes, March, Muirhead, Lock (Glasgow)	<i>E</i> = 925	$\sigma_{\text{elastic}} = 17 \pm 3$ $\sigma_{\text{inelastic}} = 33 \pm 3$		Counting statistics	Nuclear emulsion
D7	Duke, Lock, March (Birmingham)	<i>E</i> = 950	15.5 ± 2.5	It is not clear whether corrections have been made for Coulomb scattering	Not given	Nuclear emulsions
F6	Fowler, Shutt, Thorndike, Whittemore (Brookhaven)	E = 1500	$\sigma_{\text{elastic}} = 20 \pm 2$ $\sigma_{\text{inelastic}} = 27 \pm 3$	Cross sections nor- malized to $\sigma_{pp \text{ total}}$ = 47 from S1		Cloud chamber
B8	Block, Harth, Cocconi, Hart, Fowler, Shutt, Thorndike, Whittemore (Brookhaven)	<i>E</i> =2750	$\sigma_{\text{elastic}} = 15 \pm 2$ $\sigma_{\text{inelastic}} = 26 \pm 3$	Cross section nor- malized to $\sigma_{pp \text{ total}}$ = 41.6 from S1		Cloud chamber

Reference	Authors	Energy (Mev)	Cross section (mb)	Remarks	Source of quoted error	Detector
C18	Cester, Hoang, Kerner (Rochester)	E = 3000	8.9±1.0	Elastic cross section	Not given	Nuclear emulsion
C17	Cork, Wenzel, Causey (Berkeley)	E = 2240 E = 4400 E = 6150	16.9 ± 2.5 9.0 ± 1.4 6.9 ± 1.0	Elastic cross sections obtained by integrat- ing under $\sigma_{pp}(\theta)$ curve	15% error is due only to beam- monitor calibra- tion; other errors are somewhat less	Scintillators
W1	Wright, Saphir, Powell, Maenchen, Fowler (Berkeley)	E=5300	$\begin{array}{c}\sigma_{\text{total}} = 32.4 \pm 6.0\\\sigma_{\text{elastic}} = 5.6 \pm 2.3\end{array}$		Total	Cloud chamber

TABLE II—Continued.

needed to normalize to the total cross section. This extrapolation assumed symmetry about 90° , which is now known to be incorrect for this energy. Therefore a correction that changes the cross-section scale was made in the extrapolation process.

Values of $\sigma_{np}(\theta)$ are shown in Fig. 5. Experimental points are omitted because there are so many of them. The lines have been drawn through the experimental points in each case. Since typical total errors are 10%, not much reliance should be put on detail features of these curves. For example, probably the 172-Mev curve does not actually cross the 156-Mev curve near 92°, and probably the 215-Mev curve does not cross the 300-Mev curve near 117°. One would expect fairly smooth energy variations of $\sigma_{np}(\theta)$ at certain angles instead of bumps.

The curves up to 90 Mev are quite symmetrical about 90° c.m., but at 300 to 400 Mev the curves are higher at 180° than at 0° c.m.

VII. $\sigma_{pp}(\theta)$

The p-p differential cross section is normally measured by detecting one or both protons resulting from a collision of a beam and a target proton and monitoring the beam with an absolute monitor. Knowing the thickness of the target and the solid angle of the detectors, the absolute cross section is calculated directly by the formula:

detector counts

 $\frac{1}{\text{monitor protons}} = \sigma_{pp}(\theta) [\text{target atoms/cm}^2] \\ \times [\text{detector solid angle}].$

In comparing $\sigma_{pp}(\theta)$ and σ_{pp} total a factor of 2 arises from the fact that two protons are produced from each collision:

$$2\sigma_{pp}$$
 total = $\int_{4\pi} \sigma_{pp}(\theta) d\Omega$.

Table V summarizes the experiments on $\sigma_{pp}(\theta)$. Table VI lists the experimental values for $\sigma_{pp}(\theta)$ and the new values when renormalization has been necessary. The

renormalizations here all result from new measurements of the cross section by Crandall et al., (C14) for the reaction $C^{12}(p,pn)C^{11}$, which has been used as an absolute monitor for studying $\sigma_{pp}(\theta)$. Values from Aamodt (A6) for the cross section for $C^{12}(p,pn)C^{11}$ were used by several of the original workers. Recent work at Chicago (R4) on the cross section for $C^{12}(p,pn)C^{11}$ gives still lower values than the recent Berkeley work (C14). The measurements were made at different energies; therefore perhaps both answers are correct. The difference in the values, if it is real, may be due to the selfabsorption correction. The Berkeley group included β - γ coincidences as well as 4π counting to get this correction. In this paper the Berkeley values for the cross section are used because of the particle energies involved. If the Chicago data turn out to be better, the nucleon-nucleon cross sections affected must be reduced still further.

Quoting from Crandall et al.: "The most significant difference from earlier experiments is the shape of the $C^{12}(p,pn)C^{11}$ excitation curve in the neighborhood of 350 Mev. Readjusting the excitation function both in shape and in absolute value will have important effects on seemingly unrelated experiments because of the widespread use of the reaction as a beam monitor. For example, the p-p scattering cross sections measured at 240 Mev by Oxley et al. (O1,T6) should certainly be modified. Even though they intercalibrated their counter with a beta standard used by Aamodt et al., the revised shape of the excitation function requires a 41/49 reduction in their values. If a cross section of 36 mb for the $C^{12}(p,pn)C^{11}$ is used, their values are further reduced and are in excellent agreement with the results of Chamberlain et al. (C8).

"The p-p scattering cross sections measured by Birge *et al.*, (B4) at 105 and 75 Mev may be reduced directly by the ratio 36/41. The revised values are in agreement with the Berkeley measurements.

"Cassels *et al.*, (C11) measured the p-p scattering cross sections at 146 Mev by using two methods to calibrate their beam monitor. One of the methods involved the use of the $C^{12}(p,pn)C^{11}$ cross section and gave a p-p scattering cross section of 4.61 ± 0.55 mb/sterad.

						and a second		Data	renormaliz	ed here	
Refer- ence	Authors	Data normalized	Energy (Mev)	Monitor	Target	Counters	Source of quoted error	Ves or] No	By how much	Why	Remarks
SS	Seagrave (Los Alamos)	None needed. Flux and solid angles known and yield measured	$E = 14.1 \pm 0.05$ $T(d,n) \text{He}^4$	Counting alpha particles from reaction T(d,n)He ⁴	CH ₂	2 proportional counters +NaI scintillator	Counting statistics +beam spread	No	:	:	(a) Measure $E \frac{dE}{dx}$ with two pulse- height counters (b) 4% error possible
A4	Allred, Armstrong, Rosen (Los Alamos)	None needed. Know flux and Ω and measure	$E = 14.1 \pm 0.1$ $T(d,n) \mathrm{He}^4$	Count alphas from reaction	CH_2	Nuclear plates	Counting statistics	No	:	:	in neutron flux
G2	Galonsky, Judish (Oak Ridge)	yreld Yes—to $\sigma_{tot} = 535 \text{ mb}$	$E = 17.9 \pm 0.1$ $T(d,n) \text{He}^4$	Propane recoil counter	CH_2	2 proportional counters and NaI counter	Total	No	:	•	
B2	Baldwin (Carnegie Tech)	No	$\begin{split} E = 10.6 \\ \mathrm{Be}^{9}(\alpha, n) \mathrm{C}^{12} \\ E_{\mathrm{outoff}} = 18 \end{split}$	Thorium fission ion chamber	CH ₂ -C	Proportional counter telescope	Total	No	•	:	Gives $\frac{\sigma_{np}(180)}{\sigma_{np}(90)}$
R1	Remley, Jentschke, Kruger (Illinois)	No	E=28.4 spread of 0.5 $T(d,n)He^4$ E=13.7 E=13.7 $D(d,n)He^3$	(a) $Au(n\gamma)$ (b) Current from cyclotron (c) Geiger counter (all relative)	Scintillation crystal	Scintillator	Counting statistics +calibration errors +geometrical effects	No	÷	÷	(a) Gives relative $\sigma_{xp}(\theta)$ (b) 13.7-Mev data (b) 13.7-Mev data essentially flat (c) 28.4-Mev data superimposed on Brolley data (B3) and agrees well
B3	Brolley, Coon, Fowler (Los Alamos)	Yes—to 360 mb per Adair (A3)	$E = 27.2 \pm 0.6$ $T(d,n) \text{He}^4$	Cyclotron beam current	CH_2	Proportional counter telescope	Counting statistics	No	:	:	Systematic errors ~4%
Н3	Hadley, Kelly, Leith, Segrè, Wiegand, York (Berkeley)	Yes—to 76 mb for 90 Mev	$E_{ m peak} = 90$ $E_{ m upper} = 105$ $E_{ m lower} = 70$ $E_{ m outoff} = 66$	CH ₂ target +prop. ctr. telescope and Bi fission	CH ₂ -C	Proportional counter telescope to count	Counting statistics	90 Mev yes	<u>78.3</u> 76	Better measure- ment of $\sigma_{\rm tot}(S7)$	 (a) S6 says need correction near 180° (b) "40"-Mev neu- tron spectrum never
		and to 170 mb for 40 Mev	$E_{ m rest} \simeq 42$ $E_{ m autoff} = 28$			610000rd		42 Mev yes	<u>203</u> 170	New measurement of σ_{tot} fits σ use nergy curve better (H2)	the measure only call culated by stripping theory (c) Call $E=42$ Mev (c) Call $E=42$ Mev since their cross sections are used
C6	Chamberlain, Easley (Berkeley)	Yes—to data in H3 at 36°	$E_{\text{peak}} = 90$ $E_{\text{upper}} = 105$ $E_{\text{lower}} = 70$	Bi fission counters	Liquid H	Neutron scintillation telescope	Counting statistics	Yes	<u>76</u>	Better measure- ment of	
C7	Chih (Berkeley)	Yes—to 76 mb	$E_{\text{putoff}} = 00$ $E_{\text{peak}} = 90$ $E_{\text{lower}} = 105$ $E_{\text{lower}} = 75$ $E_{\text{eutoff}} = 40$	None	H_2 gas	Cloud chamber	Counting statistics	Yes	<u>78.3</u> 76	σtot (3/) Better measure- ment of σtot (S7)	Other errors might be ${\sim}2\%$

TABLE III. A summary of experiments on the neutron-proton differential cross section.

376

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Data	F.nerøv					Da	a renorma	dized here	
	Authors	.	normalized	(Mev)	Monitor	Target	Counters	Source of quoted error	${}_{ m No}^{ m Yes or}$	By how much	Why	Remarks
	Fox (Berkeley)		Yes—to smooth curve drawn through H3 data	$ \begin{array}{l} E_{\text{peak}} = 90 \\ E_{\text{upper}} = 105 \\ E_{\text{lower}} = 70 \\ E_{\text{cutoff}} = 85 \end{array} $	Scintillation telescope+CH ₂ target	CH ₂ -C	Scintillation telescope	Counting statistics	Yes	<u>78.3</u> 76	Better measure- ment of $\sigma_{\rm tot}~({\rm S7})$	S6 says data shoul be corrected near $\theta = 180^{\circ}$
Yes-to data in be inscripted in the size measure the series of the series of the series of the periods in the size measure interaction in the size statistics the series of the	Wallace (Berkeley)		Yes—to data in H3	$E_{\text{peak}} = 92$ $E_{\text{upper}} = 107$ $E_{\text{lower}} \simeq 73$ $E_{\text{cutoff}} = 2$	None	H ₂ gas	Nuclear emulsions	Counting statistics and geometry	Yes	<u>78.3</u> 76	Better measure- ment of σ_{tot} (S7)	
	Selove, Strauch, Titus (Harvard		Yes—to data in H3 in region $\theta = 155-167$	$E_{\text{Peak}} = 93$ $E_{\text{Upper}} = 102$ E_{lower} never down to $\frac{1}{2}$ height $E_{\text{cutoff}} = 84$	2 proton-recoil telescopes with same energy sensitivity	CH ₂ -C	Scintillation telescope counting protons	Counting statistics	Yes	<u>78.3</u> 76	Better measure- ment of σ_{tot} (S7)	Corrections for finite sizes made here = should be made in reference H5 and F2 near 180
Yes to data in $E_{nower} = 70$ $E_{nower} = 90$ Bi fission tounterLiquid HScintillation telescopeNo \dots \dots K1 at 37.8° $E_{nower} = 70$ $E_{nower} = 70$ $E_{nower} = 70$ counter telescopestatisticsNo \dots \dots \dots Yes to data in $E_{nower} = 300$ $E_{nower} = 300$ $E_{nower} = 300$ $E_{nower} = 300$ H_{a} gas $Cloud$ counting tentrons $Counting$ tentrons No \dots \dots (a) Gives relative $e_{ny}(b)$ No $E_{nower} = 100$ $E_{nower} = 800$ $E_{nower} = 800$ None H_{a} gas $Cloud$ counting statistics No \dots \dots (a) Gives relative $e_{ny}(b)$ No $E_{nower} = 120$ $E_{nower} = 800$ $E_{nower} = 800$ None H_{a} gas $Cloud$ statistics No \dots \dots (a) Gives relative $e_{ny}(b)$ No $E_{nower} = 120$ $E_{nower} = 800$ None H_{a} gas $Cloud$ statistics No \dots \dots (a) Gives relative $e_{ny}(b)$ No $E_{nower} = 120$ $E_{nower} = 800$ None H_{a} gas $Total \leq 800nome needed.(a) Slows symmete_{nower}(c)(a) Slows symmete_{nower}(c)(a) Slows symmete_{nower}(c)NoE_{nower} = 100E_{nower}(c)No(a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)NoE_{nower} = 100E_{nower}(c)No(a) (a) (a) (a) (a) (a) (a) (a)NoE_{nower} = 100E_{nower}(c)No(a) ($	Stahl, Ramsey (Harvard)		Yes—to $\sigma_{\rm tot}$ of 78.5土3	$E_{\text{peak}} = 93$ $E_{\text{upper}} = 102$ E_{lower} never down to $\frac{3}{2}$ down to $\frac{3}{2}$ height. Ab- sorbers ad- justed to make $E_{M} = 91$	Proton-recoil scintillation telescope	Liquid H	Scintillation telescope (Protons) adjusted at each θ to keep \vec{E} the same	Counting statistics and fitting errors for combining data	No	:	:	Normalization good to 5%
Yes to data in B3 at 30° $E_{avast} = 290$ $E_{uvare} = 330$ neutronsH3 at 30° $E_{uvare} = 330$ $E_{uvare} = 260$ $E_{uvare} = 330$ $E_{uvare} = 100$ None H_2 gasCloud statisticsNo \cdots \cdots (a) Gives relative $\sigma_{T0}(b)$ No $E_{uvare} = 100$ $E_{uvare} = 80$ None H_2 gasCloud chamberCountingNo \cdots \cdots (a) Gives relative $\sigma_{T0}(b)$ No $E_{uvare} = 100$ $E_{uvare} = 80$ None H_2 gasCloud chamber \cdots \cdots (a) Gives relative $\sigma_{T0}(b)$ No $E_{uvare} = 80$ $E_{uvare} = 80$ None H_2 gasCloud chamber \cdots \cdots (a) Gives relative $\sigma_{T0}(b)$ None needed. $E = 105$ and $E = 137$ meated in direct Gir- meatered by $E = 137$ meatered byNo \cdots \cdots (a) Polarization around 90°None needed. $E = 137$ meatered by $E = 137$ meatered byNo \cdots \cdots (a) Polarization around 90°None needed. $E = 137$ meatered by $E = 137$ meatered byNo \cdots \cdots (a) Polarization around 90°None needed. $E = 137$ meatered by $E = 137$ meatered byNo \cdots \cdots (a) Polarization around 90°None needed. $E = 137$ meatered by $E = 105$ MeV meatered byNo \cdots \cdots \cdots (a) Polarization around 90°No $E = 137$ meatered by $E = 137$ MeV meatered by $E = 137$ MeV meatered by </td <td>J. W. Easley (Berkeley)</td> <td></td> <td>Yes to data in K1 at 37.8°</td> <td>$E_{\text{peak}} = 90$ $E_{\text{upper}} = 105$ $E_{\text{lower}} = 70$</td> <td>Bi fission counter</td> <td>Liquid H</td> <td>Scintillation telescope counting</td> <td>Counting statistics</td> <td>No</td> <td>÷</td> <td>•</td> <td></td>	J. W. Easley (Berkeley)		Yes to data in K1 at 37.8°	$E_{\text{peak}} = 90$ $E_{\text{upper}} = 105$ $E_{\text{lower}} = 70$	Bi fission counter	Liquid H	Scintillation telescope counting	Counting statistics	No	÷	•	
No $E_{\text{upper}} = 120$ None H_2 gas Cloud Counting No \dots \dots (a) Gives relative $a_{n,0}^{a,p}(b)$ $E_{\text{upper}} = 120$ $E_{\text{upper}} = 100$ $E_{\text{upper}} = 130$ Not given Not given Not given Not given Not given Not given Not $E_{\text{upper}} = 145$ $E_{\text{upper}} = 145$ $E_{\text{upper}} = 145$ $E_{\text{upper}} = 145$ $E_{\text{upper}} = 115$ $E_{\text{upper}} = 110$ $E_{\text{upper}} = 100$ E_{u			Yes to data in H3 at 36°	$E_{\rm peak} = 290$ $E_{\rm upper} = 330$ $E_{\rm lower} = 260$			neutrons					
None needed. $E = 105$ and BF_3 counter Liquid H Large Total $\cong 8\%$ No \cdots \cdots (a) Polarization Counter cali- E = 137 brated in direct Spectrum beam differential action made correction made for neutrons Total = 10\% Mean energy measured by C absorption C absorption C absorption C absorption E appeat = 130 Not given Not given Not given No \cdots \cdots (a) Polarization (b) Check absolute (b) Check absolute (c) Check ab	Brueckner, Hartsough, Hayward, Powell (Berkeley)		No	$\begin{array}{l} E_{\mathrm{peak}} = 100 \\ E_{\mathrm{upper}} = 120 \\ E_{\mathrm{lower}} = 80 \\ E_{\mathrm{cutoff}} = 40 \end{array}$	None	H2 gas	Cloud chamber	Counting statistics	No		:	(a) Gives relative $\sigma_{np}(\theta)$ (b) Shows symmetraround 90°
Yes to σ_{np} total $E_{\text{peak}} = 130$ Not given Not given Diffusion Not given No $\dots \dots \dots$	Thresher, Voss, Wilson (Harwell)		None needed. Counter cali- brated in direct beam	E=105 and E=137 Spectrum calculated. Mean energy measured by C absorption	BF ₃ counter	Liquid H	Large scintillator for neutrons	Total <u></u>	No	•	:	 (a) Polarization correction made (b) Check absolute value by measuring differential elastic scattering from C, integrating and com
Ces to $\sigma_{\pi p}$ total $E_{\text{peak}} = 130$ Not given Not given Diffusion Not given No $\dots = 55.2 \text{ mb}$ $E_{\text{lupper}} = 145$ $\dots = 115$ $\dots = 105$												paring with meas- ured total—good to 10%
	r. C. Randle (Harwell)	1	Yes to σ_{np} total =55.2 mb	$E_{\mathrm{peak}} = 130$ $E_{\mathrm{upper}} = 145$ $E_{\mathrm{lower}} = 115$	Not given	Not given	Diffusion cloud chamber	Not given	No	:	• •	

