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I. INTRODUCTION

HIS paper describes advances made in the theo-

retical study of nuclear reactions during the last

twenty years. We begin by surveying some of the main
achievements in approximately chronological order.

In 1937 Bethe! gave a quantitative discussion of
nuclear reactions in terms of the compound nucleus
mechanism suggested just previously by Bohr? The
following few years saw publication of further papers
by Weisskopf,® Bethe and Placzek,* and Weisskopf and
Ewing,® in which detailed consequences of Bohr’s sug-
gestion were thoroughly investigated.®

These early discussions were not based upon any
general and rigorous theory of reactions but were
constructed in an ad koc fashion around the assumption
that reactions proceed by the compound nucleus
mechanism. When Bohr proposed this mechanism,
there was no mathematical framework in quantum
mechanics that could be adopted to give a quantitative
description of it. The only type of theory that seemed

1 H. A. Bethe, Revs. Modern Phys. 9, 69 (1937).

2 N. Bohr, Nature 137, 344 (1936); Science 86, 161 (1937).

3 V. F. Weisskopf, Phys. Rev. 52, 295 (1937).

“H. A. Bethe and G. Placzek, Phys. Rev. 51, 450 (1937).

V. F. Weisskopf and D. H. Ewing, Phys. Rev. 57, 472 (1940).

8F. L. Friedman and V. F. Weisskopf, Niels Bokr and the
Development of Physics (Pergamon Press, London, 1955),

REACTIONS 259

at all relevant was the Weisskopf-Wigner theory” of
resonance absorption and subsequent emission of optical
radiation by an atomic system. This type of time-
dependent perturbation theory was adapted to the
treatment of nuclear reactions by Breit and Wigner?
and resulted in the formula that bears their name.
Although nuclear forces can certainly nof be realistically
treated as perturbations, the expressions for cross
sections derived by Breit and Wigner (and later by
Bethe! with time-independent perturbation theory)
were reasonable in form, ie., in their energy depend-
ence. For instance, the Breit-Wigner formula for cross
sections of reactions proceeding through an isolated
resonance gives excellent fits to observed cross sections.
Absurdities appear only when attempts are made to
interpret the values of the parameters (the matrix
elements) obtained from such fitting. The reason for the
correctness of the form is that this only depends on the
condition that the reaction proceeds through an isolated
(i.e., long-lived) intermediate state. Such a condition is
satisfied both for atomic reactions of the kind described
by the Weisskopf-Wigner theory and for nuclear reac-
tions proceeding through a compound nucleus. How-
ever there are important differences between the two
types of reaction. In the former case, the excitation
energy is concentrated on a single particle (electron)
and the long life is due to the weakness of the coupling
of this particle to the radiation field. In the latter case,
the strength of the nuclear forces leads to a sharing of
the available energy by all particles (nucleons) and the
long life is due to the small probability of the energy
being concentrated in a mode that corresponds to disin-
tegration by an “open” (i.e., energetically allowed)
channel.

The unsatisfactory reliance on perturbation theory
was removed by the presentation by Kapur and Peierls?
in 1938 of a rigorous theory of reactions which was not
dependent upon any particular physical picture (such
as the compound nucleus mechanism) or upon any
dubious mathematical approximations (such as per-
turbation theory). This theory and its subsequent
versions by other authors has provided a very satis-
factory framework for discussing nuclear reactions. Its
essential feature is the occurrence of a complete set of
formal states (of all particles) defined in a volume of
nuclear size by the imposition of some fixed boundary
condition on the surface of this volume. Although the
theory is rigorous and therefore capable of describing
all types of reaction mechanisms, it is especially easily
adapted for describing the compound nucleus mecha-
nism. This is done by identifying the formal states with
states of the compound nucleus. Neglect of mechanisms

7V. H. Weisskopf and E. P. Wigner, Z. Physik 63, 54 (1930);
65, 18 (1930).

8 G. Breit and E. P. Wigner, Phys. Rev. 49, 519 (1936); 49, 642
(1936); G. Breit, sbid. 40, 127 (1932).

®P. L. Kapur and R. E. Peierls, Proc. Roy. Soc. (London)
A166, 277 (1938); R. E, Pejerls, Proc, Cambridge Phil. Soc. 44,
242 (1947),
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other than the compound nucleus one is achieved by
ignoring the presence of the formal states that are
far away in energy. _

Since the paper by Kapur and Peierls appeared in
1938, both Breit'® and Wigner!! with co-workers have
written papers on the same problem of providing a
rigorous theory of nuclear reactions. Of course, the
various approaches must be equivalent if they are all
rigorous. They differ, in fact, in details and emphasis
rather than in principle. Breit, for example, was con-
cerned mainly with the formal problem of trying to
remove the occurrence in the cross-section expressions
of certain parameters (the interaction radii) whose
values cannot affect the cross sections. Wigner,"! in
contrast, actually emphasized the occurrence of these
parameters in the theory and exploited the fact that
particular choices of these parameters have physical
significance and therefore enable one to introduce
physical information into the theory. This is especially
true of the “R-matrix” theory, first expounded by
Wigner and Eisenbud.!?

The main achievement of Wigner’s particular formu-
lation has been to make the energy dependence of all
expressions as explicit as possible. In contrast Kapur
and Peierls? were not so concerned with the questions
of detailed energy dependence and worked with
complete sets of states defined by energy-dependent
(and complex) boundary conditions. Almost all of the
quantities occurring in the Kapur-Peierls cross sections
are energy-dependent, either explicitly or implicitly. In
order to use their formulas, the energy dependences
must be made explicit, and this means referring to a
treatment such as Wigner’s with energy-independent
boundary conditions. For instance, in the case of an
isolated resonance, the Kapur-Peierls resonance energy
is implicitly energy-dependent. This dependence may
be made explicit by referring to energy-independent
boundary conditions. It is found that the dependence
is just equivalent to the presence of the level shift factor
which occurs explicitly in the Wigner formulation from
the beginning. It is this sort of consideration which
persuaded us to base the present review upon the
R-matrix theory of Wigner and Eisenbud rather than
upon the theory of Kapur and Peierls. However we
emphasize again that the two formulations are abso-
lutely equivalent; the only particular merit of the
R-matrix theory is that is is more explicit.

The R-matrix theory is rigorous, and therefore its
application is not confined to reactions that proceed by
the compound nucleus mechanism; in principle, it can
be used to describe all types of reaction phenomena.
Since the theory was presented in 1947, a new type of
phenomenon has been established and has been fitted
into the framework of the theory. This is the possibility

1 G. Breit, Phys. Rev. 58, 506 (1940); Phys. Rev. 69, 472
(1?14%).'P. Wigner, Phys. Rev. 70, 15 (1946); 70, 606 (1946).

2 E, P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947);
E. P. Wigner, J. Am. Phys. Soc. 17, 99 (1949).
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that colliding nuclei can interpenetrate each other
without necessarily forming a compound nucleus. This
very significant fact was deduced by Feshbach,®® Porter,
and Weisskopf in 1953 from the energy dependence of
total neutron cross sections. Previously it had been
assumed that any particle entering a nucleus must
inevitably lose energy and thereby cause the formation
of a compound nucleus. In the terminology invented by
Bethe,™ this was expressed by saying that the nuclear
“sticking probability” is equal to unity. Most earlier
discussions of reactions were based upon this same
assumption. It was embodied in the papers by Weiss-
kopf and Ewing®% on the spectra of particles from
compound states, and also in the papers by Feshbach,
Peaslee, and Weisskopf!® and by Feshbach and Weiss-
kopf!® on total cross sections.

For the sake of preciseness, we retain the term
“model” for those phenomenological theories of nuclear
collisions that prescribe probabilities of compound
nucleus formation. The expression “strong absorption
model” is identified with those theories in which the
chance of collision without compound nucleus formation
is very small; the expression ‘“moderate absorption
model” labels those theories in which the chance is
appreciable. The R-matrix theory must be capable of
describing all such models whether of the ‘“strong
absorption” or “moderate absorption” variety. Accord-
ing to Thomas,'” each model implies a special energy
dependence of the so-called “strength function” which
is the central quantity in the R-matrix theory; the
moderate absorption model implies oscillatory de-
pendence; in contrast the strong absorption model
implies a smooth monotonic dependence. Recently,
it has been shown!® that one may relate the form of the
strength function to general dynamical properties of
nuclear matter.

The validity of the moderate (as opposed to the
strong) absorption model opens up the possibility of an
entirely new class of nuclear reactions, namely “direct”
reactions in which nuclei interpenetrate without forming
a compound nucleus, and directly scatter each other
with or without a change in their internal structures.
Existence of such direct reactions was established by
Butler? in 1950 from the angular distributions of (d,p)
reactions. The loose structure of the deuteron makes
the chance of interaction without compound nucleus
formation especially high for this class of reactions.
Austern, Butler, and McManus? later proposed a

13 Feshbach, Porter, and Weisskopf, Phys. Rev. 90, 166 (1953);
96, 448 (1954).

4, A. Bethe, Phys. Rev. 57, 1125 (1940).

18 Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).

16 H, Feshbach and V. F. Weisskopf, Phys. Rev. 76, 1550 (1949).

17 R. G. Thomas, Phys. Rev. 97, 224 (1955).

18 C. Bloch, J. phys. radium 17, 510 (1956); Nuclear Phys. 3,
137 (1957); G. E. Brown and C. T. de Dominicis, Proc. Phys. Soc.
(London) A70, 668 (1957).

195, T. Butler, Phys. Rev. 80, 1095 (1950); Proc. Roy. Soc.
(London) A208, 559 (1951).

2 Austern, Butler, and McManus, Phys. Rev. 92, 350 (1953).
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similar interpretation for (n,p) reactions. In both
treatments, direct processes were considered to occur
only when colliding nuclei graze each other, i.e., they
were considered to be ‘‘surface’” phenomena. It has
since become apparent from the work of Hayakawa,
Kawai, and Kikuchi® and of Brown and Muirhead,?
that this viewpoint may, at least in the (u,p) case, be
too restrictive. Rather, it appears that direct reactions
may originate in the volume of the target nucleus as
well as at the edge. Although existence of direct mecha-
nisms for reactions has been established beyond doubt,
it seems that they account for only small fractions
of most total cross sections, except when peculiar cir-
cumstances exaggerate their contribution relative to
the compound nucleus one.

It is of considerable interest to see just how the
R-matrix theory can describe the direct reaction
mechanism; ie., to see what particular assumptions
‘must be made in order to eliminate other mechanisms
such as the compound nucleus one. As mentioned above,
R-matrix theory is easily specialized to the description
of the compound nucleus mechanism. The means of
making the specialization to the direct mechanism are
not so evident. However it has recently been shown?®
how this can be done; one introduces assumptions into
sections of just the “direct reaction” kind.

The present article is an account of only the existing
theory of nuclear reactions, and does not describe the
vast number of detailed applications that have been
made to experimental data. For summarized accounts
of such applications, the reader is referred to the book
of Blatt and Weisskopf, a review by Peaslee,? and
especially to recent reviews by Kinsey?6 and Burcham.?”

II. GENERAL DISCUSSION OF R-MATRIX THEORY

Although the essential basis of the R-matrix theory
Is quite straightforward, the full development is lengthy
and involves considerable algebraic manipulation.
Unless one is made familiar in advance with the essen-
tial ideas and objectives, one tends to lose track of the
main arguments because of distraction by details. The
present section is devoted to sketching an outline of the
content and objectives of the theory.

1. Scheme of the Formal Theory

Any theory that can be specialized to the description
of a nuclear reaction proceeding via formation of inter-
mediate states of the compound nucleus, is expected to

% Hayakawa, Kawai, and Kikuchi, Progr. Theoret. Phys. 13,
415 (1955). )

% G. Brown and H. Muirhead, Phil. Mag. 2, Ser. 8, 473 (1957).

2 C. Bloch, Nuclear Phys. 4, 503 (1957); G. E. Brown and C.
T. de Dominicis, Proc. Phys. Soc. (Londons A70, 686 (1957).

# J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952).

z: ])3 (]; PIEaslee, A}gn. Rlevs. eé\luclear Sci. 5, 99( (1955).

. B. Kinsey, Encyclopaedia of Physics (Springer-Verla, s

Berlin, 1957]%, Vols., 40. ? ) Ehy pring g

# W. E. Burcham, Encyclopaedia of Physics (Springer-Verla, s
Berlin, 1957), Vol. 40, o Physics (Spring ¢
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be formulated in terms of some set of states that can
be associated with those of the compound nucleus. The
R-matrix theory! is such a theory. In it, a set of states
of all nucleons is defined and the cross sections can
ultimately be expressed in terms of these. In the general
formulation, however, the algebraic relations connecting
the cross section and the states are very complicated,
s0 it is convenient to introduce intermediary quantities,
one of which is the “collision matrix” and the others
“the L, Q, and R matrices.” The general scheme is as
follows:

ICross sections aw:—!

Elements U,, of the collision
matrix U [U depends on energy E,
but not on parameters e, or B..]

I l

“External” interaction as
represented by the diag-
onal matrices L and Q
with diagonal elements L,
and Q.. [L and @ depend
on energy E and param-
eters a., but not on param-

“Internal” interactions as
represented by the nondi-
agonal matrix R=(R..).
[R depends on energy E
and parameters a., B.. ]

Set of states, labeled by A,

eters B..]

defined in terms of param-
eters @., B, and charac-
terized by energy eigen-
values E, and reduced
width amplitudes yxe.

Here o, (E) is defined as the cross section for the pro-
duction of the pair of nuclei of type ¢’ when the two
nuclei of the pair of type ¢ are bombarded against each
other with energy E. The element U, .(E) of the
so-called collision matrix U is defined as the amplitude
of the outgoing waves of pair ¢’ resulting from unit flux
of bombardment with pair ¢. It follows that the cross
section o..» must be proportional to | U, |2 The intro-
duction of U with its rather trivial relation to the
cross sections is, of course, not a peculiarity of the
R-matrix theory but is the usual first step in any
quantum-mechanical reaction theory. U is an especially
convenient quantity because two very general physical
principles, those of conservation of probability flux and
time-reversibility, impose restrictions on any reaction
theory which, as first shown by Breit,”® can be simply
stated in terms of the properties of U, namely, U must
be unitary and symmetric (Sec. VI).

The special features of the R-matrix theory lie in
the further steps, namely those in which U is expressed
in terms of the matrices L, Q, and R. The first two
matrices are diagonal and take account of any long-
range nonpolarizing interactions acting between any
separated nuclei. The R matrix is nondiagonal and takes
account of the effects of all other interactions, i.e., those

8 G, Breit, Phys. Rev. 58, 1068 (1940),
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operating inmside nuclei, both inside the compound
nucleus and inside the nuclei of separated pairs. All
three matrices depend on certain parameters a., one for
each type of pair ¢. Given these parameters, the matrices
L and Q are fully determined. The unknown quantity
is then the R matrix. In addition to depending on E
and the a., this matrix also depends on a set of boundary
condition parameters B, one for each type of pair c.
Even if all the parameters are specified, R is still
essentially unknown in general. In spite of this, Wigner
and Eisenbud!? have, shown that the energy dependence
of any element of R is expressible in a surprisingly
simple form:

YA e!
Rcc’ (E) = Z )
» Ey—E

where A labels the members of a complete set of states
and the yx., vae, and E, are energy-independent quan-
tities depending on a., B.. The v, are called “reduced
width amplitudes.” For each state A, one ). is defined
for each pair ¢. The E, are the energy eigenvalues of
the states A.

Since few specific assumptions are made in the
R-matrix theory, which therefore has wide generality,
one might guess that the simplicity of the analytic form
of the elements of the R matrix is the consequence of
some third general physical principle in addition to
those of conservation of probability and time-reversi-
bility already mentioned. Following the initial sug-
gestion by Schuster and Tiomno,? (Sec. IV, 8), it has
been shown that, in the special case when only scatter-
ing of the initial pair is allowed to occur, this principle
is the one of causality. (Roughly speaking, the causality
principle says that the two nuclei cannot be scattered
before they interact.) No proof has as yet been given in
the general case that causality leads to the analytical
form of R, but there is no reason to doubt that such a
proof could be given. Presumably the general form of the
results of R-matrix theory do not depend on special
information or assumptions contained in the quantum-
mechanical derivation of Wigner and Eisenbud but only
on certain general physical principles.

For our purposes it is desirable, not only to know the
analytic form of the R matrix, but also to be able to
interpret the parameters in this form such, as the y..
In the Wigner-Eisenbud derivation, these are given a
precise meaning as a certain type of matrix element.
This means that one can hope not merely to fit experi-
mental cross sections in terms of the parameters of
R-matrix theory, but also to predict the values and
properties of these parameters on the basis of some
theory of nuclear forces and nuclear structure. For this
reason, we do not base the present review on general
derivation of the R matrix from the causality principle,
but use the Wigner-Eisenbud derivation.

% W. Schuster and J. Tiomno, Phys. Rev. 83, 249 (1951).
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2. Assumptions of the Theory

Certain broad assumptions are at the basis of the
R-matrix theory.

(2) Applicability of nonrelativistic quantum mechanics
as implied in the assumption of the usual Hamiltonian
equation defined in all space:

HY=EV,

where H is the sum of kinetic and potential energies.
This equation must embody the three general physical
principles (conservation of probability, time-reversi-
bility, and causality) already-mentioned. (For instance,
conservation of probability demands the Hermiticity of
the potential energy in H.) It follows that the collision
matrix derived under the present assumption must
automatically be unitary, symmetric, and have certain
analytic properties. (This is verified in Sec. VII.)

Neglect of relativistic effects is just as appropriate
in the usual R-matrix theory as in other theories in
low-energy nuclear physics. The justification is that
nucleon kinetic energies inside nuclei are less than a
few percent of the rest mass energy. Goertzel®® has
made an extension of the R-matrix theory to Dirac
particles, but we do not need to use his results.

(1) Absence or unimportance of all process in which
more than two product nuclei are formed.—This assump-
tion is the most restrive one. It implies that the theory
is not strictly applicable to reactions where the bom-
barding energy is high enough to make three-body
breakup energetically possible. However, we see later
(Sec. XIII, 2) that approximate treatment of many-
body decays can be given if these can be described as
a succession of two-body decays.

(115) Absence or unimportance of all processes of
creation or destruction.—The main effect of this assump-
tion is to exclude photons from discussion. We show
in Sec. XIII, 3 how this restriction can be removed
within the limits of a conventional perturbation treat-
ment of the coupling of nuclear particles to the electro-
magnetic field.

(1v) The existence, for amy pair of nuclei ¢, of some
finite radial distance of separation a., beyond which
neither nucleus experiences any polarizing potential field
from the other—We assume that, beyond separation a.,
any potential acting between the pair ¢ can be written
as a function of radial distance only. Given a value of
a, satisfying this assumption, any larger value will also
satisfy it so that, in the absence of further conditions,
the (a;) are largely arbitrary. In R-matrix theory no
such further condition is mentioned. For the formal
derivation, it is necessary only to be able to assume the
existence of a set, any set, of the a, that satisfies the
above assumption. The theory is then framed in terms
of this set. For instance the L, , and R matrices depend
explicitly and implicitly on the a.. The collision matrix
U itself does not depend on any set of formal param-

3 G, Goertzel, Phys. Rev. 73, 1463 (1948).
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eters such as the a,, so the dependences of L, Q, and R
on a, must be complementary in such a way so as to
make U independent of the a,. It is clearly unsatisfac-
tory and artificial to retain such a set of arbitrary formal
parameters. For example, in order to analyze a cross-
section curve and extract values of the v). and E,,
one would have to assume a set of values of the a,, so
that any extracted values would depend on the @.. Then
in making theoretical predictions about the v\, and E,,
one would have to assume the same set of values. The
whole comparison between experiment and theory would
center around the set of @, a set of quite arbitrary
formal parameters.

The point is that one could not, in general, extract
values of vi, and E, from the experimental cross
sections even if a set of the a, were assumed. There are
an infinite number of the v), and E, in the theory, so
it would never be possible to fit them from a given ex-
perimental cross section no matter how accurately
measured. In order to be able to use R-matrix theory at
all, one must have some broad @ priori knowledge of
the role of the v). and E\ based on a physical picture.
Since the v\ and E) depend on the a., this picture must
be one in which one definite set of the a. has a special
physical significance. The idea that nuclear reactions can
only occur when the closely packed colliding nuclei
actually enter each other’s volume, provides the kind of
picture needed. It suggests choosing the a. to be equal to
the sum of the radii of the colliding nuclei, which is the
minimum value allowed by condition (4). In future,
we always understand the ¢, to be defined as having
such minimum values and refer to them as “interaction
radii.”

The idea that reactions can only originate at sepa-
ration distances <a, does not imply that a reaction
must take place if two nuclei approach closer than this.
The actual situation may be anywhere between two
following extremes.

(i) As two nuclei come together, there is sharp
transition between the point where neither nucleus ex-
periences any polarizing forces at all, and the point
where both nuclei interact so strongly as to lose com-
pletely their individual identities. If the a. are now
defined as having their minimum values under assump-
tion (4), they will be located fairly precisely in this
sharp transition distance. This situation is that implied
by the “strong absorption” model of compound nucleus
formation in which two nuclei fuse together as soon as
they touch. The ideal limit of an infinitely sharp
transition region corresponds to all reactions proceeding
via a compound nucleus and excludes the possibility
of other types of reaction process (Sec. I, 4).

(i) Nuclei may interpenetrate each other freely
without appreciable disturbance of each other’s internal
structures. Thus the distance @. marks the edge of a
potential field which is smooth and refractive in charac-
ter, and does not give rise to the violent interaction
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needed to cause compound nucleus formation. Rather
it either merely scatters the colliding nuclei or, occa-
sionally, may cause a direct reaction. If this picture
were true, nearly all reactions would be of the “direct”
type not involving compound nucleus formation. The
actual situation with nuclei lies somewhere between (i)
and (ii). The evidence is that it is considerably closer to
(i) than (ii), because, although in certain special reac-
tions the direct process implied by (ii) predominates,
most reactions are mainly governed by compound
nucleus formation.

3. Specialization to the Compound
Nucleus Mechanism

The qualitative picture of the compound nucleus
enables one to guess the special properties that must be
assigned to the v, and E, in order to specialize R-matrix
theory to the compouhd nucleus mechanism.

First we consider the energy region in the compound
nucleus just above the highest bound states, i.e., the
region in which resonance levels are found in nuclear
reactions. The strength of nuclear forces and the con-
sequent complexity and compact nature of nuclear
states leads us to believe that the spectrum of nuclear
states will persist, in some fashion, for some way
above the bound states. For instance, let us ensure such
a continuation in the nuclear spectrum by enclosing the
nucleus in a sphere of nuclear dimensions, and consider
a state that would normally be above the bound states.
On removing the sphere, the complexity of the state is
such that a long time passes before the state “realizes
that it is unbound” and disintegrates. Thus the state,
although free, maintains much of the character of a
bound state, the only difference being that it has a
nonzero width T' reflecting the fact that it does even-
tually disintegrate after a mean life #/T. Defining the
a. as we have done introduces an effective enclosing
sphere of nuclear dimensions, and this means that we
can associate the E), the formal energy eigenvalues of
the eigenstates in the enclosure, with the energies of the
physically observed quasi-bound “resonance’ states.
In particular, it is natural, in applying R-matrix theory
to a reaction proceeding through a certain resonance
level, to drop all terms in the R-matrix sums over A
except one. This leads to the famous “one-level”
cross-section formula originally formulated by Breit
and Wigner® with a quite different theory.

At higher energies, as resonance levels become closer
and broader, they overlap to form a continuum, so the
one-level formula is no longer valid or useful. Instead
we must use the many-level cross-section formula and
try to average it over many levels. Thomas'” has shown,
following the earlier considerations by Bethe,! that an
averaging is possible if the signs of the (real) level
amplitudes vy,, can be assumed to be random (Sec.
XI, 2). The extent of the randomness in the signs
increases with the probability of compound nucleus
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formation. In the idealized “strong absorption’ limit
when it is supposed that any interaction between two
nuclei immediately leads to their merging into a
compound nucleus, the randomness is expected to be
complete. With this assumption, the many-level formula
can be averaged to give the expected expressions for
cross sections from compound nucleus formation in the
continuum. As discussed in Sec. XI, 6, the idealized
limit is not attained for actual nuclei, so that, in prac-
tice, the signs are not completely random. In particular
there may be mild correlations in sign over large energy
intervals. Nevertheless the randomness is sufficient to
enable the averaging of the many-level formula to be
performed to a good approximation.

4. Direct Reaction Mechanisms in
R-Matrix Theory

Although several direct reaction mechanisms have
been identified experimentally, the compound nucleus
mechanism still accounts for the major part of the
observed reaction cross sections. Only when one ob-
serves special individual products of bombardments,
may one find that other mechanisms dominate. Ex-
perimentally a number of such special individual reac-
tions have been established where the compound
nucleus contribution is rivalled by those from other
types of mechanism. The other contributions are usually
incoherent with the compound nucleus contribution
and their origins are believed to be understood, at least
qualitatively. There are four main types of such reac-
tions.

(?) Rearrangement reactions producing individual low-
lying states of the residual nuclei—Reactions in which
“direct” contributions have been found are (N",N) 3
(a,p) and (p,@), (p,8) and (p,He?),® and others, but
especially those involving deuterons like (d,p)* and
(p,d) reactions. The fact that deuteron reactions are
especially liable to these special effects gives the clue
to their origin. This lies in the diffuseness of the sur-
faces of nuclei; for the loosely bound deuteron this is
especially pronounced. There is an appreciable prob-
ability of “partial” interaction between a deuteron and
a target nucleus in which only the neutron interacts
with the nucleus. The proton may be released in such
“grazing” or “stripping” reactions without interacting
with the target. Study® of individual proton groups
resulting from deuteron bombardment often shows that
this type of mechanism may completely dominate
other mechanisms. Only those deuterons that graze
the edge of the target nucleus can lead to this process.
Those deuterons with smaller impact parameters that
hit the target head-on will form compound nuclei in the
usual way. Consequently fofal deuteron cross sections

81 H. L. Reynolds and A. Zucker, Phys. Rev. 101, 166 (1956).

2 Eisberg, Igo, and Wegner, Phys. Rev. 100, 1309 (1955);
J. G. Likely and F. P. Brady, ibid. 104, 118 (1956).

3 B. L. Cohen and T. H. Handley, Phys. Rev. 93, 514 (1954);
J. G. Likely and F. P. Brady, Phys. Rev. 104, 118 (1956).
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will not be seriously affected by the existence of stripping
processes (except possibly at low energies where the
Coulomb repulsion prevents head-on collisions or when
the target nucleus is small, i.e., light).

(46) Imelastic and charge-exchange scattering produsing
individual low-lying states—There is evidence for “di-
rect” contributions to (,p),* (,9'),% (d,d),*® and
(a,')*" reactions. These contributions show up espe-
cially well in high energy bombardments because the
compound nucleus cross sections are diminished as a
consequence of the smallness of the compound nucleus
competition factors. The origin of these effects is found
partly in the surface diffuseness. An incident projectile
may graze the edge of a target nucleus and just interact
with a single nucleon in the surface. This may result
in an energy exchange and inelastic scattering. Another
source of the direct inelastic scattering is to be found in
the possibility of interpenetration of nuclei without com-
pound nucleus formation. This is especially possible in
nucleon bombardment.”® From the “moderate absorp-
tion”” model,*® one knows that a nucleon may occasion-
ally enter quite far into a nucleus without losing energy
or forming a compound nucleus. Eventually it may
interact with a single nucleon and lose energy, but there
is still a finite chance of either it or the struck nucleon
reaching the surface of the nucleus without further inter-
action. This possibility implies that the direct mecha-
nism for inelastic scattering is operative in the nuclear
volume as well as at the surface. Although low-lying
states tend to be produced by direct interaction, the
compound nucleus mechanism generally dominates for
all the higher states and so accounts for the majority
of processes.

(#34) Excitation of collective states (especially rotations)
by inelastic scattering.—This type of process has not
yet been confirmed experimentally, but it is a reasonable
theoretical expectation®® that such processes can occur.
This is particularly so when the target nucleus is
appreciably nonspherical and has a rotational spectrum
of states. The bombarding particle may interact just
with the surface shape of the target and set it rotating,
without actually forming a compound nucleus. From
some points of view such events are more naturally
regarded as part of the shape-elastic scattering since
no change is induced in the internal state of the target
nucleus.

(1v) Inelastic scattering of charged particles producing
individual exciled states of the target nuclei.—Assumption
(4) is always, strictly speaking, violated when -the
bombarding particles are charged. To represent the

3 D. L. Allan, Proc. Phys. Soc. (London) A70, 195 (1957).

3% W. F. Hornyak and R. Sherr, Phys. Rev. 100, 1409 (1955);
Beneviste, Finke, and Martinelli, Phys. Rev. 101, 655 (1956).

36 J, W. Haffner, Phys. Rev. 103, 1398 (1956).

3 H. J. Watters, Phys. Rev. 103, 1763 (1956).

38D, M. Chase, Phys. Rev. 104, 838 (1956); Hayakawa and
Yoshida, Proc. Phys. Soc. (London) A68, 656 (1955); C. F.
Wandel, thesis, (Copenhagan, 1953), (unpublished); M. Moshin-
sky, Rev. mex. fis. I%’, 1 5956); D. M. Brink, Proc. Phys. Soc.
(London) A68, 994 (1955).



R-MATRIX THEORY OF NUCLEAR REACTIONS

Coulomb potential between the protons in the target
nucleus and those in the projectile by the single term
Z1Z+€%/7.1s only an approximation. There are additional
terms which, although smaller, can cause inelastic
scattering. Such scattering by Coulomb forces is called
“Coulomb excitation.” It is well understood theo-
retically® and its existence has been thoroughly con-
firmed experimentally. Clearly the ratio of the cross
section for excitation of a given level by Coulomb
excitation to that by the compound nucleus mechanism
may be increased to any desired amount by reducing the
bombarding energy far enough below the Coulomb
barrier. At these low energies, compound nucleus for-
mation is exceedingly small since almost no projectiles
penetrate the barrier and reach the target nucleus.
Since the Coulomb excitation process does not require
close collisions, it is not nearly as seriously inhibited by
the low energy. It differs from the other three processes
that have been mentioned because, at low enough
energies, this special process will always account for a
large fraction of the total reaction cross section. Never-
theless in general the cross sections for reactions other
than inelastic scattering of charged particles will be
very little influenced by Coulomb excitation. However
there are cases where the presence of excitation processes
(real and virtual) does affect other types of reaction.
For instance, it has lately been shown® that the
N¥(N¥N®¥)N'® transfer reaction is affected by virtual
Coulomb excitation occurring before actual nuclear
interactions come into play.

The fact that the Coulomb excitation mechanism is
excluded by assumption (4) for any finite choice of a,
places this mechanism apart from the other three,
which are consistent with (4) provided the a. are taken
large enough. Since R-matrix theory is exact, if (4) is
satisfied, it must be possible to describe the three
mechanisms (i), (ii), and (iii) with R-matrix theory.
Although R-matrix theory must be capable of describ-
ing most reaction mechanisms, its most immediate appli-
cation is to the compound nucleus mechanism. This
follows from the fact that the theory is framed in terms
of a set of states of all particles which are naturally asso-
ciated with the compound states of the compound
nucleus mechanism. It is not so easy to spot how the
theory may be adapted to describe direct mechanisms.
Nevertheless, this adaption can be made, as shown by
Bloch® (and described in detail in Sec. XI, 6). The
essential point is that the only factor in R-matrix theory
that could possibly correspond to direct mechanisms are
the sums over the far-away levels. In theadaption to the
compound nucleus mechanism such sums are dropped as
aresult of the random-sign approximation. This approxi-
mation eliminates the direct mechanisms. Consequently,
to describe these mechanisms one must not make the
random-sign approximation, but must retain the far-

¥ Alder, Bohr, Huus, Mottelson, and Winther, Revs. Modern

Phys. 28,432 (1956).
% G, Breit and M. E. Ebel, Phys. Rev. 104, 1030 (1956).
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away levels and perform the sums over them by using
closure relations (see Sec. XI, 6).

III. NUCLEAR CONFIGURATION SPACE AND
FORM OF THE WAVE FUNCTIONS

We now establish the basic framework of R-matrix
theory. First we discuss a number of concepts and
definitions and introduce the idea of nuclear configura-
tion space. Following this, we describe the various
types of wave function that occur.

The theory of nuclear reactions, like any contempor-
ary theories in physics, has been plagued by the use of
a variety of conventions of notation. This is especially
apparent on comparing the papers of Wigner!:'2 and
co-workers with the theory in the book of Blatt and
Weisskopf.? (The symbol v2is the reduced width in the
former and the square root of the same quantity in the
latter!) We follow Wigner’s notation as far as possible
with some minor changes. For instance, our reduced
width y?is equal to Wigner’s reduced width divided by
the distance @.. Such a change seems necessary to make
the dimensions of y? such as to justify the term “width”
(i.e., to give ¥? the dimension of energy, instead of the
confusing energy-times-length).

1. Definitions and Notation

Two of the basic concepts of R-matrix theory of a
nuclear system are: (i) the total system being separated
into various pairs of nuclei (sometimes these pairs are
called “‘alternatives”); (ii) the associated interaction
radii @.. These concepts and their interpretation in the
nuclear configuration space are now examined.

The Separated pairs or “alternatives” ¢.—As yet we
have only loosely defined the symbol ¢ as labeling pairs
of nuclei. Now we specify the precise features of a given
pair of nuclei that the symbol ¢ implies. We consider a
total system of 4 nucleons separated into two groups
containing 4; and A4, nucleons. If these groups are
bound, they will be two definite nuclei in certain
quantum states, ey and a; (say) with spins I; and I,
whose components in some specified direction are 4,
and ;. We could label the pair of nuclei, including spin
orientations, by the set of quantities {a(I1/2)i1is},
where « is written for the pair ajee. In practice it is
convenient to use an alternative representation.
Instead of specifying ¢, and 7., we prescribe the so-called
“‘channel spin” s and its component », so that a state
in the new representation is labeled by the set of quan-
tities {a(Z1l2),sv}. This channel spin s is formed by
coupling I; and I. together: s=I;+1I, and can take
values between |I;—I,| and |I;+1,].

In the definition of ¢, it is convenient, not only to
include specification of the two nuclei themselves as
given in this channel spin representation, but also
features of their relative motion. For prescribing the
latter, as in any reaction theory, we have the choice
of two representations. One is the “angle representa-
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tion” in which the states are plane waves, each with a
definite direction (usually specified by a wave-number
vector k) but containing all relative angular momenta.
This is the more useful representation for high bom-
barding energies when a large number of relative
angular momentum waves play a role in the reactions
which involve mainly a small range of angles about the
incident beam. The other representation is that in
which a state has a definite relative orbital angular
momentum ! (and component #z), but contains com-
ponents of all angles. This representation is generally
useful at lower bombarding energies where only a
limited number of relative angular momenta can con-
tribute to a reaction. Thus it should be the more
suitable for discussing reactions through the compound
nucleus. We adopt it here, so that the symbol ¢ implies
the total set of quantities {a(I1f5)svim}.

Occasionally we find it useful to change this repre-
sentation somewhat and combine the channel spin s,
and the relative orbital angular momentum / into a
“total spin” quantum number J=s-1 and its com-
ponent M. In this case, ¢ implies the set {a(/115)s],JM }.

The interaction radii.—For a given pair ¢, the “inter-
action radius” a. is the minimum radial distance of
separation of the pair at which neither nucleus experi-
ences any polarizing force from the other. Since this
definition implies a dependence only on « and not on
(svlm), it is just as appropriate to write a, instead of a,
and we shall sometimes do this. Many suggestions have
been made by various authors that a. has a simple
dependence on the mass-numbers 4; and 4. A com-
monly used prescription has been

da=1’0(A1%+A2i), (11)

where 7o is independent of 4, and 4, and has a nu-
merical value between 1.40 and 1.50X10% cm.
Configuration space and channels.—It is useful to
introduce the concept of the configuration space of all
A nucleons. Corresponding to the three spatial degrees
of freedom of each particle, this space has 34 dimen-
sions. If we include the extra two degrees of freedom
that each nucleon has by virtue of its intrinsic spin,
this makes 64 dimensions altogether. In this space,
there is a certain region, called the “internal region,” by
Wigner and Eisenbud, corresponding to all nucleons
being close together in a volume of nuclear dimensions
in physical space. Certain other regions, called channels
by Breit,? correspond to the nucleons being separated
into two groups, 4 and As, in physical space beyond
distances a@,. All the rest of configuration space cor-
responds to situations in physical space which occur with
negligible probability. The channel for each split
A= (A1,4,) is separated from the others by such regions
of zero probability. This means that a given pair of
nuclei in their channel cannot change directly into
another pair (channel). Such a change can only take
place indirectly via the internal region. This internal re-
gion is bounded by the “channel surfaces” 7a=aaq, 74 be-
ing taken as the relative radial coordinate of the pair a.
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As yet we have only defined channels for different
splits, (41,42) of the total number of nucleons. To a
given split (4,,4,), there corresponds in general many
pairs ¢ which have the same region of configuration
space for their channel. For instance, all those pairs ¢
that involve a definite pair of nuclei a but different
values of (/,m) have the same channel in configuration
space. Furthermore, all pairs ¢ corresponding to different
internal excitation states of the two nuclei in a given
split (4,4 ) share the same channel. Nevertheless, it is
possible to speak as though any given pair ¢ has its own
special channel that does not overlap any other channels
without any contradictions or paradoxes arising. The
reason is ultimately that, when the two members of a
pair ¢ are in the external region, they cannot disturb
each other. In other words, the wave functions of the
pairs cannot mix with each other because, from the
definition of the interaction radii, there are no forces to
cause any mixing in the external region.

Not only do many different pairs ¢ share the same
configuration space channel, but, conversely, there are
several channels in configuration space corresponding
to a given pair ¢. At least, this is true provided that we
do not distinguish, in a given pair ¢, particular indi-
vidual nucleons. If, for the pair ¢, the groups of 4; and
As nucleons contain N; and N neutrons, Z; and Z,

protons, there are (ZZVV1><Z1) configuration space

VA
channels corresponding to the pair ¢ where IV, Z are the
total numbers of neutrons and protons (NV,4N.=N,
Z1+Z,=7Z, N+Z=A). The indistinguishability of
nucleons which, as for all Fermi-Dirac particles, is repre-
sented by the need to antisymmetrize all wave functions,
makes it desirable nof to distinguish individual nucleons
in speaking of a pair ¢. Thus when we speak of the
“‘channel of pair ¢’ we mean implicitly the sum over all
< ]7\\7,1> (ZZI> configuration space channels.

The channel surfaces 8,.—The internal and external
regions of configuration space are separated by the
totality of channel surfaces 7o=a.. These surfaces
overlap but the regions of overlap correspond tophysical
situations that occur with negligible probability. For
instance, consider two surfaces representing splits into
a neutron and a residual nucleus and a proton and a
residual nucleus. The overlap region between the
surfaces corresponds to both a neutron and a proton
being separated from the rest of the system. This
physical situation will be relatively very improbable if
the total energy of the system does not allow a real
separation of this type, or if for any other reason three-
body processes are unimportant. This is guaranteed by
assumption (2).

We define 8, as the channel surface for the pair c.
All the channels (and so all the 8.) of the various pairs
¢ arising from a given split (41,42) actually coincide,
but we can think of the channels (and S) as distinct
without contradictions arising. The totality of all
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surfaces we write as 8=, 8,. Sachs* has suggested
that the surface 8 may be visualized as a polyhedron,
each hypersurface of which corresponds to a channel
entrance; the channels are then cylinders normal to
these planes. An element of the surface §, is

d8,= aa2dﬂcha; (1 2)

where d. is the element of solid angle of the relative
separation between the pair ¢ and ¢, represents the
internal coordinates of the pair a. It is convenient not to
specify individual nucleons in a given pair ¢. Thus 8.
is really a sum over <]]VV1> ( ?) channel surfaces.

As an illustrative example, consider the nuclear
reactions of Li” with protons:

Li"™4p (elastic scattering)
Li™ <+’ (inelastic scattering)
Be™t+n

Li¢+d

Het4-Het

Bef®+-photon, etc.

The bombardment Li™4p itself involves several
channels ¢. Since the spin of Li’ is ;=% and that of the
proton I;=%, the channel spin s is 1 or 2. Except at
very low energies, several incoming orbital angular
momentum waves / from an incident plane wave can
contribute to the reaction. Thus the reaction is initiated
by incident waves in several channels c. When the radial
distance of separation in these channels falls below a,,
the proton enters the Li” nucleus. This “internal region”
of configuration space corresponds to the compound
nucleus, Be®*. Decay of this nucleus leads to outgoing
waves in all channels for which the relative energy of
motion is positive. For instance, if decay into Be'+#
is energetically allowed, there will be outgoing waves in
the several channels that can give this pair. (Since there
are four neutrons that can be emitted, each of these
channels is really a sum over four channels, one for each
neutron.)

Finally we introduce the following additional channel
characterizations:

Li’+p— Be%* —

E,=E,, the energy of relative motion of the particles
of the pair ¢;

MuelMaz
M. =M,=———— the reduced mass;
Moy+Mo
M | Eq|\?
ke=ko,= (————) , the wave number;
h2
V. =0,=%ko/M 4, the relative velocity;
ZIaZ2m62
Ne=Na1= , the Coulomb field parameter;
Vo
o =0a=argl'(1+l+1n.), the Coulomb phase shift;
Pc=Pa= karm

#“R. G. Sachs, Nuclear Theory (Addison-Wesley Press, Cam-
bridge, 1953).
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M a1, Zoy and M ay, Z o5 are the mass, charge number of
the two particles of the paira, respectively. Occasionally,
when no ambiguity can arise, these will be written M,
Zy, My, Z,. The E, are positive for those channels
though which decay is energetically allowed and nega-
tive for those energetically forbidden; the latter
channels may also be referred to as “negative-energy”
or “virtual.”

2. Wave Functions for the External Region

Throughout the whole of configuration space, the
wave function of a given total system is assumed to
satisfy the Hamiltonian equation

HY=EY,

where E is the total energy and H, the Hamiltonian
operator, is the sum of 7', the kinetic energy operator
and V, the potential energy operator.

T has the form
h2

Vxd,

Z__

2m,~

where m, is the mass of particle 7 and

3 9 9
Vxi=|——, —

0xs ay.-, 9z; '

X = (:,12:) is the position vector of particle 5 referred
to a fixed arbitrary origin 0. For any general system of 4
particles, the dependence of T on the centroid vector
R=Xm)™3;mX;) may be separated off by
making an orthogonal transformation (X;) — (R,q.),
where the ¢, are a set of (34—3) internal coordinates
depending only on the relative positions of the particles.
(The requirement that the transformation be orthogonal
imposes the only restriction on the choice of ¢, that
concerns us here.) Under this transformation, 7' becomes

#2

T=——V+Tint
2M

where the first term is the kinetic energy of the motion
of the centroid (M being 3, m;, the total mass) and
the second term is that of the internal motion. The latter
has the form
62
2
¢ g8

where the ¢, are coefficients determined by the orthogonal
transformation. Making this type of transformation
separately on the kinetic energy operators of the sub-
systems a1 and a; of the pair a leads to

T= Ta1+ Ta2
7 72

VRI2_
2Ma1 2M02

Vel (Tint)er+ (Ting)az

where R; and R; are the centroid position vectors of a;
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and az. To obtain the final form of T suitable for a
channel involving the pair «, it is necessary to make a
second transformation, namely one from (R;,R;) to the
centroid position vector of the whole system R, and the
relative vector of a; and as, ro:

Ma1R1+Ma2R2
R~

Mo+Mae
) Rg— R1.
This transformation leads to the kinetic energy:
#? 72
T=——Vg'— Vrad+ (Tint)ar+ (Tint) e
2M 2M,

From the definition of the external region and the
channels, it follows that, in the channel ¢, V may be
decomposed into the form (Viat)ert (Vine)aetVo(7a),
where the last term is composed of the Coulomb poten-
tial and any other long-range potential between a; and
as. Thus, in a given channel ¢, the Hamiltonian may be
assumed to be the sum of four parts:

H= H0+Hc+Ha1+Hu2
#2

H0= ’_‘_‘_VRZ
M

2

where:

Hc= - V7a2+ Ve(ra)

a

Ha1 = (Tint)a1+ ( V'mt)al
Heo= (Tint) ezt (Ving)es.

Correspondingly the wave function ¥ in the channel ¢
may be taken as the product of four parts:

V=&(R)x (ra)¥a1(gar)az(gez)
where
H@=ed, Hux=6x,

.Ha]_lpaq: Ea1¢a1, Hazlpaz: Eag\l/aQ.

The wave functions ®, x, Y1, and Y« describe respec-
tively the centroid motion, the relative motion of ay
and a; and the internal states of a; and as. €, §, Eay, and
E., are the associated energies.

From now on, we never need to mention the centroid
motion explicitly. For convenience, we assume that the
centroid is at rest, so that e=0 and the total energy in a
given channel is then only a sum of three parts: E=§&
+ Ea;+Ea;. We now give separate discussions of the
wave functions of the internal states (the “channel spin
wave functions”) and the wave functions of relative

motion.
a. Channel Spin Wave Functions

Vo(rs) does not depend on the relative orientation of
the spins I; and I of a1 and as, so that there is degen-
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eracy with respect to these orientations. For this reason,
we may work with a basic set of channel wave functions
W which are linear combinations of products (rather than
single products) of the wave functions of the internal
states of a; and as. We will choose these combinations
so that each ¥ has the previously defined channel spin
s as a quantum number. To be more precise, the “‘channel
spin wave function” Y., of the pair « is constructed by
vector coupling the (normalized) wave functions of the
individual fragments a3 and as:

VYaor= Z (11[2i1i2 [ SV)l[/a111i1lI/azIzi2.

i1tig=»

(2.1)

The coefficients (I1/41i2|sv) are elements of the matrix
of the orthogonal transformation from the (I171,/25)
scheme to the (I14,57) scheme; they are called “vector-
addition” coefficients as discussed by, for instance,
Condon and Shortley.*?

The channel spin wave functions are mutually
orthogonal and normalized :

f‘paw*¢a’a'v'ds=47raa26asv, a’s’y’ (22)

where the integral is taken over the totality of channel
surfaces $=2_. 8. and where

6asv; a’s'y=0aa0ss'0yy’.

The orthornormality with respect to s and » is a con-
sequence of the unitary property of the vector addition
coefficients. When o and o’ signify two different divisions
of the total system, the orthonormality with respect to
a is a consequence of the absence of spatial overlap
between each ¢, whereas when they signify the same
division but into different states of excitation, it is a
consequence of the usual orthonormality of bound states
of a given system. These functions are real in the sense
that they have the time-reversal property

Ky(sv)=(=1)7¢(s —v), (23)

where we temporarily write ¥ (s») for Y4, and where K
is the time-reversal operator.*? This property follows
from (2.1) if ¥ (I141) and ¢ (I+is) have similar properties.
That is,

Ky (sv)
= Z (11[2i1'i2 ‘ SV)KIP(Iﬂl)KIﬁ(Iﬂz)
1142
=Y (I sinia] sv) (— V)it (I, —i)Y(Ia —1iv)
1142
=Z (I112"“1.1—1:218 —_ V) (— 1)—3+yll/(11 "-’L1)Il/(12 —“12)
142
=(=1)(s —»),
the third equality being a consequence of one of the
symmetry properties of the vector addition coefficients

(2.4)

2, U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, New York, 1953).
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and the fourth follows from (2.1) and the fact that
s—v is always an integer. As originally shown by
Wigner,® the operator K implies the transition to the
complex conjugate and multiplication with the spin
operators —io, of all elementary particles in the
nucleus. For more detailed accounts of K and the inter-
pretation of its effect on wave functions the reader is
referred to the literature.®124 The particular behavior
(2.3) was suggested by Biedenharn and Rose.*

b. Wave Functions of Relative Motion
The wave function of relative motion has the form
X~ Mhast (76) GV P (D)), (2.5)

where 7, and Q, denote the length and the direction of
the vector which goes from the particle 1 to particle 2.
The ¥ ,,» are the usual normalized spherical harmonics
of Condon and Shortley*? with the property

Y W¥= (= 1)V, D, (2.6)

As pointed out by Huby,* it is convenient to work with
spherical harmonic functions with the additional factor
1! because they satisfy the time-reversal condition of the
type (2.3), i.e.,

K@Y n®)= (=1 @Y ), 2.7)

and because the 4! factors which appear in plane-wave
expansions can be absorbed, thus simplifying the
formulas. The radial functions #.s(7) are solutions to
the radial Schroedinger equation

[dz I(I+1) 2M.

(Vaa— Ea)]uasl (ra)=0. (2.8)

For the time being we consider only a Coulomb inter-
action Vesu=Za1Zae?/r. in the external region, in
which case this equation is more conveniently put in
the dimensionless form

ot (po) = [0+ 1) pa 24+ 2000t F1 Jbar(pe) =0, (2.9)

wherein a prime denotes differentiation with respect to
pe; the upper sign applies to positive-energy channels
and the lower to negative-energy ones.

For positive-energy channels, the two linearly inde-
pendent solutions to (2.9) that occur most naturally in
the theoretical development are those representing
incoming (I) and owutgoing (O) waves. It is convenient
to work with solutions whose asymptotic forms for large
Pa are

I=1,t~exp[—i(pa—1Na log2pa—2ln+0a0)], (2.10a)
(2.10b)

where the superscripts -+ signify positive energy. These

8 E. P. Wigner, Gottingen Nachr. 31, 546 (1932).

# 1. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953).

4 R. Huby, Proc. Phys. Soc. (London) A67, 1113 (1954).

F=0ui"~exp[i(pa—1a 10g2pa— 3l +0a0) ]
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solutions are evidently complex conjugates of each
other. For applications it is more convenient to have
the formulas expressed in terms of two real, linearly
independent solutions. It is customary to use those
solutions which are regular (F) and irregular (G) at the
origin and whose asymptotic forms for large p, are

F.=F ~sin(pa—ne 10g2ps— 2lr+0a1), (2.112)
Ge=Gu~c0os(pa—1a10g2pa— Hr+0ar). (2.11b)
The Wronskian of this pair is

FJ/G,~G/F=1, (2.12)

which holds for all values of p, since Wronskians in
general are independent of p,. These functions have
been extensively studied by Breit and his collaborators*®
and tables are available covering certain ranges of p, 7,
and } (see Appendix). The relations between the two
sets of solutions are evidently

I;=(G.—1iF.) exp(iw,),
Ost=(G+1iF.) exp(—iwe),

(2.13a)
(2.13b)
where

1
W= Wal=0al—0Ta0=y_ tan~(n./n). (2.13c)

n=1

In the absence of a Coulomb field (9,=0), the I and
O functions are related to the Hankel functions ac-
cording to :

I+=—i(mpa/2) H113? (pa), (2.14a)
Oct=1(mpa/2) H113® (o) ; (2.14b)

and the relations between the F and G functions and

~ the J-type Bessel functions are

Fot=(mpa/2)W113(pa), (2.15a)
Gt=(=1)Umpa/2)T —111)(pa)- (2.15b)

For negative-energy channels, only the solution to
(2.9) which vanishes at infinity occurs in the usual
applications. We specify an O-type solution to have the
asymptotic form

(2.16)

so that, apart from a factor 74 it is just the analytical
continuation from the positive real axis to the positive
imaginary axis in the complex wave-number (%) plane
of the O*-type solution which is determined by (2.10b)
It is identical to the real, “exponentially decaying”
Whittaker function described in the appendix

O =W (=1 I+3%; 2pa). (2.17)

In the absence of a Coulomb field, it is related to the
modified Bessel function of the second kind:

0= (2p4/m) K 114(p)- (2.18)

6 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1951).

07 =0a~exp(—pa—1nq 10g2p,),
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An I-type solution could similarly be taken as the
analytical continuation of the I* function which is
determined by (2.10a). In view of its nonoccurence in
the usual applications, we need not be concerned with
the precise specification even though it appears in the
theoretical development.

¢. Complete Channel Wave Functions

Complete channel wave functions can now be written
down for positive energies corresponding to incoming
and owutgoing waves of unit flux crossing any sphere
centered at the origin; in the (aslvm) channel scheme
they are:

Ial+

astomt = (1Y) ey (2.192)
Va7
al+

OasZVm+= (ilYm(”) "pasv- (219b)
Va’? o

The corresponding functions in the (aslJM) scheme are

galeM+= Z (slvml]M)gasz,m+, (2208,)
v+m=M

Oo:leM+= Z (SleIJM)Oaslvm+- (2.20b)
vtm=M

The functions of the latter set behave under time-
reversal as ‘

K9asisnwt=(—1)""MOusus ", (2.21a)
KOusismt=(—1)7"Md g1y ™ (2.21b)

because of (2.3) and the fact that K acts on the radial
parts of (2.19) as the complex-conjugation operator.
Solutions analogous to (2.19) and (2.20) may be intro-
duced for the negative-energy channels by simply
replacing I+, Ot by I—, O~. Because the radial parts of
these solutions will be taken as real, the time-reversal
equations are

Koo =(—1)""MIu15—n,

KOusiowm=(—1)""MOus15—1s".

(2.22a)

(2.22b)

It is convenient to introduce the surface functions
Pastm="a Wasy (1'¥ V) (2.23)

for the terms in (2.5) which multiply the radial function
#as to give the total channel wave function. These have
the property of being mutually orthogonal and nor-
malized on §:

f Soaslvm* Da’s’ l’v’m’d8 = 6aslvm; a’s'l'v'm!- (224)

The corresponding functions of the (astJM) scheme,

QaslIM = Z (slvm] JM) Paslvm (2.25)

vtm=M
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are also mutually orthogonal and normalized on §:
f‘PaleM*SDa’s’l'J’M’ds: aaleM; a’s'l'J' M’y (226)

as a consequence of (2.24) and the unitary property of
the vector addition coefficients. These respective func-
tions are assumed to form complete sets of surface
functions on 8. For a detailed discussion of this assumed
completeness, the reader is referred to an account by
Sachs.#

3. Wave Functions for the Internal Region

In the internal region the total wave function ¥ for
any particular excitation energy E is composed of
various wave functions ¥ corresponding to definite
angular momenta J and components M. These wave
functions satisfy the wave equation,

H‘I/JM=E\I’JM, (31)

and can formally be expanded in the internal region in
terms of certain mutually orthogonal eigenfunctions
Xy of that region,

Vru=2 ArsXasum, (3.2)
x

these eigenfunctions being solutions to the wave equa-
tion at the real, energy eigenvalues Eys:

HX\su=ExsXrm. 3.3)

We specify later (Sec. V, 2) how the Xy, are defined
by certain eigenvalue boundary conditions on the surface
8. The expansion coefficients A; will in general be
functions of the excitation energy E and dependent on
the actual boundary conditions on §; in the absence of
a nonspherically symmetrical external field, such as a
magnetic field, they are independent of M. The eigen-
functions are assumed to be real in the sense of (2.3),

KXru=(—=1)7"MX\s_nu. (3.4)

4. Wave Functions on the Boundary Surface §

In the developments of Secs. V and VII, which
involve matching of the external and external functions
on 8, expressions are needed for the values and deriva-
tives of the radial parts of the external and internal
functions on § that is, of the #4s(74) of (2.5). For this
purpose it is convenient to introduce the value quantity,

Vo= (h*/2M ca.)*u.(a.), (4.1a)
and the derivative quantity
D= (ah*/2M ;) (duc/drc)ro =ac. (4.1b)

The (dimensionless) ratio D,/V, is also important and
referred to as the logarithmic derivative; it is actually
the radius a, times the logarithmic derivative of 7.
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times the radial part of the external or internal function
on 8. These quantities may be expressed as surface
integrals,

Ve=#/2M .a.)} f 0FVds, (4.2a)

D= #/2M .a,) *f ocF grad,(r¥)ds
= Vet (adit/2M )} f oo grad,Wds, (4.2b)

where ¥ is the complete wave function of the system
and grad, is the gradient normal to 8. The expansions
on 8 for ¥ and its normal gradient in terms of the
assumed complete set of surface functions ¢, are there-

fore

V=3 (2M.a./1)V s, (4.32)

grad,(r¥)=>" (2M .a./%")*D, ¢,

(4.3b)
grad,¥=>" (2M./a#*)}(D,—V.) ..

a. External Functions

Since the #(r.) are expressed in the external region
as a linear combination of I and O waves, it is useful
to have some symbols for the frequently occurring com-
binations of the surface values and derivatives of these
waves. The logarithmic derivative of the O-type wave
function is designated as

Le=(p04/0)re =ae=S+iP., (4.4)

the real and imaginary parts of which are, according to
(2.13b), (2.12), and (2.17), respectively,

Set= [Pc (Fch,'I"Gchl)/(F02+Gc2)]rc =ae,
S¢_= (Pch,/Wc) Te=0g,

Pc+= [Pc/ (Fcz'l’GcZ)]"c =ac,y
P =zero.

(4.4a)

(4.4b)

In the case of the positive-energy channels, the ratio
Qit=To/0c)re=act (4.5)

is a unit-modulus complex number which is expressible
as ‘

QG+E Qal+= eXPi (wc'_ ¢c+), (4.53.)
where
dFr=¢at=tan"(F,/G.). (4.5b)
We also introduce
L= (PJOI/Ic) Te=ac, (4.63.)
§B°= (pc/IcOc) Te=ac (4.6b)
and the Wronskian
w=(0,1,—1,0¢)rc=a, (4.6¢)
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which is not strictly a surface quantity because its
value is independent of the position of 8. For the
positive-energy channels

Q=L (4.72)
Por=P,+, (4.7b)
wet=2. (4.7¢)

We need not be concerned with stating similar relations
for the negative-energy channels.

There are four quantities involved in the specification
of the external functions on 8: I, I, O, 0’ or F, F', G,
G’. With specification of the Wronskian value (4.9¢) or
(2.12) for the positive-energy channels, only three
independent quantities are needed. For these we may
use S+, P, and ¢t Sqt (as well as S¢) is referred to
as the skift factor because it appears as a factor in the
level shift expression; P, is referred to as the penetration
factor because it appears as a factor in the level width
expression; while —¢.* is called the hard-sphere scat-
tering phase shift because it is the phase shift induced by
an infinitely repulsive sphere of radius a,, i.e., it cor-
responds to a node in the wave function at r,=a.. The
vanishing of P,~ is a reflection of the fact that the
negative-energy channels do not transmit any particle
fluxes. Some relations and approximations pertaining
to these three quantities, which are useful for appli-
cations, are given in the appendix.

b. Internal Functions

The value and derivative quantities for the internal
eigenfunctions are usually denoted by

Tre=Vo= ('hz/ZMcdc)%f e Xnruds, (4.82)

One=Dre="vxro+ (achz/ZMc)*f €0c* graan)\JMds (48b)

where ¢ denotes aslJM. Important properties of these
quantities are that they are real and independent of M.
According to Wigner,®1? these properties characterize
any surface scalar product of functions which behaves
in the same way under time reversal.

f Pasta* Xnsmd8= (@1, X 1a1) = (Xyar, 020)*
= (KX 5K ora0) = (— V"M (X s_zr,05-11)
= (pr—a,Xr—a)*. (4.9)

To obtain this result we have used (2.3) and the fact
that 27— 2M is always even. Since these scalar products.
are independent of M, one can conclude that

(4.10)

These scalar products vanish if the J values of the two
functions differ, or if their M values differ.

(era0,X50)= (07, X 1 20)*.
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The squared quantities v, are referred to as the
reduced level widths; from the definition (4.7b) they
have the dimensions of energy. The unsquared quan-
tities are referred to as reduced-width amplitudes. The
ratio of the amplitudes

6)\c/7)\a D)\G/V)\c—- (411)

is a logarithmic derivative quantity which is involved
in the specification of the (real) boundary conditions to
be satisfied by the X s on 8§ (Sec. V, 2).

IV. ELASTIC SCATTERING OF SPINLESS PARTICLES
BY A CENTRAL POTENTIAL

It is possible now to proceed directly with the com-
plete formal derivation of R-matrix theory. However,
as that includes considerations of spins, the possibility
of reactions, Coulomb fields, and the use of arbitrary
boundary conditions, the underlying physical principles
are apt to be concealed by the consequent complexities.
It is therefore desirable to begin with the simplest pos-
sible case which includes most of the principles. Such
is the elastic scattering of a spinless particle by another
spinless particle which results from a central force
interaction.

1. Derivation of the Cross-Section Formula

Since the interacting particles are assumed to be
spinless, the channel spin s and its component » are
zero; and since the incident plane wave beam has no
angular momentum about the beam direction, the com-
ponent # of the angular momentum quantum number
1 is also zero if we choose this direction for the axis of
quantization. The channels symbols s, », and 7 therefore
need not be used; there is also no need to use the
symbol & because reactions are supposed not to occur.
The quantum number / is then the only channel desig-
nation subscript that need be retained.

a. The R Function

The derivation of the general R-matrix relation of
the next section is based on an application of a Green’s
theorem relation. For elastic scattering this may readily
be obtained by manipulation of the Schroedinger
equations for the radial parts »~'u;(r) of the internal
wave function for a particular / value at the two energies
E; and E,:

(dPuy/dr®)+ 2M /1% (E—
(dPuz/dr®)+ (2M [ #2) (Eo—

V)u1=0,

V)u2= 0.

(1.1)

Here the interaction potential V includes the centrifugal
“potential,” and the subscripts 1 and 2 attached to the
u refer to the energy rather than to the / value. The
first of these is multiplied by #» and the second by u;,
and the difference is then integrated from the origin to
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the channel radius & to obtain
e d2M1 d2142
f (14'2—*——‘14/1——— d?’
0 dr? art

M @
+—h-2“(E1'—E2)f Urthedr=0. (12)
0

The Greew’s theorem relation is obtained by partial
integration (Green’s theorem) of the first integral,

du1 du2 2M @
(ug—————ul———) +—h7'(E1*'E2)f M1M2d7’=0, (13)
r=a 0

dr dr

the contribution from the origin vanishing because #
must vanish there if the radial part »%(7) is to remain
finite.

At certain real energies E,, the solutions #, to the
Schroedinger equation (111.3.1) will have zero deriva-
tives at the surface:

(dur/dr) ,=a=0. (14)

These energies are the energy eigenvalues and the cor-
responding solutions are the eigenfunctions which satisfy
the boundary conditions (1.4) at r=a. By applying (1.3)
to two eigenfunctions #) and #, belonging to two dif-
ferent eigenvalues E) and Ey,, one immediately finds
that the eigenfunctions are orthogonal in the internal
region; they are also considered to be normalized:

a
f M)‘u)\/dr = 5)\)\/.
0

The solution to (1.1) at any energy L may now be
expanded in the internal region in terms of the u,:

ME(7)=¥ A)(I«h(f), (16)

A)\ = f u)\uEdr.
0

For the determination of the expansion coefficients A4,
the Green’s theorem relation may be used again:

(1.5)

0<r<a,

where

—un(a) (dus/dr)at+ QM /%) (Ex— E) f aumdrz

or
72 wn(a) sdu
( E) (1.7)
2M E\—E
One thereby obtains the relation
up(r)=G(r,a)(adup/dr), (1.8)
where :
#? ur(r)ur(a)
G(r,a)= > 1.9
( 2Ma » E\—E (1.9
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is the Green’s funciion which relates the value of the
wave function in the internal region to its derivative on
the surface.? The R funcition is defined as

R=G(a,0)=2\ ¥ (Ex—E),

= (h%/2M a)*u)(a) (1.10a)

is the reduced-width amplitude which was introduced
in (111.4.8a). According to (1.8) R is equal to the
reciprocal of a times the logarithmic derivative of
uata:

(1.10)
where

R=ug(a)/a(dug/dr).. (1.11)

b. The Collision Function U

A general solution ¥; may always be expressed in
the external region as a linear combination of the
linearly independent 9; and O; waves of (2.19):

v~ dg,— U0, (1.12)

The coefficient U; is thus the amplitude of the unit-flux
outgoing wave O; which is associated with a unit-flux
incoming wave d,; it is called the collision or scattering
function.

c. lee Relation between the R Function and the Collision
Function

The collision function may be expressed in terms of
the R function by equating the logarithmic derivatives
of the internal and external wave functions at r=a:

(Il-' ULOD
( ) (1.13)
ol -U 101')
It follows that:
I; 1—L*R;
U=——-—, (1.14)
0, 1— Lle

where L; is the logarithmic derivative quantity of
(II1.4.4). Since R, is real, U; may be expressed in terms
of a phase shift 6; as

U= exp(248y), (1.15)

where

0= tan"ll:Rsz/(l—RpS'z):I-—qSl-}—wz, (1153.)

the quantities Sy, P, ¢, w; being given by (I11.4.4 and
5) and (IIT.2.13c). Since the Coulomb field is ignored,
w; is zero. In general there will be different vy:2, Ex,
R;, 8, for each partial wave [ that is effective. Evidently
the resonance contribution to §; from the first term
increases by 7 as E goes from level to level, and between
resonances where R;=0, §; is equal to —¢;, the so-called
hard sphere scattering phase shift, to within an integral
multiple of .

If the energy E is sufficiently close to one of the level
positions E,, it is justified to neglect all but the con-
tribution from that level in the R function expansion
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(1.10):
Ri=y\*/ (Ex—E). (1.16)

One thereby obtains the one-level approximation to the
phase shift,

3\
6;=tan‘1( ) — oy, (1.17a)
Exit+Av—E
where the level width
' I‘)\z= Z’YUZP; (117b)

determines how fast the phase changes when E passes
through the resonance energy E,i=Ex+Ay;, and the
level shift

An=—va2S) (1.17¢)

is the amount by which the resonance energy is shifted
from the eigenvalue position Ey;. The first term on the
right side of (1.17a) is referred to as the resonance con-
tribution and the second as the potential scattering
contribution.

The extreme one-level approximation of (1.16) can
be relaxed to some extent without much complication
by retaining the contribution to R; from all the other
levels as a contribution R;°:

Ri=R4v\?/(Exi—E). (1.18)
The phase shift may then be expressed as
3T\
a,=tan—1(~————) —o7, (1.19)
' Ex+A—E
where
DN =mlP/, A= —7a2SY,
¢1/= b1— tan*l[Rl"P,/(l — Rl"Sl)],
=[Si(1-R"S)—RLP*]/di;, P/=P)/d,

di= (1= RS>+ (R°Py)2.

If R is chosen to make (1.18) exact, then (1.19) is also
exact like (1.15a). Although (1.19) has the same form
as (1.17a), the level width, T')/, the level shift A/, and
the potential scattering phase ¢;" are now modified by
the contribution from the other levels. It is shown later
(Sec. X1, 4) that the contribution to ¢;’ from the other
levels is of the same order of magnitude as the hard
sphere contribution ¢;. Therefore, there is little jus-
tification to the interpretation of the observed potential
scattering as that caused by a hard sphere.

d. The Relation between the Collision Function and the
Cross Section

In order to obtain an expression for the differential
elastic scattering cross section in terms of the U;, one
forms the following linear combinations of solutions to
the wave equation:

imik! Zz: (2l+1)§(91— U;@z), (120)
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This wave function remains unchanged if we add to and
subtract from it the following wave function,

v exp(Gka)Y=v"1 Y 11(214+1)r"1F i (p) P1(cosh)y
l

=itk Y 2414 g,—0), (1.21)

which is the function representing a unit-flux beam of
particles directed along the z axis; here P;(cosf) is the
Legendre polynomial and the sum over ! is from /=0
to /=, One thereby obtains the solution

v exp(ika)W+irtk 1 Y (A+1)A-U)o, (1.22)
l

the asymptotic form of which is (noting that ¥,®
= (214-1/4x)}P))

exp (tkr)

v‘*[exp(ikz)-l— A (6) ]y&, (1.23)

7
where

AO)=%k1Y (214+-1)(1—Uy)Pi(cosh)

is the complex scattering amplitude. The solution (1.22)
is evidently the sum of a unit-flux plane wave, which
represents the incident beam, and outgoing waves.
which represent the scattered particles. The differential
elastic scattering cross section per unit solid angle is
therefore

a(0)=1400)|*
=152 (2141)(1—U;)Pi(cosd) |2 (1.24)
l

By forming the absolute square of (1.24) and integrating
over all solid angles, one obtains the total cross-section
expression

a,=fo'(0)d9=7rk_22 Q24D ]1=U,]2  (1.25)

In the review article by Blatt and Biedenharn an
expansion is given for (1.24) as a series of Legendre
polynomials with real coefficients. Further remarks
concerning these expansions may be found there.

2. Dependence of the R Function on the Boundary
Condition and Interaction Radius

The derivation of the last subsection involved the
use of a particular boundary condition on the eigen-
functions, namely the zero-derivative condition (1.4).
As far as the formal theory is concerned one can just
as well use a more general boundary condition on the

47 J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952); Biedenharn, Blatt, and Rose, Revs. Modern Phys,
24, 249 (1952).
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logarithmic derivative, like

r duy
()
uy dr /4
where B is a fixed (that is, independent of \) real
number. The orthonormalization condition (1.5) is
also valid with such a boundary condition, and the

other relations are modified as follows. For the ex-
pansion coefficients of (1.6), one finds

#? du B

du)\
ux-—upf—) / (B—E) (22)
i\ ).

n? ( dug 3 ) 5
a——DBu
2Ma\ dr " a A

Putting r=a in this equation and using the definition
(1.10) of the R function, we have

R(B)=(f-B)7, (24)

where, following Feshbach, Peaslee, and Weisskopf,'s

we have put
r dug
f= _——))
Ug dr a

i.e., fis the logarithmic derivative quantity of the radial
wave function times a. Since f does not depend on B,
the relation between R(B) and the R function for zero
slope boundary condition, i.e., R(0), is

BR(0)

1—BR(0)

(2.1)

A=

so that
U\ (f) U\ ((l)

E\—E

(2.3)

up(r)=

BR(B) (2.52)

Alternatively the dependence of R on B can be ex-
pressed as a differential equation:

R
—=R2 (2.5b)
dB

The formulas from (1.13) through (1.19) are adapted
to this boundary condition by simply replacing the
shift factor S by S where

SY=S5—B. (2.6)

Although the expression (1.15a) for the phase shift
would then contain a dependence on B through the
factor S% this dependence is compensated by the
dependence of R on B, so the phase shift is actually
independent of B, as it must be. Selection of the most
appropriate boundary condition is discussed in Sec.
XII.

From knowledge of the reduced widths and level
positions for a particular boundary condition, say B=0,
one can in principle obtain the corresponding quantities
for any other boundary condition. From (2.5) it is
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apparent that the energies E\(B) are the solutions to
the equation

1
=-. 7
R(0) 3 (2.7)

The reduced widths v,*(B) may be determined by con-
sideration of the quantity R?/(dR/dE). This quantity,
which we write as ¥?(E), is independent of the choice
of boundary condition B. [This can be seen from (2.4),
which shows that the quantity equals — (df/dE)™, and
the fact that f is independent of B.] Thus,

AR(B)\! AR(0)\!
Rz(B)('"aE‘ ="’2<E)=R2<°)(_a§)) . (28

Taken with the choice of energy E= E\(B), this equa-
tion gives, on using (2.7),

’Y)‘z(B) =’YZ(E)\(B)) N I:Bz(a](:g)) ) E=E)\(B)]_1. (2.9)

Just as the structure of the formal theory is the same
for any particular choice of boundary condition (i.e., of
B), so it is also the same for any particular choice of
interaction radius (i.e., of @), provided only that it is
taken greater than the minimum value allowed by
assumption (4) of Sec. II.2. In fact, as far as the formal
theory is concerned, @ and B are just parameters. This
is not true in applications where, as will be seen later
(e.g., Sec. XII), one must use particular values of a
and B in order to derive most benefit from the theory.
At present, however, we are only considering formal
aspects of the theory.

The collision function and cross section cannot depend
on a and B, of course. Consequently, in the expressions
for these quantities, although ¢ and B occur, they
always occur in compensating fashion. For instance, we
have just seen how, in the case of B, the combination
f=B+1/R(B) must be independent of B. In the case
of @, the compensation is somewhat more involved
because a occurs in both the “internal” function R and
the “external” functions I, O, and L.

Teichmann*® examined the formal dependence of the
quantities £y and v»? on choice of ¢ and B, and exhibited
this dependence in the form of simple first-order dif-
ferential equations. The dependence on B follows from
(2.5b) by considering the limit E—E,. This gives

IE)
—— ___,Y)‘z
0B
3(1a2) Yo
=22 X a—
v\ E,— Ey

The corresponding equations for the dependence on a

48 T. Teichmann, Phys. Rev. 77, 506 (1950); thesis, Princeton
(unpublished, 1949).
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are somewhat more complicated since, as expected, they
involve the external potentials. For these equations, and
for the corresponding equations for the general many-
channel theory of the following sections, we refer to
Teichman’s original work.

3. Special Case of a Square Potential Well

The special case of a square well for the internal
interaction illustrates some of the properties of the
R-function expansion. In this case the interaction
potential V of (1.1) contains a constant contribution ¥,
in the internal region where »<a; there is also the
centrifugal potential contribution J(J+1) (h%/2Mr?) for
angular momentum J.

a. Zero Angular Momentum (1=0)

The solution to (1.1) for arbitrary energy E is in
the internal region
ug(r)=sinKr, 3.1)
where

K=[2M(E-Vy)/W ],

and according to (1.11) the R function for a zero
boundary condition is therefore

(3.2)

where u= Ka. The energy eigenvalues are those energies
at which (3.1) has zero derivative at the surface, that is,
at which

M)\=K)‘a'=7r()‘_%)>

R=yu1 tany,

A=1,2,3---, (3.3

or
Ex=V ot (z*h*/2M a®) A\ —3)*. (3.3b)
The reduced-width amplitudes may be obtained using

(1.10a) ; after noting that (3.1) needs to be normalized,
one obtains

= (— )M (h2/Ma?)?. (3.4)
The R-function expansion is then
02N o
R=% =2 3.5)

X BA—E art(\—3)—p?

which is recognized as the partial fraction expansion for
w1 tany of (3.2).

It is possible to derive a simple expression for the
contribution to (3.5) at a particular energy level E,
from the other levels, that is for the quantity R(E»)
of (1.18). It follows from (2.8) that

@R/ ;dR\?
dvy*/dE=2R— R*— / ( —) .
dE?/ \dE

By substituting (1.18) into the above and evaluating
in the limit E= E,, one obtains

R(E))=—3%(dv*/dE)r),

(3.6)

3.7
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valid whether or not R° is treated as a constant. Ex-
pression (3.2) is then used to evaluate the right side
of (3.7), with the result that

[RO(ENI7=2u(EN)?= 20 (N—3)* (3.8)

The contribution from the other levels clearly dimin-
ishes as A increases. This tendency reflects the stronger
cancellation of positive and negative terms in the R°
function sum as \ increases from A=1 (where all terms
are positive).

b. Arbitrary Angular Momentum

The solution to (1.1) for arbitrary angular momentum
is the function F; of (III.2.15a) with u=Ka. The R
function for zero boundary condition

Ri=fi=F(u)/uFi (1), (3.9)

where the prime denotes differentiation with respect to
u. It is convenient to introduce a dimensionless quantity

0= (M a?/h?)v? (3.10)
then, from (2.4) and (2.8):
—6;7= (W*/Ma?) (df1/dE) =7 (u).  (3.11)
Using the equation for F;(u)
F"+[1=10+1)u*]F=0, (3.12)
it follows that
02 =[(fr+0) (i = 1) +u?]/u2 (3.13)
Now choosing
Bi=1 (3.14)

as the boundary condition, it is evident that 6;72(E)\)=1.
From (2.9) it follows that 6,2=1 and therefore the
reduced-width amplitude expression (3.4) holds for all
values of /. To find the energy eigenvalues Ey;, one
determines the corresponding values ux; for which the
right-hand side of (3.9) equals —1//. Using the recursion
formula

F/=Fi— (l/uF, (3.15)
this equality becomes
F1~1(ﬂ)\1)=0. (3163,)
so that
Eni= Vot (B2/2M a®)uri?, (3.16b)

where ua;is the Ath root of (3.16a). The quantity R°(E»)
is determined as in the case of zero angular momentum.
Using (3.13) together with (3.6) and (3.7), one obtains

RlO(EM): (2l+ 1)/2#)\12. (317)
The effect of the other levels thus becomes more
important as / increases.
4. Definition of a Resonance Level

It is appropriate to discuss at this place our definition
of a resonance, or virtual, energy level. According to
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(1.17¢), the resonance levels occur at those energies E,
at which ’
Ex+AN(E,)—E,=0. 4.1)

They are thus the energies at which the resonance con-
tribution to the phase shift formula [ (1.17a), or, prefer-
ably, (1.19)] is equal to odd integral multiples of 3.
This is the definition which is used throughout this
review. Since the level shift A)(E) is a bounded mono-
tonic function of the energy E, there will be a one-to-one
correspondence of the resonance levels and the energy
eigenvalues. As there is an infinite number of the latter,
there will also be an infinite number of the former.

The definition may seem unsatisfactory for several
reasons. First, the precise values that one obtains for
the E, depend upon which formula one uses for the
level shift in the interpretation of the resonance data,
that is, (1.17¢c) or the corresponding formula of (1.19).
There may also be a slight dependence on the boundary
condition when (1.19) is used for the potential scatter-
ing contribution to the phase shift. The main reason,
however, is that this definition implies that even in
field-free space, there will be an infinite spectrum of
resonance levels, as indicated by (3.3b) with V, set
equal to zero. In this case the resonance and potential
scattering contributions to the phase shift are equal in
magnitude but opposite in sign so that the phase shift
vanishes. This last reason is an extreme example of the
practical difficulty that one may encounter when trying
to separate the resonance from the potential scattering
contribution to the observed phase shift. For these
reasons resonance energies are sometimes defined in the
literature as those energies at which the phase shift
equals an odd-integral multiple of /2. Although this
definition involves no ambiguities, there is then no
longer a one-to-one correspondence between the E,
and the E,, and indeed, a nuclear system could have
only a few or even no such resonance levels.

In spite of these difficulties, we adhere to the defini-
tion (4.1) to avoid confusion, and because of its ac-
ceptance for the interpretation of the type of ‘“reso-
nance” data with which we are primarily concerned.
This problem of establishing the best definition of
resonance is a rather academic one. In practice, at a
sharp peak in a cross section most definitions give an
energy inside the width of the peak. Only for very
broad peaks do different definitions give very different
energies. When this occurs, it is a warning that the
interpretation in terms of a resonance is not a suitable
one.

5. Expansion of the Derivative of
the Wave Function

If one tries to obtain the derivative of #g(r) at r=a by dif-
ferentiating the individual terms of the sum for G(r,a) on the
right side of (1.8), one obtains a null result, because derivatives
of the individual terms are all zero according to (1.4). The ex-
planation for this paradox is that the derivative series thus
obtained is not uniformly convergent in the vicinity of the
surface. That it does converge, albeit nonuniformly, was shown
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in the following way by Jackson® for the case where the inter-
action potential is bounded.
The derivative series for (1 8) is

Do (f)ux (a)
W= 2M Er—

where a prime now denotes differentiation with respect to ». By
integrating the Schroedinger equation (1.1) for the u)(r) from 7
to @ and by noting the condition (1.4), one obtains

w ()= @U/) [ (Er—Vyundr.

The derivative series can therefore be expressed as

' (r)/u (@) =2)\3 u(a) j:  undr

' (a), (CRY)

(5.2)

+2(B—E) im0 f “ E—V)undr. (5.3)

According to Courant’s minimax considerations, if V is bounded,
no Ey differs from the corresponding E) for free space by more
than the bound, and consequently the second sum of (5.3) con-
verges in general and vanishes as 7—a, because the latter Ex~N?
for large \ as indicated by (3.3b). When 7 is near a, the first sum
is just the expansion of a function which is unity from 7 to a and
zero elsewhere, so that «/(r)—u’(a) as r—a.

It is not possible to develop a significant R-matrix theory in
terms of X which are zero on S (i.e. with B= ), because of
the above difficulty with regard to interchange of order of sum-
mation and differentiation. With such X) one might presume that
the development of subsection 1 could be carried out in an analo-
gous manner to give a relation

7 duE
UR” ( )
ug dr
corresponding to (1.11) but with the “R” function of the form
02
2
x EA—FE’
where the 6,2 are the quantities defined in (IIL.4.7h).
However, the above-mentioned difficulty of interchange is
encountered in the last step leading to this relation, namely
matching of internal and external normal gradients on 8. Never-
theless, a procedure which is described in Sec. V. 3a and does

not involve this matching may be used to obtain an ‘“R” function
of the form

“R”"=R*+2)\ Z(A+E)/(Ex+4)1022/ (Ex—E),

where A is an arbitrary constant energy and R a real symmetrical
matrix. The constant energy A arises from the identity

(Ea—Ey) _ A+E, _ (A+Ey)
(Ex—E1) (Ex—E2) (Ex+4)(Ex—E;) (Ex+A)(Ex—E))

which can be used instead of that of Sec. V. 3a. If A were infinite,
as in the ordinary R-matrix expansion, the above sum would in
general not converge because the §2 tend to increase with E,
rather than being essentially constant or decreasing, as in the
the case of the v)2. The Mittag-Leffler expansion for the logarith-
mic derivative of the square well wave function corresponds to
such an “R” function expansion with A=0 and R*=—1.

6. Properties of R Functions

a. General Mathematical R Functions

The ‘“physical” R function defined by (1.10) may be con-
sidered as belonging to the broader class of ‘‘mathematical” R
functions. The latter functions are defined as meromorphic

“59]) L. Jackson, thesis, New York University (unpublished,
1950).
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functions of a complex variable, the imaginary parts of which
functions are non-negative in the upper half-plane and non-
positive in the lower half. The R of (1.10) is evidently such a
function when considered as a function of the complex variable

&= E+iF,
R(8) =2\ v/ (Ex—8), (6.1)

provided that the poles E) are real and their residues —v)? are
negative, as in physical applications. Although the theory of
elastic scattering, just described, is only concerned with the evalu-
ation of R along the real axis where & is identified with the real
energy E of the nuclear system, later (Sec. XI) we show that,
when absorption is considered together with scattering, evalua-
tions are needed for complex energies, the imaginary parts of
which are one-half of the total absorption widths. The properties
of the mathematical R functions in general and certain types of
them of special physical interest in the resonance theory have
been studied extensively by Wigner.5=% Some of his results which
have applications in physical problems are stated in the following.
(2) An R function is real on the real axis and assumes real values
only on the real axis.—It follows from this theorem and the

definition that
R(&*)=R(8&)*. 6.2)

(%) The derivative of an R function is positive ab every regular
point of the real axis.—For the physical R functions given by (6.1)
this is obvious because

dR(E) <
dE hy (E>\ E)2

except at the singularities E). This property is particularly
important and one of its consequences in scattering theory is
developed in the next section. Excepting again the E), all of the
odd derivatives of (6.1) are positive on the real axis, and all of
the derivatives satisfy there the inequality™

(R / (n4-m) )2 REMOREmD / (2n+1)12m—1)1.  (6.4)

(#32) ALl poles of an R function must lie on the real axis, and they
are simple ones and have negative residues.—These properties are
manifest in the physical R functions of (6.1).

(%) Every R function can be expanded in an absolutely convergent
Mittag-Leffler series.—

R= a8+B+E(E

with a and v,2 positive, B and E,, real.—For the physical R
functions (6.1), =0 and =2, v,%/ .

(v) The linear fractional function
Q= (a1R+b1)/ (asR+bs) (6.6)

of an R function with positive determinant (@1bs— asb1>0) and real
coefficients is an R function.—A special case of this theorem has
already been encountered in the consideration of the change
induced in R by a change in B (subsection 2). A more significant
application of the theorem concerns (1.15a) where it shows that
if the quantities P and S of (1.15a) can be treated as constants,
the linear fractional function

Q=RP/(1—RS) (6.6a)

of that equation is an R function because P is always positive.
Therefore, Q has a series expansion of the form (6.5) and, more-
over, it can be shown that the absence of a linear term & in the
R of (1.15a) entails the absence of a similar term in Q. Hence, the
phase shift can be expressed as
0, )
Y g,—E) %

o= tan—‘(

% E. P. Wigner, Proc. Cambridge Phil. Soc. 47, 790 (1951).