TABLE III.—(Continued).

NUCLEON-NUCLEON CROSS-SECTION DATA

	Remarks			(a) Pulse-height height analyzed and protons picked corre- sponding to neutrons of $E = 172$ and 215 Mev (b) Counter cali- brated in proton heam				(a) Error in absolute value of $\sigma \sim 15$ to 20% (b) Unpolarized beam used		The interference term in scattering from deuterium is taken to be zero	
	zed here Why	:	:	Assumed symmetry about 90° not valid (See Fig. 5.)	:	:	:	:	:	:	
	renormali 3y how much	:	:	3% in- crease	:	÷	÷	:	:	:	
	Data Ves or H No	No	No	Yes	No	No	No	No	No	No	No
	Source of quoted error	Not given	Not given	Counting statistics	Counting statistics	Counting statistics	Counting statistics	Counting statistics	Counting statistics	Not given	Not given
d).	Counters	Nuclear emulsion	Proportional counter telescope	Scintillation telescope (protons)	Proportional counter telescope	10-atmos cloud chamber	Neutron scintillation telescope	Proportional counter telescope	Scintillation counter telescope	Bi fission counter	Scintillation telescope with converter
[]].—(Continue	Target	$CH_2 - C$	CH ₂ -C	+CH ₂ -C	CH ₂ -C	H_2 gas	Liquid H and CH ₂ C	CH2-C	CH ₂ -C	D_2O-H_2O	D ₂ O, H ₂ O CH ₂ and C
TABL	Monitor	None	BF ₃ counter in shielding wall	CH ₂ target scintillation telescope	Bi fission counter	None	CH ₂ target +scintillation telescope	Proportional counter tele- scope and Bi fission counter	Not given		Scintillation telescope
	Energy (Mev)	$\begin{array}{l} E_{\rm Av} = 95\\ E_{\rm upper} = 120\\ E_{\rm upper} = 70\\ E_{\rm peak} = 140\\ E_{\rm upper} = 160\\ E_{\rm lower} = 120 \end{array}$	$E_{\text{peak}} = 156$ $E_{\text{cutoff}} = 137$ $E_{\text{max}} = 172$	$E_{\rm peak} = 215$ $E_{\rm upper} = 230$ $E_{\rm lower} = 180$	$E_{\text{peak}} = 260$ $E_{\text{upper}} = 310$ $E_{\text{lower}} = 210$ $E_{\text{cutoff}} = 200$	$E_{\text{peak}} = 308$ $E_{\text{upper}} = 328$ $E_{\text{lower}} = 280$ $E_{\text{eutoff}} = 155$	$E_{\text{peak}} = 390$ $E_{\text{upper}} = 410$ $E_{\text{lower}} = 325$ $E_{\text{cutoff}} = 365$	$E_{\text{peak}} = 400$ $E_{\text{upper}} = 430$ $E_{\text{lower}} = 300$ $E_{\text{cutoff}} = 300$	$E_{\mathrm{peak}} = 610$ $E_{\mathrm{upper}} = 670$ $E_{\mathrm{lower}} = 540$ $E_{\mathrm{cutoff}} = 450$	E = 300	$E_{\text{peak}} = 610$ $E_{\text{upper}} = 670$ $E_{\text{lower}} = 540$ $E_{\text{mitoff}} = 470$
	Data normalized	Yes to data in T5 at 0 60°	Yes—to46.4mb	Yes—to σ _{tot} =41.3±3.5	$Yes-to \sigma_{tot}=35$	Yes—to $\sigma_{tot}=35~{ m mb}$	Yes—joined to data in H6 and normalized to $\sigma_{tot} = 33$ mb	Yes—to $\sigma_{\rm tot}=33~{ m mb}$	$\substack{\mathrm{Yes-to}\\\sigma_{\mathrm{tot}}=26~\mathrm{mb}}$	Yes—to σ_{nd} total $-\sigma_{np}$ total = 22 mb	Yes—to $\sigma_{np}(\theta)$ at 590 Mev
	Authors	T. C. Griffith (London)	Randle, Taylor, Wood (Harwell)	Guernsey, Mott, Nelson (Rochester)	Kelly, Leith, Segrè, Wiegand (Berkeley)	DePangher (Berkeley)	Hartzler, Siegel, Opitz (Carnegie Tech)	Dzhelepov Kazarinov (Moscow)	Kazarinov, Simonev (Moscow)	Dzhelepov, Golovin, Satarov (Moscow)	Dzhelepov, Golovin, Kazarinov, Semenov (Moscow)
	Refer-	G4	R2	61	K 1	D8	H4	D9	K 3	D10ª	D13ª

^a This experiment is a measurement of neutron-neutron differential cross section.

378

This result should be reduced in the ratio 43/57 to 3.56 ± 0.42 mb/sterad. Their value based on a photographic-emulsion calibration remains high compared with other measurements."

Figures 6 and 7 show values of $\sigma_{pp}(\theta)$. (Again experimental points have been omitted for simplicity.) There are a great many data from 170 to 430 Mev, all of which statistically agree with 3.7 mb/sterad in the region from 20° to 90° c.m.

Data from Fischer (F4) and Pettengill (C13) tend to indicate that the Coulomb-nuclear scattering interference term is small in the region of 300 Mev.

VIII.
$$\sigma_{nn}(\theta)$$

Some data are available on $\sigma_{nn}(\theta)$ (see Table VII, the last entry in Table III, and Fig. 8). This has been obtained, as in the total cross section measurements, by

FIG. 6. Experimental values of the differential proton-proton cross section at various energies up to 500 Mev.

neutron scattering from deuterium and hydrogen:

$$\sigma_{nd}(\theta) = \sigma_{nn}(\theta) + \sigma_{np}(\theta) + I(\theta).$$

If we have $I(\theta) = 0$, then

$$\sigma_{nn}(\theta) = \sigma_{nd}(\theta) - \sigma_{np}(\theta).$$

An estimate of $I(\theta)$ as a function of θ has been made by Golovin (mentioned in D10). These values are included in Table VII. They are small enough so that the process above seems reasonable.

Values of $\sigma_{nn}(\theta)$ are shown and also a line representing the best data on $\sigma_{pp}(\theta)$ at 300 Mev and 590 Mev. The values of $\sigma_{nn}(\theta)$ and $\sigma_{pp}(\theta)$ agree statistically, in agreement with the charge-independence hypothesis.

IX. POLARIZATION OF NUCLEONS

That a beam of nucleons could be polarized was first demonstrated conclusively by Oxley, Cartwright,

FIG. 7. Experimental values for the differential proton-proton cross section at various energies above 500 Mev.

and Rouvina (O2). Earlier experiments by Wouters (W4) had not given a definite answer.

Double-scattering experiments are performed using nucleon beams to study polarization. The first scattering polarizes the beam, and the second analyzes the polarized beam (Fig. 9). The intensity of the beam scattered to the left and that of the beam scattered to the right are measured (left and right are as seen by an observer looking in the direction of *motion* of the beam; Fig. 10). The asymmetry of scattering, e, is usually defined (L3) as

$$e = \frac{I(\theta_2) \text{ left} - I(\theta_2) \text{ right}}{I(\theta_2) \text{ left} + I(\theta_2) \text{ right}} = P_1 P_2,$$

where P_1 is the polarization of the beam caused by the first scattering, and P_2 is the polarization caused by

FIG. 8. Experimental values for the differential neutronneutron cross section at 300 Mev and at 590 Mev. Superimposed for comparison are the $\sigma_{pp}(\theta)$ curves for 300 Mev from Fig. 6 and for 590 Mev from Fig. 7.

Refe	erence	9c.m.	$\sigma(\theta) \pm \epsilon$ (mb)	Energy (Mev)()	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
S8	7 9 12 14 16 17	$\begin{array}{cccc} 0 & 52.\\ 0 & 53\\ 0 & 54\\ 0 & 55.\\ 0 & 55\\ 3 & 56 \end{array}$	$\begin{array}{c} 4\pm 3 \\ \pm 2.5 \\ \pm 2 \\ 5 \\ \pm 2 \\ \pm 1 \\ \pm 1 \end{array}$	14.1 ↓		No normalization or renormalization needed
A4	4 6 8 10 11 13 14	8 50. 6.9 49. 4.1 53. 0.5 51. 4.7 51. 1.7 53. 6.6 54. 4.5 54.	$7 \pm 2.3 \\ 3 \pm 2.5 \\ 3 \pm 2.4 \\ 3 \pm 2.4 \\ 8 \pm 1.8 \\ 3 \pm 2.0 \\ 0 \pm 1.9 \\ 7 \pm 1.4$	14.1		No normalization or renormalization needed
G2	18	0/90 1.	08	17.9	45 41.6	Original data relative only. Normalized here to σ_{np} tot = 535 mb
B2	18	0/90 1.	06 ± 0.16	19.6	42.6 40.2	Same as above σ_{np} tot = 522 mb
R1	1 34 5 6 6 7 7 7 8 1 2 2 4 5	5.7 6.1 5.0 2.8 0.2 7.0 3.4 9.7 6.3 1.3 9.3 1.0 0.3		13.7 13.7 13.7 28.4	$\begin{array}{r} 33.6 \pm 8.8 \\ 55.1 \pm 1.2 \\ 54.0 \pm 1.5 \\ 50.7 \pm 1.3 \\ 55.7 \pm 1.9 \\ 55.1 \pm 2.0 \\ 59.0 \pm 2.2 \\ 52.9 \pm 3.0 \\ 59.0 \pm 4.7 \\ 33.3 \pm 9.5 \\ 27.7 \pm 0.5 \\ 28.4 \pm 0.6 \\ 26.9 \pm 0.8 \end{array}$	The relative data given in this paper have been nor- malized to give absolute cross sections. For the 13.7-Mev data the value at 36° was used in normalizing $\sigma_{np}(36^\circ)4\pi$ = 695 mb, where 695 mo is the σ_{pn} total read from Fig. 1. For the 28.4-Mev data the normalization is done here by $\sigma_{np}(87^\circ)4\pi$
	5 6 7 8 8 9	8.8 6.5 3.5 0.2 7.0 4.2		Ļ	$\begin{array}{r} 26.1 \ \pm 0.8 \\ 28.4 \ \pm 0.8 \\ 28.4 \ \pm 1.0 \\ 29.2 \ \pm 1.5 \\ 27.2 \ \pm 1.8 \\ 24.6 \ \pm 3.8 \end{array}$	= 342 mb, where this value of σ_{np} total has also been read from Fig. 1.
В3	18 15 12 10 9 7	0 0 0 5 0 6		27.2	$\begin{array}{r} 33.2 \pm 1.3 \\ 31.2 \pm 1.3 \\ 28.6 \pm 1.3 \\ 28.0 \pm 1.8 \\ 25.2 \pm 1.8 \\ 26.0 \pm 1.8 \end{array}$	Relative data in paper have been normalized by $(4\pi)\sigma_{np}(120^\circ) = 360 \text{ mb}$
Н3	$egin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 ± 0.38 40 ± 0.43 37 ± 0.55 58 ± 0.20 40 ± 0.31 02 ± 0.23 71 ± 0.22 50 ± 0.35 55 ± 0.23 60 ± 0.33 10 ± 0.55 02 ± 0.70 66 ± 0.37 91 ± 0.34 19 ± 0.28 13 ± 0.55 86 ± 0.16 87 ± 0.29 21 ± 0.00	42 90	$\begin{array}{c} 13.91\pm0.45\\ 13.61\pm0.51\\ 13.58\pm0.66\\ 13.81\pm0.24\\ 14.80\pm0.37\\ 14.36\pm0.28\\ 15.19\pm0.26\\ 17.31\pm0.42\\ 17.38\pm0.27\\ 20.35\pm0.27\\ 20.41\pm0.66\\ 22.71\pm0.84\\ 7.89\pm0.38\\ 6.09\pm0.35\\ 5.35\pm0.29\\ 3.22\pm0.57\\ 3.98\pm0.16\\ 3.99\pm0.30\\ 4.34\pm0.09\end{array}$	42-Mev data were nor- malized to σ_{np} total=170 mb. These data are re- normalized here to a better measurement of σ_{np} total=203 mb 90-Mev data were nor- malized to σ_{np} total=76 mb; renormalized here to σ_{np} total=78.3 mb
	9 10	8.7 4. 8.8 5.	51 ± 0.17 34 ± 0.17		4.65 ± 0.18 5.50 ± 0.18	

TABLE IV. Summary of values for the neutron-proton differential cross section. Some of the values have been renormalized as indicated.