51 E. P. Wigner, Ann. Math. 53, 36 (1951)

%2 E. P. Wigner, Ann. Math. 55 7 (1952).

8 E. P. Wigner, Ann. Math. Monthly 59, 669 (1952).

% E. P. Wigner and J. V. Neumann, Ann. Math. 59, 418 (1954).

>0, 6.3)

— E”) (6.5)

 (6.72)
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where the new constants H, and Q, are real, 6,2 positive, these
being related to the P, S, v\, and Ej, although in a complicated
manner. In practice P and S are not constants, and P in particular
will have a rather violent energy dependence when there is a
strong Coulomb barrier in the external region. S, on the other
hand, can usually be well approximated over a fairly wide energy
range on the real axis by a linear function S=S,+S:E with
S120. The linear fractional function R/[1—R(S¢+S18)] is also
an R function if S; is positive, and the linear term of its series
(6.5) is again absent. It is therefore preferable to expand the
phase shift as

9.2
8=t ‘IP( -+ )— 6.7b
R (e e (6.7b)
which involves no restriction on P and allows S to vary in the
indicated manner; the constants here are not the same as those
of (6.7a).
(v2) Every R function can be expressed as:—

R=b+a tang(8) 6.8)

with any real b, positive a, and a convergent series representation for
£(8) of the form,
g(&)=9 8+Eo+2(tan*1—871?—"+tan—1€—p) (6.8a)
v v v

with positive , ky, and real E,y, E,. The constants 4, Eo, E,, k, in
the expansion for a particular R will depend on the choice of a
and b. Owing to the violent energy dependence and the discon-
tinuous nature of R functions, it is sometimes convenient when
interpreting experimental data to plot the function g(E)=tan™!
X (R—b/a), which is continuous, rather than R itself.

(vit) Every R function can be expanded in an absolutely con-
vergent product of the form,

0— & II 1—-8/x%, II 1—8/x_,

R =y — 5= &/Z, s 1-8/2- 69)
the ovder of the numbers x,, Z, being
v Z 9<a9<Z 1 <w_1<Z0<%0<Z1<%1"  *.
(viss) The solution R(r,8) to Riccati’s equation
dR(r,8)/dr=R*+U(r)R— V(r)+ & (6.10)

with the initial condition R(0, &) = Ro, with real Ry, is an R function
of & for every value of r in the interval (0,a) where U(r) and
V() are real continuous fumctions. With the substitution
R=—(du/dr)/u. in (1.1), one obtains (6.10) with U=0,
V=QM/®)V(r), &§=2ME/%*. Thus the negatives of the
logarithmic derivatives of Bessel functions and of many other
functions, including the I functions, are R functions and permit
partial fraction and product representations of the form (6.5)
and (6.9), respectively. Although the physical R function is the
reciprocal of the logarithmic derivative of the wave function,
theorem (v) shows that the negative of this derivative is also an
R function.

b. Uniform R Functions

An R function is said to be uniform if it has both a pole density
p and a definite strength s, and if there is no linear term « & in
its expansion (6.5). By ‘‘definite strength,” it is meant that for
every & thereis an L(8) such that the sum of the residues of all
poles within any interval of length L>L(&) on the real axis is
between — (1— 8)sL and — (14 &)sL with s>0. The term “‘pole
density” has a similar meaning. The utility of these functions will
be apparent after the statements of some theorems pertaining
to them and after the introduction below of a special class of the
uniform R functions called ‘“‘statistical R functions.”

A trivial example of a uniform R function is =stan7p&. An
example of a nonuniform R function is (3.5), the reciprocal of the
logarithmic derivative of the square-well wave function.

(4x) If an R function has a pole density, that density is invariant
under the linear fractional transformation (6.6).—This theorem
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shows that if the R in (1.15a) is uniform, then the transformation
R/(1—RS) therein, S being considered as constant, will have the
same pole (or level) density.

(%) If an R function has o definile strength s, and if there is no
linear term & in its expansion (6.5), the imaginary part of R will
converge uniformly (in E) to ws as the imaginary part F of §=E-iF
goes to infinity.—This property may be made evident by replacing
the sum over levels of a uniform R function of the form (6.1) by
an integration for the evaluation of the imaginary part when F
is large compared with the mean spacing. The above example has
this property since taniew =4. A uniform R function also has the
property that its real part approaches a value which is inde-
pendent of E when F goes to infinity, provided that the con-
vergence of average strength to the asymptotic value is sufficiently
rapid, specifically, that the L(8&) which is involved in the defi-
nition of s satisfies the subsidiary condition L(8)<4/¢’, with
positive 4 and », when §<1.

Since the linear fractional transformation Q of (6.6) of a uniform
R function which satisfies such a subsidiary condition will also
be uniform and satisfy that condition, one can obtain the
strength s¢ and the corresponding real part Qo by evaluating the
right side of (6.6) at §=7. For the transformation Q=R/(1—RS)
the result is that, just as E(8)—Ro+imsg, so Q(8)—Qo+imsq as
&—E, where

Qo=Ro(1—R0oS)/[(1—RoS)*+ (wsrS)*]
Sq=SR/|:(1 -ROS)2+ (WSRS)2].

The last of these equations shows that the 6,2 of a series expansion
such as that in (6.7a) for Q will have an average which will in
general differ from the average of the )2 in spite of the fact that
the level density will remain the same.

(«z) For every uniform R function, the distance of two closest poles
never can exceed a definite limit and there is an upper limit for the
residue of any pole.—This follows immediately from the definition
of the strength and the corresponding definition of the pole
density.

(6.11)

¢. Statistical R Functions

Uniform R functions having definite distributions of spacings
and of strengths which are independent of the interval involved
in obtaining the distributions are called statistical R functions.
The condition for the existence of a distribution s(r) for strengths
is that for any positive §<1 there is an L(8) such that for any
integral L>L (&) on the real axis the integral

Jlls)—sut/Llar<s,

where sz,(7) is the number of residues which are smaller than —7
and belong to the poles of the interval L; the strength
s=Ss(r)dr. The quantities sy(r) and s(r) are monotonously
decreasing functions of their argument. A similar condition
applies to the distance D of subsequent poles from each other
which leads to the specification of a distribution function P (D)
for the number of distances larger than D; here the pole density
is p=P(0)=s(0). An example of a statistical R function is

R=tan[y 8+0+% tan1{tanh (\exr) tan (\e(8—wx))} ] (6.12)

in which the sum over % is a finite one and all Greek symbols with
the exception of & are positive. Although Wigner®! was able to
show that the distributions for spacing and strength of R functions
of the form (6.12) are invariant under an orthogonal fractional
transformation [a,24-bi2=1, az= — by, b= —ay, in (6.6) ], provided
that \; are incommensurable with », only a plausibility argument
could be given for the invariance of the transformation of ‘“most”
statistical R functions.

The general linear fractional transformation (6.6) of a uniform
R function which satisfies the subsidiary condition can be con-
sidered as a succession of three linear fractional transformations.
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The first of these is just the linear one,
‘Ra=(R—Ro)/ms, (6.13)

where R, is the quantity defined after theorem (x). The R function
so obtained has the property that R,(E+3) =14, and it is referred
to as a normalized uniform R function. The second is an “orthog-
onal” one (a*+4b%=1),

Qn=(aRn+b)/(—bRs+a)
= (Rn cosp+sing)/ (— Ry sing+cose)

= (Rn+tang)/(1—R, tang). (6.14)
The third is another linear one,
Q=0Qntc". (6.15)

In the case of the transformation (6.6a) tanp=msS/(1—RS),
c=ms/q, ¢'=[Ro(1—ReS) — (w5)2S]/q, where ¢ = (rs5)*+ (1 —RoS)>
The first and third transformations do not change the positions
of the poles, and merely multiply all of the residues by the same
number. Hence they affect neither the distribution of the distances
of successive poles nor the statistics of the ratios of the residues.
The second does not affect the density of poles, and transforms
normalized R functions into normalized R functions. However, it
may influence the frequency with which certain distances of poles
occur and may influence the statistics of the residues without
affecting the average value of either quantity.

To study the second transformation [i.e., (6.14)], one repre-
sents both R and Q, by expressions (6.8) with a=1, b=0;

R,=tangr(8); Qn=tange(8). (6.16)

In view of the orthogonal nature of the transformation, it follows

that
de=0Q/1+Q2=R./1+R2={r, (6.17)

where a dot denotes differentiation with respect to energy, so that
the derivative function

§(8)=1+2, x/[*+(8—E,)*] (6.18)

is the same for both representations and is for that reason referred
to as the “invariant derivative.” Both R, and Q, may therefore
be expressed as

tam./;s g(&)de

but with different lower integration limits ¢. Indeed, (6.14) reveals
that

(6.19)

ge=grt¢, (6.20)

where ¢=tan"1(b/a). By looking at Fig. 1 where the invariant
derivative is plotted, one sees that starting at a particular pole,
say Ei, the next pole E; is determined as the abscissa point at
which the area under ¢ between E; and E; is just w. By inserting
the series expansion (6.1) for R, into (6.17), one finds that the
reduced widths are simply

=1/g(Ex). (6.21)

The levels and corresponding widths of Q. can be obtained from
the same construction but starting, however, at a different
abscissa. Unless the «, and E, of (6.18) have special values or
unless =0, the chance of hitting on a definite value of ¢ will be
in the long run the same no matter at which abscissa point one
started originally. It therefore seems plausible that the distri-
butions for the widths and spacings of Q, will be the same as
those for R, i.e. the distributions of pole strengths and spacings
are invariant under orthogonal fractional tramsformations (6.14).
Since the same is true for the transformations (6.13) and (6.15),
it follows that the distributions are invariant under any fractional
transformation (6.6).

When applied to the transformation (2.5) corresponding to a
change in boundary condition B, this tells us what we might
suspect on physical grounds, viz., the distributions of v\ and D
do not depend on the choice of B. Another application is to the
transformation (6.6a). In this case, one can conclude that the
statistical distributions of the 6,2 and H, of (6.7a) are probably
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4(E)

Frc. 1. Construction of eigenvalues E, and reduced widths v,?
from the invariant derivative §(E) of (6.18). If the eigenvalue E;
is given, the position of E; is found by the condition that the
integrated area under the curve between E; and E; is equal to =.
The positions of Ej, Es and all the other poles may be found
similarly. The figure has been drawn for the situation 7A<r,
k,<<A, where A is the mean spacing of the E,. This corresponds
to separated peaks and small background. The area under a
completely isolated peak equals = so that, for isolated peaks
there is a one-one correspondence between the peaks and the E,.
In actuality the peaks are not isolated so that, if E; is near a
maximum of g, the succeeding E, are increasingly to the left to
the maxima and eventually begin to approach maxima from the
right. Thus, at least for #>0, the values §(E,), which are the
reciprocals of the reduced widths, wander through maxima and
minima and their distribution is independent of the position of E;.

not affected by the interactions in the external region which are
responsible for the nonvanishing factor .S in the transformation
(6.6a), provided this factor can be considered as essentially
constant and that the ,, E,, and », of (6.18), do not have “special”
values.

Invariance of the distribution laws does not reveal anything
about the forms of the distribution laws themselves. To deduce
these forms requires considerable extra information such as
specification of the distributions of pole strengths and spacings
of g(&) of (6.18). As an illustrative example, Wigner% has shown
that if the E, of (6.18) are distributed at random and if the «,
have some arbitrary distribution, one can write down expressions
for the distributions of )2 and of differences of subsequent Ej.

As yet, we have said nothing of the possibility of correlations
between the pole strengths and spacings of levels. Certainly the
foregoing arguments about the invariance of distributions are .
expected to apply to such correlations. Again, however, the
invariance of the correlations reveals nothing about their im-
portance or specific forms.

If, for instance, the plot of ¢ against energy consists of a series
of well-separated sharp spikes (i.e. if x, <<pole spacing) then, since
the area under each spike is ~m, it follows that any correlation
between the values of v)? and the spacings of subsequent Ey of
the R function is directly determined by the correlation (if any)
between values of k, and spacings of subsequent E, of the ¢
function. On the other hand, if the function ¢ is smoothed out,
there will emerge an additional superposed, correlation between
the values of v2 and spacings of subsequent E) viz., large widths
will be associated with large spacings, and small widths with
small spacings. Such a correlation was first suggested by Feshbach,
Peaslee, and Weisskopf's on the basis of more qualitative argu-
ments. It has also been suggested by Teichmann and Wigner®® on
the basis of Eq. (2.9). The trouble with these speculations is that
they are based on implicitly attributing qualitative properties to
functions that are really quite unknown. For instance, (2.9) in
itself gives no information about correlations [as can be seen by
considering B=0 in which case (2.9) reduces to the identity:
132(0) =732(0) J. Thus, some ad koc assumption must be made about
the behavior of the function y)2(B). The speculations!® 55 appear
to assume that widths have a fairly narrow distribution. The

5 T, Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952).
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experimental evidence, however, is that the distribution is very
broad.58

d. Physical R Functions

The “physical” R functions of nuclear reaction theory are not
‘“uniform” in the strict sense of the definition given. It is a well-
known experimental fact that the mean level width and the pole
strength function have long-range variations. Nevertheless one
can assert that the physical R functions are uniform in a restricted
sense, namely in restricted energy intervals. In other words, it is
possible to find an interval I containing a large number of levels
wherein the pole strength function s(E) and level density p(E)
are well defined and do not vary significantly from one end of the
interval to the other. (Of course it also follows that, if the dis-
tributions do not vary in the interval 7, the physical R functions
are statistical R functions in the same restricted sense.) Thus we
can write the actual (physical) R function as the sum of an R
function to be written R’ which is uniform everywhere and a term
— R, which will take into account the deviation of the actual R
function from uniformity outside of 1

R(8)=R'(8&)—Ro(8). (6.22)

The uniform R function R’ is constructed so that its poles in I
coincide with those of R, the respective residues being equal.
Outside of I the poles and residues of R’ need be specified only to
the extent that the uniformity property is realized, and these
poles and residues will in general differ from those of R. As a
consequence, it is reasonable for the approximate evaluation of
R, to replace the sums in the combination R’—R by an inte-
gration, whereupon one obtains for complex &§=E-iF with
positive F:

Ro(8) =R'—R=~irs(E)+R(8), (6.23a)
where
s [ S(ENAE'
Rey= [ = (6.23b)

is just the Stieltjes transform of s(E). If a strength s(E) can be
defined and if it is slowly varying with respect to energy intervals
containing a large number of levels, then Ry is also slowly varying,
that is, it is essentially constant in an interval of type I.

The inverse of the transform (6.23b) is

s(E)= lim [1 ImR(S)].

F—04 LT

(6.23c)

“For evaluation of R on the real axis, one may therefore consider
the relation

R(E)=R'(E)+ lim Re (&), (6.24)
L Fo04

the limit term being recognized as just the principal value of
JS's(ENAE'/(E'—E). On the other hand, when the imaginary
part F is large compared with the level spacing, R’ (&) approaches
iws(E) according to the property (x), and hence

R(&)~R (). (6.25)

As the transform E(8) is presumed to be only a slowly varying
function of E, the violent energy dependence or ‘‘resonance
structure” of R, which was manifest for real values of the energy
is no longer evident. This limiting property of R(§) plays an
important role in considerations of compound nucleus formation
in the region of overlapping levels (Sec. XI1.2).

7. Consideration of Bound States

Although R-matrix theory was developed for treatment of
nuclear reactions and scattering, it is of interest to apply it to
bound states.

In the case of simple two-body systems, bound states appear
at those energies at which the internal logarithmic derivative

5 C, E, Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).
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matches the external one for the wave function which vanishes
at infinity. The latter logarithmic derivative is the quantity S.~
of (III, 4.4a) and the former one is, from (2.4), equal to (R—B)~L,
Since, for uncharged particles, the quantity S, is monotonic
increasing, as is the quantity R, there will be either a bound or a
resonant state associated with each of the levels E (although
shifted in energy from E,).

The amplitude of the external wave function depends upon the
magnitude of the invariant quantity 42 of (2.8) or its dimen-
sionless equivalent 62 of (3.10). When the complete wave function
is normalized to unity over the entire configuration space; internal

plus external,
S war+ [ wzar=1
0 a :

The external part of this integral may be transformed by the

relation
a as )
2y = — 2
.L‘ u?dr av (a)(a .

which is derivable from a Green’s theorem relation similar to
(1.3) but taken in the limit as E, goes to E» and with the inte-
gration from the channel radius to infinity. The amplitude of the
external wave function is expressed in terms of a normalization
constant N by which the O-type wave function of (III, 2.18) is
to be multiplied to give the normalization (7.1)

(7.1)

(7.2)

ZN)* O(r)
=gl — ) | —< >
u(r) 0( AGTE) (r2a). (7.3)
One finds that, from the definition of ¢ in (3.10) and (1.10a):
N
N"=1—2€2(———- . 7.4
3(92) a ( )

The quantity (3S/9p?. is negative for bound channels; it is
tabulated in the appendix for a few values of the angular mo-
mentum. The amplitude factor is directly proportional to 8 for
small values of 6, as expected since  is just proportional to the
amplitude of the wave function at the surface, when the internal
function is normalized to unity.

8. Analytical Properties of the Collision Function
in the Complex Plane : the Causality Condition

Considerable attention has recently been given to the restric-
tions that are imposed by the causality principle on the analytical
form of the collision function U (k) considered as a function of
wave-number k. In considerations of this sort it is convenient to
begin by establishing the analytic continuation of U/ (k) from the
positive real axis into the complex % plane. In particular we will
now describe some relations that hold between the functions
U(k), U(k*), and U(—Fk) as a result of general physical principles
other than causality.

The collision function U (%) is defined as minus the coefficient
of the outgoing wave ¢ at infinity corresponding to incoming
wave e . In other words, the asymptotic form of the wave
function ¥y, is

o (r)~e~tkr—U (k) e, 8.1)

Here 1 is the solution of the equation Hyj=Ey; where the
energy E is related to & by E=(#%2/2m). Assuming only the H
is self-adjoint, it follows that, for two solutionsy, s corresponding
to energies E; and E,,

@) [_tviir] 0t - w0 S w62

where 7=a is any large sphere. On putting k;=%k, the left-hand
side vanishes and the insertion of (8.1) into the right-hand side
gives

UR)LUF)]*=1. 8.3)

This condition is the generalization for the complex plane of the
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usual unitary condition on the real positive & axis:
UR)U*(R)=|U(k)|2=1.

The relation between U (k) and U(—£%) follows from putting
—Fk for k in (8.1) and multiplying by —U (k):

=UERn(r)~LU R)U (—k) Je k= U (R)ei.

Comparing with (8.1) and assuming that, for a given outgoing
wave, there is only one possible incoming wave it follows that

UR)U(—k)=1. (8.4)

The specific form (1.14) for U from R function theory satisfies
the relations (8.3) and (8.4). (The fact the U (k) can be written
as exp[246(k) ], where 5(k) is a real odd function of % is sufficient
for this purpose.) It is expected that (8.3) and (8.4) should hold
for forms of U derived from specific theories since these relations
are supposed to follow from general physical principles which
must be embodied in any specific theory. When taken on the real
axis, (8.3) is a consequence of the conservation condition ex-
pressed in the self-adjointness of H. According to Van Kampen,5?
the relation (8.4) on the real axis follows provided that the total
energy has a lower bound.

We turn to the causality condition. Van Kampen® has for-
mulated this condition quantitatively and has shown from it and
the conservation condition that U(k) is regular in the first
quadrant of the & plane (except for possible poles on the positive
imaginary axis) and can be assigned the analytic form:

_ 1—k2/k)\3) e w §2k2—1 )
U(k)—I}( 1) eplivi—i . ),

where b is a non-negative constant and a(s) is a function of
bounded variation. On using the condition (8.4), it follows that
U (k) is regular in the second quadrant and, the form of U (k) can
be stated more specifically as

R S T Y N e L (1—k/u>,,
U)=e> klg(l—k/k)‘* 1+k/k>\)I,,I 1+k/iP,

where a is a constant 2 a, the inner radius of the field-free region,
and the 7P, run over-all zeros of U on the imaginary axis.
This form (8.5) for U is equivalent to a dispersion-type relation,
. namely :

Uk)eridk—1 2 e Im[U(k’)e”“”']dk, s 2b,

Pz Tado B E—R) n K2(K 241
where /2K ,2/2M = —E, are singularities associated with bound
states and the b, are corresponding residues.

The original motivation for these investigations into the ana-
lytical form of U (k) was provided by remarks made by Wigner
and the paper of Schuster and Tiomno.?® These latter authors
suggested (although they were not able to give a rigorous proof)
that the analytical form of U (k) given by the R-function theory
is a consequence of the causality condition. Although it is not
evident from inspection of (8.5), it is possible to show® that this
form for U(k) is equivalent to the specific form (1.14) derived
from the R-function theory for a bounded interaction. In other
words, the form (8.5) for U (k) implies that the function R(E)
defined by

(8.5)

8.6)

1 Ueike—1
ika Uekat1'
where E= (#2k2/2M) has the essential properties of our previously
established R function, i.e., R is real and meromorphic and
holomorphic in the upper half-energy plane.

Any angular momentum barrier or long-range potential is
allowed in the derivation from causality only if it is assumed to be
cut off and is treated as a part of the internal interactions. In
other words, as might be expected, the derivation of U (k) from

R(E)= 8.7

5 N. G. Van Kampen, Physica 20, 115 (1954).
% N. G. Van Kampen, Phys. Rev. 91, 1267 (1953).
® N. G. Van Kampen, Rev. mex. fis. 2, 233 (1953).
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the causality condition alone does not distinguish between
“internal” interactions and “external” barriers. Only the more
specific derivation from the R-function theory can take account
of physical information of this type.

9. Some Features of the Energy Dependence
of the Phase Shifts 9;

In subsection 1, the phase shifts 8; wave defined in terms of the
collision function U by the relation (1.15):
U;=exp (21'61) .
This implies the relation (1.15a) between §; and the R function,
RiP; )
1—R:S, d1twi,

and the following relation between 8; and the cross section for the
Ith partial wave:

1= tan“(

4r(214+1)

k24 (& cotdy)? 01

az=:—:—r(2l+1) sin?;=

a. Wigner’s Limit® on the Energy Derivative

Wigner noticed that a consequence of the positive definite
nature of
iRi_5
dE X\ (Ex—E)

is the existence of a lower limit on the values of (d8:;/dE). On
differentiating (1.15a) with respect to E, the coefficient of dRi/dE
is PiL (1— RS2+ (RiP1)2T™, which is positive. Thus omission of
the term in dR;/dE from the differentiated equation results in a
lower limit expression for d&i/dE. As an example, consider the
case of s-wave neutrons where S=0, P=p, 0=0, p=p:

aé_ p dR R _ dp sin2(8+p)_ dp
EE”1+(pR)2dE+(1+(pR)2 l)dE>( % l)dE' 02

Given the value of & at any energy, this equation gives a lower
limit on the value of d6/dE at that energy. For low energies
where p<k1, ds/dE must be positive. At very low energies,
(dp/dE)>>(dR/dE) and so the inequality tends to an equality. In
this limit (9.2) only expresses the known fact that, at very low
energies, 8 is proportional to p.

b. Effective Range Expansion

The work of Blatt and Jackson® and Bethe® has shown that,
in certain situations, it is useful to consider the quantity f(k) cots:
as a function expanded in powers of #2. If f(k) is chosen appro-
priately, the power series can converge rapidly so that the energy
dependence of the cross section (9.1) is expressed in terms of only

“two or three parameters instead of the infinite number implied by

using the R function relation (1.15a). These parameters correspond
to the coefficients RO =R(E=0), RW=(dR/dE)g—o, - in the
Taylor series expansion of R(E) about zero bombarding energy
E=0:

R(E) =R‘°)+ER<1>+§R(2J+ s, 9.3)
This correspondence shows that the useful application of the
effective range expansion is limited to energy regions in which R
is not strongly varying. For instance, it is not possible to treat
energy regions containing whole resonances [i.e., infinities of
R(E)]. The condition that R varies slowly is, of course, well
satisfied in cases to which the effective range theory is normally
applied, such as nucleon-nucleon scattering. In cases where there

6 E. P. Wigner, Phys. Rev. 98, 145 (1955).
61 T, M. Blatt and J. D. Jackson, Phys. Rev. 86, 18 (1949).
2 H. A. Bethe, Phys. Rev. 76, 38 (1949).
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are enough nucleons to form many compound states, the con-
dition is not satisfied. In fact, there are only a few instances in
light nuclei where the effective range theory is of any possible
use. In other words, there is very little overlap between the
situations of practical applicability of the R-function expansion
and the effective range expansion. The relationship between the
two theories has been examined by Teichmann® whose analysis
begins with a rearranged form of (1.15a),

where F and G are the functions defined in Sec. III (evaluated at
r=a), and the prime represents d/dp.

For s-wave neutrons, this can be immediately reduced to the
form of the standard effective range expansion,

9.4)

k cotd= —a-+3rok2— prokt. - 9.5)
with the following expressions for the coefficients:
“scattering length” =1/a=a—aR®
2q3 h2aa2
“ ff t- LR — [ —_n2 2‘___ (1)]. X
effective range” =7o=2| a—a?a+ 3 2MR (9.6)

Since % cotd cannot depend on the choice of @, neither can the
coefficients «, 7o, etc. Therefore Egs. (9.6) are really equations
for the dependence of R©®, RM, - .. on the choice of a.

In terms of the logarithmic derivative =R, Egs. (9.6) become

[flp-'=R®=1-1/8, 0.7

o= (N __R® _#®( (A-p?
T(E=0)= (dE B0 [ROP 2Ma2\1—,8+%/32—ro/2a>’

where B=aa.

Some physical interpretation of the coefficients 1/« and 7o can
be obtained by considering the case of a square potential well of
radius ¢ and depth V in the following situations:

] o #2 RW
(i) resonance at E=0; R®=, WMSROP
1/a= 0, 7o=a.

(ii) “antiresonance” at E=0; R® =0

2a 3( #
Va=a, r=3 [1 8V\Me? ]

These relations illustrate the facts that the value of a depends
sensitively on the position of the nearest resonance to E=0,
whereas the value of 79 depends much less on this and is always
near to the range of the well.

For s-wave protons, the effective range expansion can be
deduced from (9.4), (9.3) and expansions of F and G to be:

21 (k cotn)

1 +nkg ()= —ac+%7'00k2_?of°csk4; 9.8)
where
® 1
=-21 W Y ——. 9.9
gly=—2lmt2:* & S ©9)

The subscript ¢ indicates that these quantities depend on the
presence of the Coulomb field. This is to be expected since the
addition of one potential to another potential changes the phase
shift in a nonsimple fashion in general. If the added potential is
smooth, we expect the value of the effective range 7o should not
be much changed, even though the scattering length may be
appreciably altered. The extent to which the latter alters depends
on the magnitude of the added potential. In the case of the addi-
tion of an external Coulomb potential, Teichmann® determines
an approximation for the difference a.—a to be

a.—a=~2nk[In2na+~], (9.10)

where v is Euler’s constant and a is put equal to the radius of the

8 T, Teichmann, Phys. Rev. 83, 141 (1951),
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short range (nuclear) interaction, i.e., essentially 7o. Jackson and
Blatt® show that there should be an additional term —0.824 in
the square brackets when the Coulomb field also acts in the
internal region.

The importance of the difference is determined by the magni-
tude of 29k relative to a. For proton-proton bombardment, 2k
is only a few percent of 10® cm™ and so, except for anomalously
small o, the effect of the Coulomb field on « is small. For a general
nuclear bombardment, however, 2n% is much larger and there is
no simple relation between « and . which may be quite different.

V. THE R MATRIX IN THE GENERAL
(MANY-CHANNEL) CASE

The considerations in Sec. IV can be immediately
generalized to take account of the occurrence of spins
and reaction channels. We now establish the generalized
version of the fundamental R-matrix relation. This can
be derived in a number of ways. As in Sec. IV, we
emphasize the derivation using a Green’s theorem
relation.

1. Use of Green’s Theorem

The general derivation, which considers the possi-
bility of reactions as well as scattering, is based on an
application of the many-channel analog to the one-
channel Green’s-theorem relation given by (IV, 1.3).
The derivation of the analog relation is similar to that
of (IV, 1.3), and, as one might expect, in the many-
channel case the “surface” term of (IV, 1.3) is replaced
by the sum of such terms for each of the participating
channels.

Asin (IV, 1.1), the wave equation for a system of 4
nucleons is written for general solutions at two energies,

(1.1)

where H is the Hamiltonian operator. The first of these
is multiplied by ¥.* and the complex-conjugate of the
second by ¥y; the difference between the resulting
equations is integrated over the internal region 7:

H‘i’1=E1\If1, H\I’2= E2\I/2

(Ev—Ey) f VMY dr
- f [(HY) 0~V Jr. (1.2)

The interaction term V in H is assumed to be self-
adjoint so that

f[(V‘I’2)*‘I’1—‘I’2*V‘I’1]dT=0, (1.3)

and the kinetic energy terms which remain are inte-
grated by Green’s theorem (in 34-dimensional space)

( 6 J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
1950).
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to give

(Ez—' El)f‘l’z*\l’]_dT

= f #2/2M ;) (¥5* grad ¥, — ¥, grad,¥;*)dS
$

=ZC(V20*D10— Vch%*)‘ (1-4)

The last equality follows by substitution of the surface
representations (11T, 4.2) for ¥ and grad,¥. One note-
worthy feature in (1.4) is the appearance of the reduced
channel mass M., a consequence of the form of the
kinetic energy operator at the channel surfaces (Sec.
III, 2). The surface contribution to (1.4) takes account
only of the possibility of the breakup of ¥ into pairs of
fragments, breakup into triplets, quadruplets, etc.,
having been neglected: Therefore, the formula cannot
be applied to an (#,2#) reaction, for example, except
insofar as the emission of neutrons may be treated as a
succession of two processes (Sec. XIII, 2).

A useful special case of (1.4) occurs when ¥;=W¥,=¥
and E;=E,=E; for this case, by taking the real and
imaginary parts of (1.4), we have:

j:]\I/|2dr=Zc{—2 m(£) Im(Vcd;;*)

d
~[Re(]| 7 } (1.5)

and

0=3%|V.|* Im(f2), (1.6)

where Re(f;) and Im(f.) are defined as the real and
imaginary parts of the logarithmic derivatives

fe=D/Ve. 1.7

A similar type of relation also holds for the overlap
integral in the volume between two surfaces 8; and 8,
in a given channel ¢. Applying (1.4) to such a volume,

$z 82
(E2—Ey) | ¥*Widr= (V2c*ch_ Vch2c*) .
81 81

(1.8)

Corresponding to (1.5), i.e., putting ¥;,=¥,=¥ and

.E1=E2:
82

4 R V.l?
~~ [Re(7]) cl] .

81

Szl |2d [ (fo) I (V e
¥ = ""2 Im ¢ m c
$1 T / dE

(1.9)

2. The Fundamental R-Matrix Relation

The fundamental relation of the R-matrix theory is
the many-channel generalization of (IV, 1.10). Such a
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relation is used to determine the collision matrix U just
as (IV, 1.10) was used to determine the collision function
U in the one-channel case. This relation may be derived
by means of the Green’s-theorem relation (1.4).

By analogy with (IV, 2.1) for the one-channel case,
we now specify the general boundary conditions to be
satisfied by the complete set of states X sar of (I11, 3.3)
on the surfaces 8.. These conditions are taken to have

the form:
D)\c 6)\0
(=)=
Ve Ve

where the B, are independent of the . (The labels JM
will be assumed understood and dropped.) By applying
(1.4) to any two proper solutions Xy, X» belonging to
energy values E,, Ey, it is evident that the set of
proper solutions are mutually orthogonal with such
boundary conditions; they are normalized

2.1)

f XA Xndr=6xn. (2.2)

A wave function ¥ may be expanded in 7 in terms of
them,

V=5 4, X, (2.3)
A

the energy-dependent coefficients 4 being given by

A)\=fX)\*‘I’dT. (24)

As before these coefficients may be determined by
applying (1.4) to the solution ¥ of energy E and the X
of energy E,; the expansions (II1.4.3) are used for
¥ and grad,¥ on 8. One finds immediately that

A= (Ex—E)™ 2. Do,
DS=D;—B.V,

(2.5)

and the ). are put for V. using definition (ITI, 4.8a).
Expansion (2.3) now becomes:

X\Yxe
S
c LA E)‘—E

(2.6)

This equation relates the value of ¥ at any point in 7
to its “‘derivatives’” D2 on S; it is the analog to the
relation (IV, 1.8), the quantity in the square bracket
of (2.6) being considered as the Green’s function. By
operating on (2.6) with fs ¢.*d$ and using (I11, 4.8a),
one obtains the fundamental R-matrix relation

Vo= RooDd, (2.72)

where

Ryo= Z 'Y)\c"Y)\c/(E)\_' E) (28&)
A



284

Equations (2.7) and (2.8) are more conveniently
treated in matrix notation:

V=RDo,
R=§ (A Xyn)/ (Ex—E).

(2.7b)
(2.8b)

V and D° are considered as column vectors, the com-
ponents of which are the V., and DS The matrix
(¥aX ) is the matrix square of the vector v, the com-
ponents of which are the v\, In addition to being
symmetrical, the R matrix is also real because the yx.
are real.

It is convenient at this stage to consider the so-called
“square integral” of the internal region which is a
measure of the probability of all particles being together
in a “compound system” (not necessarily a compound
nucleus) of nuclear dimensions. This is calculated from
(2.6) to be

[12ar=$IS BBy Don

d
=3 DI—(R.c)Do*.
e dE

(2.92)

This integral may be expressed in matrix notation as
the scalar product

[ ;wpdT:(Do*,di;(R)Do).

The notation (x,y) for the scalar product of two
column vectors x and y stands for the transpose of x
(from a column to a row) times y. (No complex con-
jugate of x is taken.) The overlap integral for wave
functions ¥;(E;) and ¥,(E;) with surface derivative
quantities Dy? and D, may be expressed similarly:

f\I/ 1*\1/ sz

"= ?[Z (Ex—E) "2 eD1* 2 (Ex— E2) D2 ]

(2.9b)

= (D% Rys(E1,E,) D)

where :

(2.10)

aX

R(E)—R(Ey) B
X (Ba—E)(Er—Ey)

E(—E,

Ria(F1,Bx) =

With the aid of (2.7) we see that the expressions for the
two overlaps in (2.9) and (2.10) are equivalent to
those given previously, namely (1.5) and (1.4).

3. Alternative Derivaﬁons of the R Matrix

Three alternative derivations of the R-matrix relation (2.7)
have been given in the literature. The first two are fairly closely
related to the preceding derivation. The other one is different,
being based on the causality condition.
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a. Wigner’s Original Derivation

In Wigner’s first paper! on R-matrix theory, the wave function
was not assumed to be continuous across 8, as in the deduction
of (2.7) from (2.6). Instead, the Green’s theorem relation (1.4)
was applied again to two solutions of the form (2.6) belonging to
different energies. The result of this procedure is that the R
matrix of (2.7) is given by

—Ret3 XN
R=R +% E—E’ 3.1
where R” is an arbitrary, real-symmetric matrix which is inde-
pendent of energy. The continuity requirement is thus equivalent
to the vanishing of R*. This derivation of (3.1) is as follows.

If the expansions (2.6) for any two solutions ¥;, ¥, of energies
E,, E; are substituted into the Green’s-theorem relation (1.4) one
obtains

2e(Va*D10— V1eD2 )

—(By—E) 2 (2 __nemer

=B 2 NS Bo—E) (B

Assuming solutions of the form (2.7) for the V3.* and Vi, of the
left side of (3.2), one has upon rearranging

;c;r [(RZ(:c'*"‘Rlcc')

= eYher 3 YNNG )]D 0Dy *=0. (3.3
(x BEx—E; X By—EJJ7°7" 3.3)

By setting, first a particular D1=1 and a particular Ds.2*=1,
all others being zero and, secondly, D1.0=1, D;0*=1, all others
being zero, one observes that the solution for R is as given by
(3.1) with the properties specified there for R*. A symmetric
constant R” may formally be replaced by a sum Zx(YaX%))/
(Ex—E) in which the Ey) and %) are infinite in such a way as to
give a finite contribution.

)D10'0D26~°*. (3.2)

b. Derivation from a Variation Principle

This type of derivation is discussed for the one-channel case.
Subsequent generalization to the many channel case is quite
straightforward.6s

The usual variational principle for the energy of a bound state
is not suitable here. A related principle is needed which for a
given energy leads to a stationary value of the logarithmic deriva-
tive fr(a) of the wave function at some ‘‘external” point r=a.
Kohn® has written down such a principle, viz.,

fE(a):-z—i? '&?M____‘

ug?(a)

3.4)
For small variation in the function #z(r) about the exact wave
function, the right-hand side is stationary so §fz=0. In the spirit

of the derivation of the R-function relation in IV, 1 and V, 2, we
consider a trial wave function of the form:

(3.5

where the #) are members of an orthonormal complete set of
states that are exact solutions of

ug=2) Axu,

(3.6)

and satisfy the boundary condition #)’(e) =0. For the present, it
is assumed that there are only a finite number of terms in the
trial function (3.5).
On putting (3.5) in (3.4) and using (3.6),
(@) =2\ AN2(Bx—E)/(Z Axn ), 3.7

where the vy are the reduced width amplitudes of (IV, 1.10a).

Huy=E\uy,

6 W. Kohn, Phys. Rev. 74, 1763 (1948); J. L. Jackson, Phys.
Rev. 83, 301 (1951).



R-MATRIX THEORY OF NUCLEAR REACTIONS

From the stationary property of f

dfs/04)=0, (3.8)
it follows that

ANEA—E) /=2, 4 2(Ey—E)/Zy Apvu=C(say) (3.9)
where C is independent of A. Insertion in (3.7) immediately gives

(= T2 )—1
f@=\X5-%/ -

On allowing the number of elements in the trial function expansion
(3.5) to go to infinity, this expression for fz becomes equivalent
to the R function relation (IV, 1.10).

(3.10)

c. Derivation from Causality Condition

In Sec. IV, 8, we described how, in the case of one channel with
the assumption of no channel barrier beyond some finite point
r=a, the analytic form of the R function is a consequence of the
causality condition. This condition implies a certain analytic
form for the collision function U(k) which implies a definite
analytic form for R(E), that deduced from the R-function theory.
At present only a preliminary investigation has been made of the
problem of extending this result to the case of many channels.5

VI. COLLISION MATRIX U

A precise definition of the U matrix will now be given
and some of its general properties listed. The unitarity
and symmetry properties were not brought out in Sec.
IV because, in the case of one channel (elastic scat-
tering), they are trivial.

1. Definition

As mentioned in Sec. III, there are two possible
channel designation schemes {aslym} and {aslJM}.
Accordingly U can be defined in either scheme. The form
of the definition is quite unchanged by the scheme we
choose.

Let us consider a completely general solution to the
wave equation in the external region. Following the
definitions of incoming and outgoing waves in Sec. I11, 2,
this may be written

¥ (general) =2, (x,9,+7y.9.). (1.1)

The numbers y, are the amplitudes of the incoming
waves J, in the various channels ¢, while the %, are the
amplitudes of the outgoing waves .. For a given total
system, when the y. are given, the numbers x, are

determined by the nature of the system. The role of

the collision matrix is simply to give an expression for
the x, in terms of the v, as follows:

Xer = "Zc Uc'cyc

or, in matrix notation:

(1.2a)

=—Uy. (1.2b)

A wave J, or O, in one scheme is simply transformed to
the other scheme by rearranging the vector coupling,
so it is easy to transform U in one scheme to U in the
other scheme (subsection 3).

% N. G. Van Kampen (private communication).
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An often-used special case of the general solution
(1.1) corresponds to incident waves in one channel
only. Suppose this channel is ¢ and put y,=1 for this
channel and zero for all others, then

¥ (incident in ¢)=9,—2_ UycOp. 1.3)

2. Some Géneral Properties of U

As originally shown by Breit,?® the collision matrix
has certain general properties which do not depend on
specific reaction theories (such as R-matrix theory) but
only on broad physical principles. We now establish the
unitarity and symmetry of U.

a. Unitary Property (from Conservation)

Consider two particular solutions like (1.3) for the
wave equation which asymptotically are of the form

\I/lp= Zc(apcglc'_ Ulcp®lc);
\I,Zm: Zc(amcg%—' U2cm®2c)~

¥, is a solution at the energy E; with an incoming
wave only in channel p, and ¥, is a solution at E,
with an incoming wave only in channel m. By sub-
stituting these into the Green’s-theorem relation
(V, 1.4) with the surface 8 taken to be very large, one
obtains

(2.1)

(El'" Ez)f\l’zm*‘lflpdT
=% Z [(amcohl_ UZcm*I2cl) (6pc[1¢:"" Ulcpolc>
ct+

- (51»[14,“ Ulcp lcl> (6m0020_ U2cm*I2c)]
= %h{‘spm(O%’Ilp'— 11,/03y)
+Z U2cm*Ulcp (I2clolc— 010,120)
P

(2.2)

- Uzpm*IZp,IIp"‘ Ulmp 2m/01m
+ Ulmpolmlo2m+ Ume*Ilp,I2p}

(provided that the surface 8 is put far enough out so
that the contributions from the negative-energy
channels ¢~ can be ignored). If E;=E,, the left side of
(2.2) vanishes so that, with the Wronskian (III, 4.7c)

we have -

2 Uen*Ucp="bcp (2.3a)
or, in matrix notation,

(U1 (UH)=1, (2.3b)

where 1 means “complex conjugate transpose’” and the
superscript +-- signifies that only elements for positive
energy channels are concerned. Equation (2.3b) is
equivalent to the statement that U+t is unitary. One
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can say that this property is a consequence of con-
servation of probability flux since it is this conservation
that is expressed in the Green’s theorem relation (V,
1.4) that is the basis of the present proof.

Unlike the symmetry property discussed in the
following, the unitary property is established without
special reference to either of the two-channel designation
schemes.

b. The Symmetry Property (from Time Reversal)

We consider again solutions which are asymptotically
of the form (2.1) in the {aslJM} channel designation
scheme:

‘I'mzz (5mcgc— Ucmoc)'—z Ucmec, (24)
ct ct

the negative-energy channels being considered sepa-

rately. Since the time-reversal operator K of Sec. ITI, 2

commutes with the Hamiltonian, the following is also

a solution

(=1)7-MKW_,,
=Z (a—ch—c"‘ Uc—m*g—c) ""Z Uc-—m*o—c
ct ¢

=Z+ (6mc®c_“ Ucm*gc)"'z Ucm*Gc; (25)
[4 [

because of the time-reversal properties of the 9, and 0,
and the fact that U is independent of M; a negative
sign preceding the channel subscript indicates that
the negative of the total angular momentum component
M is to be used. If ¥, is a solution of the form (2.4)
with an incident wave in only channel 7, then a linear
combination of such solutions is also a solution; in
particular, the following combination is a solution:

—% Un*¥,
- L @rolmm* 9= Urn*Ues00)
- + X Um*Uss0.,
=X [ (UmUu0o)= Ucm*sr:]r
o + 2 Un*UetO..

crt

(2.6)

The particular solutions (2.5) and (2.6) have identical
incoming waves, and hence the coefficients of the
outgoing waves must be the same in each channel:

Z UTM*UC+T= 61nc+, (273.)
Z Urm*Uo“r": - Uc_m*- (2.8&)
In matrix form these are expressed as
(UH) (UHh)*=1, (2.7b)
(U= H) (UH)*4 (U= H)*=0. (2.8b)

Comparing (2.7b) with (2.3b), it is evident that the
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positive-energy submatrix U+ is symmetric:

Ut+=transpose (U++). (2.9

The time-reversed solution of a solution of type ¥,,
can be expressed as a linear combination of solutions
having incident waves in various channels,

K= (—=1)7"¥13 U, _,*¥,. (2.10)

The time-reversed solutions are therefore not inde-
pendent of the original set of solutions.

These considerations apply to the {asiJM} channel
designation scheme. It is straightforward to show that

in the {asvim} channel designation scheme

Upptt= (= 1)2U_p ;= Up*, (2.11)

where (—1)” means (—1)*+—" and —r designates
channel » with all components reversed in direction.
These equalities are applicable to the {aslJM} scheme
as well because in that scheme (—1)™*?=1, which
corresponds to the fact that U is independent of M.

c. Analytical Properties of U(k)

It is of formal interest to consider the collision
matrix as an analytical function of its channel wave
number variables k.. The present discussion is a close
parallel of Sec. IV, 8 which dealt with the special case
of the collision function for elastic scattering. The only
special feature of the general (many-channel) case to
which attention need be drawn is the presence of
negative energy or bound channels. These can be
included in the discussion just like positive energy
channels provided that the usual relation E,= k% 2/2M
is assumed to hold (i.e., the wave numbers &, are pure
imaginary for the bound channels), and provided that
ingoing and outgoing waves are chosen to have the
same Wronskian (ITI, 4.6c and 7¢) as for positive energy
channels.

As in Sec. IV, 8, we first establish the generalizations
for the complex plane of the usual unitarity and sym-
metry properties of U that apply on the positive real &
axes. From the asymptotic behaviors of the outgoing
and incoming wave functions of (III, 2.10), it is evident
that, if the Coulomb field is neglected or cut off, the
following symmetry relations exist for their radial
parts:

O(k*)*=1(k),

O(=k)=1I(k),

I(F*)*=0(k).

I(—k)=0(k). (212)

For the generalization of the unitarity property, we
assume the self-adjointness of the Hamiltonian as
expressed in the Green’s-theorem relation (1.2). On
putting

‘I’1p=\1’1p(k); Wom= Ty (k*),

the difference of the energies on the left-hand side
vanishes and the right-hand side yields the matrix
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relation:

U(RLU®E)I'=1,

which is to be compared with the unitary relation (2.3)
applying on the real energy axis. For the generalization
of the symmetry property (2.9), we follow the same
procedure of (2.5) and (2.6). The relation,

U®R[U®E) =1,

follows if the quantities in (2.4) and (2.5) are considered
as functions of &* rather than k. Equations (2.13) and
(2.14) together give the symmetry property

U(k)=transpose U(k).

(2.13)

(2.14)

(2.15)

A second symmetry property which involves U(—k)
(and therefore has no analog on the positive real axis)
is obtained by consideration of a wave function of the
form

‘I’p(—k)"——gp("k)"z Ucp(_k) ec(_‘k)

(2.16)
=(—1)0,(k) =2 Ucp(—k)(—1)9,(k).

The factor (—¢) of the second equality arises from the
normalization factor in the running waves. A linear
combination of solutions such as (2.16) is also asolution;
in particular the following combination is a solution:

; (2.17)

=2 Upr(B)Ucp(— k)9 o(k) =2 U ,pr(k) 0, (R).

The outgoing waves of (2.17) are the same as those of
the standard expansion

so that the incoming waves must be the same, indicating
that

U(-k)U)=1. (2.19)
By comparing (2.19) with (2.14) one obtains
U(—k)=[UE")T* (2.20)

By considering the R matrix expression for the col-
lision matrix U in the form (1.6) of the next section
with the external functions satisfying the symmetry
properties (2.12) and the associated Wronskian, it is
evident that this special form of U satisfies the above
symmetry properties (2.13), (2.15), and (2.20) in the
complex planes.

To make a complete parallel with the special case
of elastic scattering in Sec. IV, 8, one should describe
the analytic properties of U that are a consequence of
causality. However, as far as we are aware, the only
attention that has been given to this matter consists in
certain unpublished observations by Van Kampen.
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3. Connection between the Collision Matrices
of the {asl/JM} and {aslvm} Channel
Designation Schemes

The collision matrix that emerges from the theory of
Secs. V and VII refers to the {aslJM} channel desig-
nation scheme. For the determination of the differential
cross sections in Sec. VIII, we need the collision matrix
referring to the {aslym} scheme. To obtain the con-
nection between the two, we consider the solution
having an incoming wave in only the {asiJM} channel.
In the external region, this has the form:

‘I’JM= galeM'_Za’a’l’Ua's’l’, asl"oa’s’l’JM (313')

which, by substituting the expansions (III.2.20), may
also be written as

\I,JM=ZV"m" (SZV”m” ! ]M)gaslv"m”—Za's’l’
x Ua’s’l’, asl"Z »'m! (s’l'v'm' I ]M) Oalslzw'm’. (3.1b)
A linear combination of such solutions is also a solution,

and, in particular, the following combination is a
solution :

\I/vm=Z.IM(Sle ] ]M)‘I’JM
=3 savrmr (shom | TM) (sbv"'m’" | TM) 9 astvm
_ZJMa's’v’m'(SleI]M)

XUasrvr, ast? SV | TM)Oursrvryrmr.  (3.2)
By utilizing the unitary property
2 s (shom| TM) (sb"'m" | TM) = 8,m. v/ mr,
this solution reduces to
Vo= Sastom— 2 ars't'vm Unr oty m, asrimOar v (3.38)

where

Ua's’l’v’m’,aslvm‘_‘ZJM(SleIJM)
X Ua's’ UV, as lJ (S’l”Vm, l JM) (33b)

is the “ordinary” collision matrix for the {aslvm}
scheme.

4. Generalized Collision Matrices

The collision matrix of subsection 1 gives, by definition, the
coefficients of the outgoing wave functions O in terms of the
coefficients of the incoming wave functions 9. These two types of
wave functions are independent as their Wronksian (III, 4.6¢c) is
not zero. The derivation of subsection 1 can be carried out using
any arbitrary pairs of independent wave functions, the Wronskians
of which are not zero. These wave functions will be referred to as
generalized incoming and outgoing waves, 97 and OF, respec-
tively. The matrix which gives the coefficients of the Of waves in
terms of the coefficients of the 9% waves is referred to as the
generalized collision matrix U'. The radial parts IT, OF of the
generalized waves are related to the original ones by a set of four
quantities:

IOT =&l +n0,, OcT =¢ o+X0e, (4.1)
and the generalized Wronskian is
wd =08 IF—130} =2 (noge— £exc). @4.2)

In the external region the particular solutions are then of the
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generalized form
\I’m=zc (acm gcT"‘ UcmT ocf) (43)

By replacing the daggered waves by the undaggered ones using the
relations (4.1), one finds that

V= 2c[<fcacm_ Ucm.rg‘c) gz_ (UcmTXc"‘ﬂcacm) Oc] (44)

Defining &, %, { as diagonal matrices with elements &, 7., {c
respectively, the linear combination:

¥ =2,(E— (Ui,
=Ec(6ctgc— Ucl@c)
is also a solution, where
U= (xU"—n) (E-LUH~ (4.5)

is the relation between the generalized UT and the U of subsection
1. From (4 5), one has the inverse relation

Ut=(x+ U0 (UE+). (4.52)

Although U is symmetrical with respect to channels having the
same Wronskian values, it is evident from the arguments of
subsection 2a that it is only unitary if the Wronskian (4.2) is
pure imaginary and the same for all channels.

a. The Q Matrix

An example of a generalized collision matrix is the Q matrix
(or “reactance matrix”), introduced by Teichmann and Wigner.5
The radial external wave functions associated with this matrix
are I'=F and Ot= —G so that the uantities of (4.1) and (4.2)
are £=1%, n=—1%1, , x=—%, w' =1. According to (4.5)

U= (l+zQ 1-iQ) (4.6)

and by substituting F, —G, F’, —G’, 1 for I, 0, I’, 0’, w in (1.6a)
of the next section, one obtains
Q=—-FG40*G1(1—-RL)Rp*G™*
=—FG'+oHG)[A) R HG)* &7
where
L'=9G'G™;
the second equation is obtained by rearranging and applying the
Wronskian relation (III, 2.12) to the first; it is the formula which
was considered by Teichmann and Wigner. The procedures of
Sec. IX can be used to obtain level expansions for the Q matrix;
the details and discussions are analogous to those of Sec. IX.
The Q matrix is evidently real and symmetric. In the one-channel
case (4.6) shows that Q=tand where § is the phase shift of Sec.
IV, 9.

The Q matrix gives the coefficients of the external functions
with radial parts equal to the irregular functions G in terms of
those with radial parts equal to the F functions which are regular
at the origin. Its components therefore provide a measure of the
extent to which the internal nuclear interactions generate the
irregular functions in the external region. In the absence of such
interactions, the Q matrix vanishes, as may be varified by sub-
stituting into (4.7) the diagonal R matrix of Sec. IV, 3 (with
Vo=0) which describes free space. The components of the Q
matrix are also related to the components of the interaction
matrix elements which generate the G functions in terms of the F,
in the familiar Green’s function method.

b. The R Matrix

The R matrix itself may be considered as a generalized collision
matrix. The appropriate transformation (4.1) has the coefficients
£=4i(G+iF)p7},
n=—%i(G—iF)p},
= —§i(G'+iF")et,
x=4i(G'—iF)oh,

the quantities of the external region being evaluated at the

4.8)
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urface 8. The values and derivatives of the radial parts of the
g% and Of wave functions on § are therefore, from (4.1),

I'=0, I'=p=%; Of=pt OV=0, (4.9)
and
w =1,
By substituting these into (1.6a) of the next section one finds that
Uf=—R. (4.10)

In other words, when 97 and OF are defined by (4.1) and (4.8),

the particular solutions having only a single 9, function are

then in the external region of the form
‘I'mNzc(acmng+Rcm®cT)~ (4-11)

By considering this equation and its derivative on the surface §
and making use of (4.9) it is immediately evident that (4.11) is
consistent with the R-matrix relation (V, 2.7) and constitutes its
continuation into the external region.

VII. RELATION BETWEEN THE R MATRIX
AND THE COLLISION MATRIX

Equations (V, 2.7) and (V, 2.8) give the connection
between the derivative and the value of the wave
function on the surface § which must hold if the wave
function is to be continuable into the internal region.
The connection between the R matrix and collision
matrix U will now be derived. Since the R matrix
specifies the form of the wave function on the surface
8 and the U matrix specifies the form at infinity, the
connection between the two is established by joining
these regions. This process of joining introduces into
the theory reference to the “‘external” wave functions
like the F and G of Sec. III.

1. Derivation of the Relation

In the external region any solution ¥ can be expressed
as a sum of the incoming and outgoing waves of (III,
2.19 and 20), the coefficients of which are y. and «.,
respectively, from (VI, 1.1):

V=3 (%0+yc90). (L1

For this expression the surface ‘“value” and “derivative”
quantities of (III, 4.2) are

V.= (h2/2Mcdc)%(‘Uc_%O,cxc'{""Uc_%Icyv),

1.2
D= (pczhz/ZMcdc)é(vc_}oc’xc'*'vc_}lc/yc); ( a)

or
Vo= (%) ¥ (pc“*chc'i-pc”*Icyc),

D= (%h) ¥ (P 40+ pc*.’c'yc) .

Since these must satisfy the fundamental R-matrix
relation (V, 2.7), one finds, in matrix notation, that

(070x+ ¢~ y) =R[(*0’x+0'I'y) — B(o~30x+¢~Iy) ]

or

(1.2b)

(07'0—Rg!0")x=— (¢~ I-Rel")y,  (1.3)

00Y=90'~B0, ol”=pl'—BIL

The collision matrix U gives, by definition (VI, 1.2),
the outgoing wave coefficients in terms of the incoming

where
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wave coefficients:

to=—2c Useye
or, in matrix notation,
x=—Uy. (1.4)
By comparing with (1.3), one obtains
U= (0g~—R70%}) (I~ —R'I"g)
=0}0~1(1—R7LY)1(1—-R/Q)Ig- (1.5)

=QWJ7Q (say).

In these expressions 1 is written for the diagonal unit
matrix and the following three matrices have been
introduced:

L'=L-B; ®=¢-B
W7 =4(1—R/LY)(1- R/

=14+BI(1-RL)"R/Biw (1.6a)
=[1-BH(LO)w]+[PHL)]
XL =RITPHL)Jw.  (1.6b)

The matrix W7 is a new quantity. It is often more con-
venient to use than UY itself. The components of the
“surface” diagonal matrices P!, L, € Q, w were
specified in III, 4; B is the real, diagonal boundary
condition matrix whose components are given by
(V, 2.1). The dependence of U and R on total spin and
parity has been indicated in (1.5) and (1.6) by the
superscript J; this superscript will be omitted except
when relevant. Equations (1.5) and (V, 2.8) give the
collision matrix in terms of the real quantities vx., E,
Goy Bey Sey Po. Although these quantities depend on the
parameters a. and B,, the U matrix, which is a property
of the physical system, must itself be independent of
these parameters.

2. Verification of the Symmetry and Unitarity
Properties of the Collision Matrix

In Sec. VI, 2 we saw that, from very general physical
principles, the collision matrix U must be symmetric
and unitary. The specific form (1.5) satisfies these
requirements. Clearly the symmetry and unitarity
natures of W are equivalent to the same properties
of U.

From the symmetry of R and the fact that

R(1-L°R)'=[1—-R(LY)1]R,
it follows that
transpose(W) =14 w?(1—RL)RP:.  (2.1)

Therefore, W (and U) is symmetrical with respect to
channels having the same values of the Wronskians w,.
In particular, the submatrix W++ corresponding to
positive energy channels is symmetrical since, from
(111, 4.7¢), w.r=2; for all such channels.

As to the unitarity of U, it is convenient to examine
the role of negative energy channels a little more closely.
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—U is the matrix that, multiplying the vector y which
is composed of the amplitudes of incoming waves, it
gives the corresponding vector x that represents out-
going waves. The U matrix gives the amplitudes of the
positive-energy outgoing wave functions O, and, the
negative-energy exponentially decaying O, in terms
of the incoming waves I;% and the negative-energy
unbounded functions I;~. As there are no physical
situations in which the I,~ occur, the components of
the submatrix W+~ are not physically significant and
one might as well set them equal to zero as can be seen
from (1.6b). This may be accomplished without
affecting the components of W++ and W~ by setting
the negative-energy components of the Wronskian
matrix equal to zero; w,~=0. (This means that the
O, and I, are not linearly independent.) Another con-
sequence is that

=L (2.2)

for the negative- as well as the positive-energy channels,
so that one can eliminate the quantities €. completely
by replacing them by L.*. For instance, (1.6a) becomes

W= P}(1—RL°1(1—RL*) P, (2.3)
This matrix is of the form
W+ 0
W=“——— ___H (2.9
W+ 1

No significance is attached to the unit value of the W—-
components, which like the W+~ components are of no
physical interest.

From (2.3) it is evident that

WW+*=1. (2.5)

By substituting the “supermatrix” (2.4) into (2.5), one
finds that

WHH(WH)*=1 (2.6)
and that

(W) (WH)*+ (W-+)*=0. 2.7)

Since WHt is symmetrical, (2.6) indicates that it is
also unitary; Utt= (QWQ)** is also unitary because
the unitary diagonal matrix appears on each side of W:

(WH) (Wt = (UH) (U =1. (2.8)
Likewise (2.7) leads to
(U=H) (UH)*4 (U-+)*=0. (2.9)

3. Two-Channel Collision Matrix

Although the expressions (1.6b) give formally the
components of the collision matrix in terms of those of
the R matrix and the diagonal surface matrices, it is
unsuited for applications involving many channels
because of the difficulty of inverting the matrix
(1—RLY). This difficulty reflects the difficulty of solving
many equations in many unknowns that is implied in
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the fundamental R-matrix relation (V, 2.7). Conversion
of (1.6b) to more practical though equally general
forms is carried out in Secs. IX and X.

For only one or two participating channels, the
matrix inversion is easily effected. In the one-channel
case the inversion is just ordinary division and (1.6b)
in conjunction with (1.5) gives after some rearranging
the collision function (IV, 1.14). In the case of two
positive-energy channels (1 and 2), the components of
the collision matrix are

W= 1+2iP1[R11‘ Lzo(R11R22—R122):]d_1,
W as=1+42iPo[ Ryy— Li*(RiRaa— Ri?) Jd,
W1a=W 1= 2iP1*R1sPs¥d™,
where d is the determinant
d= (1—RuL\%) (1= Ry,L,") — L°R12’L.

(3.1)

An exceptional feature of the reaction components Wi,
of (1.28) is that it vanishes between levels for which
the products varvx2 have the same sign. The associated
cross section, being proportional to |Wp|% also has
this feature. Wigner®” has shown that (i) the elastic
scattering cross section does not vanish in general for
any value of the energy, except in the one-channel case;
and (ii) no reaction cross sections in the case of three
or more channels will vanish in general for any value
of the energy. These remarks apply to the partial cross
section for an individual J value. Even in the two-
channel case the fofal reaction cross section also does
not vanish in general for any value of the energy,
because the individual contributions would each have
to vanish for the same E and every J.

4, Inclusion of Nonpolarizing Potentials

It is possible to include in the formalism the presence of any
nonpolarizing potentials in the various channels. By assumption
(4) of Sec. IT such potentials must not be capable of significantly
exciting or “‘polarizing” the two separated subsystems.

If there were no nuclear forces between the two systems, the
radial wave function of relative motion would just be the function
F; defined by (III, 2.11). This function is regular at r=0 and
takes account of the phase shift induced by a Coulomb potential.
In the presence of an extra potential, let us assume that the radial
wave function is f; corresponding to an extra phase shift 26; then:

fi=F; cost;+G, sind, =sin(p—n log2p—ir+-oi+6:). (4.1)

The notation f has been selected in analogy with the use of F for
the regular solution in the absence of a nuclear potential. The
irregular solution g; is defined so that it has the asymptotic
behavior

g1=—F; sinf;+G; cosfr=cos(p—n log2p—lr+0o146;). (4.2)

Similarly one can define incoming waves 7; and outgoing waves oi,
analogous to (III, 2.10) and (III, 2.13), which have radial parts
i1=(G1—iF1) exp[i(wi—0;) ]=1 exp(—16y),
o1=(Gi+iFy) exp[ —i(wi—6:) ]=01 exp (i),

respectively. The Wronskians for the sets {f,g} and {7,0} are the
same as those of {F,G} and {I,0}, respectively. Let u denote the

(4.3)

87 E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 32, 302 (1946).

A. M. LANE AND R. G. THOMAS

collision matrix, analogous to U of (1.1) and (1.4), which refers
to the system of 0 and ¢ waves; it may be expressed in terms of the
R matrix by means of (1.5b) and (1.6) by merely substituting f
and g for F and G, respectively. The actual collision?matrix§U
may be found by multiplying the solution in the external region
of the form

(4.4)
by expif. and comparing the result with (1.1) and (1.4) in which

only a single y.(=1) is nonvanishing: the result is, in matrix
notation, that

Werie— zc’ YUcc'Oc?

U=e?ue®. (4.5)

U is thus given by (1.5) and (1.6) with the f and g substitutions
and with the additional phase 6 in the potential scattering matrix
Q: :
Q=expi(w+6—9¢),
$=tan"1(f/g),
S=p(ff'+8g)/ (f*+8),
P=p/(f*+g.

Thus the procedure for including the effect of the external poten-
tials is the same as that of including the Coulomb potential.

As to the evaluation of f and g, these can be determined by
solving the Schroedinger equation directly. When the external
potential is not too large, two integral equation methods may be
used.

The first method applies the Green’s-theorem relation to the
functions g and G of the same energy and with the surface inte-
grations performed at the radii  and infinity. This relation is

(66'~Gg)w= [ PG ar",

where #2P/2M is the additional potential to which g is subject,
and the surface contribution at infinity vanishes because g and
G have the same asymptotic form; the prime denotes differenti-
ation with respect to 7. Both sides of (4.7) are then divided by
G2(r") and integrated from 7 to infinity; by noting that

(G’ —Ggdr=—G(g/G),

the following result is obtained:
— 0 df/ ® 5 //]
=601+ [ s Jrpear],

P=(g/G)P.

This result is used in Sec. XIII, 1 in the determination of the
behavior of cross sections near thresholds. It also applies to the
other three functions f, 4, and o if the appropriate substitutions are
made.

The second method uses a Green’s function, and although it
requires knowledge of both F and G for the determination of
either f or g, only a single integration is involved. For the determi-
nation of g the Green’s theorem relation with surface integrations
at 7 and « is applied twice, once with the pair g, G and once with
the pair g, F. Considering that g=G and g'=G" at infinity, and
that F'G—G'F =k, these relations reduce to

—k— (Fg’—gF')r=J:w P{)g(r"F(r)dr',

(4.6)

4.7

(4.8)

where

4.9)

— (Gg'—5G),= [ PyGar. (4.10)

The first equation is multiplied through by G(r) and the second
by F(r); the difference of the resulting equations is the integral
equation for g(#),

s =GO+ G\ PE)g()dr
with the Green’s function

Gy )=GNF@)—F@G().

4.11)
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In a similar manner, the integral equation for f(r) is found to be

FO=F@) ~k [ G )P (). (4.12)

VIII. RELATIONS BETWEEN THE CROSS SECTIONS
AND THE ELEMENTS OF THE
COLLISION MATRIX

We now complete the last link in the basic scheme of
the R-matrix theory as described in Sec. II, 1. In Sec.
V we obtained the relation between the R matrix and
the eigenstates X. In Sec. VII we derived the collision
matrix U in terms of the R matrix and the matrices
L and Q representing the external interactions. Now
we express the cross sections in terms of the elements
of the collision matrix.

1. Scattering Amplitudes

By substituting (VII, 1.4) into (VII, 1.1), the general
solution of the wave equation can be expressed in the
external region in terms of the unspecified coefficients
¥, of the incoming waves:

¥(general) =) (8crde— UcrcO0r)ye. (1.1)

Consider now the wave function with the same y,, the
radial parts of which are proportional to the regular
function F, in each channel:

V= Z (600'90— €298 0 Oc)yc-

cc’

(1.2)
Adding ¥’ to and subtracting it from the right side of
(1.1) gives

¥ (general) =W+ (2%, —Uers) Ocryo,

cc’

(1.3)

in which explicit reference to the incoming waves has
been eliminated. This solution is now particularized by
an appropriate choice of the y. so that ¥ represents an
incident wave of particles of type «, channel spins and
component », moving along the z axis and disturbed
only by the Coulomb field (if any), this choice is

it
Ve=Yastvo= ;(2l+ 1)§7

o

(1.4)
all others being zero. From the definitions (III, 2.13)
and (III, 2.19) and the fact that

Y@ (Q)=[(2l+1)/4r P (cosb)
it follows that

\I/asv’ = va_*ka—-l Z 1L(2l+ 1)
l

Fal
Xeio:al(-——)Pl(Cosoa)lpaaw (15)

Ta
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According to Schiff®® (see pp. 116-119), (1.5) is an
alternative form of the function which is asymptoticallyt

nd’
‘I,dsl‘,'\’va_%¢asv[ ( 1 ——-———-—————)
tha(Ta—2a)

Xexpi{koZa—Na 108ka(?a—2a) — T a0}

s
———};—Ca (8.) expi{pa—"na log2pu+a,,o}] (1.6)

raa

where

0y 0,
Co(8.) = (47)~¥y, cosec? (—2-) exp{ —2inq log sin(;) }

This function represents an incident plane wave in the
z direction of the type asv in a Coulomb field, together
with a Coulomb scattered wave, the coefficient of
which is Co(f.). With the choice (1.4), the sum on the
right side of (1.3) may also be evaluated, and the
asymptotic form of the particular solution is obtained:
imt

¥ (particular) ~V .,/ + > (2+1)

o oSV’
7

X [ezwalllaa's’l’ﬂ’m’, aslv0™ Ua’s’l'v’m', aslvoj

><expi{pm: —Na 10g2p0r 4040}

Ym’(l')(ﬂa')wa’a'ﬂ- (17)

Vo3

The amplitudes Aarsy, asv(Qar) of the outgoing waves
of type o's’y’ at infinity, which are associated with the
unit-flux incident plane wave of type asv are defined by
the scalar product

Agrarv, aaV(Qa’) =rgort eXpi{pa' —Na’ 10g2pa'+0a'o}

X lim

T !0

Vo™ Wdgar.  (1.8)

The differential cross sections are then by definition

given by

do'asv, P IAa’s’v’. asv(ﬂa’) lzdﬂa’ (1'9)

with the scattering and reaction amplitudes of (1.7) as

3
™
Aa’s'v’, asv(ﬂa') ='k—{ _Ca’(oa’)aa’s'v', aav+i Z (2l+ 1)i
- Um’l
X[:e“w“’llaa’s'l’v'm’, aslv0™ Ua’s’l’v’m'. aslvO]Ym(l) (Qa')}-
(1.10)

88 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949).

1 If the colliding particles are identical, then either the sym-
metric or antisymmetric “plane waves” of the form

expikz+-exp(—ikz) and exp(skz) —exp(—ikz)

must be used, depending upon the nature of the particles and the
symmetry of the ygyy. i
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2. Differential Cross Sections

We omit discussion of cross sections involving either
polarized incident particles or measurement of polari-
zation in the reaction products. (For discussion of
polarization cross sections and references see Simon
and Welton® and Biedenharn and Rose* and Satchler.”
For unpolarized incident and target particles, the cross
section (1.9) may be summed over the »" and averaged
with respect to the » to obtain the differential cross
sections for the processes as—ua's’,

ddas, als’ = (25'}—1)—1 Z IA a’s'v/, asv(ga') l 2an'- (2-1)

Likewise, (2.1) may be summed over the s’ and averaged
with respect to the s to obtain the differential cross
section for the processes a—a’:

doaw =[(2I1+1) 21+1) T
X Z IAa’s’v', asv(ﬂa’) l 2d9a’?

ss’ vy’

(2.2)

where I and I, are the spins of the particles of the pair
.

To proceed further the representation of U will be
charged from the {aslvm} scheme to the {asiJM}
scheme. Substituting the transformation (VI, 3.3b)
into the amplitude expression (1.10) gives:

t
Aa’s’v', asv(ﬂa’) z'k_[“Ca’(ea’)éa’x’u’. asy

o

+i X QH1)HsBO|TM) (s m | TM)
JMIVm’
X Ta’s'l', asl"ym' an (Qa')]) (23)
where ]
a’s’'l, ale= ezwall’aa’s’l', asl™ Ua’s’l’, ale-

In performing the absolute squaring operation, one
introduces the two sets of summing integers

{J1M1lll1lmll} and {Jzlegh’Mg’}
for the single set of (2.3), and thereby obtains for (2.1)

ko
(2541)—d0 a5, a5 @Q0r = (2541) | Car Or) | Do, s
™

+ X (2L41)} (A1) (shp0| J1M)

J1J:MiM2

ll,lzll:lz"
wv'mime
X (Slgvo I J2M2) (s'll’u’ml’ I J1M1) (S’lg’V’Mg, I J2M2)
X (T«x’:’ll', aSllJIme’(lll) (Qar))

X (Tu’s'lz', aslszsz’(l2,) (Qa’))*
+ 3 (1) (slO0| M) (s v'm | TM)

JMiy

Xaa’s'v’. asvz R-e[iTa'o’l’, aleYm’(l/) (Qa’)ca' (Ha’)]-
(2.4)

8 A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (1953); 94,
943 (1954); A. Simon, ibid. 92, 1050 (1953).
" G. R. Satchler, Proc. Phys. Soc. (London) A68, 1041 (1955).
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The first term may be identified as pure Coulomb scat-
tering, the second as the resonance scattering and reac-
tion, and the last as the interference term from the
first two. Sums in the resonance term may be evaluated
by the procedure described by Blatt and Biedenharn®’
and sums in the interference terms by means of the
relation

2J4+1
Z (SZVOIJM) (sl'vm’[JM)=———6y,,.r_ 10. (25)
My 2141
The result is that

k.2

25+ 1) 000y, 82 = (2541) | Car (0) | B, s
w

1
4= Br(/s"jas) Pr(cosfar)+ (4m)~3 3 (2741)
T L Tl

X 2 Re[iTars:l:, aleCa/ (0‘,')P1(C050a')], (26)
where
B (OZIS,,OZS) = % —‘)3_8’ Z Z(lljllzjg,SL)
J1Jal1lal1’ I’
X Z(llljll2,J2,s,L) (Ta’s’h’, asll',l) (Ta’s’lz’, aSlsz)*. (27)

The Z coefficients are related to the Racah coefficients
W according to

Z (lljllz.’z,SL) = (211"‘ 1)5(2l2+ 1)*(2]1‘[‘ 1)*
X (2]2+ 1)%(l1l200 I LO)W(ll.]llg]z,SL) (288.)

and to the Z coefficients of Blatt and Biedenharn,
Z(l1]1l2]2,SL) = ill*lrLZ(hJJsz,SL). (28b)

The present result for By thus differs by a factor
ghlbbi’'—h"=2L from that of Blatt and Biedenharn.#’
This is due to the difference of the time-reversal con-
ventions.

In some applications? it is desirable to separate from
U a diagonal part D, leaving a generally nondiagonal
remainder X:

U=D+X. (2.8)

The formulas are especially simple if D, like C,(6.), is
not dependent upon J,

sz’s’ v, ale = Dasl-

(2.9)
(2.10)

Then

a’s’'Vv'm!, asly0™— 5a’s’v’l’m’, aslv()Dasl-
By defining a potential scattering quantity as
?as‘: '_1' Z (2l+ 1)%(62iwal_Daal) yo(l) (Qa)
l

=—i(4m)F 3 (2041) (e**@at— Doyr) Pi(costs), (2.11)
l
the scattering and reaction amplitudes reduce to
Ps]
Aa’s'v’, asv(ga’) = _;{ (Ca’<0a’)+Pa’s’)6a’s’v’. asy

+i Z (2l+1)§Xa’s'l’V'm',aslvOYm'(l()(Qa')}. (2.12)

wm'
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Evidently the differential cross sections of (2.6) are
modified by the substitutions

C—C+p, T—-X (2.13)

3. Integrated and Total Cross Sections

By the “integrated” cross section for the reactions
as—a’s’, we mean the cross section obtained by inte-
grating the differential cross sections (2.6) over the
solid angle Q.. In this integration only the B, con-
tribution is nonvanishing. Using the relation

Z(l1]1l2]2,80) =5l1J1,l2J2(—)']1—"(2]1+1); (31)
one obtains the well-known result
Tas, s’ = 2 QI+ | Tower, e’ |2 (3.2a)

k2(2s+1) Jw

The infinite contribution to the integrated elastic scat-
tering from the Coulomb field has been omitted from
(3.2). The observed cross sections, which do not dis-
tinguish the various s’ and which are obtained with
unpolarized incident and target nuclei, are obtained by
adding over s’ and averaging over s:

™
oo’ = Z ng Ta's’l’, aleI 2 (3'2b)
ko2 Tl s
where g is the spin statistical factor defined as
2J+1
= (3.2c)
2L +1)(2I:4+1)

The observed total cross section is obtained by summing
(3.2b) with respect to all possible o’ (including o/ =a).
From the unitary nature of U, this cross section is

aa(tot)=kl % 26 L (1=Re(Uastat’)).  (33)
a2 sl

4. Relation between Total Cross Section and
Imaginary Part of the Forward
Scattering Amplitude

According to (3.3) the total cross section is related to a sum
of the diagonal components of the collision matrix and their com-
plex conjugates. Since a similar sum appears in the expression for
the imaginary part of the forward elastic scattering amplitude, a
relation between these quantities is expected when there is no
Coulomb field.

According to (2.3) the forward amplitude for pure elastic
scattering (that is, s=s" as well as a=q’) is given by

A asy, asr(0) =31ka? 2 2H1) 20 +1)1
X (0| TM) (s1v0| T M) T 51, asr?  (4.1)
since only the Y4(¥)(0) are nonvanishing, there are no spin-flip

terms with »'#v. The average of this amplitude with respect to
s and » may readily be obtained by using (2.5) for the » sum, and
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one finds for the imaginary part

(ImA gep, asv(0) )s,»
=[(2L+1) (2I,+1) :]-12" Imd asy, asy 0) 4.2)
= (4ka) 2 2g7(1—Re(Uast, ast”))- ’
Jsl

By comparing (4.2) with (3.3), one obtains the expected relation
(Im 4 asy, asy 0))s.»= (ka/47r)°'a (tOt)- (4-3)

An inequality relating oq(tot) to the forward elastic differential
scattering cross section may be deduced from (4.3). This differ-
ential cross section is

000 (0)/8Q0=[(2I:+1) 2I+1) 1™
X[Eav l Aasv, asv(o) [2+ /(i )y[Aas'v, aav(o) I2] (4'4)

By means of Schwartz’ inequality
N N N
(2 a2 < (2 a)(2 b3
i=1 i=1 i=1
with @;=TIm (4 asy, asv(0)) and b;=1, it follows that
[(211+1) (212+1)J_1 Esv (ImA asy, aav(o))z

) 2 [(211"’"1)_1 (21'2'|"1)_l Ecv ImA asy, asy (0)]2 (45)
It is evident then that
doaq(0)/dQq 2 (koo (tot)/4m)2. 4.6)

This is sometimes referred to as Wick’s inequality.” It is useful
for setting a lower limit to the forward differential elastic scat-
tering cross section from the known value of the total cross section
as it is usually difficult, if not impossible, to measure this dif-
ferential cross section.

IX. FURTHER DEVELOPMENT OF THE RELATION
BETWEEN THE U AND R MATRICES:
EIGENVALUE EXPANSIONS FOR U

In practical applications of the theory, some approxi-
mations have to be made. These are not conveniently
introduced into the theory as it stands at present. For
this reason we outline some alternative presentations of
the theory.

1. Real Eigenvalue Expansion for U

The expression for U so far derived, [Eq. (VII, 1.5)]
involves inversion of the matrix (1—RL?) whose dimen-
sions equal the number of channels. Although this
inversion is trivial if there is only one channel (Sec.
IV, 1) and relatively easy in the two-channel case (Sec.
VII, 3), it is in general impossible to carry out unless
some assumptions are introduced. These inversion and
expansion difficulties reflect the difficulty of solving
many equations in many unknowns as required by the
fundamental matrix relation (V, 2.7). It is often con-
venient to replace the problem of inverting the matrix
(1—RL% by the equivalent problem of inverting
another matrix. As a result of the special form of the
R matrix (V, 2.8), it is possible to transform the matrix
(VIL, 1.6) for W from its present form involving the
inversion of a ‘“‘channel” matrix, the components of
which refer to channels ¢, to one involving the inversion
of a “level” matrix, the components of which refer to
the proper levels A of the system. In the one-level

" G, C. Wick, Phys. Rev. 75, 1459 (1949).
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case where only one level is explicitly considered, in-
version of the level matrix is trivial no matter how many
channels are involved. Even when many levels are
involved, some circumstances of practical interest
(Sec. XTI) permit a diagonal level approximation to be
made, and the inversion is then trivial. In the absence
of such approximations the level form is not simpler
and may actually be more difficult.

a. Inversion of (1—RLY)

The problem is to transform the problem of inverting
the channel matrix (1—RLY) in the expression (VII, 1.6)
for W: '

W=1+P1—RL)RPiw

into that of inverting a level matrix. We begin by
splitting the R matrix into two parts corresponding to
the division of the levels into two groups:

R=R+R. (1.1)
The matrix product (1—RL%)~R becomes
(1—RL%~R= (1—R°L?)—'R°
+ (1—RLY)(1-RL)"R'(1-LR), (1.2)
where L is defined :
L'=L°(1—-RLo), (1.3)

The reason for making the split (1.1) is that it may be
possible to invert (1—R°L%) where R° is a part of R.
Then from (1.2) the problem reduces to inverting
(1—R’L’) where R’ is the remaining part of R.

The inversion procedure is to assume an expansion

(I—RlLI)"-l: 1+Zuv(TpX QV)AM; (14)
where the vector
8= Ly, =L2(1— ROy,

and the level quantities 4,, are presumably to be
functions of the energy. If (1.4) is actually permissible,
the equations for the 4,, can be found by multiplying
both sides by

(1—=R'L)=1-2x(mXB)/(Ex—E), (1.5
obtaining °
X
-z M]mz (X8 A]=1 (1.6)
» Ex—E uy
* (X B
_Z)‘: T‘I‘Z (Y#X QV)AI“’
A— w
s X80
Auv E)\—
where
Ew= (@MY#) (18)

is a scalar product with respect to channels. The &,
originates through the application of the theorem for
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column vectors: (xXy)(zXo)=(y,z)(x,0). According
to the theorem (Mx,Ny)=(x,(M,Ny)) where M, N
are matrices, the £, are symmetric in the Au because
the matrix L’ is symmetrical. Eq. (1.7) may be rear-
ranged to read

z (wx@y)[— b +40—3 E“‘A“’]=0, (1.9)
Ay Ev—E v Ex—E
which is satisfied if for all A, »
(E)\—E)A)\,,—Z“ E)\MA;W=6)\”- (1.10)

By introducing the level matrix A with components
A»,, the symmetrical matrix & the real diagonal matrix,
e with components E,, and the unit matrix 1 with con-
ponents 8, the set of Egs. (1.10) may be expressed as
a single level matrix equation

A= (e'_ E— f)_l,

where the matrix E is the energy E times the unit
matrix. The problem of inverting the channel matrix
(1—R’L’) is thus that of inverting the level matrix
(e—E—¥).

The quantity appearing in (1.2) to be evaluated is

(1—R'L)R’
=[1+20 (¥uXB8) 4w LA (12X 10)/ (Ex— E)]
(1 X L (X YW EAA

=2 > . (1.12)
" E—E i  E—E

(1.11)

By considering the symmetry of € and A, and applying
(1.10) to the » sum, (1.12) immediately reduces to the
desired result,

(I—R,L')_IR,=ZM(Y)\X Yu) A (1-13)

By substituting this into (1.2), and into (VII, 1.6), the
real eigenvalue expansion is obtained for the collision
matrix,

W= 1+§Bé[(1— ROL())—IRO"]"ZM (“)\X “u)AXM]$*W7
(1.14)

where
ax= (1-RL) = (L)

It is convenient to separate the matrix £ into real
and imaginary parts,

&= _A+%ir)

(1.15)

(1.16)

the matrix A of the real part being referred to as the
shift matrixz and the I' of the imaginary part as the
width matrix. They may be determined as follows:
According to (1.15),

= (1-RLO)e,
and, since the v, are real,
= (1—RL*)e*.
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Therefore,

Eu= (10,80 = (A=RILHar*, L',,)
= (% Le,) — (R0 * Loe,)

= (en*,L%,) — (en*,L*R°L%,) (1.17)

using the theorem mentioned below (1.8) and the fact
that R° is symmetrical. The second term of (1.17) is

real so, substituting L°=S°+4P of (III, 4.4) in the first
where L'=L—B, S°=S—B, one has

M= (@*Pa,) =32 T o (1.182)
T e= zpca)\c*aycy (118b)
Ay= (¥, (L*RL'—S%0,). (1.18¢)
If RO is diagonal, these simplify to
M=% 2c Do (1.192)
with
P)\y, c= ZPGI'Y)\JY”C
and
A)\n=Zc A)u,c (1.19b)
with

A)\;‘, c= _Sc,'Y)\c'Yucy

where S’ and P’ are defined by L'=S"+:P’. Although
the total width matrix components of both (1.18a)
and (1.19a) are expressed as the sum of partial widths,
only in the case of diagonal R? of (1.19b) can the total
shift matrix components be expressed as the sum of
partial level shifts.

b. One-, Two-, and Three-Level Expansions

Inversion of (1.11) can be carried out without dif-
ficulty by means of the usual procedures in the cases
where one, two, and three levels are assigned to the R’
matrix of (VIL, 1.6). For this purpose, we introduce the
diagonal level matrix

e=e—E— £+§,y

where & is the nondiagonal part of & so that §—§ is
the diagonal part. The results are:

(1.20)

One level
A=1/e. 1.21)
Two levels (1 and 2)
A11= ez/D, A22= G]/D,
Arp=An=¢1/D, (1.22)
D= e1es— 1%
Three levels (1, 2, and 3)
DAy1= e2e3— 2%, etc.
DA 2= —Er12e3—E1skas, et (1.23)

D= e1ere5= €182 — €af1s®— €af12?— 2E10E 1303,

295

c. Probability Integral for the Compound System

With the expansion (1.4) it is possible to give a simple
expression for the absolute square integral (V, 2.9b)
of the wave function in the internal region when there
is a unit flux incoming wave in only a single channel.
If this channel is designated as e (for entrance), the
coefficients of the derivative quantities of (VII, 1.2b)
which are involved in (V, 2.9b) are

Vo= 0ce, (1.24)

By substituting these in (VII, 1.2b), and using the
collision matrix expression (VII, 1.6b) with w,=2:, one
obtains '

%= —Ulg.