Reference	θc.m.	$ \begin{array}{c} \sigma(\theta) \pm \epsilon \\ (mb) \end{array} $	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
H3 (contd.)	118.8 129.0 139.1 149.3 159.5 165.7 169.8 173.9 175.9 180.0	$\begin{array}{c} 6.09 \pm 0.17 \\ 6.53 \pm 0.19 \\ 7.88 \pm 0.19 \\ 8.92 \pm 0.23 \\ 10.90 \pm 0.14 \\ 11.17 \pm 0.43 \\ 12.35 \pm 0.32 \\ 12.85 \pm 0.28 \\ 13.48 \pm 1.34 \\ 15.50 \pm 0.70 \end{array}$	90	$\begin{array}{c} 6.27 \pm 0.18 \\ 6.72 \pm 0.20 \\ 8.11 \pm 0.20 \\ 9.20 \pm 0.24 \\ 11.22 \pm 0.14 \\ 11.50 \pm 0.44 \\ 12.71 \pm 0.33 \\ 13.22 \pm 0.29 \\ 13.88 \pm 1.38 \\ 15.97 \pm 0.72 \end{array}$	
C6	5.1 10.3 20.8 36.0 10.7 21.7 37.8	$\begin{array}{c} 12.9 \ \pm 1.2 \\ 12.0 \ \pm 0.7 \\ 10.3 \ \pm 0.6 \\ 7.6 \ \pm 0.4 \\ 5.6 \ \pm 1.1 \\ 4.3 \ \pm 0.9 \\ 3.6 \ \pm 0.7 \end{array}$	90 ↓ 290 ↓	$\begin{array}{c} 13.3 \ \pm 1.2 \\ 12.4 \ \pm 0.7 \\ 10.6 \ \pm 0.6 \\ 7.8 \ \pm 0.4 \end{array}$	Normalized to data in H3 at 36°. Data renormalized to σ_{np} total=78.3 mb. Normalized to data in K1 at 37.8°. No renormali- zation
C7	$\begin{array}{c} 8-10\\ 10-20\\ 20-30\\ 30-40\\ 40-50\\ 50-60\\ 60-70\\ 70-80\\ 80-90\\ 90-100\\ 100-110\\ 110-120\\ 120-130\\ 130-140\\ 140-150\\ 150-160\\ 160-170\\ 170-180\\ \end{array}$	$\begin{array}{c} 12.5 \ \pm 2.6 \\ 9.6 \ \pm 0.7 \\ 9.7 \ \pm 0.6 \\ 7.7 \ \pm 0.4 \\ 6.6 \ \pm 0.5 \\ 6.3 \ \pm 0.5 \\ 4.9 \ \pm 0.4 \\ 4.4 \ \pm 0.3 \\ 4.6 \ \pm 0.3 \\ 4.4 \ \pm 0.3 \\ 5.2 \ \pm 0.3 \\ 5.4 \ \pm 0.3 \\ 5.5 \ \pm 0.4 \\ 7.1 \ \pm 0.3 \\ 9.5 \ \pm 0.4 \\ 11.9 \ \pm 0.5 \\ 12.9 \ \pm 1.0 \end{array}$	90	$\begin{array}{c} 12.9 \pm 2.7 \\ 9.90\pm 0.7 \\ 10.0 \pm 0.6 \\ 7.92\pm 0.4 \\ 6.80\pm 0.5 \\ 6.50\pm 0.5 \\ 5.05\pm 0.4 \\ 4.52\pm 0.3 \\ 4.73\pm 0.3 \\ 4.52\pm 0.3 \\ 5.35\pm 0.3 \\ 5.55\pm 0.3 \\ 6.70\pm 0.4 \\ 7.30\pm 0.3 \\ 9.77\pm 0.4 \\ 12.25\pm 0.5 \\ 13.3 \pm 1.03 \end{array}$	Data normalized to σ_{np} total=76 mb. These data are renormalized to σ_{np} total=78.3 mb
F2	129 159.5 165.7 169.8 171.8 173.9 175.9 178	$\begin{array}{c} 8.1 \ \pm 0.73 \\ 9.7 \ \pm 0.83 \\ 11.4 \ \pm 0.92 \\ 11.8 \ \pm 0.50 \\ 11.7 \ \pm 0.58 \\ 13.5 \ \pm 0.50 \\ 12.0 \ \pm 0.61 \\ 11.6 \ \pm 0.64 \end{array}$	90	$\begin{array}{c} 8.3 \ \pm 0.75 \\ 10.0 \ \pm 0.86 \\ 11.7 \ \pm 0.95 \\ 12.2 \ \pm 0.52 \\ 12.1 \ \pm 0.60 \\ 13.9 \ \pm 0.52 \\ 12.4 \ \pm 0.63 \\ 12.0 \ \pm 0.66 \end{array}$	Data normalized to a smooth curve drawn through the H3 data. Re- normalized to σ_{np} total = 78.3 mb
W2	74 68 62 56 50 44 38 32 26	$\begin{array}{c} 4.28 \pm 0.19 \\ 4.80 \pm 0.20 \\ 5.42 \pm 0.22 \\ 5.48 \pm 0.22 \\ 6.02 \pm 0.24 \\ 6.11 \pm 0.26 \\ 6.77 \pm 0.29 \\ 8.01 \pm 0.34 \\ 7.60 \pm 0.39 \end{array}$	90 	$\begin{array}{c} 4.41 \pm 0.20 \\ 4.95 \pm 0.21 \\ 5.59 \pm 0.23 \\ 5.65 \pm 0.23 \\ 6.20 \pm 0.25 \\ 6.30 \pm 0.27 \\ 6.97 \pm 0.30 \\ 8.26 \pm 0.35 \\ 7.84 \pm 0.40 \end{array}$	Data normalized to data in H3
S6	177.5 175.4 171.5 167.5 161.4 155.4	$\begin{array}{c} 12.90 \pm 0.33 \\ 12.73 \pm 0.31 \\ 12.50 \pm 0.30 \\ 11.96 \pm 0.29 \\ 10.75 \pm 0.27 \\ 9.53 \pm 0.26 \end{array}$	93 ↓	$\begin{array}{c} 13.30 {\pm} 0.34 \\ 13.12 {\pm} 0.32 \\ 12.89 {\pm} 0.31 \\ 12.32 {\pm} 0.30 \\ 11.08 {\pm} 0.28 \\ 9.83 {\pm} 0.27 \end{array}$	Data normalized to H3 in region of $155^{\circ}-167^{\circ}$. Renormalized here by 78.3/76 as a result of a new σ_{np} total measure- ment
S7	176.6 175.6 173.7 171.7 169.7 167.3 164.5 162.0 159.4	$\begin{array}{c} 13.08 \pm 0.41 \\ 13.09 \pm 0.38 \\ 13.30 \pm 0.33 \\ 13.24 \pm 0.35 \\ 12.61 \pm 0.32 \\ 11.84 \pm 0.30 \\ 11.82 \pm 0.31 \\ 10.85 \pm 0.33 \\ 10.42 \pm 0.29 \end{array}$	91		Data normalized to σ_{np} total = 78.3 mb. No renormalization needed

TABLE IV.—(Continued).

Reference	$\theta_{c.m.}$		Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
S7 (contd.)	$159.4 \\154.9 \\149.3 \\139.1 \\129.0 \\118.8 \\108.7 \\98.7 \\88.7 \\82.7 \\78.7 \\74.7 \\69.7 \\64.8 \\59.8 \\$	$\begin{array}{c} 10.84 \pm 0.43 \\ 9.97 \pm 0.30 \\ 9.13 \pm 0.24 \\ 7.74 \pm 0.19 \\ 8.08 \pm 0.28 \\ 6.51 \pm 0.17 \\ 5.99 \pm 0.15 \\ 4.93 \pm 0.16 \\ 4.53 \pm 0.14 \\ 4.19 \pm 0.15 \\ 3.97 \pm 0.13 \\ 4.17 \pm 0.15 \\ 4.08 \pm 0.19 \\ 4.26 \pm 0.18 \\ 4.88 \pm 0.29 \\ 5.61 \pm 0.33 \end{array}$	91		
G4	29.3 39.1 48.9 58.7 19.3 29.0 38.8 48.5 58.3	$\begin{array}{c} 8.01 \pm 0.84 \\ 6.80 \pm 0.64 \\ 5.30 \pm 0.67 \\ 4.58 \pm 0.76 \\ 6.23 \pm 1.14 \\ 5.15 \pm 0.48 \\ 4.10 \pm 0.36 \\ 3.45 \pm 0.38 \\ 2.70 \pm 0.44 \end{array}$	95-100 ↓ 140-145 ↓		Data normalized to T5 at $\theta = 60^{\circ}$. No renormalization needed
Τ5	$\begin{array}{c} 6.2 \\ 10.5 \\ 20.5 \\ 30.7 \\ 40.9 \\ 51.2 \\ 61.4 \\ 6.3 \\ 10.6 \\ 20.7 \\ 31.0 \\ 41.3 \\ 51.6 \\ 61.8 \end{array}$	$\begin{array}{c} 11.6 \ \pm 1.0 \\ 11.1 \ \pm 1.0 \\ 10.2 \ \pm 0.6 \\ 8.50 \pm 0.4 \\ 7.10 \pm 0.45 \\ 6.00 \pm 0.5 \\ 4.55 \pm 0.5 \\ 8.90 \pm 1.0 \\ 8.00 \pm 0.6 \\ 6.90 \pm 0.4 \\ 5.85 \pm 0.35 \\ 4.38 \pm 0.4 \\ 2.86 \pm 0.4 \\ 2.70 \pm 0.4 \end{array}$	105 137 		Nor normalization or renormalization needed
R3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6.55 {\pm} 0.75 \\ 5.59 {\pm} 0.59 \\ 3.86 {\pm} 0.44 \\ 3.31 {\pm} 0.38 \\ 2.45 {\pm} 0.31 \\ 2.96 {\pm} 0.33 \\ 2.64 {\pm} 0.31 \\ 2.54 {\pm} 0.30 \\ 3.13 {\pm} 0.34 \\ 3.80 {\pm} 0.39 \\ 5.31 {\pm} 0.48 \\ 5.23 {\pm} 0.51 \\ 6.13 {\pm} 0.62 \\ 8.75 {\pm} 0.87 \end{array}$	130		Data normalized to σ_{np} total = 55.2 mb. No renormalization needed
R2	50 56 65.5 68 76.5 83 89.5 98 99.5 112 124.5 138 149 159 165	$\begin{array}{c} 2.96 \pm 0.43 \\ 2.14 \pm 0.40 \\ 2.59 \pm 0.40 \\ 2.34 \pm 0.18 \\ 1.98 \pm 0.22 \\ 1.98 \pm 0.19 \\ 2.29 \pm 0.18 \\ 2.71 \pm 0.31 \\ 2.51 \pm 0.19 \\ 3.87 \pm 0.18 \\ 4.04 \pm 0.28 \\ 6.19 \pm 0.26 \\ 6.88 \pm 0.43 \\ 7.98 \pm 0.13 \\ 8.59 \pm 0.29 \end{array}$	156		Data normalized to σ_{np} total=46.4 mb. No renormalization needed

TABLE IV.—(Continued).

Reference	θ c .m.	$ \begin{array}{c} \sigma(\theta) \pm \epsilon \\ (\mathrm{mb}) \end{array} $	Energy (Mev)	$ \begin{array}{c} \sigma'(\theta) \pm \epsilon' \\ (mb) \end{array} $	Remarks
R2 (contd.)	174 176 178	9.68 ± 0.47 10.65 \pm 0.46 10.69 \pm 0.54	156 ↓		
G1	$180 \\ 164.2 \\ 158.8 \\ 157.3 \\ 148.4 \\ 139.9 \\ 117.7 \\ 117.2 \\ 96.9 \\ 76.9 \\ 180 \\ 164.5 \\ 159.3 \\ 157.8 \\ 148.8 \\ 140.5 \\ 118.2 \\ 117.7 \\ 97.4 \\ 77.5 \\ 17.5 \\ 100000000000000000000000000000000000$	$\begin{array}{c} 13.4 \ \pm 2.8 \\ 8.89 \pm 0.66 \\ 7.58 \pm 0.75 \\ 6.97 \pm 1.31 \\ 5.38 \pm 0.47 \\ 4.18 \pm 0.35 \\ 2.53 \pm 0.37 \\ 2.40 \pm 0.32 \\ 1.31 \pm 0.12 \\ 1.45 \pm 0.22 \\ 16.6 \ \pm 6.8 \\ 10.9 \ \pm 1.4 \\ 7.6 \ \pm 1.5 \\ 7.0 \ \pm 1.2 \\ 5.3 \ \pm 0.8 \\ 3.5 \ \pm 0.9 \\ 2.1 \ \pm 0.9 \\ 2.1 \ \pm 0.9 \\ 2.1 \ \pm 0.9 \\ 2.5 \ \pm 0.4 \\ 2.4 \ \pm 0.4 \\ 2.3 \ \pm 0.7 \end{array}$	215 172 	$\begin{array}{c} 13.8 \pm 2.9 \\ 9.15 \pm 0.68 \\ 7.80 \pm 0.77 \\ 7.18 \pm 1.35 \\ 5.54 \pm 0.49 \\ 4.30 \pm 0.36 \\ 2.61 \pm 0.38 \\ 2.47 \pm 0.33 \\ 1.35 \pm 0.12 \\ 1.49 \pm 0.23 \\ 17.1 \pm 7.0 \\ 11.24 \pm 1.44 \\ 7.83 \pm 1.54 \\ 7.21 \pm 1.23 \\ 5.46 \pm 0.82 \\ 3.61 \pm 0.92 \\ 2.16 \pm 0.92 \\ 2.57 \pm 0.61 \\ 2.47 \pm 0.41 \\ 2.37 \pm 0.71 \end{array}$	Data normalized to σ_{np} total = 41.3 mb. Renormalized because symmetry about 90° (c.m.) was assumed in normalization process and it is now known not to be true.
K1	$\begin{array}{c} 37.7\\ 47.2\\ 56.8\\ 66.6\\ 76.4\\ 86.3\\ 96.3\\ 106.5\\ 116.7\\ 127.1\\ 137.6\\ 148.1\\ 158.7\\ 169.3\\ 180\\ \end{array}$	$\begin{array}{c} 3.6 \ \pm 0.7 \\ 3.3 \ \pm 0.6 \\ 1.1 \ \pm 0.6 \\ 1.7 \ \pm 0.4 \\ 1.9 \ \pm 0.7 \\ 1.85 \pm 0.14 \\ 1.09 \pm 0.26 \\ 2.02 \pm 0.21 \\ 1.90 \pm 0.24 \\ 2.8 \ \pm 0.4 \\ 4.5 \ \pm 0.3 \\ 4.7 \ \pm 0.4 \\ 6.4 \ \pm 0.3 \\ 7.8 \ \pm 0.8 \\ 13.7 \ \pm 2.1 \end{array}$	260		Data normalized to σ_{np} total=35 mb No renormalization needed
D8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.83 \pm 0.63 \\ 3.48 \pm 0.47 \\ 3.81 \pm 0.41 \\ 3.50 \pm 0.35 \\ 2.96 \pm 0.28 \\ 2.31 \pm 0.31 \\ 2.02 \pm 0.20 \\ 1.89 \pm 0.18 \\ 1.51 \pm 0.14 \\ 2.07 \pm 0.16 \\ 2.17 \pm 0.17 \\ 2.51 \pm 0.19 \\ 3.06 \pm 0.23 \\ 4.06 \pm 0.29 \\ 4.71 \pm 0.37 \\ 6.48 \pm 0.55 \\ 9.14 \pm 1.12 \end{array}$	300		Data normalized to σ_{np} total=35 mb No renormalization needed
D9	$\begin{array}{c} 36.6\\ 55.5\\ 65\\ 75\\ 84.5\\ 95\\ 105\\ 115\\ 126\\ 136\\ 147\\ 158\\ 169\\ 180\\ \end{array}$	$\begin{array}{c} 2.9 \ \pm 0.5 \\ 2.3 \ \pm 0.3 \\ 2.0 \ \pm 0.2 \\ 2.1 \ \pm 0.4 \\ 2.0 \ \pm 0.2 \\ 1.7 \ \pm 0.5 \\ 2.0 \ \pm 0.2 \\ 2.1 \ \pm 0.2 \\ 2.2 \ \pm 0.2 \\ 2.8 \ \pm 0.2 \\ 3.5 \ \pm 0.2 \\ 3.5 \ \pm 0.2 \\ 5.3 \ \pm 0.5 \\ 7.5 \ \pm 0.6 \\ 11.8 \ \pm 1.8 \end{array}$	380		Data normalized to σ_{np} total=33 mb No renormalization needed