V=—i(2)}(1—RL)—RP}Q,
0= —i(27)[1+L°(1— RLO)—RB!Q.

The V and D° quantities are now considered as matrices,
rather than as column vectors, with each column re-
ferring to a different entrance channel,

Upon substituting the expansions (1.2) and (1.4)
into (1.25b), the derivative matrix becomes

0= —j(27)i (1—LRo)-1
+ 204 (8, X a,) TBIQ,  (1.26)

the identity [14-L°(1—R°L%)~1R*]= (1—L°R%! having
been used. By considering (1.10) which is satisfied by
the components of the A matrix and the matrix theorems
mentioned in subsection 1a, the scalar product of the
vector vy and the eth column of the derivative matrix
is found to be

(Y)vDeo) = —"L(Zh)é(E)\—E)Z,‘ A)\“O!MSBJQ@. (127)

In view of this relation and the symmetry of the A
matrix, and if we consider R° as energy independent,
the absolute square integral of (V, 2.9b) may be written
as the trace (Tr) of a level matrix,

(1.25a)
(1.25b)

f |, |*dr=F Tr(AA*T.)
r,

r[(e+A—E)2+-;-r2+%ir(e+A)—%i(e+A)r]’
(1.28)

the components of the level matrices I', A, and T,
being given by (1.18a), (1.18c), and. (1.18b), respec-
tively. For the one-level expansion, this integral is
particularly simple,

f[\I,sPdT:hP)\)\, e/[(Eh+Axx—E)2+%PM2:|, (1.29)

which is valid with the contribution R° from the other
levels included, provided it can be considered as
constant. .
An interesting consequence of (1.27) that will be
needed later is the expansion of the wave function ¥,
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for unit incoming flux in any given channel in the in-
ternal region. From (V, 2.3 and 5) and (1.27) it follows
that

V= —i(28)} Y (AneuPl0) X (1.30)
A

If we set R°=0 so R'=
becomes

R and a,.=4v,., the expansion

\I’ez "'7'(2;'2)} Z (A)\M'YpePe%Qe)X)\
Ap

= —iiQ, Y (AnTud) X (1.31)
A

The corresponding elements of the collision matrix are
found by evaluating the scalar product of ¥, with ¢, at
infinity:

Uee=Uoe=12Q: ¥ An,TThct. (1.32)
Au

This agrees with (1.14).

2. Complex Eigenvalue Expansion for U

The expansion (1.14) for the collision matrix is formally ex-
. pressed in terms of the real eigenvalues E), reduced width ampli-
tudes y)¢, and boundary conditions B, as well as the real param-
eters S¢, Pe, ¢, characterizing the external functions on the
surface 8. The expansion involves a double sum. It is also possible
to make a single sum, level expansion of the collision matrix. The
E) and )¢ of this expansion are, however, no longer real quan-
tities, and this is the price that is paid for having a single sum
instead of a double one.

We now describe a procedure for the single sum expansion
which starts with the results involving the real E) and ). Then
we describe a simpler and more direct derivation that introduces
at the outset the complex eigenvalues and complex eigenfunctions.
This procedure was adopted by Kapur and Peierls® who gave the
first rigorous derivation of the general resonance formulas. Both
of these derivations give a single sum eigenvalue expansion for U
with eigenvalues H) and reduced width amplitudes w) that
depend on energy E. This dependence is unfortunate from some
points of view and, in subsection 2¢, we describe an expansion
with energy independent parameters that was introduced by
Siegert™ and developed by Humblet.”

a. Indirect Derivation of the Kapur-Peierls Expansion
from the Real Eigenvalue Expansion
It is well known that, if a symmetric matrix like (e—&) has

no double characteristic values, the matrix T which transforms
it to diagonal form H is complex orthogonal, so that

H=F-4I'=T(e—T'=T(e—§T", 2.1)

where F and T' are real diagonal matrices and where T is the
transpose of T. Therefore,

A=TM"H-E)"T (2.2)
and from (1.13):
(1-R'L)R'=Z\ (X &\)/ (H\—E) (2.3)
where
W= Ev T)\V'ch, (2~4)

the w) being complex. By substituting (2.3) into (1.2), and (1.2)
into (VII, 1.6b), using the theorem mentioned below (1.15), one

72 A, J. F. Siegert, Phys. Rev. 56, 750 (1939).
( 7 J.) Humblet, thesis, Roy. soc. des sci. de Lizge Ser. 4, 7, No. 4
1952).
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obtains for the collision matrix the single sum expansion:

(01 X6))

W=l+‘,]3*[(l—R°L°)-1R°+§ B ]s,]ssw @.5)

where

O =(1-RL)n=2Z, Tr0,. (2.6)

Since the L are energy dependent, the T, and F) as well as the
0, will be energy dependent.

If the sum in (2.5) were a normal resonance sum, the imaginary
part of Hj, i.e., —3T'\, would be related to the quantities (2P)¥,
in the numerators by: $T\=2, P.|6\|2 It is of interest to see
what the actual relation is. From (2.1) it follows that

TeT!—TETT =HTTT, (2.7a)
the complex conjugate of which is
T*eT™ — T*E T = H*T+Tt. (2.7b)

The diagonal components of the first term on the left-hand and
the right-hand side of (2.7a) are, respectively,

(TeTT)M\ = 2» Evl T l 2, (28)
HTTM )= (Fx— 30Ny, (2.9)

where
M=Z,|Tn|2 (2.10)

By means of (1.17) and (2.6), the diagonal components of the
second term of the left-hand side of (2.7a) is found to be

(TET =1 Z; Pe|6rc|2— (0%, (L*RILO—-S0)0y),  (2.11)

the sum over channels and the scalar product being both real.
The difference between (2.7a) and (2.7b) gives therefore

IM=N\"12, P|Ox|? (2.12)
while the sum corresponds to
E=N\"12Z, E|Th|>+ 0\ (LH*RL'—S90))]. (2.13)

Since

(TTT*))\X = ZV =1,

and since T is in general complex, it is evident that N2> 1. From
(2.12), it follows that the imaginary parts 3:T’) of the eigenvalues
H), satisfy the inequalities

< Z;Tae (2.149)
where

I‘)\c=2Pc[0)\c|2-

Since the T\, are equal to the absolute squares of the vectors
(2P)¥), of the numerators of (2.5) (the factor 2% arising from
the Wronskian), the above inequality asserts that the total widths
of the denominators are less than or equal to the sums of the
partial widths of the numerators.

b. Direct Derivation of the Kapur-Peierls Expansion

These results actually constitute a generalization of the Kapur-
Peierls theory in the sense that an arbitrary part of the R matrix
(viz. R% is not transformed. To make a comparison with the
Kapur-Peierls results, we put R°=0. This immediately implies
R’=R, L’=L% and wr=0). The collision matrix of (2.5), then
becomes

W= 1+s,]39[ “’*x“’*]zxsiw @.15)
We now establish the plausible fact that the same expression for
the collision matrix results from carrying through the R-matrix
theory using complex eigenfunctions and eigenvalues from the
outset. This procedure is the one used by Kapur and Peierls.?
The w), and Hy of (2.3) correspond to the reduced width ampli-
tudes ). and eigenvalues E) of and R-matrix theory with complex
states. Kapur and Peierls introduced complex X, Ej, and solu-
tions X»* (more precisely, the time reversed solutions KX))
belonging to the eigenvalue E\*. These solutions have boundary
conditions B, and B.*, respectively, and their reduced widths
are complex. The Green’s-theorem relation when applied to X
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and its complex conjugate gives then an orthonormality condition
which is /"Xy Xa\dr=8\\, rather than the condition J/"X)\*X\dr
=8 of (V,2.2). An application of a Green’s-theorem relation
with ¥;=¥,=¥ shows that the imaginary parts I'\ of the H)
satisfy a condition of the form (2.12), in which the ) are the
complex y) and with Ny= /| X)|%dr. Since S| X\ |2dr 2> S X\~
the inequality (2.14) is satisfied.

Kapur and Peierls choose the complex boundary conditions
parameters B, to be the energy-dependent logarithmic derivatives
L, corresponding to outgoing waves. As a result, the L°(=L—B)
matrix of (1.2) and (1.4) vanishes identically and the double sum
of (1.4), as well as the £ matrix of (1.11), also vanishes. The A
matrix is therefore diagonal and the collision matrix of (1.14)
reduces to

W=1+98 5 XD sy, 2.15)
x Ex—E

Comparison with (2.15) immediately confirms the expected inter-

pretation of the w), and H) as the reduced width amplitudes and

eigenvalues of an R-matrix theory with complex states.

Although the expansion (2.15’) is much simpler than (1.14), the
difficulty of the matrix inversion of (1.11), or of (1.12), is now
replaced by the problem of handling the vy, and E) with their
implicit energy dependence and their complex nature. Any
attempt to remove the energy dependences and make the v,
and E, real leads back to the real eigenvalue expansion and the
difficulty of matrix inversion. For these reasons the real eigenvalue
expansion is preferred, and used as the basis of this review.

¢. Expansion of Siegert and Humblet

A feature of the expansion of Kapur and Peierls is that the
width amplitudes w), and the eigenvalues H) are energy de-
pendent, as seen by inspection of either of the direct (2b) or
indirect (2a) derivations. In the former case at a given energy E,
the complete set of states X) is defined as satisfying the boundary
conditions for outgoing waves in all channels af the energy E (not
at the state energies H)). Thus at two different energies E; and
E,, the sets of values w\ and H), are different. Except in certain
limiting physical situations such as that of discrete resonances,
the dependence of w\; and H) upon energy is not at all simple.
One way of avoiding this dependence is to use real energy-
independent boundary conditions (as done here following Wigner
and Eisenbud).’? An other way was suggested by Siegert™ and
investigated by Humlet.” According to Siegert one should work
with a set of states X which have outgoing waves in all channels,
i.e.,, the boundary conditions are those of outgoing waves af the
state energies H), not at some prescribed energy E. These are
usually called “radioactive states.” These states seem to combine
the best of two worlds that they lead to a single sum expansion
for U and, at the same time, the parameters w\, and H) are energy-
independent. However, these states have certain disadvantages.
They are complex and so the w\, and H) are complex. Further-
more they are not orthogonal in the internal region, and so the
usual R*matrix method for deriving the U matrix is not applicable.
Nevertheless, one can use the fact that the energies Hx must be
poles of the collision matrix to develop a Mittag-Leffler series for
the latter. Alternatively we may start by using the results of the
subsection 1. Adopting the latter procedure, we assert that, in
the neighborhood of some real energy E of interest, the matrix
(1—-R’L’)~R’ of (1.2) may be assumed to have an expansion of
the form

(I-R'L)R'=Z) (o X )/ (HEr—E) (2.16)
in terms of complex eigenvalues H) and complex “reduced widths”
). By multiplying (2.16) on the left by the matrix (1—R”L),
it becomes :
R'=2)\(1-R'L)onX )/ (Hr—E). (2.17)
At the complex poles H), the left side is bounded so that the set
of linear homogeneous equations for the wy,

(1-R'(H)L)or=0 (2.18)
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will have nontrivial solutions, the Hy being the roots of the
associated determination equation

[1—R/(Hy)L'| =0. (2.19)

As the L’ in (2.18) and (2.19) are generally energy-dependent,
they must be assumed to be analytically continuable from E to
the complex H) where they are to be evaluated (this assumption
will be qualified in subsection 2f).

The evaluation of (2.18) in the case where R’ has only one level
is of particular interest. By writing it as

CHA—EN + (1 X8\ Jorn=0, (2.20)

it is evident that it is satisfied with
=), (2.21a)
H=E\—&. (2.21b)

By expanding the determinant corresponding to (2.20) in descend-
ing powers of (Hx—E,), the coefficients of which are the ascending
orders of the principal determinants of the rank-one matrix
(7aXB), it is readily verified that (2.19) is also satisfied because
all of these determinants of order greater than one vanish.

d. Poles of the Siegert-Humblet Expansion

As described in Sec. IV, 8, the work of Schuster and Tiomno?
(and later Van Kampen®~%) has shown by imposition of a
“‘causality” condition that the poles of the (one channel) collision
function U(k), where % is the complex wave number, must lie
either on the imaginary & axis or in the lower half-plane. Those on
the positive imaginary axis correspond to the bound states. In
view of the general symmetry condition U(k)=U(—Fk*)* de-
scribed in Sec. IV, 8, those in the lower half-plane occur in pairs
symmetrically situated on each side of the negative imaginary
axis; they correspond to the ‘resonance” or ‘“radioactively
decaying” states of the system. In the many-channel case also
the poles of the collision matrix of the R-matrix theory lie either
on the imaginary % axis or in the lower half-plane. This was first
demonstrated by Moshinsky.”

In discussing the analytical continuation of the collision function
U (k) or U (E) it is necessary to consider that U (E) is a two-valued
function because in general U (k) #U (—k). Two energy planes,
or Riemannian sheets, are employed, the first corresponding to
the upper-half £ plane and the second to the lower-half % plane.
In discussing the analytical properties of the collision matrix there
is the additional complication that a separate k plane for each
channel is involved. For simplicity the channels may be enumer-
ated according to their binding energies 4, and the energy scale
referred to that of the first channel. The relations between the
complex E and % variables are then

E= (#/2M 1)k = (#2/2M )k 2+-b,

with 0=0;<b<" - - <ber--.

To show that the poles of the collision matrix (i.e., the poles
H), of the expansion (2.16) with R°=0, R’=R, L'=L°) satisfy the
“causality” requirement, one proceeds by forming the scalar
product of (L%))* with expression (2.18) for the homogeneous
system of equations satisfied by the w) at Hj, obtaining

(0)*L%*w)) = (¥, L*RLw))
=2)\ (EX_H)\)_II zc w)«cho‘Y)\clz' (2‘22)
Both sides of (2.22) are multiplied by the imaginary part of
H)(ImH)) and the signs (Sgn) of the resulting equations are
considered. The sign of the right side of (2.22) is equal to
Sgn (ImH)) so that
Sgn (ImH)) - Sgn (Im (¥ L*w))) = (Sgn ImH)))2=+. (2.23)
If the components L *=S5"—4P, of the L° matrix are considered
as constants everywhere, then it is evident that Sgn(ImH)) = —

™ M. Moshinsky, Phys. Rev. 91, 984 (1953); Acad. Bras. de
cien 25, No. 4 (1953).
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or that Im(H)) =0 since Sgn(P.) =+ for positive energy channels
and P,=0 for negative energy channels. In this approximation
the “causality” condition is satisfied, and the poles are either all
on the imaginary k; axis or all in the lower-half %, plane.

Proceeding without approximation, but neglecting the possi-
bility of a Coulomb field, the Green’s-theorem relation (V, 1.4)
is applied to an outgoing wave O.(k) for the complex k. corre-
sponding to an assumed pole at H and to the complex conjugate
of O, (kc);

[0*(d0/dn)—0(d0* /ar) Jr+ (e —k*) [ |0|2dr=0.  (2.29)

Since Oc~expi(kr—3im) when 7 is large, it is evident that if
Im k>0 then |O(r)|2—0 and the integral converges as r—, in
which case

ImL(a) = (0Ma/#?) ImHy|0(a) | -2 f 0]

and
Sgn (ImL%*) = — Sgn ImHj. (2.25)

The sign equation (2.23) is therefore not satisfied for Hy corre-
sponding to Imk;>0 (and likewise to Imk,>0) with the ex-
ception of H) corresponding to points on the positive imaginary
k1 axis where ImH)=0. The poles are therefore confined to this
semiaxis (bound states) and to the lower-half %; plane (radio-
active states).

e. Reduced Widths of the Siegert-Humblet Expansion

Still considering the case R°=0 (i.e., R’=R, L'=L" we now
wish to give an interpretation of the quantities w), to parallel that
given for the poles H). Equation (2.18) for the w), does not
specify any normalization of the wx,. On multiplying both sides
of (2.17) on the left with (w\X)\)L?, we have

(X [(L'R'=1)+1]
=Zu (X ) (I'=LRL) o, X0y)/ (Hy—E)
=2, (L'=L'R'L)on, o) (X 0y)/ (H,—E) (2.26)
after using the theorems mentioned below (1.8) and (1.15), and

the symmetry property of R’. In the vicinity of H) one can argue,
using (2.18), that

(@Xon) (LR (Hy) —1) = (x X R (ENL = Dp) =0, (2.27)
and (2.26) therefore reduces to
1=(an, (I'=L'RENL)on)/(H\—E). (2.28)

The normalization is thus obtained from the derivative of the
matrix in the numerator of (2.28):

d ’ ! Ii r _d.___ r N’ Ii r !’
1=[mx, (= @) +HLR )+ U RT A LAR )L)wx].
(2.29)

R’, I, and (d/dE)(L’) being evaluated at Hy. By applying (2.18)
once again, the above condition simplifies to

on (L)L R E)L Yon | =1,
dE dE

With this normalization condition on the w\, we may now
interpret these quantities. As mentioned in the last subsection,
the poles of the collision matrix correspond to radioactive states,
i.e., states ¥ with outgoing waves in all channels. For such a
state, we have an equation like (V, 2.9b) but with ¥2 instead of
|¥|2 thus:

(2.30)

Swar=(r, L @),

where D are the quantities defined for (V, 2.6) as Dc—B,V,, V.
and D, being the value and derivative quantities for the state .
Since L. is the logarithmic derivative for outgoing waves, it
equals D./V. when evaluated atjthepole energy Hy. It follows
that DP=LS V., so by putting V.=w), the above volume
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integral reduces to the second term of the normalization condition
(2.30). Ignoring the other term in (2.30) for the moment, we can
interpret the w, as the surface values V), (which are equal to
the reduced width amplitudes v).) for the wave function ¥. The
first term in (2.30) simply corresponds to extending the usual
normalization of states over the internal region to normalization
over all space including the channels. This is evident from the
special case of the Green’s-theorem relation with squared, rather
than absolute-squared, wave functions. The integration is ex-
tended from the radius a to a large 7, and there are consequently
two terms for (V, 1.5), one from the “surface” at ¢ and the other
from 7. For positive-energy channels and wave functions of the
form O~G+iF, although the integral does not converge, it is
effectively “cutoff” by the surface contribution at 7. If the
Coulomb asymptotic phase 1 log2p of O is ignored and if ¢ repre-
sents the remaining constant phase, then by adding and sub-
tracting

f' ezi(kr’+¢)dr'=ﬁ[ez~:(kr+p)_ezi(ka+¢)]

2 .

a
the individual channel contributions to (2.30) may be written as
d kaw)?
2 LO —_—
5L 0 (a)Hy,
the convergence of which is evident since, as r—o, G+iF—
exp2i(p+ o).

[ k: {02(,) __621‘(P+‘P)}dp+%iezi(ka+¢)] (2.31)

J. Relations between the Expansions of Kapur-Peierls and
Siegert-Humblet

By substituting (2.16) into (1.2), and (1.2) in turn into (VII,
1.6), an expansion is obtained for the collision matrix which is
identical in form to the Kapur-Peierls expansion (2.5). These
respective expansions are, however, not the same because the wy.
and H) of (2.5) differ from those of (2.16). In the former case,
on account of the energy dependence of the matrix & in (2.1), it is
necessary to perform a diagonalization at every energy and, as a
result, the wy, of (2.4), and the H) of (2.1) will be energy-de-
pendent. On the other hand, the Hy of (2.10) and wy, of (2.18)
are energy-independent, at least if the L’ matrix is considered as
analytic. [Actually this matrix is not wholly analytic because of
the existence of branch points at the thresholds where the
negative-energy channels become positive-energy channels.
Nevertheless the expansion (2.16) should be valid over a limited
energy range where the L’ can be considered as analytic; it is
certainly valid to the extent that the components of L’ can be
considered as constants plus linear functions of the energy.]

If the dependence of L’ on E in the expansion (2.16) is con-
sidered as a parametric one, rather than as a complex-variable
one, then the expansion parameters wx,, Hx of (2.3) and (2.16)
must, of course, be the same. This parametric dependence on the
real energy E means that at each real energy E a separate deter-
mination is made of the wy, H) by means of (2.18), (2.19), (2.20),
and that the wy,, H are therefore functions of the real parameter
E. It is worthwhile to demonstrate this equivalence in detail and
to obtain an expression for the components of the complex-
orthogonal matrix T.

By comparing (2.18)

_ e o ¥ (Br,00)
w,=R@H,)L (.),.-—% ——-——-Ey_H“
with (2.4), it is evident that 5
— ( v:(’)ﬂ)
Tw= BH,

It is also evident that if. (¢/dE) (L')=0, Eq. (2.26) can be written
as

(2.32)

(L'on, (R(H,) —RHN)L @)
H,—H)
=2, (X2, TnT, (2.33)

(X en) =2 (enXey)
m
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since

(X9
H,)—R(H)=H,—H\)Z
R(#,)~R(H\)=H,—H))2 E—H,) (E,—TY
From this result the components given by (2.32) are those of a
complex orthogonal matrix,

TT™=1. (2.34)
By forming the scalar product of (2.18) with §,, one obtains

(gm('))\) -

E,—H) 0

(gv,(’»\) -2 Evu
M
or
Trw(By—Hy) =2 £ Tial =0
T(e—HTM=H,

indicating that the matrix T with components given by (2.32)
does indeed diagonalize the level matrix (e—§) of (2.1).

or

X. CHANNEL ELIMINATION METHOD OF
TEICHMANN AND WIGNER

In the general theory, R and U are square matrices
whose dimensions equal the total number of channels,
whether of positive or negative energy. The only
restriction is that no channels corresponding to breakup
into three or more parts are included. It is assumed that
such breakups are not energetically possible, so explicit
reference to such processes can be eliminated by includ-
ing their channels in the “internal” region. The general
formulation is hardly of practical use as it stands, since
there may be hundreds or thousands of channels. This
implies a correspondingly large number of parameters,
i.e., the elements of R which are involved in the relation
between U and R, and most of which can never be
determined because of limitations on the accuracy of
data. Consequently one tries to reduce the number of
parameters in the theory of the number that can be
reasonably determined from the data. Two examples are
the following.

(1) Measurement of all cross sections in the energy
region about an isolated resonance.—FEach single cross
section corresponds to a positive-energy channel so one
may extract all the widths for these channels. However,
one cannot hope to extract any information about the
negative-energy channels, (except possibly if the
threshold for such a channel is near). Thus one tries to
remove explicit reference to such channels. The simplest
way to do this is to include them in the internal region,
i.e., to draw their channel surfaces at infinity so that
R-—=R*+-=R-+=0. Formally there is no objection to
this. An alternative method is that of Teichmann and
Wigner® in which one exploits the fact that, at a given
energy, the boundary conditions for negative-energy
channels are known. This latter method is preferable
when one is examining the energy range about the
threshold of a given channel because it leads to a con-
tinuous treatment through the threshold region. (The
former method must be dropped at the threshold and
a switch made to regarding the channel as a normal free
channel with a finite channel surface.)

(i3) Measurement of the total and the elastic scattering
cross sections at a fixed energy for one given channel, i.e.,
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given c=asl.—These measurements can determine only
two parameters. In the first instance, these are simply
the real and imaginary parts of U.. As shown by
Feshbach, Peaslee, and Weisskopf these can be trans-
lated into terms of the real and imaginary parts of the
logarithmic derivative of the radial wave function at
the channel surface: 7.= a.. The usual R matrix relates
the values and derivatives on all channel surfaces.
Therefore we wish to find a “reduced” R matrix that
refers to only one channel. This can be done by using
the method of Teichmann and Wigner, i.e., the so-called
“channel elimination” method. This enables one to
replace the actual R matrix by a suitable “reduced”
R matrix, whose dimensions are smaller and comparable
with the number of parameters one can hope to deter-
mine from any given data. The step of introducing the
reduced R matrix is one of convenience. It does not
introduce any new information in the theory. A
theoretical analysis of a set of empirical values of the
elements of the reduced R matrix, in terms of level
widths and energies v». and Ej can only be made by
referring back to the actual R matrix. In other words,
“the channel elimination” referred to in the Teich-
mann-Wigner method is not a complete elimination,
but only one made for convenience. It is clear that, in
the present example, the presence or absence of certain
open channels will affect the data in general so that in
any complete theoretical interpretation of the data,
some reference must be made to such channels. Never-
theless, as we see in Sec. X1, 2, under the “random sign”
approximation the relation between the reduced R
matrix and the actual R matrix becomes very simple so
that a given reduced R matrix may be directly inter-
preted in terms of the corresponding v». and E,.

1. Reduced R Matrix (R)
a. Definition

We are given the general matrix relation (VII, 1.6)
between the collision matrix and the R matrix, and are
interested in a particular nondiagonal element U, of
the collision matrix. This element is conveniently
regarded as one element of the 2)X2 matrix

(U cc U cc’ )

U c'c Uc'c'

and so, from the relation (VII, 1.6), we wish to extract
an expression for this little submatrix which refers only
to the two channels of interest, ¢ and ¢’. If we had been
interested in a diagonal element U.,, the corresponding
submatrix would be just U, itself. It is possible, in a
formal way, to extract an expression directly from
(VIL, 1.6), for a required submatrix. This direct pro-
cedure is less useful than an indirect one which intro-
duces a “reduced R matrix” having the same dimen-
sions as the submatrix of interest. The “reduced R
matrix” (R) is essentially just a convenient inter-
mediary between the general relation (VII, 1.6) and
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the small submatrix. One can define its role in a purely
formal mathematical way [see below, where (1.5) is
the relation between i and the submatrix, and (1.4) is
the relation between R and R. Eliminating S} between
these two leads back to the general relation (VII, 1.6)
for the elements of the submatrix]. However, it is pos-
sible to introduce the reduced R matrix in a more
physical way.

To be somewhat more general, suppose we are inter-
ested in an arbitrary number of channels, instead of
just one or two. These channels will be called “retained”
channels, labeled by 7, in contrast to the other channels
which are to be eliminated and will be labeled by e. We
now suppose that we have a state of affairs with
incoming waves in the 7 channels but none in the e
channels. (Note: This need not correspond to any
experimental situation.) The e channels then contain
only outgoing waves, whereas the other channels
contain mixtures of incoming and outgoing waves.

~ With this separation the fundamental R-matrix rela-
tion (V, 2.7) reduces to two submatrix relations,

Ve: ReeDeo+RerDr0,
Vr= Rerr0+RreD eo-
The subscripts e and 7 refer respectively to the groups
of ¢ and r channels, and not to particular channels; the
R.., R, and R,, are matrices, the last being in general
nonsquare. Since the e channels have only © waves,

their logarithmic derivatives at the surface 8 are
known to be those of the outgoing functions O, so that

L,=D.,V,=D,V,1-B.=L.—B.. (1.2)

By substituting (1.2) into (1.1) and solving the resulting
matrix expressions, one obtains

Vr= mMDro, Ve= merDr

(1.1)

(1.3)
where

ERN‘= Rrr+RreLeO (1 - ReaLeo)_lRer,
mer'_‘ (l - ReeLeo)~1ReT-

R,, is the symmetrical reduced R matrix; it is real,
only if the e group contains no positive-energy channels.

(14

b. Relation to Collision Matrix

By the procedure used to arrive at (VIL, 1.6b), it is
possible to obtain directly from (1.1) the general
expressions for the collision submatrices; they are

W= 148, (1=, LR, B, w,,  (1.52)
werz%e*mer(l_Lrtmrr)—l%rkwr. (15b)

Although the positive-energy part W, of W,, is
symmetric, it is unitary only if there are no eliminated
positive-energy channels.

c. Transformation of Reduced R Matrix to a Level Matrix

As in the deduction of (IX, 1.4), the inverse of the
channel matrix appearing in (1.4) can be expressed in
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terms of the inverse of a level matrix:
mrr= Rrro+Rr00LeeIRero+Z)\p (w)\er,n)A A (1 6)

where
W)= Y)r—I'R'reOLee,T)\e
and
merz Z)\u (a)\ex Y}n‘)A A\
where
A\ = (1"' ReeOLeU)MIT)\e,

Leel =L, (1 - ReeﬂLeO)_l.

As in Sec. IX, 1, the components of the symmetrical
level matrix A are obtained from the matrix relation

A=(e—E-¥ 1.7

in which the components of the complex, symmetrical
level matrix £=-—A43iT" are given by the scalar
products with respect to eliminated channels only,

(1.8)

in contrast with (IX, 1.8) where the  channels are
included as well. Again the components of the real,
diagonal matrix e are the proper values E) and the
real, diagonal matrix E is the energy E times the unit
matrix. As in Sec. IX, 1, the definition (1.8) can be
developed to give expressions like (IX, 1.18) for the
total width (T") and shift (A) matrices.
With the matrix R°=0, Egs. (1.6) simplify to

Rer=2 (12X Yur) Anis
?Rer= Z)\u ('Y)\ex 'Ym)A)\n-

b= (Tke’Lee,YAe)

(1.9a)
(1.9b)

2. Elimination of Negative-Energy Channels

It is often desirable to eliminate explicit reference to
the negative-energy channels as there are apt to be
many of them and they usually have only a slight effect
on the behavior of the reaction and scattering cross
sections. If this is done, and if there are no positive-
energy ¢ channels, then the reduced R matrix of (1.4)
is real, as is the ordinary R matrix. However, it is in
a much more complicated form. If the components of
the logarithmic derivative matrix L. of (1.4) can be
replaced by constants or linear functions of E (the coef-
ficients of the E term being always positive), and
approximate R, will be obtained which is expansible
in the form (V, 2.8), the v and E, of which are inde-
pendent of £ though different in general from those
which occur in (V, 2.8). This assertion may be verified
by means of the expansion of (1.9a) and may readily
be interpreted in terms of a modification of the nor-
malization used for the vy of (V, 2.8).

If the boundary conditions parameters B, for the
negative-energy channels are chosen to be very close to
the S,, so that the L2(=S=S,—B,) are very small, the
off-diagonal part & of the real matrix £ of (1.7) (P.=0)
may be considered as small compared with the diagonal
part e=e—E— &+ and all but the first term of the
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series expansion for (1.7)

A=gl4-¢lge 4. .. (2.1)

may be disregarded; (1.9a) reduces to the single sum
Rir=D (X 1a)/ (Er+An—E) (2.2)

where the Ay, are the diagonal components of the level
shift matrix for the e channels. When S2=0, A
vanishes and (1.11) reduces to the submatrix R,, of
(V, 2.8). However, the energy dependences of the S,
must be considered. By expanding the S, linearly with
respect to energy about the energy E of interest, one
obtains

(TMOX 'Y)\ro)
R=2— (2.3)
Ex—E
where
Yr
( ) dAxx) ¥
dE (2.4)
dAx as.
== Z e—'y)\e2-
dE dE

According to results in the appendix and Sec. XII, 3
and the definition of the vy., —dAn/dE gives the
volume integration of the negative-energy channel
wave functions of the external region which join on to
the X of the internal region. When — dAy,/dE is added
to the unity term in the denominator of (2.4), a modified
normalization of the v, is obtained which is effective
with respect to the internal region plus the negative-
energy part of the external region. This could have been
inferred immediately from the derivation of Sec. V by
allowing the channel radii of the negative-energy
channels to approach infinity where the wave functions
are vanishingly small. (2.3) is correct to the extent that
the .S, can be approximated by linear functions of the
energy. This approximation, and likewise (2.3), is

therefore invalid through thresholds where S, has

anomalous behavior (see appendix).

3. Elimination of Reaction Channels

According to Egs. (VIII, 3.2 and 3), the experimental
cross sections for bombardment by pairs of unpolarized
particles « are (with c=asl, ¢'=a's'l’):

™
total: aa(tot)=}—e—22 2g;(1—Re(U.")) (3.1)
o Jsl
™
elastic: ga(e)=—73" gs
ko¢2 Jsl
X{1=U7 |+ 2 |Ue”]?} (3.2)

(o =a)

sV (#sl)
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absorption: g4(abs)=c.(tot)—ca.le)= > ouw

o (#a)
™
=— 2 g{1-|U "~ £ |Ue?|?} (33)
ka2 Jsl o =a)
S (sl)
. ™
particular reaction: Taar =" > grlUe” |3 (3.4)
3
where g is the spin statistical factor:
27+1
(3.5)

gr="—————.
(26LA41)(21:+1)

Of these cross sections, the total involves U, only, the
particular reaction involves U, only and the other
two involve, in general, both U, and U, .

a. Elimination of All Reaction Channels

As noted by Feshbach, Peaslee, and Weisskopf,'® the
diagonal element U ..’ is uniquely determined by f.’, the
logarithmic derivative at r.=a, of the wave function
in the channel ¢ when there are incoming waves in this
channel only (whether this corresponds to an actual
experimental situation is irrelevant). By definition of
U..’, the radial wave function is

uchNIc-' UchOc (3.6)
with the consequence that
Ic,‘ Uccjoc’
ch = Pc( —'—) (37
Ic_ UchOc )

or, equivalently, using the formulas of Sec. III, 4;
Je=Lc*

fe—Le )

From the definition of f.7 and the definition of R,,’

in (1.3) in the case when all reaction channels are
eliminated, it follows that

frJ= (mrrJ)—l‘l'B. (3.9)

From (1.6) with R°=0, R, is the quadratic ex-
pression: :
ERI‘T: Z ’Y)\'rA MY pre
Ap

U,.J = etitwc—so)

(3.8)

(3.10)

Equation (3.9) establishes the connection between our
reduced R matrix and the f function of Feshbach,
Peaslee, and Weisskopf which was used in their dis-
cussion of total cross sections. In the special case when
there are no open reaction channels, 4),— (Ex— E)™6),,
N—R and f becomes real.

b. Elimination of All Reaction Channels but One

Let us denote a typical pair of such channels by ¢
and ¢’. Equation (3.6) is now replaced by the pair of
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equations corresponding to incoming waves in both
channels ¢ and ¢’:

ch=]c_ (UchOc+ Ucc’JOc'>,

uc’JZIc’— (Uc'cJOc'+ Un’cJOc)-
Clearly there is no longer the simple relation (3.7)
between U’ and the logarithmic derivative f,” in the
channel ¢. Rather one has the matrix relation (1.5a)
for U in terms of : where U and R are 2X2 matrices

and M satisfies the value-derivative matrix relation
(1.3): V=RD. From (1.5a) we have

Wee=142iP[Roe— L (ReeRerer— Roer?) Jd,
W eor=2iP AP AR sord
where

d= (1= LoRod) (1= Lo o) = LILRe?. (3.13)

If only the two channels ¢ and ¢’ are open, the R
matrix is equal to the usual real R matrix and (3.12)
and (3.13) become equivalent to (VII, 3.1).

(3.11)

(3.12)

XI. THE R-MATRIX THEORY APPLIED TO TREAT-
MENT OF AVERAGE CROSS SECTIONS

The considerations so far have been of an exact and
formal nature. Now we begin to make approximations
that are relevant for treating various practical situa-
tions. It is a well-known experimental fact that, with
increasing excitation energy of the total (compound)
system, resonance levels become broader and 'closer
together. There is a continuous transition from sharp,
well-isolated levels in the region just above the lowest
threshold to the so-called “continuum” where levels
overlap so that no structure remains in the cross
sections. Both of the extreme situations of complete
isolation and complete overlap can be described within
the framework of R-matrix theory by appropriate
approximations. This section discusses average cross
sections, with emphasis on the case of overlapping
levels; the next section discusses isolated levels. The
intermediate case of partial overlap of levels, will not
be discussed. Attention is drawn to certain formulas
(2.18) that appear to hold in both extreme situations
and can therefore may be plausibly assumed to hold in
the intermediate case.

Two types of approximation have been suggested for
treating large numbers of levels. Both lead to cross-
section expressions having the form of a product of two
factors, one for the bombarding channel, the other for
the breakup channel. Such expressions evidently imply
the property of independence of formation and decay
that is the essential feature of the Bohr picture of the
compound nucleus. The difference between the two
approximations is that one (due to Newton and
Teichmann) implies that this property holds at all
discrete energies whereas the other (due to Bethe)
implies that the property only holds on the average
over energy intervals containing large numbers of levels.
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The former approximation involves some very strong
correlations between elements of the R matrix, ie.,
between the v».. For instance, if we think of a cross
section containing contributions from two isolated
levels represented by Breit-Wigner formulas, the
demand of independence of formation and decay at all
energies implies that the ratios of the widths for the
various channels must be the same for both levels. In
fact, the requirement of independence of formation and
decay at all energies is far too stringent and leads to
strange predictions.

The other approximation (due to Bethe) is based on
an assumption that is almost the opposite of Newton’s.
Bethe’s assumption is that the signs of the width am-
plitudes va. are random. This assumption results in
formulas for average cross sections which exhibit
features expected of reactions proceeding by the Bohr
compound nucleus mechanism. The cross-section ex-
pression for a given reaction a—«’ proceeding through
states of given spin and parity has the form of a product
of two factors, actually the so-called “‘transmission
factors” one for & and one for «’, thereby expressing
independence of formation and decay. When one sums
over spins and parities, this independence no longer
applies, a point which does not appear to be generally
appreciated. The independence of formation and decay,
and also the isotropy of outgoing groups for many final
states, are only expected to be exhibited by observed
cross sections if a very specific property of level densities
is assumed.

In subsection 3, we show that the “transmission
factors” are expressible in terms of the “strength
function” whose form is not given by R-matrix theory
and is, to that extent, arbitrary. There is a degree of
freedom in the cross-section formulas. As mentioned in
Sec. I, this freedom corresponds to the various “models”
for the probability of compound nucleus formation. In
most published applications of the theory, as reviewed
by Blatt and Weisskopf,? this freedom was not appre-
ciated and the transmission factors and strength func-
tion were fixed as those of the “strong absorption”
model. This model is based on the assumption of inevi-
table compound nucleus formation in collisions and was
used without question until the exposure of its failings
by Feshbach, Porter, and Weisskopf® who replaced it
by their “moderate absorption” model. This does not
automatically mean that all analyses previously made
with the strong coupling model are useless. This would
indeed be a pity because of the great labor that has
gone into such work. For instance, all the fits of con-
tinuous spectra from reactions in terms of Maxwellian
distributions and nuclear temperatures presupposed the
strong absorption model. Fortunately it appears that
such fits are not directly impaired by the change to the
“moderate coupling” model because the main factor
in such fits is the level density law (as a function of
excitation energy), the transmission factors playing
only a secondary role. However, as is now well known,
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the fits to spectra may be seriously disturbed by the
presence of “direct reactions” in certain circumstances.
In subsection 6, we see that the direct reaction mechan-
ism owes its existence ultimately to the ‘“moderate
absorption” model (which implies a mild breakdown in
the assumption of random signs for the v\;). To this
extent, we may say that the change to the moderate
absorption model may indirectly impair some of the
existing fits of spectra made with the strong absorption
model.

1. Consequences of Newton’s Assumption’®
of Strong Correlations between the ),

If the R matrix is of low rank, say, one, two, or
three, Teichmann?® has shown that it is straightforward
to obtain the exact expressions for the collision matrix.
That the R matrix has a low rank means essentially
that it can be put in the form

R=Z X; X X/ b, (1.1)

where the sum extends to =1, 2, 3 if the rank is 1, 2, 3,
respectively. These forms are similar to those of the
1, 2, 3 level R-matrix expansions of Sec. IX, 1. The
collision matrices for the 1, 2, 3 level expansions of Sec.
IX, 1 give the collision matrix for (1.1) if the v\ are
replaced by the x; and the (E— E,) by the ¢;. The forms
(1.1) also apply if the v, are factorizable into groups
of levels 7 in the manner

YNie= d)\ibic.

1.2)

In each group ¢ the arrangement of the relative signs
and magnitudes of the various channels ¢ is the same
for all levels A; of the group (to within an over-all factor
which is determined by the level factor ax;). The vy
of one group are, however, not correlated in any way
with those of the other groups. Thus the lower the
rank of R, the more highly correlated are the y».. With
this form, one has x;,= b, and

and

i E)\i—

til=

(1.3)

The cases of rank 2 and rank 3 and the corresponding
cross sections have been discussed by Teichmann. We
confine ourselves to the rank 1 case for which the col-
lision matrix has the one-level form,

2i(PtbX Pib)

W=1+ (1.42)

)
tH+A—-T
2

and the reaction cross sections are proportional to
T'.Le
|Wee |P=—r,
()i
7T, D. Newton, Can. J. Phys. 30, 53 (1952).

(1.4b)

‘<°'mx >_—
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where

r=3 T,
T'.=2Pb2’

This form of reaction cross section is unusual because it
vanishes between each pair of resonances where #(E)
becomes infinite. (As mentioned in Sec. VII, 3 Wigner
showed that when there are three or more open channels
no reaction cross section vanishes in general for any
value of the energy.) Moreover, the reaction cross
sections all have the same type of energy variation and
differ only in their relative amplitudes. Thus the relative
decay probabilities are independent of the energy and
of the formation mode; in fact, Newton arrived at the
form (1.4a) by requiring that the cross sections have
this characteristic. Teichmann showed that these cross
sections may readily be averaged if ax?>=1 for all A and
if the levels are uniformly spaced by an amount D, in

which case
D TE
{=——tan (—)
T D

With this expression for ¢, the average cross sections
are easily found from (VIII, 3.2) to be

4T T
“(5)

(1.5)

ko2 Tsis't

I al’

)

2D 2D

wA

)
where ¢c=asl, ¢'=a’'s'l’. By choosing the B, equal to S,
evaluated at the particular energy of interest, the level
shift will vanish at that energy and will be negligible

in the vicinity of it. Therefore, in the region of over-
lapping levels where (#I'/2D)>>1, (1.6) simplifies to

(o) T 5 (41‘01‘6:)
Taa’)= .
ko2 Jsls't 87 12

The total absorption cross section is obtained by sum-
ming over o’ (#a):

{o.(abs))y= Z (Caw )—— > gJ(4r )

o’ (Fa) 2 Jsl

(1.7)

where we have dropped the term in (I';/T")? as small.
Let us now consider raising the hombarding energy to
the point where many partial / waves contribute. Since
the cutoff in / occurs at I~ka>>1, if we assume that
(T/T) is independent of s,/ and J

<aa<abs>>=«a2(gf).

(1.8)
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If there are many channels for absorption so that
I'>>T. the absorption cross section becomes much less
than the geometrical cross section wa? found experi-
mentally and it does not seem likely that this is a con-
sequence of the special assumptions made in connection
with (1.5). For this reason the form (1.4) does not
provide an adequate description of the compound
nucleus even though it does satisfy the requirement of
independence of formation and decay. This tendency
for the absorptions to vanish is evidently due to de-
structive interference of the various contributing levels
caused by the extreme correlations of the signs of the
Yre. Such destructive interference is also evident in
the results obtained by Kalckar, Oppenheimer, and
Serber? as well as Bohr, Peierls, and Placzek.”” In the
following subsection a more suitable form of the collision
matrix for the compound nucleus is derived. This does
not lead to destructive interference in the absorption
cross section, and implies independence of formation
and decay on the average.

2. Consequences of Bethe’s Assumption of
Random Signs of the v,

a. R-Mairix Description of the Original Treatment

Bethe! and, later Bethe and Placzek* derived an ex-
pression for the averages of reaction cross sections
which is valid even if the levels overlap, provided that
each of the average partial level widths (T').) is smaller
than the mean spacing D. This derivation is based on
the assumption that the signs of matrix elements for
the formation and decay of the various intermediate
nuclear states are uncorrelated, and the result thereby
obtained shows that the excited nucleus decays on the
average with probabilities which are independent of the
formation mode, and that the average total absorption
cross sections will tend to be of the order of magnitude
of the nuclear area, in conformity with experiment.
Although the concept of a collision matrix had not been
introduced at the time of Bethe’s work, the form of this
matrix can be inferred from his equations. The purpose
of this section is to derive Bethe’s result using R-matrix
theory and to show that, in this theory, the signs of the
vxe for the states of the compound nucleus must be
considered as uncorrelated.

The set of Eqs. (IX, 2.18) and (IX, 2.19) for the
determination of the parameters of the collision matrix
can be solved approximately in the case of uncorrelated
signs and overlapping levels by the standard pertur-
bation theory procedures such as those reviewed by
Morse and Feshbach.”® However, for simplicity we use
a less rigorous procedure.

With the assumption of random signs for the ), the
nondiagonal components of the & matrix given by

76 Kalckar, Oppenheimer, and Serber, Phys. Rev. 52 273 (1937).
77 Bohr, Pelerls, and Placzek, Nature 144, 200 (1939).
7P, M, Morse and H. Feshbach Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953).
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(IX, 1.8) will be smaller in absolute magnitude than the
diagonal components and one can make an expansion
of the matrix expression for A given by (IX, 1.11) in a
power series about the diagonal part e=e—E—§4§
whose components are ex=Ey+A,— E— (3/2)T'y where
¢ is the nondiagonal part of £ Thus

A=getge 4. (2.1)
and therefore from (IX, 1.7) with R'=0
X X Y
(I-RL)-R= Z +2 b+, (2.2a)
(5% A €y
the components of which are
YA ne!
[(1-RL)R] =5
A €\
YAV ne? Yue!Ype
L P X > S (2.0
o'’ € w(=N) €

For simplicity we have set B,=.S, so that the level shift
matrix may (temporarily) be disregarded, and the
expressions given by (IX, 1.16) and (IX, 1.18) for the
resulting components of £ have been used to arrive at
(2.2b) and (2.2a). We now determine the conditions for
the validity of the approximation (2.3) below for the
collision matrix which is obtained by neglecting all but
the first term of (2.2a or b). The sum over the channels
" of (2.2b) is considered in two parts: (1) the con-
tributions from the channels ¢ and ¢’; (2) the contribu-
tions from the remaining channels. If the u=\ terms
are added to the u sum of (2.2b), which is permissible
if the total level widths are much larger than the
spacings, the contribution from the channel ¢’ is ob-
served to be
Vue’

1Py Y

b€y
times the contribution from the first sum of (2.2b). By
replacing this u sum by an integration, it may readily
be estimated as

<’Yuc’2>
o

™

The contribution from the channel cmay be determined in
asimilar manner. The magnitude of the contribution from
the ¢ and ¢’ channels together is thus (r/D){T'\.+T'r)
times that from the first sum of (2.2a) or (2.2b). In
the consideration of the contribution (2) from the
remaining channels, no two of the same v, appear
multiplied together. Since the signs of these are pre-
sumed to be uncorrelated, the most-probable value of
this contribution is zero; its root-mean-square mag-
nitude may be estimated as follows. The rms magnitude
of the contribution to the components of & from the
remaining channels may be estimated as equal to ('),



R-MATRIX THEORY OF NUCLEAR REACTIONS

the average magnitude of the diagonal components of &,
divided by the square root of the number of open
channels ¢’#¢, ¢/, this number being approximately
equal to (I'\)/(I're+), the average being with respect to
both A and ¢”’. The magnitude of the contribution from
the u sum of 1/¢, individual terms having random
signs, may be estimated as (2r/D(T')))}. The rms mag-
nitude of the contribution to the second sum of (2.2b)
from these channels is thus estimated as the channel
average of (m(I'x.+)/D)? times the first sum. A necessary
condition for the validity of the approximation

X
W=142iPt |y — 0 |pi

A 1
Ex—E—-T'
2

(2.3)

is therefore that all of the ratios m(I'x.+)/2D must be
much less than unity, as imposed by the contribution
(1). The third and higher terms of the expansion (2.2b)
are proportional to the square and higher powers of
these ratios. If the level shifts A, are included in the
denominators of (2.3), the ratios m{Ax,)/D must also
be less than unity. Equation (2.3) is the many-level
approximation to the collision matrix which is valid
in general when the total level widths are much less
than their spacings. This result corresponds to the
equality condition of the relation (IX, 2.14).

With c¢=asl, ’=a's’l/, the reaction cross sections
obtained from (2.3) are

4
Taa’ =" Z J
kaZ Jsls’l/

XX ; A
Ap 1 1
(EA—E——I‘R) (E,,——E—l—-I‘,,)
2 2

Following the procedure indicated by Bethe,! averages
of these with respect to an energy interval 8, which is
large compared with the total widths, are found to be

Pc’Y)\c'ch'Y)\c"Yuc'Pc'

(2.4)

4
<°'aa’>='_2 2 87
o Jsls’l!
™ PoPc"Y)‘c’YMC‘Y)\c"Yuc’(P)\+F;¢)
X- 2 , (2.5)
B s (BB H (D0t T

the sums being restricted to levels within the interval
8. For each level in the A sum there will be about (T'\)/D
levels contributing from the p sum and thus about
&(T'»)/D? pairs altogether. In view of the random nature
of the v, signs, the contribution from the terms with
AZu will be proportional to the square root of this
number of pairs in contrast with the number §/D of
contributions from the positive definite terms with
A=u. The cross-product terms. may therefore be ne-
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glected so that
7 (TCJTc'J
aa’)= T y 2.6
T T) 26)
where
2w (Txe”)
Td=—— (2.7)
DJ

are quantities similar to Weisskopf’s transmission
factors.* From the form of (2.6) the decay of the
compound nucleus is on the average independent of the
formation mode, for each pair given spin J and parity
(but not when summed over J). By summing over decay
channels o', the total absorption cross section is
obtained.

<aa<abs>>=kiz S T, (2.8)

o Jsl

When the bombarding energy is greater than the barrier
height, the penetration factors P;~*ka, and the strong-
coupling theory (see subsection 4) suggests that the
ratios ((va2)/D)~ (rKa)~! where K~1X10™8 cm is a
wave number characteristic of nucleon motion within
the nucleus. Under these conditions the transmission
factor is T'.;= (4k/K), which is of the order of magnitude
unity at moderate and high energies, and the summing
procedure leading to (1.8) indicates that the total
absorption is of the order of magnitude of the nuclear
area. However, when T, is of the order unity, the ratio
7(I'\e)/2D is also of this order, and the expansion (2.3)
is not valid. Transmission factors calculated from (2.6)
can exceed unity for high energies (that is if 4% exceeds
K) in violation of the requirement that the collision
matrix be unitary. Subsection 2b is devoted to an
alternative procedure which avoids these difficulties by
dealing with an expansion similar to (2.2b) except for
the nonappearance of the objectionable contributions
from the ¢ and ¢’ channels in the ¥ matrix. This avoid-
ance is accomplished by means of the channel elimina-
tion procedure of Sec. X. The result obtained is similar
to (2.6) though valid under the less restrictive condi-
tion, imposed by the channel contribution (2) above,
that the mean with respect to channels ¢ of the (I'x.) be
less than D; the transmission factors that are obtained
cannot exceed unity and are of the form proposed by

Weisskopf.
b. Improved Treatment Using the Reduced R Matrix

If the signs of the v); are uncorrelated, the arguments
used to justify the approximation (2.3) may also be
used' to justify the approximation

X YA

' (2.9)
1
EX+A>\’~E——EI’X'
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to (X, 1.9a), the widths I'\’ and shifts A,’ of this ex-
pression being the diagonal components of the total
width and shift matrices for the eliminated channels.
However, (2.9) is valid under the less restrictive condi-
tion that the means with respect to A and ¢ of the partial
level widths and shifts for the eliminated channels be
less than the spacings, because the contributions to the
second sum from the channels ¢, ¢’ have been eliminated
in the expansion corresponding to (2.2b) for the com-
ponents of R,,.

When the I'y are much larger than the spacings D,
it is permissible to replace the individual widths and
shifts in (2.9) by suitable averages with respect to an
energy interval of size comparable to the (T'y)

IV=(IV=T(E), A/=(@y)=A(E). (2.10)
Both T' and D are expected to be mildly energy-de-
pendent because of the presence of the energy-de-
pendent factors P and S in the individual contributing
terms and of possible systematic long-range variations
of the reduced widths of the eliminated channels. This
approximation is reasonable because it is not expected
that the individual level widths and shifts will deviate
significantly from one another, and the results obtained
are usually not sensitive to the actual values of I' and A.
We also apply (2.10) in those circumstances where the
T') are narrow or comparable to D by allowing the T'
and A to vary in an appropriate manner from level to
level.

Approximations (2.9) and (2.10) together lead to the
interesting result that the various components of the
reduced R matrix at the energy E can be obtained
approximately by simply evaluating the components
of the ordinary R matrix at the complex energy
E=E—A+(i/2)T:

R, (E)=R,.(8). (2.11)
This result is particularly useful because the latter
components are analytical functions of the complex
energy 8. As discussed in Sec. IV, 6 the diagonal com-
ponents of the R matrix are meromorphic functions,
the imaginary parts of which are non-negative on the
upper half-plane and nonpositive on the lower; their
poles Fj are confined to the real axis and have negative
residues —+»% In this connection frequent reference is
made to the pole strength function s. for channel c,
defined as the sum of the v\, per unit energy interval
of the E,, averaged- with respect to an interval of
appropriate length.

For the determination of a particular diagonal com-
ponent of the collision matrix, one eliminates explicit
reference to all but the channel referred to by that
component, while for the determination of a particular
nondiagonal component, one eliminates explicit refer-
ence to all but the two channels referred to by that
component.

Diagonal Components—If there is only one » channel,
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the collision matrix given by (X, 1.5a) becomes the
collision function (X, 3.8), which, on using (X, 3.9) has

the form
1—-R(E)Lo*
U=e2i(""¢>(—— )
1—R(E)L°

(2.12)

By introduction of Wigner’s statistical R function,
R’ (see Sec. IV, 4)

, Yl
R(&)=%
N E)\/-— 5

(2.13)

it is possible to develop a useful representation for the
approximation (2.11) which is expected to be rather
accurate whether the level width is small or large
compared with the mean level spacing D. The R’
function has the following property. In an energy
interval I containing the energy E of interest and of a
length such that D<KI<Ks(ds/dE)™" where s(E) is the
strength of R in the vicinity of E, the poles Ey., and
residues —yx? of R’ are equal to those of R, whereas
outside of / they maintain the same statistical dis-
tributions as within and thus will in general differ from
those of R which may evidence long-range fluctuations.
The strength s of R’ is thus everywhere equal to the
strength s(E) of R at the energy E. It has therefore
the useful property of approaching iws(E) when evalu-
ated at a complex energy whose imaginary part is large
compared with D, as is evident by replacing the sum
over levelsin (2.13) by an integration for the evaluation.
It is convenient to introduce the “complex smoothed R
function,” denoted by R and defined by

R(8=R(8—R'(8)+ins(E). (2.14)

Since the terms A of R and R’ that occur inside I are
the same, only those terms from outside of I will con-
tribute to R. The sums over these outside terms can be
replaced by integrals:

R(é’)=L_I) %dE’——f

s'(E)dE'
—+ins(E)
(e0—1) E,_

where (o —I) denotes the range of all energies exclud-
ing the interval I, and where §'(E’) is the strength
function for R’ which, by the definition of R/, is a
constant everywhere equal to s(E). From this last fact,
we may add

f s(ENdAE' f s'(EdE' 0
o E—8 Jo E—-8&

to the last equation to obtain

s(E"AE' f s'(E")dE'
Firs(E).

Ko=[ — ,
(0) E—g (0) E—E

Since s'(E’) is a constant, the second term equals
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iws(E) and cancels the third so that
s(E"dE'
w E—8

R(8)= (2.15a)

In other words, the complex smoothed R function R
is the Stieltjes transform of s; clearly we have that, in
the limit when A, I'Ks(ds/dE)™, i.e., when |§—E]|
Ls(ds/dE)™!

s(E")dE'

Re[R(é”)]—>Prf ——=E®)

(2.15b)

Im[R(8)]— =s(E) (2.15¢)

where “Pr” signifies “principal part of.” The R(E)
defined by (2.15b) is called the ‘“real smoothed” R
function. Here E(E) is not equal to the limiting value
of R(8) when §—E, but is only the real part of this
limit. We now apply this discussion to the special
situations I">D and I'KD.

(¢) T>D. In this case, as mentioned above (2.14)
we may use the property of R’ that, for I>>D:

R (8) ~ims(E)
to deduce from (2.11) and (2.14) that
R(E)=R(8)=R(8).
From (2.12), the collision function is then
1—R(8)L*

0= —

), (2.16a)

the bar having been placed over U to indicate that
R (E) has been replaced by R (8). This function mani-
fests no resonances and is essentially constant in the
interval 7.

() TKD. In this case we have from (2.15¢):
Im[R(8)]=ms(E),sofrom (2.14) R(§)=R(E)+R'(§),
the term R(E) representing the net contribution to
R(8) from the levels putside of I. If R’ is defined as
having the same relation to 9 as R’ has to R:

R (E)=Y —

N 7
Ex+Ay'—E—-T\/
2

then R(E)—R'(E)=R(8)—R'(8)=R(E), and the
collision function (2.12) for this case is conveniently
rewritten

1-R(E)L'*
U=e2’3<"’—¢’>(——————) (2.16b)
1-R(E)L
where _
L'=L(1—-R(E)L™
and _
R(E)P
ot (207
1-R(E)S
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is the negative of the actual potential scattering phase
shift. For example, in the collisions of slow neutrons
with nuclei, the potential term appearing in elastic
scattering is found to be modified by a factor [1—R(E)]
by which the radius is multiplied.

For convenience, we list the various R functions and
their properties:

R funclion=R(8) =3 —""
UNCILON= = .
A Ex—g

Reduced R function=R(E); from (2.9):

vt

R(E)= ? -

i
Ex+-AV— E—Z—Px'
2

and, from (2.11), when I">D:
YN
ER(E)M{(@):%“ .

N —

Statistical R function=R’'(8) is defined to have the
same v»? and E) as R inside an interval I, and to have
the same statistical distributions of 2 and E) outside
I. R’ has the property, for I>>D:

R'(8) =ins(E).

Reduced statistical R function=R'[E] has the same
form as N (E) above, except that the terms N outside
the interval I are replaced by terms )\ such that the
v»% and Ey have the same statistical distribution as
those of terms A inside I.

Complex smoothed R function=R(8) is defined as (2.14)
R(8)=R(8)—R'(8)+irs(E),
and this can be shown to equal (2.15a):
s(E"dE'
w E—8

R(&)=

Real smoothed R function=R(E) is defined as

f s(E"dE'
(o0) E,_’E '
As yet we have assumed nothing about the relative
magnitudes of T' and s(ds/dE)~!. If we assume that
I'Ks(ds/dE)™* (which is reasonable for most situations
since the latter magnitude is expected to be =1 Mev

—see subsection 4), then we may use (2.15b) and
(2.15¢) to deduce from (2.11) and (2.14) that

R(E)=R'(8)+R(E).
In the case (i) where I'>>D, this becomes
R(E) =irs(E)+ R (E).
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Nondiagonal components—For evaluation of the c¢’
nondiagonal component of U, one can eliminate explicit
reference to all but the ¢ and ¢’ channels by introducing
the reduced R matrix with components .., Reor, Rerer
into the expression (X, 1.5) for the collision matrix.
By inverting the two-channel matrix (1—%,.L,% as in
(X, 3.12) one finds the nondiagonal component of the
W ,, matrix to be

ch’ = ZipcésRcc’Pc’%d_ly (2-17)
where

d: (1 ~“‘[‘¢>05R00) (1 _LG'OERC’C’) _LcOERcc'ZLc’O;

the approximations (2.9) may be used for the various
R components, the T'x and Ax now including contri-
butions from the partial widths and shifts of all but
the ¢ and ¢’ channels.

(i) When I'’>»D, we may use (2.11). It ¢an be shown
by means of Rademacher’s theorem that |R.|?
averaged with respect to all possible choices of the
random signs of the vy is equal to scse(2rD/T'), which
is negligible compared with the product

ERccsRc’c’ = Rc ( 8) Rc’ ( 8)
therefore may be replaced by

[N

Pt (2.182)

Wow=2iPd Y ‘
A 1
By —E—-T

where ' _
are=(1—LRo(8)) M1 (2.19)

@, is defined by this equation like the ax, of (IX, 1.15)
except that RO in the latter is replaced here by E(8).
(ii) When I'KD, at a given level X\, we may put

YAV e

+R.o(8)

Ree(E)=
. i
Ex+Ax'—E—5Fx'

(and similarly for R..r) and

YN ne!
Reo(B)=——""7,

i
E>\+Ax'—E*EI‘x'

thereby assuming as in (i) that the contribution from
other levels to M. is much smaller than the contribu-
tion Re.(8) to Re. Insertion of these expressions in
(2.17) gives, after a little rearrangement,

(A7)

Weo=2PA Y, ———— P4,
A 1
Ex+A\—E— EI‘)

(2.18b)

where the Ay and I'y now include the contributions from
channels ¢ and ¢/, and the &, are the same as defined
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by (2.19) except that the R.(8) of (2.19) is replaced by
R.(E). In fact, neither of these differences between
(2.18a) and (2.18b) is significant; clearly the replace-
ment of Ay" and T\’ by Ay and T\ in (2.18a) is allowed
by the condition I’>>D. Furthermore, the replacement
of the @ of (2.18b) by those of (2.19) is permissible
since 1—LAR.(8)~1—LLR:(E) when I'KD. Thus we
conclude that (2.18b) with &, given by (2.19) is valid
when I'D and when I'>>D. One would also presume
it to be reasonably accurate when I'~D although in
that case one may refer directly to (2.17).

From consideration of the term L°E,(&) in ey, it is
apparent that, as expected, (2.18) differs from (2.3)
when the magnitudes (I'x)/D and (Ay.)/D approach
unity.

This form of the collision matrix may violate the
relation (IX, 2.14), although to order of the channel
mean of the ratios (I'x.)/D, which necessarily must be
small. This slight defect is readily amended by con-
sidering the partial widths and shifts which contribute
to the respective totals to be

F)\c=2Pcl&)\cI2, A)\c='~ScOI5()\cl2 (220)

rather than 2Pgy\? and —S ya2 The equality alter-
native of (IX, 2.14) is then satisfied. Finally although
the nondiagonal components of W have been expressed
in the expansion form (IX, 2.5) the diagonal com-
ponents have not. No particular significance is attrib-
uted to this departure other than that it does appear to
make W unitary.

3. Average Cross Sections

(a) Average Total Cross Section

From (X, 3.1), the average total cross section for
bombardment with unpolarized particles « is (with
c=asl)

(Galtot)=— 3" 20,(1—Re((U.7)).  (3.1)
ko2 sl

Asin (X, 3.2 and 3), this cross section is composed of
two parts, the experimental average elastic scattering
and absorption cross sections:

™
<‘7a(el)>=;—az :A:’l g7

X{N=U 10+ 2 (Uo7} (3.2)
sV (#sl)

(va(abs))= Y 2 g

X{1_<|ch',l>2- Z <[Uc’chz>}' (33)

s (#sl)

(o =a)
Evidently the average total cross section is determined
by the average of the diagonal elements of the collision



R-MATRIX THEORY OF NUCLEAR REACTIONS

matrix. In contrast, the averages of the experimental
elastic. scattering and absorption cross sections (3.2)
and (3.3) involve other quantities like (| U |?).
Feshbach, Porter, and Weisskopf® pointed out that
there are two ways of splitting the average total cross
section (3.1) into two parts. One is the split correspond-
ing to experiment described by (3.2) and (3.3). The
second way is more meaningful theoretically and is the
split into the so-called “shape elastic’’ and “compound
nucleus formation” cross sections which are defined by

T
va(se)=—72 gs[1—(U.7)|? (3.4)
ka2 Jsl

«ra(c.n.)=l—:—r~2 (=[O 63)

Clearly the sum of these two identically equals the
average total cross section:

o (s.e.)Foa(c.n.) =(ca(tot))={(oa(el))+{oa(abs)). (3.6)

The two splits are, in general, different and one speaks
of the difference between the average experimental
elastic and the shape elastic cross sections as the
“compound-elastic” cross section:

oq(ce.)

=(oq(el))—0a(s.e.)=0q(c.n.)—{g,(abs))

|Ued |7}

=L 5 gl U= (U T
kot 51 3.7)

sV (#sl)

(o’ =a)
Freidman and Weisskopf® have discussed the inter-
pretation of (3.4) and (3.5) from the point of view of
the temporal development of a reaction. They point
out that (3.4) is just the cross section for the elastic
pulse that appears as soon as the incident pulse reaches
the target nucleus. The cross section (3.5) corresponds
to the delayed pulse arising from the decay of the
compound nucleus. This latter cross section may contain
an elastic component, #iz. o.(c.e.) of (3.7), but this
is incoherent with the former cross section as a result
of the time delay.

Since all of the poles of the collision function are
situated in the lower half of the complex energy plane,
with the exception of those on the real axis associated
with bound states, the path of integration involved in
the averaging of U may be displaced, without crossing
poles, far enough upward so that R’ becomes essentially
equal to ¢ws(E), and therefore =R according to
(2.14). If the average is with respect to an energy
interval I such that DKI<Ks(ds/dE)™, it may be
presumed that the contributions from the connecting
sides of the contour effectively cancel and that B is
nearly constant on the displaced path, in which case

U)y=U 3.8
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the quantity U being given by (2.15a). The interval I
must also be small enough so that the external functions
S, P, and ¢ may be considered as constants. It is then
evident that (sa(tot)), (sa(s.e.)), and (oe(c.n.)) are
obtained by simply substituting U for (U) in (3.1),
(3.4), and (3.5).

No such simple result of a general nature can be ob-
tained for the quantity (|U|?) which also appears in
(3.2), (3.3), and (3.7), because its poles are situated in
both halves of the & plane. However, by assuming that
the v»? of R are all equal and the levels Ey- uniformly

spaced by an amount D so that
R’ =xs tan(r8/D), 3.9

then it is not difficult to include the residues of the
poles of |U|? in the contour used to derive (3.8). The
result is that

A=K =AU+ (1 —w )

where

(3.10)

w=g@rTID)

I" being the total width for absorption. If we ignore the
nondiagonal terms in Uy, it follows that

@&@#1296~ti—)(um

k2 7st \1—w/+w/T,J
ucen)=2 5 oo ikl )
«(C.e.))=— —_— A1
i e s\ T )
where -
TcJ:—‘l'— lUchI2 (3.12)

is the transmission factor in the form proposed by
Weisskopf. This result was obtained in a somewhat
different manner by Snowden and Whitehead.”

According to (3.11) the relative probabilities of
compound elastic scattering and absorption are wT and
(1—w), respectively. The following interpretation of
these probabilities was suggested by Porter.® According
to Weisskopf® a period (27%/D) may be attributed to
the compound nucleus. Since the decay rate for absorp-
tion is (T'/%), the probability for absorption in this
period is (1—w) while that of no absorption is w. At the
end of each period the system is presumed to be in a
configuration for decay into the entrance channel from
which it was formed, and the probability for pene-
tration through this channel is the transmission factor
T, a quantity which by definition cannot exceed unity.
Therefore, the chance of the occurrence of compound
elastic scattering in one period is w7. The periodic
motion of the compound nucleus is repeated until there
is decay either one way or the other.

( 7955.) C. Snowden and W. D. Whitehead, Phys. Rev. 94, 1267
1954).

8 C, E. Porter (private communication).

81V, F. Weisskopf, Helv. Phys. Acta 23, 187 (1950); Science
113, 101 (1951).
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Both the detailed calculation by means of (3.9) and
the interpretation involving the attribution of a period
to the compound nucleus depend upon the assumption
of a uniform level spacing. This assumption may be
questioned because the alternative view that the be-
havior of the compound nucleus is “chaotic” would
imply that as in the familiar one-level resonance
formula the relative probabilities for these decays are T’
for the entrance channel and the corresponding trans-
mission factor 2aT/D for absorption. In this case, the
probability for compound elastic scattering is relatively
larger than w7, especially when w<1 or equivalently
27T'/D>>1. This alternative view may correspond to
something like a random distribution for the level
spacings. Unfortunately there is scant experimental
information regarding this distribution, and the true
behavior may lie anywhere between these extremes.

(b) Average Cross Sections for Particular Reactions

The average cross sections are obtained from (2.18)
in the same manner as (2.6) was obtained from (2.3).
We have, from (2.18) with (2.20):

(o) = T (T”JT”'J) (3.13)
Taat)=— 3.
ko2 Jsls'V 87 S Tor?
where the transmission factors 7,7 are defined by
2m(Txe”)
TCJETale=’M (3.14:)
DJ
and (I'.) is determined from (2.20) as
2Pc<7)\cz>
(Tae)=2P;|@n.|*= (3.15)

|1—R.(8)LS|*

It follows from the definition of the strength function
se below (2.11) that the transmission factor 7./ may
be written
4ns, I P,
T/=—— (3.16)

|1—R.(&)LS|
On using (2.15b) and (2.16a), it is apparent that this
factor is identical with the one defined above in (3.12).
In other words [ (r/ko2)gs 1T .7 is the contribution from
spin J and channel ¢ to the compound nucleus forma-
tion cross section by unpolarized pairs a as defined by
(3.5):

™

T/ = (k—a;gJ)_lacJ(c.n.) (3.17)

where o’/ denotes the part of (3.5) from spin J and
channel ¢. This simple but important result that the
factors T’ occurring in the reaction cross section (3.13)
are proportional to the cross sections for compound
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nucleus formation was first shown by Weisskopf? on
the basis of the principle of detailed balance.

The evaluation of the transmission factors has been
surveyed by Blatt and Weisskopf* for the case when
the strength function s, is chosen in accord with the
“strong absorption” model (see subsection 4). For the
“moderate absorption” (complex potential) model,
some evaluations have been made by Oleska.??

We now discuss angular distributions. The cross
section (3.13) does 7ot exhibit independence of forma-
tion and decay. In other words, it isnot simply a product
of two factors, one for the formation mode and one for
the decay mode. The presence of the sum over J
prevents one writing (3.13) as such a product, and this
reflects the fact that the compound nucleus cannot
quite lose memory of the formation mode, i.e., it must
“remember”’ the total spin J and parity. Of course, each
separate term of (3.13) does exhibit independence of
formation and decay.

In spite of this, there is a certain special situation
when (3.13) can be resolved into a product. Let us
suppose that the cross section ¢.o is averaged not
only over compound states but also over residual states
o' corresponding to the energy of emission being in a
small region dE, about E.. Let us further suppose that
for all residual pairs o/ one particle of the pairs o
(say ai’’) has no excited states and is therefore always
in the ground state with spin la’; in contrast the
nuclei ay”, the “residual’” nuclei, may be left in any of
a very large number of spin states I«y”. This average
cross section may be written, from (3.13) as

™
<Uaa’>dEa’:— Z g-’

ka2 Jsls'l!

Tale(ZI’TQ’E’s'l’Jpa'I,(ea'))
dEy,

€aqrim
Z Ta"E'ls”l//Jpa”IN(ea”)dea”
a/lslfllll// 0

(3.18)

where we now understand o’ and o’ to label just the
residual nuclei and not particular states of them. The
spins Iay’ and Iey’ have been abbreviated to I’ and
I, and the new quantities e,, €, are excitation energies
of the residual nuclei o”, o/. For instance, €.’ is such
that its sum with E., the emission kinetic energy, and
the binding energy b of the pair o’ in the ground state,
makes the excitation E* of the compund nucleus:

et Ea+bo=E*. (3.19)

The maximum value of e, is evidently achieved when
Ey=0:

€™ =E*—bu. (3.20)
We now make a very specific assumption, that the

8 S, Oleska, Phys. Rev. 101, 1034 (1956).
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dependence of the level density paI"’ of residual nucleus
o’ on I" is the following:

par (€arr) = (21" +1)par (ear?) (3.21)

where po(eqv), without the superscript I/, is inde-
pendent of I”. It is a pity that this assumption has to
be made to derive the results below because the various
theories of level densities suggest that this form is only
appropriate for low values of I”. (In particular, a
number of authors have shown that the dependence on
I" is of the form (2I"+1) exp[ — (I"'+%)2/26%], where
o is a dispersion coefficient. Bloch® has shown that,
in a light nucleus, the second factor is significantly less
than unity for I’ as low as ~3 and excitations less than
12 Mev.) Nevertheless it appears that (3.21) is essential
as can be seen on trying to perform the sum over 1"
in the denominator of (3.18). For fixed I’ and s”’ we

have
> 1) =(2s"41) (21 +1). (3.22)
I//

Where the sum is over all I’ that can satisfy the vector
relation: I"4Ie;7=s". For summands other than
(2I"41) one cannot, in general, write the sum in a
closed algebraic form and this is why (3.21) is so vital.

Assuming that Torg,.snm7 is the same (say Torgy )
for all s” satisfying the vector relation s”’+1”=1J and
zero otherwise, we have

> (25" 1) TarByrisrir?

8’

= TarBortr? (' +1)(274+1).  (3.23)

This assumption is expected to be approximately correct
but not exactly. (For instance in the case of nucleon
channels, the known existence of a nucleon spin-orbit
force means that the strength function s, for such
channels depends on s and J to some extent. This
implies that the transmission factors also depend on s
and J.) With (3.23), Eq. (3.18) now reads

™
(Caar)AEw = s 2 87

ko2 Jsl

QL+ ) Taot? (i (2 1) TarBor 17 ) (€ar)

S QLar41) (20 +1) f TerrBar e (carr)dewr
0

P

XdEq. (3.24)

When dealing with specific final states o, the sums over
! and I’ are not independent but rather are connected
by the need to preserve spin J and parity. In the present
case however, the fact that residual states of all spins
I’ and both parities are assumed to participate means
that the sum over !’ is not restricted by fixing 7 and J.
Thus, if the transmission factors are assumed not to
depend on J if J satisfies s+1=J, and to be zero other-

8 C. Bloch, Phys. Rev. 93, 1094 (1954).
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wise, one can perform the sums over the values of J and
s allowed by s+1=1J, Ii+I.=s:

22 =1 (3.25)
s J
to obtain
(0aar)AE . =04(c.n.)
(2Iay+1)ow (cn) booe (€x)AE 4
€qrm
S (2Lar1) f e (0. b Pprs ()
’ (3.26)

where gq(c.n.) is the form taken on by (3.5) under the
assumption that is independent of s and J:

zra(c.n.)=£~2 Y Q)T (3.27)

The form (3.26) for the average reaction cross section
is often quoted in the literature. It has the form of a
product, and so implies independence of formation and
decay. However (3.26) is based on two assumptions,
one of which (transmission factors do not depend on
s, J) is only approximately true, while the other
(o' = (2I+1)) may be badly violated in practice. The
previous form (3.18) is not based on these assumptions
so that it is desirable to use this in preference to (3.26)
if circumstances and information permit.

The general expression for the angular distribution
of the products of a nuclear reaction is given by Eq.
(VIII, 2.6):

P ae=[k2Q21+1) (2L 1) T
X 2 Br(0/Eos’,as)Pr,(cos0a)AE 4dQey

Lss’

(3.28)

where By is given by the expression (VIII, 2.7).

This expression contains a sum the individual terms
of which are proportional to the absolute squares of
components of the collision matrix, in addition to sums
of terms which are proportional to the real part of the
product of one component and the complex conjugate
of another, that is, cross-product terms. The random
sign approximation corresponds to the omission of all
but the sum of terms proportional to the absolute
squares of the collision matrix components. Thus, as
indicated by (2.18) in the statistical-theory approxima-
tion, the retained terms are proportional to factors such
as |Re7|? whereas the omitted ones are proportional
to factors such as Roie1/1Reges’/* which are effectively
zero when averaged over an energy interval much
larger than the level spacing. In this situation By,
becomes

Br(o/ Ees'jas)=%(=)"*" 3 Z(IJ1J sL)

Ju

XZ(Z’]Z’J;S’L) , Ua'Eafs'l’,asl" ‘ 2. (3.29)
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The often-quoted result that the distributions of
reactions through the compound nucleus have back-
and-front symmetry is already apparent at this stage.
It is a consequence of the fact that the Z functions of
(3.29) vanish unless L is even (since, from (VIII, 2.8a),
the Z function contains the factor (/00| L0) which has
this property).

To derive the result that the distributions are iso-
tropic, it appears necessary to make both of the
assumptions made in connection with (3.26). As said
before, this is a pity because assumption (3.21) in
particular, is not thought to have a wide range of validity.
With (3.21) the differential cross section per unit
solid angle and unit interval of excitation energies E.
may be expressed as

Poaar=[k2(211+1) (2I4+1) ]
X Y. (3 Br(d'E s’V asl) Pr.(cosfa))

ss’I'" L

X 2"+ 1)par (Ea)dE wdQur.  (3.30)

Evaluation of the sums is performed as follows. For the
product of the coefficients, we may use

Z(W sL)ZWTVT s'LY= (=) (20+1) (21 +1) (2T +1)*
X (100| LO) (P7'00| LO)Y (2A+1) (— )#=+'=>L
A

XWAU Ihs, s W (W L),  (3.31)
The sum of the right side of (3.31) can be simplified if
it is assumed that | U’ |? is independent of I’ and s’.
Then we can use the relations

2 (2I'+1) = (2Iar+1)(25'4+1) (3.32)
I/
> QD) QIHFOWR I IS’ D=1.  (3.33)
Finally, on using
(—)*(#100]00) (F100|00) =W (W' N0), (3.34)

the sum over A may then be performed by multiplying’

(3.31) by

1= (=)W (I \0),/ (1100] 00) (1100 | 00)
which gives

S QDWW NOW WA=t (335)

It follows that L=0 and that the product distributions
are isotropic, as originally shown by Wolfenstein and
by Hauser and Feshbach® for the case of inelastic
neutron scattering. The reaction cross section, when
integrated over angle, agrees with (3.26).

8 W, Hauser and H. Feshbach, Phys Rev. 87, 366 (1952);
L. Wolfenstein, ibid. 82, 690 (1951)
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4. Phenomenological Forms of the Pole
Strength Function

From Egs. (3.8) and (2.16a) with (2.15), the vital
quantity determining average total cross sections is the
pole strength function s. Similarly, from (3.16) and
(3.13) this quantity is also decisive for evaluating
average reaction cross sections.

Discussions of average total cross sections that have
been given in the literature are not framed in terms of
the pole strength function but, rather, are based on
certain phenomenological models. These theories give
prescriptions for an ‘“‘effective” logarithmic derivative
(f, say) of the wave function at the nuclear surface as
a function of energy. This f is defined to be such that
its use in the relation (X, 3.8) gives the average collision

function: )
J-L* )
-L/

By comparing this equation with (2.16a) and using the
relation (3.8) it follows that

F(B—-B=[R(&T™

This is an important equation which enables us to
relate any phenomenological model to our R-matrix
(resonance level) theory on the basis of the condition
that the two give the same average total cross section.
From (2.15b and c) we deduce that, provided

I'Ks(ds/dE)™

(4.1)

(U)=e2i(°"¢>(

(4.2)

(which is satisfied in most situations of interest):

J(B)— B={(R(E)+ins(E))™ 4.3)
so that the strength function is related to f by
1 .
s(E)y=—Im[ f(E)— B (4.4)
T

and the real smoothed R function is related to f by
R(E)=Re[ f(E)— BT (4.5)

If a model is sufficiently specific to predict f(E) as
an analytic function for all E, then such a function must
obey, for any B, the relation:

1
_~Im[f(E)~ B}

R

dE' (4.6)

that is implied by the relation (2.15b) between R(E)
and s(E). Usually however a proposed model only
specifies f(E) is a limited energy range, in which case
(4.6) can be satisfied by assuming appropriate behavior
for f outside the range.
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a. The “Strong Absorption” Model of Feshbach,
Peaslee, and Weisskopf*®

This phenomenological theory for average cross
sections is based on the idea that all incident particles
crossing the surface of a target nucleus lose energy in
collisions and are thereby “absorbed.” If we suppose
that, just inside the target, the incident particles have
wave number K then for any given orbital angular
momentum /< Ka, we have, dropping subscripts / .

. o
fE (——) ~—iKa
u T=Q

which is the boundary condition for incoming waves.
Choosing B=0, it follows from (4.4) and (4.5) that

(4.7)

s(E)=—1—-; R(E)=0.

Ka

(4.8)

The strong absorption model is applied to the energy
region 0<EZ 30 Mev where E signifies incident energy.
In other words, the relations (4.7) and (4.8) are only
to be applied in this limited energy region, and nothing
is said of the form of s(E) in the regions E<0, EZ 30
Mev. This means that the expressions (4.8) for s and
R(E) can be quite consistent with the relation (2.15b).

Although the strong absorption model makes no
specification about s(E) in the region E<0, one can
argue that s= (wrKe)™! in this region also from the fact
that s(E) is a function that is smooth and continuous
through the region E~0 (since the quantities {(y»2) and
D are not affected by the states A being bound or free).
Furthermore, if b is the binding energy of the ground
state of the compound nucleus, we can argue that s(E)
is zero beyond E< —b. If we accept .these assertions,
and provided from K is either constant or not very
strongly energy dependent, it follows that, as a result
of (2.15b) we cannot consistently retain the relation
R(E)=0 in the region 0<E<30 Mev. For instance
near E=0, the contribution to the integral form of
Ry in (2.15b) from the range —b<E<O is over-
compensated by that from the range 0<E<30 Mev,
leaving a net positive value for R(E). Whatever con-
tribution comes from the region E>30 Mev can only
make R(E) larger [since such a contribution must be
positive as a result of the positive definite nature of
s(E)].

Thus, although the relation (4.7) is free from objec-
tion as long as it and (4.8) are only held to apply in a
restricted range, this is no longer true when one makes
plausible extrapolations of s(E). Consequently it is of
interest to enquire what form emerges for f if one
starts from a form for s(E) that is specified for most
energies.
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For instance, let us consider the form

(wKa)™t (E>—0b)
s(B)= 4.9
() { 0 (E<—Db) )
where
M
K? =—hz—(E+ V). (4.10)

Here V is a mean potential energy of order 30 Mev,
and K is the wave number corresponding to motion of
the incident particle in this potential. (This form
(4.9) evidently satisfies the Wigner-Teichmann rule®:
Sand=w ie., So*s(E)dE=x.) The Stieltjes trans-
form (2.15a), of (4.9) is

/(BT =R(8)
- (zakzaz) (;:tlf)*l%r lritzz
st ()L ()

o (%(V__b))*[(mjulw)wg]a
43 ’

where

(4.11)

(V-0
= ir)i— 3
y ( o +%I‘2) L@ +ir)i—H]

H=E—A+7V,

the inverse tangents being evaluated in the first quad-
rant. The absorption width T' is generally much less
than the characteristic potential energy V, so that the
above expression may be accurately approximated by

[f®T= L R©)

(B0
= (rKa) log{H%_(V_b)i} . (4.12)

T
Ka

In typical cases, the real and imaginary parts of this
transform are of about the same magnitude. In this
theory the potential scattering is not given by the
hard-sphere formula but by that which is obtained from
the phase shift —¢’ of (2.16b). Just as the usual strong
coupling theory corresponds to a surface wave function
u~e 7 as implied by (4.7), so the revised theory corre-
sponds to the form #~e& %) with the damping co-
efficient of about the same magnitude as K.

b. “Moderate Absorption” (“Complex Potential’’) Model
of Feshbach, Porter, and Weisskopf*®

For the phenomenological treatment of average
nucleon cross sections, the strong absorption model has
been superceded by the more successful “moderate
absorption” or complex potential model. This is based
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on the idea that incident particles inside a target
nucleus effectively move in a complex potential well
—(V(r)4+iW(r)) with V, W>0. The real attractive
potential —V simply refracts incident nucleons while
the presence of the imaginary term —:iW implies
“absorption” of nucleons. According to the physical
interpretation of the model (which does not concern us
here so is not discussed in detail), the absorption is not
regarded as loss of flux from the entrance channel, but
as absorption of the incident particle into a compound
nucleus, which may eventually re-emit the particle
into the entrance channel. Put otherwise, the absorp-
tion potential is not associated necessarily with the
reaction cross sections; in fact, one can still apply the
model, without modification, to the energy region where
only elastic scattering is energetically possible.