TABLE IV.—(Continued).

Reference	θø.m.	$\sigma(\theta \pm \epsilon)$ (mb)	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
H4	$\begin{array}{c} 12.7\\ 15\\ 20\\ 30\\ 40\\ 45\\ 50\\ 55\\ 60\\ 70\\ 80\\ 90\\ 100\\ 110\\ 120\\ 130\\ 140\\ 150\\ 160\\ 165\\ 170\\ 175\\ 180\\ \end{array}$	$\begin{array}{c} 3.73 \pm 2.10 \\ 4.43 \pm 0.46 \\ 3.07 \pm 0.37 \\ 2.84 \pm 0.57 \\ 3.33 \pm 0.20 \\ 3.35 \pm 0.20 \\ 3.35 \pm 0.20 \\ 3.38 \pm 0.12 \\ 2.56 \pm 0.23 \\ 2.48 \pm 0.08 \\ 2.22 \pm 0.09 \\ 1.85 \pm 0.06 \\ 1.54 \pm 0.06 \\ 1.54 \pm 0.06 \\ 1.54 \pm 0.08 \\ 1.50 \pm 0.08 \\ 1.50 \pm 0.08 \\ 1.50 \pm 0.08 \\ 1.50 \pm 0.09 \\ 3.21 \pm 0.$	400		Data normalized to σ_{np} total=33 mb No renormalization needed
К3	35 45 54 63 73 83 93 103 114 124 135 147 157 169 180	$\begin{array}{c} 3.7 \ \pm 0.20 \\ 3.0 \ \pm 0.30 \\ 2.3 \ \pm 0.20 \\ 2.1 \ \pm 0.20 \\ 1.6 \ \pm 0.10 \\ 1.1 \ \pm 0.10 \\ 0.91 \pm 0.06 \\ 0.78 \pm 0.05 \\ 0.78 \pm 0.05 \\ 1.0 \ \pm 0.07 \\ 1.7 \ \pm 0.10 \\ 2.1 \ \pm 0.20 \\ 3.4 \ \pm 0.30 \\ 5.3 \ \pm 0.50 \\ 8.5 \ \pm 0.80 \end{array}$	580		Data normalized to σ_{np} elastic = 26 mb No renormalization needed

TABLE IV.-(Continued).

the second scattering. (Sometimes, however, a definition of e is used that gives a value twice that obtained above.) Another notation often used in this definition is $I(\theta,\phi)$, where $\phi=0$ corresponds to left and $\phi=180$ corresponds to right. The sign convention usually used is that spin-up scattering to the left corresponds to positive polarization (Fig. 10).

A summary of experiments with polarized nucleon

FIG. 9. Typical geometry for nucleon polarization experiment.

FIG. 10. Sign convention used in nucleon polarization studies. A and B represent positive polarization and C and D negative polarization.

beams is given in Table VIII. Values for the polariza-

tion obtained in nucleon-nucleon scattering as a func-

tion of angle are listed in Table IX. Figures 11, 12, and

13 show experimental values for the polarization pro-

duced in nucleon-nucleon collisions. Double-scattering

p-p experiments have been performed at energies lower

than those listed in Table VIII. Strauch (S12) used

96-Mev protons and found that the polarization from a carbon target is quite small. (For higher energies the

polarization from a carbon target is comparable to or larger than from an H target). Using 32-Mev protons, Bradner, Donaldson, and Iloff (B11) and Simmons

	Remarks			Data plotted not tabulated. 25°-65° quite flat						Absolute value good to 2.7%			C background subtraction from target not made
	alized here Why	•	•	:	:	:	:	÷	÷	:	:	•	Monitor cross section wrong (C14)
	enorm By how much	:	:	:	:	÷	÷	:		÷	•	÷	$\frac{36}{41}$
ection.	Data r Ves or No	No	No	No	No	No	No	No	No	No	No	No	Yes
merential cross s	Source of quoted error	Total	Total	Rms errors from consist- ency of data	Total of 1% at 90° and 0.5% at 30°	Total errors =2.0%	Total errors =2.5%	Counting statistics	Total	Counting statistics	Total	95 Mev data Counting sta- tistics 90° data total	Differential 10% abso- lute 20%
proton-proton di	Counters	Nuclear emulsions	Scintillators	Proportional counters	Scintillators in coincidence	Scintillator	Nuclear emulsions	Proportional counters	Nuclear emulsions	Nuclear emulsions	Proportional counters	Scintillators	Scintillators, in coincidence
eriments on the	Target	H_2 gas	H_2 gas	Nylon (C12H22N2O) <i>z</i>	CH_2	H_2 gas	H_2 gas	H_2 gas	${ m H_2}$ gas	H_2 gas	H_2 gas	CH ₂ -C	CH2
ummary or exp	Monitor	Faraday cup	Ion chamber +Faraday cup	Faraday cup	Faraday cup	Faraday cup	Faraday cup	Faraday cup	Faraday cup	Faraday cup	Faraday cup	Faraday cup	$C^{12}(p,pn)C^{11}$
LABLE V. AS	Energy (Mev)	9.7±0.15	9.73±0.05	10	18.2	19.8	19.8	18.8–31.8	29.4	30.1	31.8	40-95	105 75
	Data normalized	No	No	Yes—to 4.9 mb/sterad at 90° for first run and second run tied on to first run at 50°	No	No	No	No	No	No	No	No	No
	Authors	Allred, Armstrong, Bondelid, Rosen (Los Alamos)	Cork, Hartsough (Berkeley)	Wilson (Harvard)	Yntema, White (Princeton)	Burkig, Schrank, Richardson (UCLA)	Royden (UCLA)	Cork (Berkeley)	Panofsky, Fillmore (Berkeley)	Fillmore (Berkeley)	Cork, Johnston, Richman (Berkeley)	Kruse, Teem Ramsey (Harvard)	Birge, Kruse, Ramsey (Harvard)
	Refer- ence	A5	C16	W3	Y1	B6	R5	C10	P2	F3	ව	K2	B4

TABLE V. A summary of experiments on the proton-proton differential cross section.

NUCLEON-NUCLEON CROSS-SECTION DATA

	e Remarks .	r (a) Used brass slit in tele- scope. Calculations made but questionable (b) Reported later lower value (see P3)	 (a) σ_{pp}(90°) = 3.80±0.13 (b) Data obtained by measuring σ_{tot} and assuming isotropic scattering, extrapolated to 0°, and Coulomb scattering excluded 	$\sigma_{pp}(90^\circ) = 4.05 \pm 0.28$ new measurement	Absolute value good to ${\sim}8\%$	other errors $\sim 5\%$ only elastic events counted	(a) At 300 Mev get $\sigma_{pp}(\theta)$ from 6.5 to 21.7° c.m. (b) At 160, 230, and 330 measure σ_{pp} total (c) Polarization corrections made	 r (a) C background subtraction from target not made (b) Other errors ~8% 	r Other errors ~9%	Absolute values good to ~8%
	malized her	Monito cross section wrong (C14) (C14) ken using mulsions of be ized		:		:		Monito cross section wrong (C14)	Monito cross section wrong (C14)	• •
	Data renor Yes By or how No much	Yes $\frac{43}{57}$ Data ta nuclear ei should nc renormali	No	No	No	No	No	$\operatorname{Yes} \frac{36}{41}$	$\operatorname{Yes} \frac{36}{41}$	No
	Source of quoted error	Total			Counting statistics +others	Counting statistics	Total	Counting statistics	Counting statistics	Counting statistics + others
ontinued).	Counters	Proportional counters in 90° coinci- dence+geom- etry-defining slit			Scintillators	Scintillators— coincidence for large θ not for small θ	Scintillators	Scintillators in coincidence	Nuclear emulsions	Scintillators
TABLE V(C	Target	CH ₂ -C			Liquid H	CH₂−C with liquid H at small θ	Liquid H	CH2	CH ₂ -C	Liquid H
	Monitor	$C^{12}(p,pn)C^{11}$ also nuclear emulsions			Ion chamber +Faraday cup	Ion chamber calibrated by Faraday cup	Scintillator counting single particles	$C^{12}(p,pn)C^{11}$	$\mathbb{C}^{12}(p,pn)\mathbb{C}^{11}$	Ion chamber calibrated by Faraday cup
	Energy (Mev)	147	134	147	170 260	345 250 164 120	1 300 ⁻ 160 230 330	240	240	170 260
	Data normalized	No			No	No absolute measurement	Yes—to 3.75 mb/sterac at 21° No	No	No	No
	Authors	Cassels, Pickavance, Stafford (Harwell)	Taylor (Harwell)	Cassels (Harwell)	Garrison (Berkeley)	Chamberlain, Segrè, Wiegand (Berkeley)	Pettengill (Berkeley)	Oxley, Schamberger (Rochester)	Towler (Rochester)	Chamberlain, Garrison (Berkeley)
	Refer- ence	CII	P3	P3	C12	C8	C13	01	T6	C12

386

		Remarks		Small-angle data fits well to relativistic Coulomb σ theory	Beam polarized therefore data wrong. Data right in M5. Only elastic events counted	(a) Proportional counter wall cause too high values for σ due to scattering—in (b) Data revised and re- ported later in C8 (c) Other errors ~10%		 (a) Part of paper on n-p cross section. (b) Relative values of σ only Only elastic events included 	in data Correction of M6 due to polarization of the beam. Only elastic events counted	Only elastic events	Absolute value good to $\sim 5\%$. Ion chamber M calculated from ΔE /ion pair. Only elastic events counted.	(a) Events elastic to 5 Mev (per θ) (b) Other error $\sim 10\%$	Other errors ~5% at 90° and ~8% at 30°. Only elastic events counted
	lized here	Why	:	:		•	÷	:	:	:	•	• 7 • •	:
	renorma Bv	how much	•	•` • •	•	•	:	:	:	:	÷	• • •	:
	Data	Nor	No	No	•	No	No	No	No	No	No	No	No
		Source of quoted error	Counting statistics	Counting statistics	Counting statistics	Counting statistics		Counting statistics		Not given	Counting statistics	Counting statistics	Counting statistics $=3\%$ at 90°
Continued).		Counters	Scintillator	Nuclear emulsions	Scintillators in coincidence $\theta > 54$ one only $\theta < 54$	Proportional counters	Scintillators	Scintillator		Nuclear emulsions	Scintillators	Scintillators	Scintillators
TABLE V(C		Target	Liquid H	Liquid H	Liquid H	CH ₂ -C	CH ₂ -C	CH2-C		H in emulsion	CH₂−C and Liquid H	CH ₂ -C	CH ₂ -C
		Monitor	Counter for single protons	None	Scintillator counting individual protons	Ion chamber +Faraday cup	Faraday cup	None		Total path length in emulsion	Ion chamber	Faraday cup +ion chamber	Ion chamber
	-	Energy (Mev)	300	330	429 271 144	340	380	365-428	419	432	437	460	460660
		Data normalized	Yes—to 3.7 mb/sterad at 20°	Yes—to 3.7 mb/sterad	No	No	No	None-relative values only	No	oN	No	No	No
		Authors	Chamberlain, Pettengill, Segrè, Wiegand (Berkeley)	Fischer, Goldhaber (Berkeley)	Marshall, Marshall, Nedzel (Chicago)	Chamberlain, Wiegand (Berkeley)	Harting, Holt, Kluyver, Moore	(Luverpool) Hartzler, Siegel (Carnegie Tech)	Marshall, Marshall, Nedzel (Chicago)	Kao, Clark (Carnegie Tech)	Sutton, Field, Fox, Kane, Mott, Stallwood (Carnegie Tech)	Meshcheryakov, Bogachev, Neganov (Moscow)	Meshcheryakov, Neganov, Soroko, Vzorov (Moscow)
		Refer- ence	C13	F4	M6	C15	H7	HS	M5	K4	S ⁰	M4	M7

NUCLEON-NUCLEON CROSS-SECTION DATA

						• (· ·
								Da Yes	ta renorr By	nalized he	sre
Refer- ence	Authors	Data normalized	Energy (Mev)	Monitor	Target	Counters	Source of quoted error	No	how much	Why	Remarks
B7	Bogachev (Moscow)		460 560 660								
S10	Selektor, Nikitin, Bogomolov, Zombkovsky (Moscow)	No	460 560 660	Ion chamber +Faraday cup	CH ₂ -C	Proportional counters	Counting statistics	No	:	•	(a) Proportional counter walls may cause σ too high same as in C15 (b) Errors in abs σ (E = 460) = 10% (E = 560) = 10% (E = 660) = 5%
B13	Bogomolev, Zombkovski, Nitikin, Selektor (Moscow)	$\operatorname{Yes to} \sigma_{pp}(30^\circ) = 547$	660 -	Ion chamber	Liquid H	Scintillators + Čerenkov Counter	Counting statistics	No	÷	•	
B5	Bogachev, Vzorov (Moscow)	No	660	Faraday cup +ion chamber	CH ² -C	Scintillators	Counting statistics	No	÷	•	(a) Maximum total error $\sim 10\%$
S2	Smith, McReynolds, Snow (Brookhaven)	Yes—to Sutton, S9, at 437 Mev at 90°	440-1000	Counter telescope+ circulating beam induc- tion elec- trode	CH ₂ – C	Scintillators	Counting statistics	No	:	:	Only elastic events counted
D7	Duke, Lock, March, Gibson, McKeague, Huhges, Muirhead (Birmingham)	No	950	None	H in emulsion	Nuclear emulsions	Counting statistics	No	:	•	(a) Kinematics identifies the elastic events from H(b) Preliminary data only a few events
C17	Cork, Wenzel, Causey (Berkeley)	No	920 2240 3490 6150	Induction electrode	CH3	Scintillator telescopes at coincidence angles	$\pm 30\%$ due to calibration of monitor on <i>E</i> 3490 and $\pm 15\%$ on <i>E</i> ± 2240 , 4400 and 6150 other errors somewhat less	No	:	•	 (a) Only elastic events counted (b) Secondary monitor ruled out trouble with multiple traversals (c) C target background <10%

TABLE V.—(Continued).