For simplicity, we consider that V and W are rec-
tangular wells of equal radius ¢ (but different depth).
The wave function inside such a square complex well is

Ir
u=F(K,)~sin (K ,——2—), (4.13)
where

oM
K2=—f72—(E+ Viw),

the approximation holding for /< Ka. The logarithmic
derivative corresponding to (4.13) is, setting u=Ka

pF Y (1) ( I )

= ~ucot| p——J).
Fy(w) 2

From the discussion of Sec. IV, 3, this function can be

written, on replacing E by E-+iW as

(#/Ma*)
Hil=y —
(+h z;:» E,—E—iW

~u

(4.14)

(4.15)

where the E, are the energies of single particle levels

of the real potential V that are determined by the

boundary condition B=—I. _
From (4.2) it follows that the corresponding R is

_ m/Ma? m/Ma?
R(&)=% —= -
» Ep—E—iW E,’— &§—iW’

where E,’=E,+A, W =W—TI/2 and, from (4.4) and
(4.5), we have
W' (B2/Ma?)
ws(E)=2_

v (B, —Ey+W"
pl— hﬁ 2
R =% (E,'—E)( /Ma).
v (E/—EP+W"

Of course, A and I' are small compared with the other
magnitudes like W and so they can be put equal to
zero in (4.17) and (4.18), ie., E,)/=E, W =W.

(4.16)

(4.17)
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If V and W are constant, (4.15) expresses the loga-
rithmic derivative at the edge of the potential well for
all energies from — % to . It is automatic that (2.15b)
and (4.6) are satisfied since the function B of (4.16)
is an R function (wiz., that of a potential well). Alterna-
tively, if Eqs. (4.14) to (4.17) are only to be applied in
a limited range like 0<EZ30 Mev, there is also no
problem of consistency with (2.15b) even if V and W
are allowed to vary with energy because behavior
outside the range can be found to satisfy (2.15b).

A little study of (4.16) and (4.17a and b) shows that
these relations between the complex potential model
and R-matrix theory are not quite as satisfactory asthey
at first appear. In fact, these relations are really not
valid, as exemplified by the fact that s(E), as given by
(4.17a) does not vanish for energies E< —b. To under-
stand this paradoxical situation, we must investigate
more carefully the connection between the function
(4.15) of the square potential well model and the E
function of R-matrix theory.

We consider the latter, and recall from Secs. IT and
III that one of the basic assumptions of R-matrix
theory is that the surfaces 8. at which the strength
functions are defined must be large enough so that
there is negligible overlap between the two separating
systems. For instance, in the case of a neutron channel,
when a neutron and the residual nucleus are separated
by distance r=a, there must be negligible probability
of any neutrons of the residual nucleus also being at
r=a; otherwise the basic orthogonality relation (III,
2.2) is not correct. Now let us suppose that the actual
nuclear system is describable as a system of neutrons
(and protons) moving in a square potential well. Since
many neutrons may be found simultaneously at the
edge of the well, it follows that the interaction radius
of the R-matrix theory must be taken some way outside
the edge of the well. In other words, it is not possible to
even define the strength function in terms of a surface
taken at the edge of the well. It can only be defined in
terms of a surface taken at least as far outside the well
edge as the reciprocal of the external wave number for
the lightest bound nucleons, i.e., the order of 1 to
2X10~3 cm. Consequently, to relate the potential well
model to the strength function of R-matrix theory, we
must form the function (f+41)%, not at theedge of the
well as in (4.16), but further out. We may always
assume an expansion of (f+177) at any given radial
distance r=a:

£ Nl= -
(+9) %E,,—E—in

¥

(4.18)

where f, v,%, E,, and W, all depend upon a. The differ-
ence between (4.15) and (4.18) is that, in the latter,
v,2and W, depend on . In particular, if r=a is chosen
far enough outside the edge of the well, the values of
v, for the lowest orbits p are very small, so these
orbits contribute very little to the sum. In this case, the
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imaginary part of (4.18) drops essentially to zero for
energies less than E~ —b. This is, of course, just the
proper feature of the strength function. Thus in con-
trast to (4.16), the (f+1) function of (4.18) can sensibly
be identified with the function R(8) characteristizing
the R-matrix (fine structure) approach.

The paradox associated with (4.16) and (4.17) would
not have appeared so strongly if the well had been
chosen to have sloping sides. If f is evaluated at the
edge of such a well, the v,? for the lower p orbits are
already small, as required, because of the exponential
attenuation of wave functions in the sloping region.

Finally we comment on the effect on the strength
function of including a spin-orbit coupling term U (r)-¢
with the potential — (V+iW). In the absence of such
a term, the strength function for any channel c=asl,
and total spin J is given by the s(E) of (4.17) and is the
same for all s, J consistent with s+1=1J. In the pres-
ence of a spin-orbit term, it is convenient to define new
reduced width amplitudes ya(eil,)” in which the coup-
ling sequence: laj+Iey=s,14+s=1J, is replaced by
Ii+1=j, Ieg+j=J (where we assume o; to be a
nucleon so that I«;=2¢). With the aid of a little Racah
algebra, it can be shown that

'Y)\(asl)',z Z U(%Iw]l,sj)’Y)\(aﬂaz)".
j=l+}

(4.19)

From the properties of the U function [which is de-
fined as (2s+1)%(2541)} times the W function] it
follows that, as expected,

2 [’Yx(aaz)J]’=Z [ ejlan? % (4.20)
s ¥ .

In the presence of a spin-orbit force, the strength
functions Sajza,” in the (e jlaz) scheme depend on 7, but
are the same for all J consistent with l«+j=1J. The
strength function for the two j values, j=I+1, have
the same shape as (4.17) but are split in energy.
Assuming that the va(ajIq,)’ have random signs, it
follows from (4.19) that

Saal',:: Z Uz(%la2]l,sj)5aan,J.
j=l+}

(4.21)

This. shows that, in general, for given channel spin,
sas1’ depends on J, and vice versa.

Equation (4.20) shows that 3_,s.s/ may take one of
three values depending on whether J is consistent
with J=Ies-+3 for

(i) Jj=!4+% but not for j=I1—4%
(i) j=I—4% but not for j=I+3%
(i) both.

5. Theoretical Form of the Pole Strength
Function for Nucleon Channels

Two types of attack have been made upon the prob-
lem of accounting for the complex potential model and
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its successes. One®>* accepts the broad presumption of
the complex potential model that the nucleus affects
incident particles like a classical optical sphere affects
light. With this presumption one can estimate values
for V and W in terms of observed properties of nucleon-
nucleon scattering, the essential relation being, for
V>W, E:

V+iW=hvp<§;f(0)> 5.1)

where the average is over all relative wave numbers %,
of the incident nucleon and the target nucleons, and
f(0) is the forward scattering amplitude for nucleon-
nucleon scattering, v is the velocity of the incident par-
ticles inside the target and p is the density of target
nucleons. A second approach, due to Bloch,!® is alto-
gether more fundamental in that it does not use the
optical analogy. It begins with the fact that the em-
pirical success of the complex potential model provides
one with a certain empirical form for the smoothed B
function, namely the form (4.16). Then it attempts to
derive this form from a theory of nuclear structure.

From (2.14), since R’ (8) ~iws(E) when the imaginary
part of £>D, it follows that, for such an &:

7

E\—§

R(é’)=R(é’)=; (5.2)

Now let us expand the states X, in terms of a complete
set of states of the form:

ch=¢cup(’A) (5‘3)

where ¢.=das are the channel wave functions defined
in (II1, 2.25) and %,(r4) are the radial wave functions
of a set of single particle states of the Ath nucleon
defined for some real potential —V with the same
boundary condition as the X». The expansion of X, is

X=X Cx opXep (5.4)
cp

From the definition of reduced width amplitude in
(111, 4.7a), it follows that

o\t .
Yre= (ZMcac) ; Ch, epthp(ac). (5.5)
Inserting this expansion in (5.2) gives
_ w
R (8)= (ZMcac) E (@) (ac)
X (xc,, H—i—g xcp') (5.6)

8 M. Goldberger, Phys. Rev. 74, 1269 (1948); A. M. Lane and
C. F. Wandel, Phys. Rev. 98, 693 (1955); E. Clementel and C.
Villi, Nuovo cimento 10, 176 (1955); Morrison, Muirhead, and
Murdock, Phil. Mag. 46, 475 (1955).



316

where we have used closure to sum over A and intro-
duced H, the total Hamiltonian operator. This equa-
tion is an important one. It relates the vital quantity
R(8) that determines average cross sections to a set
of nuclear matrix elements involving only a particular
state of the target nucleus (the ground state in prac-
tice). All reference to the compound states A has been
eliminated.

It may appear that the discussion so far is general
and exact. This is not true however because of the
rather subtle role of antisymmetrization. We have
implicitly assumed that the states X have the same
symmetry as the X, which are antisymmetric in
particles 1...(4—1) but not in the Ath particle. We
now enquire what happens when X, is made anti-
symmetric in all nucleons. An expansion of the type
(5.4), where the X,, are #of antisymmetric in the Ath
particle, is still possible. (It is, in fact, a “fractional
parentage” expansion.) The contribution of the channel
surface for the Ath particle to the reduced width ampli-
tude then equals 4~? times (5.5). Since X is anti-
symmetric in'all nucleons, each channel surface must
contribute the same amount so the final reduced width
amplitude is 4% times (5.5). Thus it might seem that
the effect of antisymmetrization upon (5.6) is to multi-
ply the right-hand side by a factor 4. This is not correct
because, in deriving (6.6), a closure relation has been
assumed and this is now invalid. The essential point
is that, when X, is completely antisymmetric, the
expansion (5.4) is not reversible, since one can expand
a state in terms of states of lower symmetry (as in
(5.4)), but not vice versa. It follows that there is no
basis for the relation

Z C)\, Cp*C)\. cp = 6027, c'p’ (57)
A

or for the closure relation used in (5.6). To avoid this
difficulty one can now try to frame our discussion on a
new set X, namely a set which is completely anti-
symmetrized. This means that the states X\ and X,
have the same degrees of symmetry. Unfortunately a
new snag appears. Although one can now expand the
Xop in terms of the X, (with the consequence that
closure is valid), the expansion (5.4) itself is no longer
correct and so (5.5) is not correct. The cause of this
breakdown in (5.4) is that the fully antisymmetric X.,
are no longer orthonormal, i.e.,

fx”’*xﬁ’p’EO(cplxc'p’)# decp, ot pr- (5.8)

However, it seems likely that they are approximately
orthonormal. According to the “intermediate model”
that we discuss below, the most important target states
in the sum (5.4) are bound states and the important
single particle states u, are free states. In this case,
since the particle states do not occur in the target
states, #, is orthogonal to the target states and the X,
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are orthonormal. Accepting this point of view, when the
X.p and X, are antisymmetric, (5.4), (5.5), and (5.6)
are still valid (without any factor of A%), subject to
only a small correction from the lack of orthonormality
of the X,,.

Returning to (5.6), we now introduce the so-called
“intermediate” assumption of Lane, Thomas, and
Wigner.36 One argues that, in the reverse expansion to

(5.4):
Xep=2_ O, ep " X (5.9
A

the states A that account for most of the sum are
confined to a restricted energy band about the energy
of the state X,, say E.,. (This is the sum of the energy
E, of the target state of the channel ¢ and the energy
E, of the single particle state.) In other words (see
Fig. 2), the situation is intermediate between the case
when only one term contributes (i.e., no coupling at all
between an incident nucleon and the target nucleons)
and the case when terms from all energies contribute
(i.e., strong coupling in which the single particle states
p are completely spread out or ‘“dissolved”). The
implication of this picture for (5.5) and (3.6) is that,
for a given energy E, the sums are dominated by the
nearest single particle level  so that we may drop cross
terms p#p’ and put

72
vﬁz( )}:uz(acc.a2 (5.10
* 2Mcac P ? ) hep )
- n 1
Reo(8) %( ) b up2(ac)(xcz, —_ ch). (5.11)
2M.a./ » - &

We note three things in connection with these
equations:

(i) Since >_ACh c»=1 (5.10) demonstrates that the
total reduced width of the original single particle level
is preserved.

(ii) For a square well with boundary condition
B=—1,u2(a)=(2/a) (see Sec. IV, 3).

(iii) The assumption of random signs for contribu-
tions of different » would also justify (5.10) and (5.11)
but this assumption is probably not correct (see the
following).

Bloch attempted the evaluation of the matrix ele-
ment in (5.11). For the Ath term in the antisymmetrized
x on the left, we make the expansion of 1/H—§& in
powers of H'=H—H,:

1 1 1 1

= JI— /.
H—§ H—& H«—8 Ho—§&
1 1
g ’ ! e
Hy—& H,—8 Ho—§&
8 Lane, Thomas, and Wigner, Phys. Rev. 98, 693 (1955).

(5.12)
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In the split H=Ho+H’, one has in mind that H, should
be the sum of the Hamiltonian for the target and the
single particle Hamiltonian 74 (—V), where —V is
a suitable mean potential for the ith particle. H is the
difference between the actual potential 3 jv,; felt by
the sth particle and the mean potential :

H'=Y v;— (= V). (5.13)

In evaluating (5.11), there will be a direct and an ex-
change term for each i. The exchange term will be ig-
nored so that the matrix element will now be equal to
that with nonantisymmetric X., with a definite particle
(say, the Ath) in the single particle orbit .

Although (5.12) has the form of a perturbation series,
Bloch does not evaluate it as such. Rather he assumes
that the matrix elements (¢p|H'|c’p’) have random
signs. For any given term in the series (5.12), this en-
ables him to pick out a “leading part.” This is the part
corresponding to each alternate operation by H' leading
back to ¢p. Choosing V such that (cp|H'|cp) =0 then
gives the following form for the matrix element of (5.11):

1 had 1 ﬂocp(g) "
R
H-§ n=0 (§—E )L 8—E,,
=[Ecp— E+¢er(8) ] (5.14)
where ¢.,(8) is defined as
| (cp|H'|'p') |
‘Pw(é’)zz—'————“
c'p’ 8-—-Ecr,,f
( H' ! H’ ) (5.15)
=\lcp 5_H, cp ). .

On changing the sum of (5.15) into an integral, and
then letting § — E:

Pep (BE)= ACp(E) _'iWCp(E) (5.16)
where |l
Ay (E)=Pr f KN 5 B, (A7)
Wen(B)=roen(B) [ 1 (cp 119
X3(E—Eup)dFuy. (5.18)

In the integral for A, the principal value is to be taken.
By combining (5.16), (5.14) and (5.11) the final ex-

pression for R(8) is,
a. a) ( n? )
—u,2(a,
2 M .a

Rcc &)= . 5.
@ %Ecp—l-Acp(E)—é’-—ich(E) (5.19)

This expression is very similar to the empirical form
(4.16) implied by the complex potential model. In fact,
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Fi1c. 2. Schematic plots of v)2? against E, each v)? being denoted
by the height of the vertical line put at the corresponding energy
E). (a) lustrates the situation when there is almost no coupling
between an incident particle and the target nucleons so that no
reactions are possible and only shape elastic scattering occurs.
In this case each eigenstate A is a simple product state of an inter-
nal wave function of the colliding particles and a wave function
of relative motion. The only appreciable values of )? are those
at the states A corresponding to the colliding particles being in
their ground states and the energy being at single particle reso-
nances. Thus the plot of )2 consists of isolated spikes y\?
~(#?2/Ma?). (c) illustrates the opposite extreme situation of very
strong coupling. In this case the single particle (i.e., the simple
product) states are entirely ‘“dissolved” amongst the myriads of
fine structure states. The broken line represents the strength
function s=(y\?/D which is smooth and monotonic in this
situation. (b) represents the intermediate situation where the
single particle states are dissolved amongst the fine structure
states but the sharing is confined to restricted energy regions
around the single particle energy levels. The strength function
s is shown to have a corresponding oscillatory behavior. One
noteworthy feature of (b) and (c) is that the sharing should be
such as to conserve the total strength #2/Ma? within the region of
each original single particle level, i.e., Zaxy\2(= SsdE)=~ (2/Ma?).

if A,y and W, do not depend on p, it is evident from
comparison with the R-function expansion (IV, 1.10)
for the potential well (—V):

@ (@) ( n? )
—u,(a.
2" M.a?

>z
» E,—§&

Ry(8)= (5.20)

that R,.(8) is simply the same thing evaluated at the
energy E—Ap—E.—1iW.p:

Roo(8=Ry(8—Apy—EA+iWo).  (5.21)

Put otherwise, R.. is the R function for the potential
well =V, equal to (—V) modified by the addition of
the complex part: E.+Aqp—iW.p. Remembering that
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—V has been previously defined to make (cp|H’|cp)
=0, it follows that the real part of the effective potential
-V/is

Re(—V.)=(cp| 2 vis| cp)

+f1(61>l'”z‘f| dp)|*

p(Eoy)dEo . (5.22)
FE—FE.py P b2

There are corrections to (5.19) and (5.21) due to the
assumptions made in the derivation. Especially there is
the neglect of exchange terms, the selection of ‘“leading
parts” to arrive at (5.14) and the neglect of cross terms
p7#p’ in passing from (5.6) to (5.11). Using the results
of the next subsection, the leading parts of the terms
p#p’ can be summed to give a contribution to R., of
(cug|H'|cur) where up is the single particle wave
function in the complex potential V.

One noteworthy feature of (5.17), (5.18), and (5.20)
is that, although the forms are very similar to familiar
expressions from second-order perturbation theory,
there is a detailed difference, namely that the expressions
are energy dependent as a consequence of the appear-
ance of E instead of E,,.

Cini and Fubini®” have used perturbation theory to
arrive at results similar to (5.17) and (5.18). They have
made numerical estimates of (5.18) on the basis of a
Fermi gas model for the target nucleus and conclude
that there is qualitative agreement with the empirical
values of W. In particular the strong increase of W with
E is derived and found, as expected,® to result from the
action of the Pauli principle applied to the target. An
interesting point in connection with using a Fermi gas
to evaluate (5.18) is that this procedure can be shown
to be equivalent to the computation of W from the
optical formula (5.1), except that the latter contains
the observed total cross section [i.e., the imaginary part
of £(0)7], whereas the former involves the Born approxi-
mation to this same quantity.

Lane, Thomas, and Wigner?®® tried to estimate W as
the square root of the second moment of the distribution
of Cy, ¢p? in (5.10):

My=3 (Eeop— E\)Cy, o= (CP’H,2ICP)- (5.23)
A

The trouble with this approach is that it gives too
much weight to the distant components with the con-
sequence that, if the distribution of Cj,.p? has a long
tail, W will be badly overestimated. In fact, the
numerical value (~20 Mev) obtained for Ms* when a
Fermi gas is used for the target nucleus is considerably
larger than the observed values for W. Some improve-
ment is found if correlations are introduced between
the incident nucleon and the target nucleons in the

87 M. Cini and S. Fubini, Nuovo cimento 10, 75 (1955).
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wave function X, according to work by Vogt38 and by
Lane and Verlet.®

Bloch?® pointed out that M of (5.23) may be written
as

Mo= f |(p| B |3 |?0(Eury)dBuy.  (5.20)

If the distribution of matrix elements (cp|H’|c'p’) is
assumed to be fairly smooth up to some cutoff energy
separation (E,,— E, ,)=c¢, then

(W/M )= (zW/2¢)?. (5.25)

This equation corroborates our surmise above that if
the distribution of Cy,.,? is well spread out, i.e., &>W,
then WM,

Wigner® obtained very much the sanle results as
Bloch for the form of the strength function (i.e., 7!
times the imaginary part of (5.19)) by making much
the same assumptions but using a quite different mathe-
matical method. He starts from the Hamiltonian
equation in matrix form

HC,=E,\C,

where H is in the x., representation and C, is a column
vector with components Cy, ¢, of (5.4). The problem of
finding the strength function s, near Ep is, from (5.10),
equivalent to determining (C),,*)1/Dr, where D is
the mean spacing of eigenvalues in the interval I.
Thus the problem is reduced to a purely mathematical
one requiring considerable familiarity with matrix
algebra. Wigner makes the assumption that the non-
diagonal elements of H have random signs but equal
magnitudes as far as a certain number of terms off the
diagonal. Beyond that point (corresponding to energy
€), the elements are supposed to be zero. The diagonal
elements are assumed to be equally spaced. With these
assumptions, in the case when |(cp|H'|c'p’)|%<e,
Wigner’s result for the strength function agrees with
Bloch’s.

(5.26)

6. Implications of a Partial Breakdown in the
Assumption of Random Signs

Let us consider the element of the collision matrix for
a particular inelastic scattering process c¢—c¢’. The
essential part, as given by (2.3) or (2.18) is the sum:

YAV Ne!

y— 6.1)
hy (2
E>\+A>\—E—EP>\

For the evaluation of the cross sections (i.e., essen-
tially the square of this quantity) in subsection 2 [see

88 E. Vogt, Phys. Rev. 101, 1792 (1956) ; E. Vogtand J. Lascoux,
ibid. 107, 1028 (1957).

8 A, M. Lane and L. Verlet, Phys. Rev. 100, 956 (1955).

% E. P. Wigner, Ann. Math. 62, 548 (1955).
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(2.4), (2.5), and (2.6)], we made the assumption that
the signs of the v, and va. are random. This implies
that the contributions from states A outside a certain
limited region about E can be ignored, and leads to the
conventional compound nucleus cross sections, (2.6) or
(3.13), exhibiting independence of formation and decay.
It is now of interest to examine the assumption of
random signs, and, in particular, to enquire how the
far-away terms contribute to (6.1) when the assumption
is not strictly valid. ‘

With the strong coupling model discussed in sub-
section 4, the random sign approximation is expected to
be valid over almost arbitrarily large energy intervals
(except, ultimately, over the infinite energy range where
the Wigner-Teichmann rule®® Y vasyrer=0 for c¢’
imposes a mild restraint). We base this statement on
the usual idea of the “strong absorption” theory that
nuclear motion is completely chaotic, with no vestige of
any single particle or other coherent motion. Following
on from this notion, it is plausible that, in cases where
single particle motion exists, it should be associated
with a partial breakdown in the random sign approxi-
mation. This would not apply over abritrarily small
energy intervals, but would only be expected to appear
as a long-range correlation on summing over all levels
within single particle resonance (broadened by any
absorption potential W). Clearly if W is increased the
correlation should become more and more mild until
ultimately the strong-absorption situation is achieved.

We may arrive at the same conclusions by considering
the recently established existence of the so-called
“direct interaction” processes which contribute to
nuclear cross sections, specially for inelastic scattering.
Experimentally these processes often dominate the
compound nucleus process in the cross sections for
producing definite low-lying states. They are clearly
distinguished by the strong forward peaking in the
angular distributions. From the discussion in subsec-
tion 3, absence of back-and-front symmetry in an
angular distribution implies a breakdown in the random
sign assumption. The direct processes have been
subjected to theoretical analysis in terms of a phe-
nomenological model that is closely related to the
complex potential model. The basic physical idea is
that, as a consequence of the fairly long mean free path
against collision implied by the complex potential (with
small W), it is possible for an incident nucleon to enter
a nucleus, exchange energy with a target nucleon, and
for one or the other particle to escape directly without
further energy loss or formation of a compound nucleus.
The success of this idea in applications means that the
breakdown in the random signs assumption is associated
with the existence of single particle motion—just as
deduced in the preceding paragraph. Also if W is con-

sidered to increase (i.e., the mean free path to decrease)

then the single particle motion is eventually eliminated
so that no direct processes are possible, and the only
process is the compound nucleus one.
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Now we put these ideas into more quantitative form.
The problem is that of showing that when a sum is
made over many long-lived states, it is possible to have
certain correlations between the phases such that the
lifetime associated with the sum is a very short one.
We consider that the term E—Ax+ (¢/2)T) is inde-
pendent of A (which will be so effectively if levels are
overlapping or if the cross section if being averaged).
As in subsection 5, we denote this term by the complex
energy & and then apply closure to obtain

hZ
2M .a.

R = () 5 (o (a9
1

X(Xc -
"lu

oy xc,,,,). (6.2)

The remarks about antisymmetrization in the last sub-
section also apply here.

Bloch® attempted the evaluation of (6.2) along just
the same lines that he used for the diagonal elements R,..
On making the expansion (5.12), neglecting the
exchange integrals, and selecting leading terms on the
basis of random signs for the (¢p|H'|¢'p’), (6.2) can be
reduced, just like (5.11), to the form

hZ
o)
2M .a,

% Up (ac)“p’ (ac) (CP I Hl! CIP’)
27 (Eep— 8+ ¢op(E)) (Eorpr— 4 ¢y (E))’

where the quantities ¢, are defined in (5.15). We can
now take the limit £ and, by defining uz,(r) as

(6.3)

% Up(@e)tp(7e)
= () e
2M¢ac p Ecp"'Acp'_'E_iWCp
it follows that ’
R.or= (Cch]H/IC’uE'c’)~ (65)

The definition (6.4) for %z, is just the exact expansion
(IV, 1.8) of the eigenfunction %y for the real potential
well —V at energy E except that (E,+Ag—E—iW,,)
replaces — E. If A, and W, do not depend on p then
clearly the function (6.4) is just wave-function solution
for the well —V. introduced in subsection 5. This
implies that the quantity, (6.5) corresponds precisely
to the matrix elements of the so-called “distorted wave”
theory that one would use to compute cross sections
with the phenomenological theory of direct processes;
i.e., matrix elements of the “perturbing” potential H
taken between wave functions each one of which is a
product of the appropriate target state wave function
and a distorted single particle wave function appro-
priate to scattering by the complex potential well.

I For simplicity, we have ignored the factor (1—LJSR.)! in
(2.18a). This ~1 only at low energies in general. If it is included

in (6.4), the normalization of #E, is that of fixed incoming flux,
i.e., that required in the matrix elements of distorted wave theory.
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It is very satisfying to have the phenomenological
theory of direct processes related to R-matrix theory in
this simple way. It provides an explicit demonstration
of the fact that in R-matrix theory the direct processes
correspond to long-range correlations in the signs of the
¥ Over the giant resonances.

In the course of the above developments of R, we
have “lost” the compound nucleus contribution. Since
the only essential approximation has been Bloch’s
selection of leading terms in passing from (6.2) to (6.3),
we must conclude that this is the stage at which the
" compound nucleus contributions is implicitly dropped.
A deficiency of the present theory is that, in concen-
trating on the contribution from far away terms in
(6.1), we have lost the contribution from nearby terms.
Nevertheless one can accept on grounds of plausibility
the fact that a good approximation to (6.1) is

YAV Ne!

(cuge|H'| CluE’c’)"l_? — (6.6)

1
E)\+A)\'——E—EF)‘

where the sum in the last term is to be taken over an
energy region >>(I'y), but < the breadth of single
particle resonances. This last requirement implies that
the signs of the v». can be regarded as random with the
consequence that, if we take the square modulus of
(6.6) and average over many levels to obtain the aver-
age cross section, all cross interference terms cancel,
and the final cross section is an incoherent sum of a
cross section for direct processes containing

| (cume| H' |c'umrer) |2

plus a cross section of the type (3.13) from compound
nucleus formation.

Although we have dealt specifically with the case of
direct inelastic scattering, the same methods and
approach could be developed in order to treat other
types of direct reaction such as deuteron stripping.
Again one can argue that R-matrix theory is exact when
the interaction radius is taken large enough to include
all interaction. Since the familiar angular distributions
of stripping are not consistent with predictions of the
theory based on the random sign approximation, it
follows that stripping is describable in terms of
R-matrix theory by allowing for correlations in sign.
One detailed difference with the case of incident nu-
cleons is that, for these, one assumes that the absorp-
tion potential is fairly constant over the nucleus so that
single particle motion exists to the same extent over
the nucleus and direct processes may take place in the
volume as well as at the surface ; in contrast, for incident
deuterons, one imagines that W is small for a certain
region just inside 7.=a. but that, inside the bulk of
the nucleus, W is very large. Thus the single particle
motion responsible for the correlation in phases is to be
found only at the edge of the nucleus. If one defined a
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set of the v\, for deuterons on an inmner surface, one
would expect these to have random signs. Only when
the surface region right up to 7.=a. is included do the
correlations between signs of ). emerge.

XII. R-MATRIX THEORY APPLIED TO TREATMENT
OF ISOLATED LEVELS

The occurrence of sharp resonance peaks in the exci-
tation curves of low-energy nuclear reactions is one of
the most striking phenomena encountered in this field
of study. Since the time that the first resonances were
found experimentally over twenty years ago, the
number of observed resonances has increased to the
order of thousands. Many of these levels have been
fitted with the famous Breit-Wigner® one-level reso-
nance formula. The fits vary in quality from those in
which the experimental curve is duplicated completely
over the region of the peak to those in which the fit is
in only qualitative agreement with experiment.

For some years, the one-level formula was applied to
resonances more or less by analogy with similar appli-
cations in atomic radiation problems. Since the reso-
nance formula in these problems was derived on the
basis of a perturbation theory” which had no justifiable
counterpart in the nuclear case, this situation was
unsatisfactory. Amongst other things, it meant that
the interpretation of the widths (perturbation matrix
elements) obtained in fitting peaks was obscure, and
the determination of corrections to the one-level for-
mula was not possible in any quantitative fashion. With
the advent of the rigorous general theory of nuclear
reactions of Kapur and Peierls® in 1938 and, later, the.
R-matrix theory,”? these difficulties were largely re-
solved. In such theories, the widths are given explicit
quantitative form in terms of the nuclear wave func-
tions, and the corrections to the one-level formula ap-
pear explicitly when the general theory is approximated
to the one-level case. The familiar condition for the va-
lidity of the one-level formula is that the level width T
should be much less than the level spacings, D. In de-
ducing the one-level formula from the general reaction
theory, it can be seen that this condition will justify use
of the formula and this is not surprising. The advantage
of having R-matrix theory comes when the condition is
not well satisfied so that other levels may influence the
cross section near a peak. In such cases the R-matrix
theory can give explicit modifications to the one-level
formula in terms of parameters representing the presence
of the other levels. With these extra parameters, one
has more freedom in fitting so that a poor fit obtained
with a one-level formula may be improved. For instance,
if the condition I'D fails because of the anomalous
proximity of just one other level, one can use the “two-
level formula” instead of the one-level formula.

Another advantage of the general R-matrix theory
arises from the fact that, even when only one level is
significant, the simplest type of one level formula may
still give poor fits on occasion. This is because not all
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of the energy dependence in the cross section may be
espressible in terms of a resonance denominator and
phase-space factors. In certain circumstances, the width
of a level and the resonance energy itself vary signifi-
cantly with energy through the width of the resonance.
When the one-level formula is derived from R-matrix
theory, these energy variations are given explicit form
in the penetration (P) and shift (S) factors. This type
of situation has been studied extensively by Breit®! and
co-workers, especially for cases where the reduced
widths are large, i.e. the “one-body” or “single-par-
ticle” resonances.

In the first three of the following subsections, we
develop the general theory in a form suitable for
specialization to the one-level case and indicate various
approximations that can lead to a one-level formula.
We then discuss the physical significance and inter-
pretation of the one-level formula and finally we discuss
its applications in practice. In the last two subsections
the two-level formula is presented and remarks are
made on the manifestiations of level interference in the
regions between resonances.

1. The One-Level Approximation

Referring back to Sec. IX, it follows from (IX, 1.14)
that, if we make the split

R=R+R’ (1.1a)
with the particular choice:
LY (1.1b)
Ex—E
then the collision matrix is expressible as
U= 2iep | — 252 Jmia (12)
Ex+A\— E-—~£I‘>\
with the “background matrix” U° given by
U= Q[142:P*(1—RLYRPB Q@ (1.3a)
=QP}(1-RLY1(1-RLH¥PIQ  (1.3b)

and with the quantities », Ay, and T, given, from (IX,
1.18 and 20), by

ar= (1— RIL9) 1y, (1.4)
A=An= (a)\*,(LO*ROLO— So)m\) =Z Axne (15)
h=3Tn=(@*Ba)=3 2 .. (1.6)

Before introducing the one-level approximation it is
of interest to consider some formal properties of (1.2).

% Ofstrofsky, Breit, and Johnson, Phys. Rev. 49, 22 (1936);
B. E. Freeman and J. L. McHale, ibid. 89, 223 (1953); J. L.
Johnson and J. L. McHale #b:d. 91, 87 (1953); J. L. Johnson and
H. M. Jones, zbid. 93, 1286 (1954).
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For this purpose, it is convenient to write (1.2) in the
form

X T
U=U42; 1.7
€\
where =), and e, are defined by
o= Q‘,B%a)\ .
i
e)\=E)\-!—A>\—E—£I‘)\.
The form (1.7) satisfies the conditions:
Uo= U0t (1.8a)
Uo(Uo)t=1, (1.8b)
Ulry*= ™, (1 .SC)’
Im(en)=— (ma*%0), (1.8d)

where 1 denotes the complex conjugate transpose.

It may be made plausible from more general considerations
than R-matrix theory that (1.7) has the natural form of a one-level
approximation and that the conditions (1.8) are expected to be
satisfied in general. The deduction proceeds from the expansion
of an N-dimensional unitary symmetric matrix U in terms of its
real orthonormal eigenvectors g) belonging to the unit-modulus
eigenvalues exp (243)),

N
U= 2 & (X 8. (19)
=1
From considerations of causality it has been shown in Sec. IV,
that in the one-channel case the collision function exp(245) may
be expanded in terms of its poles and zeros, and that in the
vicinity of a particular pole H (in the lower half of the energy
plane where Im (H) <0) this function has the form

*_
eiv=exp i) ()

. 2 Im(H)
= 0 _ 7
exp (248 )(1+ I—F )
The quantity exp(2:8%) contains the singularities at the remain-
ing poles and other factors; if the assumption is made that the
individual eigenvalues of the many-channel expansion (1.9) also
have this form in the vicinity of a pole H and if the singularity
near E corresponds to the first eigenvalue A=1, then it can be
written in the form (1.7) with

N
Uo=exp (2i8:°) (81X 81) + P 40N (X 8))
=2

T1= [—Im (Hl)]* exp (1.510) g1

The conditions (1.8) which are satisfied by the R-matrix expansion
are also satisfied by (1.9). We note that the U of (1.9) also satisfies
the general condition U(E*)*U(E)=1 of the collision matrix
theory. Alternative derivations of (1.8) and additional discussions
have been given by Breit.1

A number of special features of R-matrix theory not possessed
by the general theory should be noted. In the former theory the
nuclear system is assumed to have a rather well defined boundary
corresponding to the surface 8. As a result of such an assumption
the partial widths T'\. are found to be proportional to the pene-
tration factors P, and the partial level shifts are proportional to
the shift factors S»; both P, and S® are calculable and their
dependences on energy are known. The levels E\ may be asso-
ciated with eigenfunctions for certain boundary conditions B.;
the shift A) of the actual resonances from the E, may be expressed
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in terms of the S and the reduced widths of the system. In some
cases it is also possible to make reasonably significant estimates
of the magnitude of the background matrix. Since the general
theory involves no assumption of a well-defined region of inter-
action, it does not involve any of this information.

The various cross sections are given by the absolute
squares of the various components of U (see Sec.
VIII). The squares of the elements of the second matrix
of (1.2) represent the familiar “resonance” part of
scattering or reaction; the (¢c¢) component is

Tael'aer
(E)\+A>\‘“E)2+%T)\2'

Notice that a typical partial width T'y, of (1.6) contains
the penetration factor P, but also depends on energy
through the occurrence of the L? matrix and of R°. The
elements of the matrix U° give rise to what may be
called “potential” scattering or reaction. There also
occur in the total cross-section cross-product terms
which represent the interference between the ‘“‘reso-
nance’”’ and “potential”’ terms.

All expressions given so far are exact, but it is
apparent that they are not useful as such because,
amongst other things, the inversion of matrices is
implied. The usefulness of such expressions is restricted
to situations in which approximations can be made
about the nature of the matrix R? which represents the
presence of levels other than the particular one A in
which interest centers. Notice that R° occurs in com-
bination with the penetration matrix $ or the L°
matrix. If at a given energy we choose appropriate
boundary conditions, the L° matrix effectively becomes
the penetration matrix, so it is the magnitudes of the
combinations of R® with P that we are concerned with.
This implies that when P is very small, the one-level
formula is applicable no matter what the value of R°
as long as it is not >>1. We expect this situation because,
in the limit as P—0, the states become bound and any
effect of other states at a given state must fall to zero.

There are three types of approximation involving
RIL® that, broadly speaking, may be called “one-level”
approximations.

a. First Approximation: RLO=0

This is the strongest approximation we can make in
trying to apply the general formulas, and it is the one
usually used in practice. The consequences of this
assumption are simple and can be read off immediately
on specializing the general formulas (1.2) to (1.6). The
background matrix U° is diagonal with diagonal values

U 0= ¢¥i(woéo) (1.10)

and the widths and shifts are given by
Te=2P\7 (1.11a)
Me=—SMd=—(Se—Bns  (1.11b)
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and a general element of the U matrix is, from (1.2)
and (1.10):

Ucc’ = (UccoUc’c’o)%

1
)]
irkci}r)\c'é 2
X| By e O]
D

1
l EHFAA—E—EPA

(1.12)

[This could have been obtained from (IX, 1.14 and
20).7] On inserting this expression in Eq. (VIII, 3.2),
we have the famous Breit-Wigner one-level formula for
a reaction cross section (¢'#a) proceeding through an
isolated resonance A of spin J and definite parity:

(ZThe) (22 Taer)
™ Is Us!
S (1.13)
kot (Ext+Ax—E)+iT\

where primed sums over Is, I's’ are such that the rela-
tions l4-s=1J, I'4-s'=J are satisfied and such that
parity is conserved. The corresponding formula for the
elastic scattering cross section (@=a’) is

o
B2
;;l 4gs sin2q5c——g1(§’1‘>\c)
2(Ex+Ay— E) sin2¢,+T'x(1—cos2¢.)
[ (Ext+Ar—EP+iTV
(%Txc) (SIZZ'TM')

aaa

J (1.14)

+gJ .
L (Ex+A\—E)* 4T,

The last term is the so-called “resonance term” the
second is the “Interference term’ and the first is the
potential scattering term. Since ¢. the hard sphere
phase, does not depend on s or J, this potential scat-
tering term is simply

drr
= S (204-1) sinéa (1.15)
o L

which is just the hard-sphere scattering cross section
from the definition of ¢,; in Sec. 111, 4. (If a long-range
Coulomb interaction is present, this term diverges.)

In (1.12), the last term signifies the order of the cor-
rection due to the effects of nearby levels (but not far-
away levels). This represents the presence of the R°L
terms and, in the one-channel case, it is evident that
RIL~0O({A— (2/2)T')/D) where ( ) signifies an average
taken over nearby levels.

As yet we have said nothing about the choice of the
boundary condition parameters B,. The criterion for
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making the choice is that the one-level approximation
be as accurate as possible, i.e., that the error
O({A— (¢/2)T)/D) be as small as possible. Now the
quantities (T') and D are relatively insensitive to the
choice of B, but A, is very sensitive, as is evident from
(1.11b). Thus, the one-level approximation is most
accurate when B, is such that (A)S(T'), which is
equivalent to saying that B should be chosen so that
the eigenvalue E) lies within the width of the observed
resonance. This is, of course, a very reasonable require-
ment. One can make the choice B,=+S,(E,) where E,
is the energy at the center of the resonance. This makes
Ay zero at the energy E, and so this choice certainly
satisfies the above criterion. There are other choices
that also satisfy the criterion, and these are no better
or worse than the particular choice B,=-S.(E,). The
point here is that one can never reduce the error in the
one-level formula below the “intrinsic” error O({I')/2D)
and so, all choices of B, that reduce O({A— (:/2)T")/D)
to this intrinsic error are equally suitable.

Use of a one-level formula (1.13) to fit an experi-
mental resonance curve implies that the boundary con-
ditions satisfy this criterion. Since the conditions do
not have to be specified explicitly at any stage in the
fitting, there is no need to draw attention to any
specific boundary conditions in presenting the results
of such a fitting. However, it should be understood by
the reader of such results that the extracted values of
the parameters (reduced widths, eigenvalues) corre-
spond to boundary conditions that satisfy the above
criterion and are therefore approximately : B,= +.S.(E,).

We have not drawn attention in the above discussion
to the fact that A, is energy-dependent (through .S,)
so that setting Ay,=0 at the center of a resonance does
not imply that Ay, is everywhere zero. In most cases,
one can neglect the energy dependence of Ay, through
the width of a resonance. This is fortunate because,
generally speaking, the problem of fitting an experi-
mental curve is made much more complicated if Ay,
is varying rapidly. As discussed in subsection 3 below,
one can probably represent the energy dependence of
Ay by a Taylor series expansion:

(1.16)

dA)\c
Mro(E) = Mro(E)+ (E—E,)( ) .
dE 7 g=&,

With this expansion, the magnitude of dA,./dE is the
important quantity in determining how sharply Ax.(E)
varies with energy. In the present approximation, we
have, from (1.11b):

dA)\c
dE

as.
= —'Y)\c2 .
dE

(1.17)

b. Second Approximation: RL? is Small

This approximation is not especially useful but we
briefly discuss it for the sake of completeness. It implies
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that we can expand:
(1—-RLY)-1=1+4RLo4 (RLO)2+ ...  (1.18)
and take only two terms. On taking two terms, ex-

pressions (1.5) and (1.6) for the partial widths and
shifts become

%PM:PG{')’MZ'*'Z Z 'Y)\cRcc'OSc’O'Y)\c’} (1193)

Are= =S\~ Z SR oS o™ rer
c/

+Z Pc'y)\cRcc’OPc"Y)‘c'- (119b)

Choosing the B, to make .S° vanish at resonance E=E,
the widths reduce to 2Psy\:? at resonance. Thus
Iye=2Psy\? is true at resonance to second order in
R°P. With the same choice of B,, the second term in
Ay vanishes (besides the first), and the term it fosters
in dA\./dE is second order in (E—E,) and so is
probably small compared to the contribution from the
first term. The third term in (1.19b) and its energy
derivative are more difficult to estimate since the
signs of individual terms with ¢#£¢’ will fluctuate. The
contribution from terms with ¢=¢’ is given below in
(1.34) and (1.35) and it might be expected that the
sum of terms with ¢>£¢’ is small compared to the sum
of terms with ¢=¢'. If there are only two channels, the
contribution to the third term in (1.19b) from c¢>¢’ is

roughly
1(Tae)(Trer)
:t_ ——
2 D

The background matrix U° is not diagonal in this
approximation so that it contributes to the reaction
cross sections.