388

Reference	$ heta_{ m c.m.}$	$\sigma(\theta) \pm \epsilon$ (mb)	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
C16	$\begin{array}{c} 29\\ 34\\ 41\\ 44\\ 51\\ 54\\ 61\\ 64\\ 71\\ 74\\ 81\\ 84\\ 91\\ 94\\ 101\\ 104\\ 111\\ 114\\ 121\\ 24\\ 26\\ 29\\ 31\\ 34\\ 41\\ 44\\ 61 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.7		No normalization or renormalization needed
C16	27°32' 40°16' 49°48' 59°38' 60°8' 68°20' 79°44' 90°50' 112°35'	$\begin{array}{c} 55.95 \pm 0.50 \\ 52.46 \pm 0.43 \\ 53.89 \pm 0.54 \\ 55.06 \pm 0.49 \\ 55.38 \pm 0.60 \\ 54.84 \pm 0.49 \\ 53.91 \pm 0.47 \\ 56.11 \pm 0.51 \\ 54.52 \pm 0.73 \end{array}$	9.7		No normalization or renormalization needed
W3	24 28 32 36 38 40 45 50 52 56	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			Data read from graph
¥1	90 80 70 60 50 40 36 30	$\begin{array}{c} 27.32 \pm 0.14 \\ 27.29 \pm 0.14 \\ 27.48 \pm 0.14 \\ 27.42 \pm 0.16 \\ 27.27 \pm 0.19 \\ 26.55 \pm 0.21 \\ 26.00 \pm 0.26 \\ 24.94 \pm 0.25 \end{array}$	18.2		No normalization or renormalization needed
Β6	$ \begin{array}{r} 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 30 \\ 36 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 90 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.8		No normalization or renormalization needed

 TABLE VI. Summary of values for the proton-proton differential cross section.

 Some of the values have been renormalized as indicated.

TABLE VI.—(Continued).

Reference	$\theta_{c.m.}$	$\sigma(\theta) \pm \epsilon$ (mb)	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
R5	18.04 22.20 24.42 26.12 29.78 32.06 35.12	$\begin{array}{c} 32.2 \pm 0.8 \\ 23.6 \pm 0.6 \\ 23.4 \pm 0.6 \\ 23.6 \pm 0.6 \\ 22.8 \pm 0.6 \\ 22.9 \pm 0.6 \\ 23.9 \pm 0.6 \end{array}$	19.8		No normalization or renormalization needed
C10	90 90 90 90 90	$\begin{array}{c} 14.4 \ \pm 0.15 \\ 18.36 \pm 0.18 \\ 18.7 \ \pm 0.32 \\ 22.8 \ \pm 0.51 \\ 27.2 \ \pm 0.68 \end{array}$	31.8 25.45 25.2 21.9 18.8		No normalization or renormalization needed
Ρ2	87.3 80 72 64 56 48 40 32 24	$\begin{array}{c} 16.00{\pm}0.31\\ 16.38{\pm}0.27\\ 16.47{\pm}0.27\\ 16.30{\pm}0.28\\ 16.70{\pm}0.29\\ 15.64{\pm}0.31\\ 15.16{\pm}0.32\\ 14.02{\pm}0.35\\ 13.23{\pm}0.38 \end{array}$	29.4		No normalization or renormalization needed
F3	87 80 72 64 56 48 40 32 24 16 11	$\begin{array}{c} 14.95 \pm 0.36 \\ 15.39 \pm 0.32 \\ 15.60 \pm 0.33 \\ 14.52 \pm 0.33 \\ 14.85 \pm 0.35 \\ 15.17 \pm 0.31 \\ 14.64 \pm 0.33 \\ 13.08 \pm 0.34 \\ 12.82 \pm 0.38 \\ 14.54 \pm 0.58 \\ 25.22 \pm 2.19 \end{array}$	30.14		No normalization or renormalization needed
C9	89.7 77.6 64.7 52.5 39.8 27.3 90–90 102–78	$\begin{array}{c} 14.30 \pm 0.15 \\ 14.05 \pm 0.15 \\ 14.05 \pm 0.20 \\ 14.02 \pm 0.17 \\ 13.27 \pm 0.14 \\ 13.13 \pm 0.16 \\ 14.21 \pm 0.25 \\ 14.15 \pm 0.15 \end{array}$	31.8		No normalization or renormalization needed
К2	25 30 35 40 50 60 70 80 90 90 90	$\begin{array}{c} 4.88\\ 4.88\\ 4.89\\ 4.93\pm 0.12\\ 4.81\pm 0.10\\ 4.81\pm 0.10\\ 4.68\pm 0.09\\ 4.53\pm 0.10\\ 4.54\pm 0.09\\ 5.40\pm 0.32\\ 5.96\pm 0.36\\ 8.83\pm 0.62\end{array}$	95 		The 25°, 30°, and 35° points were ob- tained from the liquid H angular dis- tribution fitted to the CH ₂ data. On the rest of these data no normaliza- tion or renormalization is needed.
	90 25 30 35 40 80 90	$\begin{array}{c} 11.4 \pm 0.80 \\ 6.44 \\ 6.35 \\ 6.37 \\ 6.21 \\ 6.29 \\ 5.96 \pm 0.36 \end{array}$	41 70		These data were obtained by using the 70-Mev angular distribution and the $\sigma_{pp}(90^\circ)$ value at 69.5 Mev given above
B4	4090 4090	5.4 ± 1.1 6.6 ± 1.1	105 75	4.75 ± 0.9 5.8 +1.2	The original data were normalized to the cross section for $C^{12}(9, pn)C^{11}$. New values for this cross section make necessary a renormalization by 36/41
Р3	90	3.80 ± 0.13	134		
P3	90	4.05 ± 0.28	147		

Reference	θc.m.	$\sigma(\theta) \pm \epsilon$ (mb)	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
C11	25 35 45 60 75 90	5.57 ± 0.53 5.03 ± 0.23 5.16 ± 0.23 5.09 ± 0.23 5.04 ± 0.23 4.94 ± 0.22		$\begin{array}{c} 4.20 \pm 0.40 \\ 3.80 \pm 0.17 \\ 3.90 \pm 0.17 \\ 3.84 \pm 0.17 \\ 3.80 \pm 0.17 \\ 3.74 \pm 0.17 \end{array}$	The original data were normalized to the cross section for $C^{12}(p,pn)C^{11}$. New values for this cross section make necessary a renormalization by 43/57
C12	10.1 16.7 23.0 31.3 41.7 62.2 9.6 12.4 16.8 23.0 31.3 41.6 62.3 10.6	5.10 ± 0.26 3.69 ± 0.15 3.52 ± 0.09 3.61 ± 0.09 3.55 ± 0.08 3.27 ± 0.10 5.27 ± 0.24 4.37 ± 0.17 3.92 ± 0.14 3.96 ± 0.10 3.99 ± 0.10 3.90 ± 0.09 3.60 ± 0.10 4.38 ± 0.21			No normalization or renormalization needed
	17.0 23.4 31.9 42.5 63.5 9.3 17.0 23.4 31.9 42.5 63.3	$\begin{array}{c} 3.84 \pm 0.11 \\ 3.90 \pm 0.09 \\ 3.56 \pm 0.06 \\ 3.58 \pm 0.04 \\ 3.50 \pm 0.06 \\ 5.75 \pm 0.34 \\ 3.85 \pm 0.11 \\ 3.90 \pm 0.06 \\ 3.84 \pm 0.06 \\ 3.74 \pm 0.07 \\ 3.64 \pm 0.07 \end{array}$	259 260		
C8	35.6 36.4 43.4 44.0 45.8 46.1 52.4 60.8 64.0 64.0 70.6 72.2 80.2 87.6 88.2 88.2 88.2 88.6	$\begin{array}{c} 4.31 \pm 0.21 \\ 3.93 \pm 0.15 \\ 3.79 \pm 0.15 \\ 4.17 \pm 0.13 \\ 3.64 \pm 0.07 \\ 3.99 \pm 0.11 \\ 3.77 \pm 0.10 \\ 3.83 \pm 0.13 \\ 3.55 \pm 0.11 \\ 3.74 \pm 0.14 \\ 3.67 \pm 0.16 \\ 3.67 \pm 0.11 \\ 3.95 \pm 0.12 \\ 3.86 \pm 0.10 \\ 3.91 \pm 0.08 \\ 3.70 \pm 0.08 \\ 3.85 \pm 0.06 \\ 3.55 \pm 0.00 \\ 3.55 \pm 0.$	345		CH₂ target No normalization or renormalization needed
	80.0 89.2 11.3 15.2 21.1 21.7 32.5 33.1 42.8 42.8 53.2 53.2	$\begin{array}{c} 3.54\pm0.09\\ 4.15\pm0.36\\ 5.1\pm0.36\\ 5.38\pm0.49\\ 3.71\pm0.22\\ 3.21\pm0.17\\ 3.51\pm0.10\\ 3.06\pm0.15\\ 3.52\pm0.09\\ 3.51\pm0.11\\ 3.48\pm0.10\\ 3.40\pm0.08\\ 3.40\pm0.08\\ 3.28\pm0.10\\ \end{array}$	345		Liquid H target
	47.4 47.4 62.0 64.6 78.4 78.4 87.2 87.4 87.6	$\begin{array}{c} 3.97 \pm 0.51 \\ 3.23 \pm 0.29 \\ 4.38 \pm 0.27 \\ 3.84 \pm 0.20 \\ 3.69 \pm 0.15 \\ 3.53 \pm 0.18 \\ 3.67 \pm 0.21 \\ 3.69 \pm 0.10 \\ 3.95 \pm 0.22 \end{array}$	250 250 247 250 250 250 250 250 249 250		

TABLE VI.—(Contineud).

TABLE VI.—(Continued).

Reference	θe.m.	$\sigma(\theta) \pm \epsilon$ (mb)	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
C8 (contd.)	87.6 89.6 59.9 60.8 88.6 90.0 63.0 63.0 77.8 85.2 89.2	$\begin{array}{c} 3.59 \pm 0.21 \\ 3.56 \pm 0.27 \\ 3.28 \pm 0.16 \\ 3.38 \pm 0.23 \\ 4.08 \pm 0.45 \\ 3.88 \pm 0.26 \\ 3.54 \pm 0.35 \\ 3.60 \pm 0.17 \\ 3.67 \pm 0.56 \\ 4.40 \pm 0.50 \\ 4.25 \pm 0.33 \\ 3.85 \pm 0.25 \\ 3.95 \pm 0.12 \end{array}$	$\begin{array}{c} 250\\ 247\\ 247\\ 164\\ 163\\ 163\\ 164\\ 164\\ 120\\ 120\\ 120\\ 120\\ 120\\ 118\\ \end{array}$		
C13	6.5 7.6 8.7 11.0 13.0 17.3	$\begin{array}{c} 10.71 \pm 0.74 \\ 7.46 \pm 0.58 \\ 4.85 \pm 0.37 \\ 4.42 \pm 0.27 \\ 4.13 \pm 0.20 \\ 3.88 \pm 0.17 \end{array}$	300		These data are normalized to $\sigma_{pp}(21^\circ)$ = 3.75 mg/sterad No normalization needed
	21.7 20–90 20–90 20–90	3.75 ± 0.18 3.81 ± 0.15 3.81 ± 0.19 3.58 ± 0.19 4.16 ± 0.19 4.16 ± 0.10	↓ 330 230 160		Average $\sigma_{pp}(\theta)$ over angular interval indicated is given
01	90 79 70 69.1 49.2 48.6 39.4 27.5 26.8	$\begin{array}{c} 4.81 \pm 0.06 \\ 5.05 \pm 0.08 \\ 5.25 \pm 0.11 \\ 5.04 \pm 0.05 \\ 4.82 \pm 0.08 \\ 4.93 \pm 0.12 \\ 5.03 \pm 0.10 \\ 4.83 \pm 0.11 \\ 4.85 \pm 0.11 \end{array}$	240	$\begin{array}{c} 3.54 {\pm} 0.04 \\ 3.71 {\pm} 0.06 \\ 3.86 {\pm} 0.08 \\ 3.71 {\pm} 0.04 \\ 3.54 {\pm} 0.06 \\ 3.62 {\pm} 0.09 \\ 3.70 {\pm} 0.07 \\ 3.55 {\pm} 0.08 \\ 3.56 {\pm} 0.08 \end{array}$	Combined data are given here. The original data in both these papers were normalized to the cross section for $C^{12}(p,pn)C^{11}$. New values for this cross section make necessary a renormalization by 36/49
Т6	71.9 45.2 36.6 28.3 27.2 18.6 13.0 8.7	$\begin{array}{r} 4.33 \pm 0.22 \\ 4.81 \pm 0.25 \\ 4.90 \pm 0.28 \\ 4.43 \pm 0.21 \\ 4.38 \pm 0.38 \\ 4.59 \pm 0.31 \\ 5.16 \pm 0.39 \\ 15.8 \ \pm 1.6 \end{array}$	240	$\begin{array}{c} 3.18 \pm 0.16 \\ 3.54 \pm 0.18 \\ 3.60 \pm 0.21 \\ 3.24 \pm 0.15 \\ 3.22 \pm 0.28 \\ 3.38 \pm 0.23 \\ 3.80 \pm 0.29 \\ 11.60 \pm 1.18 \end{array}$	
F4	$\begin{array}{r} 4.67\\ 5.26\\ 5.88\\ 6.52\\ 7.28\\ 8.57\\ 9.20\\ 10.16\\ 11.12\\ 11.43\\ 12.93\\ 14.80\\ 16.77\\ 18.63\\ 20.87\\ 22.80\\ \end{array}$	$\begin{array}{c} 35.7 \pm 2.3 \\ 18.1 \pm 1.02 \\ 14.62 \pm 1.02 \\ 8.59 \pm 0.82 \\ 6.34 \pm 0.61 \\ 4.15 \pm 0.33 \\ 3.62 \pm 0.31 \\ 3.29 \pm 0.33 \\ 4.56 \pm 0.25 \\ 3.14 \pm 0.36 \\ 3.45 \pm 0.31 \\ 3.49 \pm 0.29 \\ 3.58 \pm 0.23 \\ 3.44 \pm 0.27 \\ 4.02 \pm 0.24 \\ 3.62 \pm 0.29 \end{array}$	330		Data were normalized to 3.7 mb/ sterad at 10° to 13° No renormalization needed
H7	22.80 24.27 26.03 27.57 29.70 4.14 4.69 5.28 6.42 7.56 8.73	$\begin{array}{c} 3.62\pm0.29\\ 3.75\pm0.31\\ 3.66\pm0.31\\ 3.63\pm0.35\\ 3.81\pm0.35\\ \hline \\ 26.40\pm1.19\\ 15.90\pm0.68\\ 11.47\pm0.48\\ 6.63\pm0.23\\ 5.31\pm0.17\\ 4.57\pm0.12\\ \end{array}$	380		No normalization or renormalization needed

Reference	$ heta_{c.m.}$	$\sigma(\theta) \pm \epsilon$ (mb)	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
H7 (contd.)	$\begin{array}{c} 11.0\\ 12.1\\ 13.2\\ 14.3\\ 15.4\\ 16.5\\ 17.6\\ 19.8\\ 21.8\\ 24.0\\ 26.2\\ 28.4\\ 30.0\\ 30.6\\ 36.0\\ 43.0\\ 50.0\\ 65.0\\ 90.0\\ \end{array}$	$\begin{array}{c} 4.35\pm 0.09\\ 4.34\pm 0.10\\ 4.31\pm 0.08\\ 4.35\pm 0.09\\ 4.26\pm 0.08\\ 4.27\pm 0.08\\ 4.27\pm 0.08\\ 4.27\pm 0.08\\ 4.22\pm 0.08\\ 4.22\pm 0.08\\ 4.12\pm 0.08\\ 4.12\pm 0.08\\ 4.18\pm 0.08\\ 4.08\pm 0.08\\ 4.04\pm 0.08\\ 4.04\pm 0.08\\ 4.01\pm 0.08\\ 4.04\pm 0.08\\ 4.04\pm 0.08\\ 3.86\pm 0.07\\ 3.76\pm 0.07\\ 3.70\pm 0.06\end{array}$	380		
M5	90 80 65 54 54 43 28	$\begin{array}{c} 3.42 {\pm} 0.13 \\ 3.56 {\pm} 0.23 \\ 3.34 {\pm} 0.19 \\ 3.23 {\pm} 0.12 \\ 3.18 {\pm} 0.21 \\ 3.74 {\pm} 0.21 \\ 3.41 {\pm} 0.20 \end{array}$	419		The original data given in M6 were taken with a polarized beam. This paper corrects that trouble. No renormalization needed
K4	$\begin{array}{c} 16.2 36.9 \\ 36.9 53.1 \\ 53.1 66.4 \\ 16.2 25.8 \\ 25.8 36.9 \\ 36.9 44.4 \end{array}$	$\begin{array}{r} 4.5 \ \pm 1.1 \\ 3.6 \ \pm 0.8 \\ 3.9 \ \pm 0.9 \\ 4.6 \ \pm 1.0 \\ 5.4 \ \pm 1.0 \\ 3.2 \ \pm 0.9 \end{array}$	432		No normalization or renormalization needed
S9	17 25 28 30 36 50 65 90	$\begin{array}{c} 4.13 \pm 0.20 \\ 4.27 \pm 0.21 \\ 4.04 \pm 0.20 \\ 4.03 \pm 0.20 \\ 4.05 \pm 0.20 \\ 3.82 \pm 0.19 \\ 3.62 \pm 0.18 \\ 3.49 \pm 0.17 \end{array}$	437		No normalization or renormalization needed
M4	20 27 33 40 46 53 55 66 78 90 55 66 78	$\begin{array}{c} 3.98 {\pm} 0.56 \\ 3.73 {\pm} 0.34 \\ 3.97 {\pm} 0.16 \\ 4.06 {\pm} 0.16 \\ 3.99 {\pm} 0.12 \\ 3.84 {\pm} 0.14 \\ 3.36 {\pm} 0.25 \\ 3.82 {\pm} 0.14 \\ 3.52 {\pm} 0.14 \\ 3.50 {\pm} 0.10 \\ 3.59 {\pm} 0.21 \\ 3.81 {\pm} 0.18 \\ 3.56 {\pm} 0.20 \end{array}$	460 ↓ 460 ↓		One telescope used to obtain data No normalization or renormalization needed Two telescopes in coincidence used to obtain data
Μ7	90 90 90 90 90 90 90 90 90 30 30 30 30 30 30 30 30	$\begin{array}{c} 3.31 \pm 0.15 \\ 3.20 \pm 0.18 \\ 2.95 \pm 0.12 \\ 2.92 \pm 0.11 \\ 2.63 \pm 0.10 \\ 2.58 \pm 0.12 \\ 2.30 \pm 0.10 \\ 2.20 \pm 0.10 \\ 2.05 \pm 0.07 \\ 4.18 \pm 0.44 \\ 4.93 \pm 0.29 \\ 5.67 \pm 0.26 \\ 6.37 \pm 0.36 \\ 6.53 \pm 0.37 \\ 6.55 \pm 0.28 \end{array}$	$\begin{array}{c} 460\\ 510\\ 562\\ 586\\ 610\\ 622\\ 634\\ 645\\ 657\\ 460\\ 562\\ 610\\ 634\\ 645\\ 657\end{array}$		No normalization or renormalization needed

TABLE VI.—(Continued)

TABLE VI.—(Continued)

Reference	$ heta_{ ext{e.m.}}$	$\sigma(\theta) \pm \epsilon$ (mb)	Energy (Mev)	$\sigma'(\theta) \pm \epsilon'$ (mb)	Remarks
S10	30 45 60 75 90 40 60 75 90 30 40 50 60 70 80 90	$\begin{array}{c} 3.58 \pm 0.31 \\ 3.89 \pm 0.09 \\ 3.82 \pm 0.09 \\ 3.60 \pm 0.12 \\ 3.68 \pm 0.09 \\ 4.32 \pm 0.14 \\ 3.66 \pm 0.19 \\ 3.28 \pm 0.14 \\ 3.22 \pm 0.13 \\ 5.47 \pm 0.12 \\ 4.97 \pm 0.10 \\ 4.03 \pm 0.12 \\ 3.21 \pm 0.12 \\ 3.21 \pm 0.12 \\ 2.59 \pm 0.10 \\ 2.19 \pm 0.11 \\ 2.06 \pm 0.08 \end{array}$	460 560 660		No normalization or renormalization performed. Proportional-counter wall scattering might give too high results
B7	5 10 15 5 10 15 20 25 5 10 15 20 25	$\begin{array}{c} 33 \pm 6 \\ 5.91 \pm 0.46 \\ 4.69 \pm 0.38 \\ 26 \pm 5 \\ 8.04 \pm 0.78 \\ 6.78 \pm 0.63 \\ 6.29 \pm 0.58 \\ 5.70 \pm 0.53 \\ 18.9 \ \pm 1.1 \\ 11.0 \ \pm 0.7 \\ 8.67 \pm 0.53 \\ 7.75 \pm 0.48 \\ 6.56 \pm 0.40 \end{array}$	$ \begin{array}{c} 460 \\ 560 \\ 660 \\ \downarrow \end{array} $		No normalization or renormalization needed
B5	30 40 50 60 70 80 90	5.58 ± 0.15 4.78 ± 0.26 3.99 ± 0.20 3.41 ± 0.13 2.94 ± 0.12 2.20 ± 0.05 2.07 ± 0.03	657		No normalization or renormalization needed
B13	7.5 10 16 20 25 30	$\begin{array}{c} 17.32 \pm 1.85 \\ 14.98 \pm 0.60 \\ 7.80 \pm 0.49 \\ 6.75 \pm 0.29 \\ 5.79 \pm 0.41 \\ 5.47 \pm 0.29 \end{array}$	660 ↓		Normalized to $\sigma_{pp}(30^{\circ}) = 5.47$ No renormalization needed
S2	$\begin{array}{c} 33.2\\ 44.0\\ 65.4\\ 79.9\\ 90.0\\ 27.5\\ 34.7\\ 50.0\\ 65.1\\ 90.0\\ 28.5\\ 49.8\\ 90.0\\ 36.5\\ 41.3\\ 53.7\\ 64.0\\ 77.0\\ 90.0 \end{array}$	$\begin{array}{c} 3.86\\ 3.80\\ 3.62\\ 3.52\\ 3.49\\ 6.12\pm0.15\\ 5.42\pm0.10\\ 4.18\pm0.7\\ 3.28\pm0.10\\ 2.43\pm0.05\\ 7.60\pm0.20\\ 3.44\pm0.10\\ 0.89\pm0.05\\ 5.66\pm0.10\\ 4.54\pm0.10\\ 2.44\pm0.07\\ 1.33\pm0.05\\ 0.79\pm0.05\\ 0.62\pm0.05\\ \end{array}$	440 590 800 1000		The data are normalized to $\sigma_{pp}(90^\circ)$ = 3.49 mb/sterad at 437 Mev from S9 No renormalization needed. Errors have been read from graph
D 7	0-41 41-60 60-75 75-90	5.3 ± 1.0 3.1 ± 1.0 1.3 ± 0.5 0.4 ± 0.3	950 		No normalization or renormalization needed

C1749.43.3920Data are normalized to re- induction electrode whic intensity of the circulatin 14.714.720.8 ± 1.2 2240Trouble with multiple tr been eliminated from the absolute value is good for absolute value is good for	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	readings on an ich reads the ing beam. raversals has e system. The to $\pm 30\%$ for s good to 00, and 6150. e counting n angles, etc., o the monitor

TABLE VI.—(Continued)

(S13) looked for polarization from carbon targets, and found essentially no polarization. Rose (R6) has reported, "A study has been made of the variation with energy of the asymmetries at 12° and at 16° in C, Al, and Fe. All data show steady decrease as the energy is lowered. The C and Al curves fall to very low values at 60 Mev, while the Fe asymmetry is zero or perhaps negative at 75 Mev." From all these data it appears that the polarization falls quite suddenly below 130 Mev, but that between 130 Mev and 430 Mev the polarization is fairly constant.

TABLE VII. Values for neutron-neutron differential cross sections. The data on $I(\theta)$ are Golovin's values for the magnitude of the interference term in scattering of neutrons from deuterium

at 300 Mev

Most experiments done on polarization determine the magnitude of P but not the sign of P. Two experiments have been performed to determine the absolute sign of the polarization of a nucleon beam. One has been performed by Brinkworth and Rose (B12). "The first scattered beam is reduced to a few Mev (a band from 4.5 to 9 Mev) and scattered left and right into photographic plates in 5 atmospheres of helium. From known phase shifts for this scattering one anticipates a left-right ratio of 3.6 or 0.28, depending on the sign of the polarization. The data are consistent with 3.6. The polarization is thus known to be positive, meaning that

Reference	θ	Energy	$\sigma_{nn}(\theta)$	$I(\theta)$
D10	12	300	7.9 ±1.5	
	16		6.0 ± 1.0	
	20	1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	4.8 ± 0.7	
	30		3.2 ± 0.6	
	40		3.2 ± 0.6	0.60
	50		3.5 ± 0.8	0.36
	60	1	3.8 ± 0.6	0.20
	70		3.75 ± 0.6	0.10
	80		3.75 ± 0.6	0.09
	90	\downarrow	3.6 ± 0.8	0.04
D13	30	590	5.8 ± 0.8	
	49	1	4.7 ± 0.5	
	55		3.8 ± 0.4	
	67		2.9 ± 0.35	
	78		2.3 ± 0.30	
	89	Ļ	2.5 ± 0.25	

FIG. 11. Experimental values for the polarization produced in p-p collisions for E < 300 Mev.

FIG. 12. Experimental values for the polarization produced in p-p collisions for E > 300 Mev.

the direction of predominant spin is parallel to the direction of rotation in the scattering of an originally unpolarized beam."

The experiment by Marshall and Marshall (M9) gave the same answer with a somewhat different geometry.

Some triple-scattering experiments have been performed (Y2) to measure the depolarization or rotation of the plane of polarization of a polarized beam of protons.

X. EXPLANATION OF TABLES

Tables I–III, and V are summaries of experiments performed on nucleon-nucleon cross sections.

Data normalized.—In most of the $\sigma_{np}(\theta)$ and some of the $\sigma_{pp}(\theta)$ experiments the data obtained are angular distributions of a counting rate that must be normalized by the use of other data to get absolute values of the cross section. Whether or not this is done and how it is done are indicated in this column.

Energy .- This column lists the energies of the in-

FIG. 13. Experimental values for the polarization produced in n-p collisions.

cident particles. For protons only one value is listed, because proton beams are usually nearly monoenergetic. But for high-energy neutrons the beam usually has a spread in energy. Because of this, three values are given to indicate the energy spectrum. $E_{\rm peak}$ corresponds to the energy of the peak of the spectrum; $E_{\rm upper}$ and $E_{\rm lower}$ correspond to the energies of the half-height points above and below the peak energy (Fig. 14).

The values indicated for E_{eutoff} are experimental limits placed on the lowest-energy neutron that will be counted. This is frequently done by placing an absorber in a proton-recoil telescope. This process makes the neutron beam effectively more monoenergetic.

Monitor.—This column indicates what device was used to count particles in the incident beam. In some cases—for example, cloud chamber work—no monitor is used because only an angular distribution is desired. In this case the angular distribution is taken all at once and therefore no normalization to unit incident beam is needed.

Target.—Proton targets are obtained normally by CH_2-C subtraction or use of H gas, or—more recently —liquid hydrogen. In a few cases no subtraction was made for the carbon in a CH_2 target. This normally

should be done if the incident beam is energetic enough to produce protons from carbon.

Neutron targets are usually obtained by a deuteriumhydrogen subtraction. This is subject to limitations discussed in Sec. III.

Counters.—This column indicates the type of detector used to study the particles emerging.

Errors.—Different authors treat errors differently. Fairly frequently only counting statistics (almost always expressed in standard deviations) are considered. In the cases in the table where the error is called total, various other contributing factors-such as geometry, target, beam, detection efficiency, etc.-have been included. This so-called "total error" is not actually the total error; it is merely one in which several factors other than counting statistics have been taken into account. Some authors may not have treated other possible errors adequately. It would be nice if all the data could be considered on an equal basis with respect to errors; but as they cannot, the differences should be kept in mind. For example, when only counting statistics are considered in $\sigma_{np}(\theta)$ there usually is an error in the normalization process associated with the value of σ_{np} total used that should be combined with the counting statistics errors.

Remarks	Checked with unpolarized beam		P_1 is known for 315 Mev beam. It is assumed to remain constant for the beam degraded in energy to 170 Mev	Data read from graph	(1) Errors due to geometry and stray field give $\Delta P_2 = \pm 0.003$ (2) Elastic scattering from the proton in the deuteron agreed	with the ifee p-p data well			Checked with unpolarized beam		Data read from graph
Hrrors	Counting statistics +geometry +stray fields + background	Not given	Counting statistics	Not given	Counting statistics Counting statistics	Counting statistics +error in P ₁		Not given	Counting statistics	Counting statistics +error in P ₁	Counting statistics
Detectors	Scintillation proton recoil telescope counting neutrons	2 scintillation tele- scopes in coincidence	Scintillation telescopes	Counter telescope	Scintillation telescope Scintillation proton recoil telescope	counting neutrons Scintillation telescope	Split ring scintillators	Scintillation telescope counting protons also in coincidence count- ing protons and neutrons	Scintillation telescope	Scintillator telescopes	Counters
Tarøet 2	CH ₂ -C	CH_2	Liquid H	CH ₂ –C and liquid H	Liquid H Liquid D Liquid D	Liquid H	Liquid H	Liquid D	Liquid H	Liquid H	Liquid H
ġ	0.085±0.006	0.7 ± 0.1	0.76 ±0.05	$\begin{array}{c} 0.82 \pm 0.01 \\ 0.91 \pm 0.01 \end{array}$	0.76 ± 0.03 0.69 ± 0.05	0.67 ±0.05	0.74 ±0.01	0.60	0.163±0.007	0.53 ±0.03	0.50
10	26° L 26° R	20°	13° L	20° 20°	13° L 13° L	17°	13° L	14° R	20° R	13°	14° R
Target 1	Be	C	Be	CB	Be	Be	Be	Be	U.	с	Be
Type of inter- action	d-u	ゆ-ゆ	<i>4-4</i>	<i>d-4</i>	u-4 d-d	<i>4-4</i>	<i>4-4</i>	<i>4-4</i>	d-u	ф-ф	4-4
Energy	98土3 Mev neutrons	133 Mev protons	174±10 Mev protons	240 protons	315 Mev protons 310 Mev protons	276 Mev protons	310 Mev protons	314 Mev protons	350 Mev neutrons	415 Mev protons	439 Mev protons
Authors	Hillman, Stafford (Harwell)	Dickson, Salter (Harwell)	Fischer, Baldwin (Berkeley)	Baskir, Chesnut (Rochester)	Ypsilantis (Berkeley)		Chamberlain, Pettengill, Segrè, Wiegand (Berkeley)	Marshall, Marshall, Nagle, Skolnik (Chicago)	Siegel, Hartzler, Love (Carnegie Tech)	Kane, Stallwood, Sutton, Fields, Fox (Carnegie Tech)	de Carvalho, Heiberg, Marshall, Marshall (Chicago)
Refer- ence	H5	D14	FS	B10	$\mathbf{Y2}$		C13	M8	S11	K5	C19

TABLE. VIII. Summary of Experiments on Nucleon Polarization.

NUCLEON-NUCLEON CROSS-SECTION DATA

TABLE IX. Summary of values of $P(\theta)$.

Refer- ence	Types of inter- action	En- ergy	θe.m.	$P(\theta)$	Remarks	Refer- ence	Types of inter- action	En- ergy	θc.m.	Ρ(θ)	Remarks
H5	n-p	95	22.5 29.8 41.0 52.5 61.5 76.0 78.5 88.5 98.5 108.0 118.5 128.5 138.5 149.0	$\begin{array}{c} +0.143\pm 0.032\\ +0.170\pm 0.037\\ +0.318\pm 0.060\\ +0.403\pm 0.042\\ +0.561\pm 0.064\\ +0.307\pm 0.040\\ +0.387\pm 0.033\\ +0.280\pm 0.032\\ +0.265\pm 0.049\\ +0.071\pm 0.048\\ +0.048\pm 0.054\\ -0.054\pm 0.035\\ -0.016\pm 0.028\\ -0.073\pm 0.025\end{array}$		B10 (contd.) Y2	<i>р-р</i>	240	$\begin{array}{c} 52\\ 62\\ 67\\ 70\\ 90\\ 120\\ 21.6\\ 32.3\\ 42.9\\ 53.4\\ 63.9\\ 76.2\\ 89.4 \end{array}$	$\begin{array}{c} +0.34 \pm 0.03 \\ +0.24 \pm 0.03 \\ +0.16 \pm 0.03 \\ +0.17 \pm 0.03 \\ 0 \pm 0.03 \\ -0.25 \pm 0.03 \\ +0.305 \pm 0.023 \\ +0.378 \pm 0.027 \\ +0.379 \pm 0.020 \\ +0.303 \pm 0.025 \\ +0.251 \pm 0.027 \\ +0.142 \pm 0.025 \\ -0.005 \pm 0.016 \end{array}$	
D14	<i>p-p</i>	133	159.5 30 35 40 50 60 70	$\begin{array}{c} -0.038 \pm 0.022 \\ +0.27 \pm 0.04 \\ +0.27 \pm 0.035 \\ +0.20 \pm 0.03 \\ +0.16 \pm 0.02 \\ +0.16 \pm 0.03 \\ +0.10 \pm 0.03 \\ +0.02 \pm 0.04 \end{array}$			<i>₽-₽</i>	276	19.3 27.8 32.0 49.9 63.4 76.8 90.0	$\begin{array}{c} +0.314 \pm 0.036 \\ +0.324 \pm 0.041 \\ +0.329 \pm 0.028 \\ +0.295 \pm 0.027 \\ +0.251 \pm 0.027 \\ +0.122 \pm 0.021 \\ +0.044 \pm 0.019 \end{array}$	
B14	<i>p-p</i>	130	80 90 20°38' 46°24' 66°46' 81°54'	$+0.065\pm0.04$ -0.014 ± 0.02 $+0.149\pm0.03$ $+0.178\pm0.012$ $+0.100\pm0.015$ $+0.029\pm0.019$			p-n	310	21.6 32.3 42.9 53.4 63.9 74.2 82.3	$\begin{array}{c} +0.462\pm0.081\\ +0.403\pm0.048\\ +0.382\pm0.036\\ +0.225\pm0.028\\ +0.158\pm0.030\\ -0.012\pm0.030\\ -0.090\pm0.028\end{array}$	Data obtained from proton scattering on deuterium
	1	170	31°16' 41°38' 46°48' 51°57' 62°11' 67°16' 82°28'	$\begin{array}{c} +0.238 {\pm} 0.018 \\ +0.251 {\pm} 0.009 \\ +0.257 {\pm} 0.010 \\ +0.251 {\pm} 0.012 \\ +0.229 {\pm} 0.013 \\ +0.200 {\pm} 0.028 \\ +0.158 {\pm} 0.017 \\ +0.084 {\pm} 0.021 \end{array}$				$\begin{array}{c} 82.3\\ 90.6\\ 100.7\\ 109.9\\ 110.2\\ 116.1\\ 121.3\\ 130.8\\ 137.3\\ 147.7\\ \end{array}$	$\begin{array}{c} -0.126\pm0.033\\ -0.097\pm0.032\\ -0.238\pm0.030\\ -0.249\pm0.072\\ -0.261\pm0.030\\ -0.228\pm0.032\\ -0.255\pm0.043\\ -0.222\pm0.039\\ -0.197\pm0.026\\ -0.202\pm0.029\end{array}$		
		210	13°42' 21°04' 31°32' 31°32' 42°00' 42°00' 47°12' 47°12' 47°12'	$\begin{array}{c} +0.217\pm0.08\\ +0.250\pm0.021\\ +0.286\pm0.10\\ +0.326\pm0.027\\ +0.323\pm0.027\\ +0.323\pm0.028\\ +0.302\pm0.007\\ +0.338\pm0.028\\ +0.302\pm0.007\\ +0.370\pm0.021\\ +0.020\\ +0.0021\\ +0.$		C13	₽-₽	310	$ \begin{array}{r} 158.4\\ 164.9\\ \hline 6.5\\ 7.6\\ 8.7\\ 11.0\\ 13.0\\ 17.3\\ 21.7\\ \end{array} $	$\begin{array}{c} -0.074 \pm 0.023 \\ -0.023 \pm 0.035 \\ \end{array}$ $\begin{array}{c} -0.21 \ \pm 0.27 \\ +0.11 \ \pm 0.28 \\ +0.02 \ \pm 0.13 \\ +0.19 \ \pm 0.07 \\ +0.25 \ \pm 0.05 \\ +0.25 \ \pm 0.04 \\ \end{array}$	
			52°22' 52°22' 57°31' 62°40' 62°40' 67°48' 71°00' 72°53' 83°02' 92°58' 112°36'	$\begin{array}{c} +0.289\pm 0.011\\ +0.357\pm 0.053\\ +0.335\pm 0.022\\ +0.381\pm 0.047\\ +0.268\pm 0.018\\ +0.275\pm 0.027\\ +0.219\pm 0.010\\ +0.222\pm 0.037\\ +0.178\pm 0.020\\ +0.077\pm 0.012\\ -0.006\pm 0.027\\ -0.175\pm 0.032\end{array}$		M8	<i>₽</i> -₽	314	$ \begin{array}{r} 17 \\ 24 \\ 35 \\ 43 \\ 56 \\ 60 \\ 62 \\ 68 \\ 74 \\ 88 \\ 93 \\ 102 \\ \end{array} $	$\begin{array}{c} +0.125\pm 0.11\\ +0.375\pm 0.03\\ +0.425\pm 0.06\\ +0.36\ \pm 0.05\\ +0.26\ \pm 0.05\\ +0.17\ \pm 0.04\\ +0.35\ \pm 0.07\\ +0.14\ \pm 0.03\\ +0.28\ \pm 0.07\\ +0.05\ \pm 0.06\\ -0.18\ \pm 0.10\\ -0.07\ \pm 0.05\end{array}$	
F5	<i>p</i> - <i>p</i>	174	20.8 31.3 46.8 62.2 72.4	$\begin{array}{r} +0.241 \pm 0.036 \\ +0.222 \pm 0.024 \\ +0.213 \pm 0.032 \\ +0.180 \pm 0.034 \\ +0.093 \pm 0.037 \end{array}$		S11	n-p	350	46°21' 55°51' 65°29' 75°13'	$+0.248\pm0.031$ $+0.227\pm0.034$ $+0.075\pm0.027$ -0.039 ± 0.032	
B10	<i>p-p</i>	240	20 32 40 45	$\begin{array}{c} +0.38 \pm 0.03 \\ +0.35 \pm 0.03 \\ +0.35 \pm 0.03 \\ +0.40 \pm 0.03 \end{array}$	Data read from graph				95° 9' 105°20' 115°41' 126° 8'	$\begin{array}{c} -0.213 \pm 0.032 \\ -0.210 \pm 0.022 \\ -0.246 \pm 0.038 \\ -0.213 \pm 0.019 \\ -0.289 \pm 0.030 \end{array}$	

Refer- ence	Types of inter- action	En- ergy	θc.m.	P(heta)	Remarks
S11 (contd.)	n-p	350	136°45′ 147°28′ 158°15′	$\begin{array}{c} -0.147 \pm 0.014 \\ -0.132 \pm 0.028 \\ -0.106 \pm 0.014 \end{array}$	
К5	<i>Þ-Þ</i>	415	15.5 22 33 43.5 55.5 65 75 90	$\begin{array}{c} +0.317 {\pm} 0.041 \\ +0.353 {\pm} 0.027 \\ +0.421 {\pm} 0.036 \\ +0.402 {\pm} 0.029 \\ +0.317 {\pm} 0.028 \\ +0.260 {\pm} 0.030 \\ +0.117 {\pm} 0.021 \\ -0.017 {\pm} 0.023 \end{array}$	
C19	<i>p-p</i>	439	15 21 26 27 36 42 42 42 59 81 99 99 99 119 119	$\begin{array}{c} +0.12 \ \pm 0.16 \\ +0.72 \ \pm 0.16 \\ +0.48 \ \pm 0.08 \\ +0.62 \ \pm 0.06 \\ +0.56 \ \pm 0.06 \\ +0.56 \ \pm 0.06 \\ +0.70 \ \pm 0.06 \\ +0.70 \ \pm 0.06 \\ +0.10 \ \pm 0.04 \\ -0.12 \ \pm 0.04 \\ -0.28 \ \pm 0.04 \\ -0.48 \ \pm 0.02 \\ -0.56 \ \pm 0.02 \end{array}$	Data read from graph

TABLE IX.-(Continued).

For a more comprehensive discussion of errors, the reader should consult the original papers. Errors are discussed in some of the papers where the source of the errors in the cross-section values is not indicated.

Data renormalized here.--There are several reasons why some of the original cross-section data should be modified because of more recent measurements. These columns tell which experiments have been modified in this paper, how much the data have been changed, and why the data needed changing. This information is repeated in Tables IV and VI.

Table VIII summarizes experiments on nucleon polarization. Several entries also need explaining.

Type.—This describes the type of nucleon interaction in which the polarization is studied:

- n-p =high-energy polarized neutrons incident on a hydrogen target,
- p-p= high-energy polarized protons incident on a hydrogen target, and
- p-n = high-energy polarized protons incident on a neutron target.

Target 1 and Target 2.—The target material used to produce the polarized nucleon beam is given here as Target 1 and the target material of the second (analyzing) target is given as Target 2 (see Fig. 14).

 P_1 .—The value of the fraction of polarization of the polarized beam is listed here.

XI. CONCLUSIONS

By considering the combined data the following information can be obtained.

(1) The interference term R in the total cross section for proton scattering from deuterium is about 6 mb for energies above 100 Mev.

(2) The values for σ_{nn} total and σ_{pp} total agree with each other within experimental error. This is in agreement with the charge-independence hypothesis.

(3) The values for $\sigma_{np}(\theta)$ are essentially symmetrical about 90° c.m. up to 90 Mev. In the energy range 300 to 400 Mev the curves are definitely peaked backwards. (4) From about 170 Mev up to 430 Mev for angles from about 20° c.m. to 90° c.m. the value of $\sigma_{pp}(\theta)$ is roughly constant at 3.7 mb/sterad. Above 430 Mev the

curves for $\sigma_{pp}(\theta)$ become peaked forwards. (5) The values of $\sigma_{nn}(\theta)$ agree statistically with

 $\sigma_{pp}(\theta)$. This is in agreement with the charge-independence hypothesis.

(6) All the cross-section data form a consistent pattern. There are no statistically real differences in the cross-section values from different experimenters whose work can be directly compared.

BIBLIOGRAPHY

- Ageno, Amaldi, Bocciarelli, and Trabacchi, Phys. Rev. 71. A1 20 (1947).
- Alphonse, Johansson, Taylor, and Tibell, Phil. Mag. 46, 295 (1955). A2
- R. K. Adair, Revs. Modern Phys. 22, 249 (1950). A3
- A4 Allred, Armstrong, and Rosen, Phys. Rev. 91, 90 (1953).
- Allred, Armstrong, Bordelid, and Rosen, Phys. Rev. 88, A5 433 (1952).
- Aamodt, Peterson, and Phillips, Phys. Rev. 88, 739 (1952). A6 **B1** Brueckner, Hartsough, Hayward, and Powell, Phys. Rev. 75, 555 (1949)
- **B2** E. M. Baldwin, Phys. Rev. 83, 495 (1951).
- **B3** Brolley, Coon, and Fowler, Phys. Rev. 82, 190 (1951).
- **B4**
- Birge, Kruse, and Ramsey, Phys. Rev. 83, 274 (1951). N. P. Bogachev and I. K. Vzorov, Doklady Akad. Nauk., B5 N. T. Dogachev and T. R. Volov, Douady Inder, Tetal, S.S.S.R. 99, 931 (1954); Meshcheryakov, Bogachev, and Neganov, Izvestia Akad. Nauk, S.S.S.R. 19, 548 (1955); and M. G. Meshcheryakov (private communication).
- **B6** Burkig, Schrank, and Richardson, Phys. Rev. 100, 1804(A) (1955); and private communication.
- **B7** N. P. Bogachev (to be published); and M. G. Meshcheryakov (private communication).
- Block, Harth, Cocconi, Hart, Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 103, 1484 (1956). **B8**
- Batson, Culwick, Riddiford, Walker, Proceedings, European Organization for Nuclear Research, Geneva 1956, (CERN Symposium, Geneva, 1956), Vol. II, p. 340. **B9**
- Baskir and Chesnut, Proceedings of Fifth Annual Rochester Conference on High-Energy Physics, 1955 (Interscience Pub-lishers, Inc., New York, 1955), p. 149. B10
- **B11** Bradner, Donaldson, and Iloff, (UCRL) (private communication).
- B12 Brinkworth and Rose, Nuovo cimento 3, No. 1, 195 (1956).
- Bogomolov, Zombkovski, Nitikin, and Selektor, Proceedings, B13 European Organization for Nuclear Research, Geneva, 1956, (CERN Symposium, Geneva, 1956), Vol. II, p. 130.
- B14 Baskir, Hafner, Roberts, and Tinlot, Phys. Rev. 106, 564 (1957).
- Chamberlain, Pettengill, Segrè, and Weigand, Phys. Rev. 93, 1424 (1953); and Gordon H. Pettingill, "Measurement C1 on proton-proton scattering in the energy region 150 to 340 Mev," thesis, UCRL-2808 (December, 1954).
- V. Culler and R. W. Waniek, Phys. Rev. 99, 740 (1955). C2
- C3 H. G. deCarvalho, Phys. Rev. 96, 398 (1954)
- C4 Coor, Hill, Hornyak, Smith, and Snow, Phys. Rev. 98, 1369 (1955).

- C5Cook, McMillan, Peterson, and Sewell, Phys. Rev. 75, 7 (1949).
- C6 Owen Chamberlain and J. W. Easley, Phys. Rev. 94, 208 1954) C7 Chung Ying Chih, "A cloud-chamber study of the scattering
- cross section of protons by 90-Mev neutrons at extreme angles," thesis, UCRL-2575 (May, 1954).
- Chamberlain, Segrè, and Wiegand, Phys. Rev. 83, 923 C8 (1951).
- Cork, Johnston, and Richman, Phys. Rev. 79, 71 (1950).
 Bruce Cork, Phys. Rev. 80, 321 (1950).
- C11 Cassels, Pickavance, and Stafford, Proc. Roy. Soc. (London) 214, 262 (1952).
- Owen Chamberlain and J. D. Garrison, Phys. Rev. 95, 1350 (1954); J. D. Garrison, "Proton-proton scattering experi-ments at 170 and 260 Mev," thesis, UCRL-2659, July 1954; and Owen Chamberlain and J. D. Garrison, Phys. C12 Rev. 103, 1860 (1956)
- Chamberlain, Pettengill, Segrè, and Wiegand, Phys. Rev. 95, 1348 (1954); Gordon H. Pettengill, "Measurement on C13 proton-proton scattering in the energy region 150 to 340 Mev," thesis, UCRL-2808 (December, 1954), and private communication.
- C14 Crandall, Millburn, Pyle, and Birnbaum, Phys. Rev. 101, 329 (1956).
- C15 Owen Chamberlain and Clyde Wiegand, Phys. Rev. 81, 284 (1951); and private communication.
- C16 Bruce Cork and Walter Hartsough, Phys. Rev. 94, 1300 (1954).
- Cork, Wenzel, and Causey, Phys. Rev. 107, 859 (1957). C. Wesley Causey, "Description of a counter experiment to C17 measure the elastic proton-proton scattering cross section at bevatron energies," thesis, UCRL-3413, (May, 1956); and private communication.
- C18 Cester, Hoang, and Kernan, Phys. Rev. 103, 1443 (1956); and private communication.
- C19 deCarvalho, Heiberg, Marshall, and Marshall, Phys. Rev. 94, 1796 (1954).
- J. DeJuren and B. J. Moyer, Phys. Rev. 81, 919 (1951). D1
- R. D. Day and R. L. Henkel, Phys. Rev. 92, 358 (1953). D2
- Day, Mills, Perry, and Scherb, Phys. Rev. 98, 279 (1955). D3
- J. DeJuren and N. Knable, Phys. Rev. 77, 606 (1950). D4
- D5James DeJuren, Phys. Rev. 80, 27 (1950).
- Dzhelepov, Golovin, and Satarov, in report of Institute of D6 Nuclear Physics, Moscow, 1952.
- Duke, Lock, March, Gibson, McKeague, Hughes, and Muirhead, Phil. Mag. 46, 877 (1955). D7
- John DePangher, Phys. Rev. 99, 1447 (1955) D8
- V. P. Dzhelepov and Yu. M. Kazarinov, Doklady Akad. D9 Nauk S.S.S.R. 99, 939 (1954); Dzhelepov, Kazarinov, Golovin, Flyagin, and Satarov, Izvestia Akad. Nauk. S.S.S.R. 19, 573 (1955); Dzhelepov and Kazarinov, Doklady Akad. Nauk., S.S.S.R. 99, 939 (1954); and M. G. Meshcheryakov (private communication).
- D10 Dzhelepov, Golovin, and Satarov, Doklady Akad. Nauk. S.S.S.R. 99, 943 (1954); Dzhelepov, Kazarinov, Golovin, Flyagin, and Satarov, Izvestia Akad. Nauk. S.S.S.R. 19, 573 (1955); M. G. Meshcharyakov (private communica-tion); and Dzelepov, Kazarinov, Golovin, Flyagin and Satarov, Supplyment of Nuovo cimento 3, Ser. X, 61-79 (1956).
- D11 Dzhelepov, Moskalev, and Medved, Doklady Akad. Nauk S.S.S.R. 104, 380 (1955); and M. G. Meshcheryakov (private communication).
- Dzhelepov, Satarov, and Golovin, Doklady Akad. Nauk S.S.S.R. 104, 717 (1955); and M. G. Meshcheryakov D12 (private communication).
- D13 Dzhelepov, Golovin, Kazarinov, and Semenov, Proceedings, European Organization for Nuclear Research, Geneva, 1956 (CERN Symposium, Geeva, 1956), Vol. II, p. 115.
- D14 Dickson and Salter, Nature 173, 946 (1954)
- D15 Dickson, Rose, and Salter, Proc. Phys. Soc. (London) A68, 361 (1955)
- James W. Easley, "Small-angle neutron-proton scattering at 90 and 290 Mev," thesis, UCRL-2693 (September, 1954). E1
- Fox, Leith, Wouters, and MacKenzie, Phys. Rev. 80, 23 (1950). F1

- Robert H. Fox, "Neutron-proton scattering at 90 Mev," F2 thesis, UCRL-867 (August, 1950). F. L. Fillmore, Phys. Rev. 83, 1252 (1951).
- F3
- F4David Fischer and Gerson Goldhaber, Phys. Rev. 95, 1350 David Listic and October Optimizer, and David Tischer (private communication).
 D. Fischer and J. Baldwin, Phys. Rev. 100, 1445 (1955).
 Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev.
- F5 F6
- 103, 1479 (1956). G1
- Guernsey, Mott, and Nelson, Phys. Rev. 88, 15 (1952) G2
- G3
- G4
- H1
- A. Galonsky and J. P. Judish, Phys. Rev. 100, 121 (1955).
 R. J. Glauber, Phys. Rev. 99, 630(A) (1955).
 T. C. Griffith (private communication, and to be published).
 Hillman, Stahl, and Ramsey, Phys. Rev. 96, 115 (1954).
 R. H. Hildebrand and C. Leith, Phys. Rev. 80, 842 (1950). H2
- Hadley, Kelly, Leith, Segrè, Wiegand, and York, Phys. Rev. 75, 351 (1949). H3
- Hartzler, Siegel, and Opitz, Phys. Rev. 95, 591 (1954); and
 A. J. Hartzler and R. T. Siegel, Phys. Rev. 95, 185 (1954).
 P. Hillman and G. H. Stafford, Nuovo cimento 3, 633 H4
- H5(1956); and Stafford, Whitehead, and Hillman, Nuovo cimento 5, 1589 (1957) and private communication to T. Ypsilantis changing the value of P_1 .
- Hughes, March, Muirhead, and Lock, Proceedings, European H6
- Organization for Nuclear Research, Geneva, 1956, (CERN Symposium, Geneva, 1956), Vol. II, p. 344. J. R. Holt (private communication); and Holt, Hartung, and Moore, Proceedings, European Organization ofr Nuclear Research, Geneva, 1945, (CERN Symposium, Geneva, 1956), H7Vol. II, p. 147.
- Kelly, Leith, Segrè, and Wiegand, Phys. Rev. 79, 96 (1950); and Kruse, Teem, and Ramsey, Phys. Rev. 101, 1079 (1956). **K1**
- U. E. Kruse (private communication).
- К3 Yu. M. Kazarinov and Yu. P. Simonov, Zhur. Eksptl. i. Teoret. Fiz. 4, 161 (1957); and M. G. Meshcheryakov (private communication).
- K4 Kao and Clark, Phys. Rev. 99, 895 (1955).
- Kane, Stallwood, Sutton, Fields, and Fox, Phys. Rev. 95, K5 1694 (1954); and J. A. Kane, "Polarization and depolarization in proton-proton collisions at 415 Mev," NYO-7110 (June, 1956).
- L1
- J. H. Lasday, Phys. Rev. 81, 139 (1951).
 J. V. Lepore, Phys. Rev. 79, 137 (1950); and L. Wolfenstein, Phys. Rev. 75, 1664 (1949). L2
- M1 Mott, Guernsey, and Nelson, Phys. Rev. 88, 9 (1952).
- D. I. Meyer and Warren Nyer, "Total cross sections for 14-Mev neutrons," LA-1279 (July 1951). M2
- Marshall, Marshall, and Nedzel, Phys. Rev. 91, 767 (1953). M3 M4
- Meshcheryakov, Bogachev, and Neganov, Izvestia Akad. Nauk S.S.S.R. 19, 548 (1955); Meshcheryakov, Bogachev, Neganov, and Piskarev, Doklady Akad. Nauk S.S.S.R. 99, 955 (1954); and M. G. Meshcheryakov (private communication.
- Marshall, Marshall, and Nedzel, Phys. Rev. 98, 1513 (1955). M5
- M6 Marshall, Marshall, and Nedzel, Phys. Rev. 92, 834 (1953).
- Meshcheryakov, Neganov, Soroko, and Vzorov, Doklady Akad. Nauk S.S.S.R. 99, 959 (1954); Meshcharyakov, Bogachev, and Neganov, Izvestia Akad. Nauk S.S.S.R. 19, 548 (1955); and M. G. Meshcharyakov (private com-M7 munication)
- **M**8 Marshall, Marshall, Nagle, and Skolnik, Phys. Rev. 95, 1020(1954)
- M9 L. Marshall and J. Marshall, Phys. Rev. 98, 1398 (1955)
- M10 Morris, Fowler, and Garrison, Phys. Rev. 103, 1472 (1956).
- V. A. Nedzel, Phys. Rev. 94, 174 (1954) N1
- L. Oxley and R. D. Schamberger, Phys. Rev. 85, 416 01 (1952)
- 02Oxley, Cartwright, and Rouvina, Phys. Rev. 93, 806 (1954).
- **P1**
- Poss, Salant, Snow, and Yuan, Phys. Rev. 87, 11 (1952). W. K. H. Panofsky and F. L. Fillmore, Phys. Rev. 79, 57 $\mathbf{P2}$ (1950).
- T. G. Pickavance (private communication); and J. M. Cassels, Proc. Phys. Soc. (London) A69, 495 (1956). P3
- Remley, Jentschke, and Kruger, Phys. Rev. 89, 1194 (1953). R1 Randle, Taylor, and Wood, Proc. Roy. Soc. (London) 213, 392 (1952). R2
- **R**3 T. C. Randle (private communication).
- Rosenfeld, Swanson, and Warshaw (to be published). R4

- Royden and Wright, Phys. Rev. 100, 1805(A) (1955); and R5 H. N. Royden (private communication).
- B. Rose, Proceedings of the Fifth Annual Rochester Conference R6 on High-Energy Physics, 1955 (Interscience Publishers, Inc., New York, 1955), p.1 58.
- Shapiro, Leavitt, and Chen, Phys. Rev. 95, 663 (1954); and S1Chen, Leavitt, and Shapiro, Phys. Rev. 103, 211 (1956).
- Smith, McReynolds, and Snow, Phys. Rev. 97, 1186 (1955); S2 and private communication.
- William Sleator, Phys. Rev. 72, 207 (1947). \$3
- S4 E. O. Salant and N. F. Ramsey, Phys. Rev. 57, 1075 (1940).
- R. Sherr, Phys. Rev. 68, 240 (1945). **S**5
- Selove, Strauch, and Titus, Phys. Rev. 92, 724 (1953). S6
- **S**7
- R. H. Stahl and N. F. Ramsey, Phys. Rev. **96**, 1310 (1954). J. D. Seagrave, Phys. Rev. **97**, 757 (1955); and private com-**S**8 munication.
- S9 Sutton, Field, Fox, Kane, Mott, and Stallwood, Phys. Rev. 97, 783 (1955).
- Selektor, Nikitin, Bogomolov, and Zombkovsky, Doklady Akad Nauk S.S.S.R. 99, 967 (1954); and Nikitin, Selektor, Bogomolov, and Zombkovsky, Nuovo cimento 7, No. 6, 1269 (1955). S10
- S11 Siegel, Hartzler, and Love, Phys. Rev. 101, 838 (1956).

- S12 K. Strauch, Phys. Rev. 99, 150 (1955).
- S13 James Simmons (UCRL) (private communication).
- **T1** Taylor, Pickavance, Cassels, and Randle, Phil. Mag. 42, 328 (1951). **T**2
- A. E. Taylor, Phys. Rev. 92, 1071 (1953).
- A. E. Taylor and E. Wood, Phil. Mag. 44, 95 (1953). T3
- T4 Taylor, Pickavance, Cassels, and Randle, Phil. Mag. 42, 751 (1951).
- Thresher, Voss, and Wilson, Proc. Roy. Soc. (London) A229, 492 (1955). T5
- **T6** O. A. Towler, Phys. Rev. 85, 1024 (1952).
- Wright Saphir, Powell, Maenchen, and Fowler, Phys. Rev. 100 1802A (1955); and private communication. W1
- W2Roger Wallace, Phys. Rev. 81, 493 (1951).
- W3 R. R. Wilson, Phys. Rev. 71, 384 (1947).
- W4 L. F. Wouters, Phys. Rev. 84, 1069 (1951).
- Y1 J. L. Yntema and M. G. White, Phys. Rev. 95, 1226 (1954).
- J. L. Yhtema and M. G. white, Phys. Rev. 95, 1226 (1954). T. J. Ypsilantis, "Experiments on polarization in nucleon nucleon scattering at 310 Mev," thesis, UCRL-3047; Chamberlain, Donaldson, Segrè, Tripp, Wiegand, and Ypsilantis, Phys. Rev. 95, 850 (1954); Chamberlain, Segrè, Tripp, Wiegand, and Ypsilantis, Phys. Rev. 105, 288 (1957); and Ypsilantis (private communication). $\mathbf{Y2}$