¢. Third Approximation: R°LO is Diagonal

From the theoretical and experimental study of
average total cross sections (see Secs. XI, 4 and 5), the
matrix RC has strong diagonal matrix elements so that,
unless the factor L° is small, it is not satisfactory to
use the first approximation above, #z., R'L? is zero. A
natural extension of this approximation is to assume
that ROL? is diagonal so that matrix inversion becomes
simply ordinary division and we can write the above
formulas without any implied matrix inversion. This
assumption is not unreasonable because the individual
level contributions to the nondiagonal components of
R° can be positive as well as negative and so tend to
cancel, whereas the diagonal components are all pro-
portional to the positive reduced widths. With ROL?
diagonal, the widths and shifts become, from (1.5) and
(1.6):

ZPc'Y)\c2
D= (1.20a)
d.
Pc(RCGOPc)—Sco(l—RwOSco)
A= e (1.20b)

d.
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where

dc= (1~RCCOSCO)2+ (RccoPc)z, (121)

and the elements of the diagonal background matrix are
now

U,l=e?iwe9e), (1.22)
where
¢cl = ¢c+arg(1 - RccOLco)
R."P.
=¢c——tan‘1(——— ) (1.23)
1—R. S

With the revised definitions of I'xe, Axe, and U/’ and
putting ¢, for ¢, the previous formulas (1.12), (1.13),
and (1.14) for the collision matrix elements and the

).
dE /7 &,

dP,
(2x— 2xy+4xy2)E+ (22— 3y* 42984202y +y*—a?) (

LANE AND R. G.

THOMAS

cross sections can be taken over as they stand. In the
case of only one channel, the present treatment is
exact. The above formulas are equivalent to those
previously considered for the one-channel case in Sec.
IV, 1. The present approximation has been used by
Krotkov®? to analyze the resonance scattering and
capture of neutrons by Mn®® for energies up to the
kilovolt region.

If R° and A are not very energy-dependent, they
can be regarded as constant in the vicinity of a single
resonance. If this is not so, the fitting of cross sections
becomes complicated and one tries to represent the
energy dependence of Ay, by (1.16). In the present
approximation, we have, from (1.20b),

1 )2dRMO+( | Ay — Dy 3yt 3)dSc
I 22— .
R.P dE Y Ty dE

bl

="ch2

C(1—y)2+a]

where x= (PR E =5, y=(SLR:)E =E,.

The evaluation of Ay and (dA\./dE) depends on the
choice of boundary condition B,. Following the same
reasoning as in the discussion of the first approximation
above, one chooses B, to make the one-level approxi-
mation as good as possible. This implies making
Axe ST\ inside the resonance. We mention two choices
of B, that satisfy this requirement

(i) We may define B, to be such that

for each channel c.
Introducing an angle 4, by the definition
sind ,=2(P.Rc)E =E,=2x (1.26)

then the choice of B, implied by (1.25) is from (1.20b):

A,
B.=S.(E,)—P.(E,) tan—2~. (1.27)

This choice of B implies that, at E=E,:
Tre=2Pyre seCQ?c. (1.28)

(i) An alternative choice of boundary condition
would be that which makes d.,=1 at E=E, so that, at
E=E,,

The=2Pin (1.29)

Such a condition can be stated in the form (1.29) with
an angle 4, in place of 4., where 4.’ is given by

sind /= (PR E=E,=x. (1.30)

(1.24)

The level shifts in this case are, at resonance E=E,

’

A.
Axe=Pmc" tan7=7X62(Sc_Bc)' (1.31)

If x is small, both of the boundary conditions (i)
and (ii) reduce to y=0, and so are the same to first
order, as are the expressions for the widths and shifts.
To first order in x:

dAy. dP, dS.
=’Y>\§(2x — ) (1.32)
dE dE dE
To second order in x,
dAx,
:'Y)\cz
dE
dP, dR., dS.
26—+ P2 . (x2—2y—1)
dE dE dE
X . (1.33)
1—4y+4 242

With the first and second boundary conditions (y=x?
y=x2/2 to second order), this becomes, respectively,

d ds.
—(Re"P o) ——(1+2a%)
dAx, dE dE
=7\ (1.34)
dE 1—24?
dAre d S,y
=’Y)\02 _<Rccopc)2_ . (135)
dE dE dE

92 R. Krotkov, Can. J. Phys. 33, 622 (1955).
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The magnitude of dS./dE is usually & (Ma?/h?) except
for S-wave neutrons for which it is zero. In the latter
instance, we can estimate R, to be roughly constant
at (Ka)™! where K~10% cm™ (see Sec. XI, 4) so that

(d/dE) (Roe"P o)~ (Ma*/ 1) - (2/aK)~%5 (M a*/1?).

It thus appears that the quantity in brackets in (1.34)
or (1.35) is always ~ (Ma?/#?) since, in just those situ-
ations when the second term is smallest, the first term
is largest. Consequently dAx./dE is only small (and the
Taylor series expansion of A, only useful) when
TAEKLHY M a?.

2. Interpretation of the One-Level Approximation

Although the one-level theory furnishes formulas for
analysis of resonances along with expressions for cor-
rection terms, it is not readily associated with a physical
picture of a reaction. In particular, use of a stationary
treatment conceals the time-development of a reaction
and does not obviously complement the Bohr idea? of
a compound state decaying by various competing modes
of decay. In contrast, earlier theories of reactions
actually assumed aspects of the supposed physical
picture to begin with. This made them phenomeno-
logical and meant that they lacked rigor, although they
were more easily grasped in physical content. Now we
try to complete the present one-level theory by giving
it some physical color.

In Sec. IX, 1c, we derived an expression for the
integral of the probability | ¥, |2 over the internal region,
where the subscript e indicates that the internal wave
function ¥, is formed with unit incoming (spherical
wave) flux in the channel e. Such an integral is naturally
interpreted as a measure of the probability that the
two nuclei in pair e penetrate into each other to form a
compound nucleus. From (IX, 1.29) the integral is

hr)\e

f[\I’elsz= .
. (Ex+A\—E)*41T)2

(2.1)

This is not only true when R? of (1.1) is ignored, but
also when R is included provided that it can be taken
as constant with energy. (From this point of view, the
most logical definition of the one-level approximation
would be that in which we assume only that R° is con-
stant. However, as seen in subsection 1, further assump-
tions usually have to be made in order to derive useful
expressions for cross sections.)

In connection with (2.1), if the function ¥, arises
from a unit-flux plane wave beam, the right side of
(V, 2.1) is to be multiplied by the actual flux intensity
m/kH (2741)/(2s.41)]. With this multiplying factor
the integral has the dimensions of area-times-time, and
the interpretation is again straightforward. By dividing
it by the resonance part of the total cross section one
obtains the expected value %/T as the mean lifetime
of the compound nucleus.
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The physical nature of the one-level approximation
is also evidenced in the evaluation of the overlap
integral

o f vowir [ [ f |\If1[2dr]%[ f |~1f2|2dr]i 2.2)

T

for internal wave functions ¥; and ¥, of two different
energies, E; and E,, but which both correspond to an
R matrix with one level A and a constant contribution
R? from the remaining levels. By means of the expres-
sions (V, 2.9 and 10) for the integrals in (2.2), one can
show that

[1:2]?
[ (D1, (yaX 1) D) |2

(D%, (X DO (D, (Xr)D:)
By considering the Schwarz identity,
| (1,9 [*= (£ (g*,8)

(2.3)

1
_Ef f [(2)8(0) —£(5) 8(x) |2dndt, (2.4)

one can assert that in the internal region ¥, is equal to
a constant, complex multiplicative factor times W.,.
Notice that I, is independent of how the compound
systems described by ¥, and ¥, are formed. Thus, the
shape of the internal wave function describing the
general one-level system as defined here is independent
of energy and of the channel by which it is formed; its
amplitude and phase may, however, depend upon them.
By starting with the assumption of this independence
of the shape, Wigner' gave the first derivation of the
generalized one-level formula with the energy-inde-
pendent R? included.

In the particular one-level approximation of assuming
the R° is zero, the observations of the last paragraph
are perhaps trivial because in that case ¥ is assumed to
be expansible in terms of a single X. This brings up the
matter of the physical significance of the R® matrix and
how it happens that in the restricted one-level approxi-
mation the actual ¥ with running waves can be de-
scribed by a single standing-wave type function X,.
The answer to the second question is that the Green’s
theorem relation used in Sec. V serves as an approximate
means of integrating X in a manner which enables it
to join onto the external functions with their running
waves. This integration changes the slope of the wave
function at the surface but not its shape in the internal
region, as evidenced by applying the Green’s-theorem
relation (V, 1.4) directly to ¥ and X, and assuming
that ¥=X, in the internal region. The effect of the
inclusion of the constant R® matrix is to change the
absolute value of the wave function on §. That is, the
integration by means of the Green’s theorem relation
introduces on § a discontinuity in the value as well as
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the slope. We consider the ratio of the total probability
of finding all nucleons on a channel surface $, (in which
case they will be formed into the pair ¢ separated by the
interaction radius) to the total probability of finding all
nucleons inside the internal region (in which case they
are in the compound nucleus):

8c|\ps|2ds/f1|w,,[2dr.

With (III, 4.3a) the surface integral can be expressed as

(2.5)

2Ma,
[ efas=—=1v.l, (2.6)
Se h?

the value quantities V, being given by (IX, 1.25a) for
a system formed from a particular channel e. By in-
serting the one-level expansion (1.1) in the matrix
(1—RL%) of V, and using (2.1) for the volume integral,
our ratio (2.5) becomes

e

2Ma,
_?I { (1_ ROLO)#lRU}cee)\’*‘akca)\e | 2;; (2.7)

N
where e, is given by (IX, 1.15) as
o= (1= R°Lo)~y,.
If R%is assumed to be zero, then the ratio becomes
2Ma,

—N
52

(2.8)

and is independent of the energy and of the formation
channel. However, if R%is not zero, even though perhaps
constant, no cancellation of the energy-dependent e
of (2.7) with that of (2.1) occurs and as a result the ratio
is in general dependent on energy and of the formation
mode. The ratio given by (2.8) is recognized as that for
the eigenfunction X». Since the shape of the one-level
wave function ¥, in 7 is the same as that of X, the
departure of the ratio from (2.8) indicates that the
effect of a constant R° term is to change discontinuously
the value of ¥, on 8.

To conclude we make a few remarks about a time-
dependent interpretation of the one-level approxima-
tion. In general, to determine time-dependent features
of some process from knowledge of its stationary char-
acteristics, we construct wave packets by superposing
stationary wave functions of the various energies in
some energy range, and then examine the behavior of
these wave packets.

In the one-level approximation, from (IX, 1.31 and
21), the wave function in the internal region is given by

CXPﬁ (we - ¢e)r)\e;ﬁ%

Xy exp(iEt/h)  (2.9)

Y (E)=
(]
Ex+Av— E— EI‘)‘

A. M. LANE AND R. G. THOMAS

where we have included the time dependence [notice
that (2.9) implies (2.1)7]. Let us superpose stationary
states of this type with some energy-dependent ampli-
tude 4 (E) that is constant over the region of the reso-
nance and goes smoothly to zero on either side of the
resonance. We then have a wave packet

f A(E)¥(E)dE

A(E) exp(iEt/B)dE
=I‘>\e%ﬁ*expi(we—-¢e)X>‘f ) explE/R)

)
E>‘+A>\—E—-EI‘>‘

14
~T 1t expi(we— o) X exp[i(Ex+Ay) —I‘x];t. (2.10)

This wave packet can be seen to decay with lifetime
#%/T) and can be said to represent the compound nucleus
and its time decay. The theories of Kapur-Peierls® and
Seigert-Humblet™ " were formulated with wave-packet
states X that decayed in time in just this manner. In
the Kapur-Peierls paper, instead of choosing real
boundary conditions to define the states X3, the condi-
tion of outgoing waves in all channels was selected.
Such a condition directly complements the physical
notion of the decay of a compound nucleus in contrast
to the arbitrary real conditions used here. Although
basically the two types of formulation are quite equiva-
lent (Sec. IX,2), the older one is more physically
suggestive.

As a more concrete illustration, let us consider the
simple example of a pure scattering process near an
isolated resonance. The following treatment is due to
Van Kampen.® Generally, at an energy E, we have at
asymptotic distances:

1
Y (E,rt)~—(e-"— Ue*") exp(iEt/h).  (2.11)
r

Let us form wave packets from these stationary states
as in the foregoing

\I/(r,l)fva (E)Y(Ert)dE

fA(E)

7

where A(E) varies smoothly inside some suitably
chosen energy region and goes to zero outside this
region. The method of stationary phase shows that the

incoming wave packet is localized at time ¢ at the point
r=—t/v where v is the mean velocity. By the same

(eik*— Ue*r) exp(iEt/h)dE, (2.12)

% N. G. Van Kampen (private communication).
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method the outgoing wave packet is found where

db

r=v—2— (2.13)

where U has been expressed as exp(2:8). Near an iso-
lated resonance:

v\
5= (w—@)+tan [P E—Eﬂa)l. (2.14)

If Ris ignored, v
dd (Bv/2)T»
Qb (E—Ey)+3Ty
Thus the time delay (2/v)(dé/dk) of the packet is
~27/T near the resonance, and is very much smaller

off resonance. If R is retained but taken as a constant,
this result is unchanged provided that PR is not large.

+0(a).

3. Practical Application of the One-Level
Approximation with R'L°=0

We now discuss problems associated with fitting ex-
perimental resonances with the one-level formula (1.13)
based on the neglect of R°. The only serious complica-
tion is that the energy dependences of the width and
shift factors P and S'in (1.11a and b) must be considered
in some cases.”'* There are two approximate procedures
for taking these dependences into account: the first is
to expand the shift linearly with respect to energy
while treating the widths exactly ; the second procedure
is to expand the quantity e\ of (1.7) linearly with re-
spect to energy while treating the widths in the nu-
merator of (1.13) exactly. There are cases, such as
resonances near thresholds, where it is undesirable to
make either approximation.

a. First Approximate Method: Linear Expansion of Ay

It is usually a good approximation® to treat A, as a
linear function of E over a fairly wide range of energies
that will often include the width of a resonance. It is
then convenient to rewrite Eq. (1.13) in terms of the
resonance energy E, which we will now define as the
solution to

E)\+A)\(Er)—Er=0 (31)

so that

dAy
Ex+A—E= (ET—E)(I—-——) 4+

dE / e,
the higher order terms being neglected. Equation
(1.13) then becomes

™ I’MOI‘M,O (3 2)
=—-——g .

kc2 J(E_Er)2+(%FXco Y

% R. G. Thomas, Phys. Rev. 81, 148 (1951).
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where
I‘)\c I‘)\c
I‘)‘CO—_— = (33)
dAy A
(1———) 1+E nd—
dE /] E, c dE
D=3 T2 3.4)

The T\ may be interpreted as the “observed” partial
widths in contrast with the ‘“formal” partial widths
T\, the latter being dependent on the values chosen
for the channel radii. In the barrier region the penetra-
tion factors P, are very sensitive to the energy and no
approximate procedure for taking this fact into con-
sideration can be recommended. Let us define new
reduced widths in terms of the ‘“‘observed” partial
widths by the usual relation,

F)‘coz Z-Pc(’yo)\c)z; (35)
then, from (3),
'Y)\c2
(70X0)2= (36)
as.
1+Z 'Y)\cz——
c dE

The (v°.)? which are obtained by dividing the observed
partial reduced widths by twice the penetration factors,
may be called the “observed” partial reduced widths.
From resonance data it is generally not possible to
measure the (v%.)? for the negative-energy channels. It
is therefore convenient to separate the sum in the de-
nominator of (3.6) into two parts,

as. as,
Z 7)\62__=N+Z 7)\02'_1 (3'7)
¢ dE ct dE
where
AR
N=Z 77\62_ (38)
e dE

and the additional channel designation + or — indi-
cates whether the channel has positive or negative
energy of relative motion. By substituting into (3.6)
one finds that

1+N

e/ (Vre)?= .
AR

1— Z 7)\02
ot dE

(3.9)

In applications dS./dE has been found to be positive
so that this ratio> (1+NV). Because the ()2 are posi-
tive, the following inequality must be satisfied:

A
Z (’YO)\c)z( ) < 1
ct dE/ g=g,

If the separation 3.7 had not been made, then N=0 and
the sums in (3.10) and in the denominator of (3.9)
would include negative as well as positive energy chan-

(3.10)
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nels. From results given in the appendix it can be shown
that IV is the volume integral of the probability density
in the part of the external region with negative-energy
channels, that of the internal region beéing normalized
to unity. Except near a threshold for a new positive-
energy channel, V is expected to be small compared
with one; however, as an s-neutron threshold is ap-
proached, it becomes indefinitely large because the
external probability integral becomes indefinitely large.

A few qualitative remarks can be made concerning
the distinction between the observed I'y? and the formal
I'xe. According to (3.6) the distinction between these
quantities may be large when the 7, are large, in
which case the wave function in the ¢ channel will be
large in the external region provided that it is not
attenuated too rapidly by the barrier. Since the rate of
attenuation of the external wave function is inversely
proportional to dS./dE (see appendix), the distinction
reflects the relative extent to which the nuclear wave
function extends into the external region and the conse-
quent uncertainty of the size of the actual nuclear
system. The distinction is expected to be large when
the barrier is weak although extending a large distance
from the nuclear surface. It is therefore expected to
increase with decreasing /. and to be most important
for weak Coulomb barriers. In the case of alpha-
particle decay, for example, the difference between I'y.
and T'y. is small, less than a few percent, because the
wave function is attenuated very rapidly just beyond
the nuclear surface, thus making it possible to define
rather unambiguously an actual size for the nuclear
system. Further examples are given in papers by Breit
and co-workers.” There is an important exception which
must be made in the foregoing interpretation. The differ-
ence would be expected to be most pronounced in the
case of an s-wave neutron channel in which the wave
function extends essentially unimpeded into the ex-
ternal region. However, for such channels dS./dE=0
so that they do not contribute to making a difference
between I'). and I')’, at least in the present approxima-
tion where the contributions from the other levels are
neglected. (See the remarks made in the discussion of
the “third approximation” in subsection 1.)

Finally the idea of a “dimensionless reduced width”
6.2 will be introduced. This quantity is defined as the
ratio of the reduced width y,2 to (#%/M.a.?):

2 ~1

(90)‘0)2 - (
M.al

Similarly, corresponding to the observed reduced width

(me)?:
h? -1
(0)\00)2= (Mcac2) (‘Y)\CO)2.

(YO\)2 (3.11)

(3.12)
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From the discussion of Sec. X1I, 4, the following rule is
implied for the 6)%:

2 0hi~1 (3.13)
A

where the sum is over all levels A in any energy interval
equal to the spacing between single particle levels. The
rule (3.10) is, for comparison,

asS.
> (0)\00)2["'— ]<1 (3.14)
c* dE M.l
The correction to a reduced width (summed over
channel spins) for a given channel arising from the
variation of the partial level shift for that channel only
is, from (3.6):

2

ds,
[ O = (o) =—- (3.15)

dE M.a2

The quantity (dS./dE)(h*/M .a?). is of order unity or
less (see the appendix). For instance, in the case of
l-wave neutrons (/%0), the maximum value of this
quantity, which is equal to 2(dS./dp.®) for neutrons, is
2/(21—1) and is achieved at zero energy. Taking
(2dS./dp?) as unity, the fractional corrections to the
corrected reduced widths are equal to the uncorrected
values. Since other uncertainties usually prevent the
determination of reduced width values to better than
109, one may say that the correction is only significant
if the uncorrected value of _,(61.%)% is 20.1.

b. Second Approximate Method: Linear Expansion
Of Ay— (i/Z)I‘)\

The approximate result obtained after expanding the quantity
Ay—%T in the denominator of the resonance amplitude linearly
with respect to energy has somewhat more physical significance
than the previous approximation of simply expanding A, although
it is probably somewhat less useful in applications. Although in
the barrier region a linear expansion of the width would appear
to be a very poor one, it is actually satisfactory in many appli-
cations because the width term in the denominator is effective
only in the immediate vicinity of the resonance; the partial
widths of the numerator should always be treated exactly.

The quantity e\ of (1.7) is expanded linearly with respect to
energy about the real energy E, which satisfies the equation

E)\+2x(Eo) —Eo=0, (3.16)
so that
e~ E\x—E—&(E) — (E—E) (@& /dE)e=8,  (3.17)
where
H=—2M\+5D
By substituting (3.16) into (3.17) one eventually obtains
a=[14(d&\/dE) e =p [ E,~ E—-%D\'], (3.18)
where
Im(dé\/dE
E,=Eo— T\ (Eo) m(dhy/dE) (3.19)

[1+Re(den/dE) P+[Im(der/dE) T
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is the resonance energy, and
N =20,

aéin

Il /De=1+4Re a6 (1+R —) +(I Y 590

The resonance contribution to the cross sections may then be
considered proportional to

The*Tac™
&= Bp+in G20

where
=2P, ' Whe ’ %,
_ YAe
AT {1+ Re(den/dE) P+[Im(d6/dE) Pit
Im(dé\/dE) )}

X "{t _1(
P T Rean/dE)

The total width T'y| in the denominator of (3.21) is in general less
than the sum of the partial widths T'\;* of the numerator, in
accordance with the inequality (IX, 2.14). In many applications
Im(déy/dE) is small and this difference is likewise small.

The results of this approximation differs from the previous one
by the inclusion of the effect of Im (d£)\/dE) in the widths of (3.20)
and (3.21). The quantities wy, of (3.21) correspond to those of (IX,
2.4), and the ‘‘renormalization” factor [1+4 (d&n/dE)]* of (3.21)
corresponds to the contribution from the term dL/dE in the
normalized condition (IX, 2.30). As mentioned in Sec. IX, 2,
this contribution is proportional to the volume integral in the
external channels for the complex eigenfunctions with energy
Hy=E,— 4T\

¢. Displacements in Mirror Levels

Some remarks concerning the positions of corre-
sponding levels in mirror nuclei are relevant here. It is
well known that various pairs of corresponding levels
show different displacements. If the spectra of two given
mirror nuclei like C*® and N are drawn along side each
other with the ground states on the same horizontal
line, some of the pairs of excited states are only dis-
placed by a kev or so, whereas others are displaced by
100’s of kev. The maximum observed displacement is
that of the first excited states of C'® and N*® where it is
over 700 kev. Ehrman® and Thomas® show that this
displacement may be explained qualitatively in terms
of the different boundary conditions at the channel
entrance for separation of C*® into C'?+4-% and N* into
C24-p. Referring back to (3.1) we have

Ex+ (B—S(E))v\*—E=0, (3.22)
where we have assumed that the only contribution to
A, that need be considered is that from the channel for
separation into C2 (in the ground state) and a nucleon.
Since S (E) is different according to whether the nucleon
is a neutron or a proton, so the solution E= E, of this
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equation is different for the two cases. Denoting the
neutron and proton cases by N and P, and choosing
the same value of B for the two cases:

E,n—E,p= (Exn—Exp)

+ (Sp(Erp)—Sn(Ewx))1%  (3.23)

where we have taken v,? to be the same for the two cases.
This will be correct if the two internal wave functions
X may be assumed to be the same. The predicted
difference in the displacements of the first excited states
and the ground states follows on taking the difference
between E,n— E,p evaluated for the two sets of states.
Assuming that the internal Coulomb energy difference
Exn—E\p is the same for the ground state and first
excited states the difference in displacements is pre-
dicted to equal the difference in the quantity

[Sp(E.p)—Sn(E.x) I\ (3.24)

when evaluated for the two pairs of states, A=0 and 1.

Numerically the term for the excited states dominates
the other. This is because of the nature of the quantity
S, which varies most strongly with energy at energies
near threshold and / values near zero. (The excited
state energies in the first term are ~2.5 Mev nearer
threshold than the ground state energies in the second;
and the excited states are /=0, whereas the ground
states are /=1.) Ehrman® and Thomas® found that
this first term in (3.24) was qualitatively equal to the
700 kev relative displacement. The main uncertainty
was due to lack of knowledge of the value of v,? to
better than a factor of ~2.

4. The Two-Level Approximation

Occasionally one may find experimental instances of
two levels (of the same spin and parity) occurring for-
tuitously close together in a region of normally well-
isolated levels. In such a case, the two levels should be
analyzed together as a single anomaly. For this purpose,
one may try to use the two-level formula that is the
counterpart of (1.13) for the one-level case. Such a
formula follows from Egs. (IX,1.14 and 22) and
(VIII, 3.2). For simplicity we will set R'=0, so that
the R matrix is considered to be

Yo X2
E\—E E,—

T1X11

(4.1)

A certain amount of algebraic manipulation leads to the
required formula,

wgs [(E’Z—E)Plcirlc’*“}" (EI—E>F20%I‘2L"%—'A12(P10%P2c’%+I‘2c%F1c'*)]2+%‘[Zﬁ chcIIwc,:]z
Oga’ =" — - — - <
ko siv [(BEy—E)(By— E)+1(T122—T1Is) — A1 J+3[T1(Ee— E)+T2(E1— E) — 2A15T 15 J?

9 J. B. Ehrman, Phys. Rev. 81, 412 (1951).
9% R. G. Thomas, Phys. Rev. 88, 1109 (1952).

» (42)
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where

Hc”c= I‘lc"%rh%— 1120”%1“10%;

Ey=E+A,
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I'i=Tun
(4.3)

P12=:1;, 2P Y10 Y9007

Selecting the boundary condition B,=S. and provided that .S, is reasonably constant in the energy range of in-
terest (so that Aj=Ay=A1,=0), (4.2) simplifies somewhat to

wEgJ

L(Ea— E)T1/T 20 4 (Er— E)TaeiT oo PA-3(2 ) Worvollerrer I

(4.4)

Taa’

In the special case when there are only 2 channels,
the second term in the numerator is zero. From a study
of the remaining term it is clear that ¢ao will vanish
between resonances if y1sy1r and yacy2or have the same
sign, but not otherwise. In the general many-channel
case, the second term in the numerator means that
0o Never vanishes, These findings are in keeping with
those deduced from general arguments mentioned in
Sec. VII, 3.

5. Interference between Isolated Levels

a. Cross-Section Minima beiween Levels

In the preceding subsection it was shown that the
one-level expansion provides a useful description of the
behavior of the cross section maxima when the ratio
I'/D<1. Teichmann®® has shown that, in the same
region, it is possible to make estimates of magnitudes
and behaviors of the cross-section minima between
resonances. Unlike the maxima, these minima may range
in magnitudes over several powers of I'/D, and the
estimates therefore have only qualitative value.

The estimates are made by expanding in a power series
in the vicinity of the minima the matrix (1—RL%)™, or
equivalently the matrix (L9)~#(1—L%¥RLY) (L)% A
sufficient condition for the permissibility of such an
expansion is that the norm

|LIRLS| =3 | LORLLAE (5)

be smaller than one, and the usefulness of the expansion
will depend upon the norm being much less than one.
This condition is most likely to be satisfied if the
boundary conditions parameters B,, are set equal to the
shift factors, S., in which case L.=iP.. Now, in be-
tween the resonances, the order of magnitude of the
R components may be estimated as {(yasyae)/D, al-
though it is quite possible that some of the nondiagonal
components as well as all of the diagonal components
may actually vanish there. (On the other hand, as
pointed out in Sec. XI, 6, there may be a cumulative
contribution to R, from far-away levels. Following

ke i [(Bi= B)(Ea— B (T —TiT) P (Bs— E)+To(Ea—E)

Teichmann,*® we ignore this possibility without real
justification.) Thus, if the signs of the v, are assumed
to be as likely positive as negative, their magnitudes
independent of A\, and the levels uniformly spaced by
an amount D, the average of R..»? with respect to all
possible choices of signs is found to be

(Ree D=2’/ (Ea— E)?= v\ 2yro2 (/D)2

Likewise, if the signs of the ya¢vaer are alternately posi-
tive and negative, the same numerical factor of = is
arrived at for the magnitude of R.-. In view of the
fact that some of the R, components may vanish, it
seems reasonable to assert that

”LO;RLO%” S (T/D)2 Z PcPc"Y)\cz'y)\c’z

= (xT'/2D)?, (5.2)

where I' and D are appropriate mean total level width
and spacing. The following considerations are therefore
likely to be applicable when I'<D.

The power series expansions for the nondiagonal
reaction components of the collision matrix are

ch’=Z'iPc;[Rcc’"I"Zc”Rcc”Lc"oRcc"'l' M ‘]Pc’%- (53)

In the consideration of this expansion it is necessary
to distinguish (Fig. 3) three possibilities. (1) R, has
an extremum between resonances but does not pass
through zero. (2) R, vanishes between resonances but
has no extremum. (3) R, goes through zero twice and
has an extremum between these zeros. In the third case,
which is somewhat unusual, the reaction cross section
has between resonances two minima and one maxima,
which is itself not a resonance. For the first possibility
to occur between resonances at Ey, Eyq it is necessary
that the products yacyae and ¥at1, ¢¥a+1, o have opposite
signs. Consideration of the first term of the expansion
(5.3) then suffices for an estimate of the magnitude and
shape of the minimum. The third possibility is a special
case of the first and could occur if the contribution to
R, from the totality of other levels on both sides is
the same sign as y\.vao and of sufficient magnitude to
annul the contribution from the levels Ej and Eyyi.
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TYPE 9

1 |
€, €y

F1c. 3. Different types of behavior for cross sections in between
resonances. The origin of the three types is described in the text.

The extremum of R,., which occurs between the two
energies of annulment, leads to a cross-section minimum
with the same shape as the minimum which occurs
when R.»50. When I'/D is small, such an occurrence
probably requires an anomalously high value of v, at
a nearby level, or a rather sudden decrease in the level
spacing. For the occurrence of the second possibility it
is generally necessary that the products yasya- and
Y1, eYa+s e have the same sign. The behavior of the
cross-section minimum in this case will depend largely
upon the second term of the expansion (5.3).

Minima of Type (2)

If R.5%0 in the vicinity of the minimum, the ¢c’
component of the collision matrix may be considered
as approximately given by

| Wee|?
=4P Py[Roy @M+ (E— Enin)*(d?/dE?) (Roo ™M) ]2
~ 4P0Pc,[ (-Rcc’ (min))2
+2R oo ™0 (E— Enin)?(d%/dE?) (Roe) ] (5.4)
The shape of the cross-section minimum is evidently
parabolic. As before it is estimated that (R..)2="yxc*ya.2

X (w/D)2 Similarly, for the second term, it is estimated
that

d

Rcc’ =
dE2( )=2_x

YNV e Z)\ (E)\ - E)—4

YAY Ae! YucYue
M
Fr—E " (E,—E)

Rcc,(min)

=vr1re?(32/D%Y) 3 (2n+4-1)*
n=0

=Inrac?(n/ D) (5:5)
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and hence
| W oo |22 T\ re (/D)2 [14-% (/D)2 (E— Emmin)?].  (5.6)

The ratio of the cross-section minimum to the resonance
maximum is

Ceor (min)/o-cc, (max) ~ (7rF/2D)2 (57>

If a width W of the minimum is defined as the interval
between the energies at which o exceeds o, ™) by
a factor of four, then from (5.4)

W=14D.

Minima of Type (iz)

When R.=0 in the vicinity of the minimum, the
absolute square of the cc’ component of the collision
matrix may be approximated by

dRcc' 2
l WMI ! LS 4PCPCI[ (E) (E— Emin) + (Qw')2] (58)

where
YA Ae

Qoo =3 e Roe PorRorror =Y oY ns P,
Ex—E

Yue'*Yue
E,—E

since the first term of (5.3) is real whereas the second
nonvanishing term is imaginary. The quantity Q. may
be estimated as follows: the sum over channels ¢ is of
the order of or less than 3T'; as before, the magnitude of
the sum and the p sum may be considered as {yx.)
X (w/D) and (yur)(w/D), respectively; therefore, Q..
Sindme®I (r/D)?. By substituting this estimate
into (5.8), one obtains

| ch’ | 2§ Taelaer (T/D)4[ (E"' Emin)z‘*‘i‘F?]. (5-9)

The ratio of the cross-section minimum to the reso-
nance maximum is evidently

Goo’ (min)/acc, (max) (TF/ZD)“ (510)
which is two orders of (I'/D) smaller than the previous
one. The width of the parabolic minimum is

W~T. (5.11)

b. Collision Matrix for Regions Containing
Isolated Levels

When I'/D<1, it is possible to obtain an approximate
expansion for U in terms of the levels of the system.
The form of this expansion was first deduced by Bethe!
and recently by Wigner! using the more rigorous pro-
cedure of R-matrix theory.

If the widths are small and good boundary conditions
employed, then the components of the matrix & of
(IX, 1.9) are small and one can attempt to expand the
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matrix A= (e— &)1 about the diagonal part e=e—E
— &4 & whose components are ex= Ey—E—1iI', where
&' is the nondiagonal part of £ Thus

A=elfelge 4. . (5.12)
and therefore, according to (IX, 1.13)
(1=RL)TR=>\(mXr)ea™
+2XmetnX v b e, (5.13)

the components of which are

[(1—" RLO)—IR]“,: Z)\('Y)\c'y)\c’/e)\)"_i Zc"Pc” Z)\
X ('Y)\c'Y)\c”/é)\)ZM(?ﬁ)\) ('Yuc”Vuc'/eu)' (5133}

The components of || <X Perr|Yaeyuerr| are less
than or of the order 3I'. If a particular A is near reso-
nance, then the terms of the u sum are not and the
magnitude of their sum may be estimated as (yuc)
X (w/D). On the other hand, if a u term is near reso-
nance, the terms of the A sum are not and the magnitude
of their sum is similarly (yae)(w/D). Clearly then if
I'/D«1, the second and higher terms of (5.13) may be
neglected, and the approximation to W is obtained by
retaining only the first sum of (5.13):

(aXyn)

W=1+21'P%[>:x ————— ] (5.14)

Although (5.14) has the form of the more exact ex-
pansion (IX, 2.5), its v\, are real and the imaginary
parts 4T\ of the denominators satisfy the condition
(IX, 2.14) in the exceptional case of equality. If the
Iy are of the same order or larger than the energy
differences between resonances, (5.14) may become
grossly inaccurate. Nevertheless, it is shown in Sec. XTI, 2
that if the signs of the yx. may be considered as likely
to be positive as negative, (13.14) is valid for any value
of T/D provided only that the individual ratios
(27T./D) are all much less than unity.

The reactions cross sections corresponding to (5.14)
are, from (VIII, 3.3),

(5.15)

where the sum over X is over levels of given spin J and
parity. For this formula, if the signs of ). are random
with respect to ¢/, the inierference terms will be very
small in cross sections that imply sums over large
numbers of channels. For this reason experimental slow
neutron capture cross sections (involving the hundreds
of photon channels) can be analyzed into superpositions
of Breit-Wigner resonance terms without interference.

A. M. LANE AND R. G. THOMAS

The fission cross sections, in contrast, exhibit strong
level interference effects in keeping with the sugges-
tion’¢ that only 2 or 3 channels are involved.

XIII. SPECIAL TOPICS

The present section deals with miscellaneous special
topics. The discussion of three-body disintegration and
photon processes will partly remove restrictions hitherto
imposed on the theory.

1. Cross Sections near Thresholds

Although the main results reviewed here on behavior
of cross sections near thresholds have been known since
the introduction of the Born approximation into nuclear
theory, not until recently was a derivation given by
Wigner®” in which the rigor was such as to leave no
doubt as to the validity of these well-known results.
Wigner’s derivation goes somewhat beyond the earlier
ones in that it shows that cusps can occur in reaction
and scattering cross sections at the thresholds. This
derivation does not make use of the one-level approxi-
mation but does require that the range of nuclear
excitation energies of the compound nucleus being
considered be much less than the distance to the next
level. It also requires that, in general, p<1 and, in
the case of charged particles, that in addition n>>1.

From (VII, 1.6), a typical nondiagonal element of W
may be written

W eor=2i[ P AL YL =R} [Pt (LoY1].
(1.1)
Near the threshold for either channel ¢ or ¢/, the vital
quantities determining the energy dependence of the
cross section are P.|L|~?and P, | L.°| 2, respectively.

In terms of the Coulomb wave functions introduced in
Sec. III, we have, dropping subscripts c,

1
PUD= (P (B= 5

G (-
| (1.2)

At energies near the threshold for a channel ¢ with
1#0, FKG, F'KG', G>1 and

FF'4-GG’
F2-|—G2 ) }

1
P L2 ="[GB—pG' . (1.3)
P

In the absence of a Coulomb barrier, we may use the
limiting forms for G and G’ which are valid at very low

97 E, P. Wigner, Phys. Rev. 73, 1002 (1948); also G. Breit, 7bid.
107, 1612 (1957).
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energies (which, in this case, means for p<1),

2l-1)!! —i2l-1)!
=— Gl=———— (14
pl pH-l
so that

P|L0| 2= p™[ (B+1)(21—-1) 1112 (1.5)
The case /=0 is exceptional when there is no barrier;
since P=p, S=0, when /=0, Eq. (1.2) gives, for this
case,

P|L*|7*=p/(p*+B. (1.6)
When a Coulomb barrier is present, the limiting forms
for low energies are (see appendix),

G= (4p/7r)%6"’7K2l+1 (:8);
G/=— (1/7p)te™{BK2:(8)+2lK2111(8)},

where 8= (8pn)! and the K’s are modified Bessel
functions of the second kind. (We follow Wigner®” and
use K’s that are (—1)2"! times those defined by
Watson.) The combination pn does not depend on
energy so that B remains finite as £—0. For this case,
from (1.3),

P| L[ "2=mpe~>1[2p}(B+1) K2141(8)+pBK2:(8)]. (1.8)

The quantity [(L%~'—R] in the expression (1.1)
for the collision matrix is essentially constant for the
nonthreshold channels in the range of energies near a
threshold. For the threshold channel the imaginary
part of (L9 is very small and its real part is finite and
essentially constant. The quantity [(L%)~'—R7 may
thus be regarded as constant in first approximation and
the energy dependences of the reaction cross sections
are dominated by P,|LL|~2 The cross section for the
production of a new particle type o’ with a negative Q
will thus behave as

(1.7)

o~ke?t when n=0

and

g—~e—2ﬂﬂu'

when >0,

If the Q of a reaction is positive, the cross section for
the reaction will depend on the energy of the bombard-
ing particle a for small values of E, as

o~k when n=0

and

o~k 2 2a

when 7> 0.

The first of the last two dependences gives the well-
known 1/v law for s-wave neutron capture. The second
gives the proper relation to use for extrapolating
charged-particle reaction cross sections to low bombard-
ing energies; in this case the effect of the centrifugal
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field is completely washed out by the Coulomb field as
regards the asymptotic behavior, although the absolute
value of the cross section will depend to some extent
on:the value of angular momentum. We also observe
the well-known paradox that while the ratios of the
cross sections for various angular momenta remain
finite when there is a Coulomb field, they do not in the
absence of such a field.

For reactions with negative Q’s, the next approxi-
mation in the consideration of the threshold behavior
is to include the energy dependence of [(L9)—'—R].
If the new particle type is uncharged, then it will
emerge at threshold with zero angular momentum, the
bombarding particle bringing in the balance required to
conserve momentum, so that, for positive energy
channels: LJS= (jp.—B.) and for negative energy
channels: L= p,— B..

Treating the two types of channels together:
L= (—2M Ek.*/1?)*— B,. Considered as a complex
function of E, L° has a branch point at E=0, resulting
in the introduction of singular energy dependences (cusp
or “S-on-its-side”) into the various cross sections. Such
branch points do not occur when there is a barrier for
the new particle type.

These results may be illustrated by the special case
where the cross section near the threshold is dominated
by a single resonance level, . In this case, from Sec.
XII, 1a

F)\cr)\c’
(Ex+-An— E>2+%F)\2‘

| Weo|*= (1.9)

The threshold energy dependences of (1.5) and (1.8).
are now contained in the widths of the numerator in the
form of the penetration factors P. Just above the
threshold for either ¢ or ¢/, the denominator may be
regarded as constant relative to the energy dependence
of the numerator. In the case when the energy passes
through the region of a third channel ¢/ however, the
situation may be reversed. The numerator is essentially
constant but the denominator may vary sharply
because of the terms A and I'y,.. This variation is
most pronounced for an s-wave channel without barrier.
In this case choosing B.=0, Axer=peYro?, Trer=0
below threshold and T'her=2pyyre Are=0 above,
so there are actually discontinuities in the energy de-
rivatives of Ay, and 'y, when the threshold is crossed.
It is the resulting discontinuity in the slope of the
denominator (1.9) that produces the cusp or “S-on-
its-side” anomaly. For all other types of channels
there is no actual discontinuity in Ay, or Ty, but they
may still vary sharply through the threshold region
when the / value or the channel barrier is small.
Results obtained for the behavior of cross sections
near thresholds for two-body decays can also be applied
to three-body decay thresholds if these decays can be
treated with sufficient accuracy as two-stage processes
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as will be done in subsection 2. An important example
is the (n,2n) reaction in which the probability for the
emission of the first neutron with an energy £, is pro-
portional to Ei#dE; and the probability for the emission
of the second neutron with an energy E, is proportional
to Eqt so that o(n,2n)~ (E Es)}dE;. If the total energy
in excess of the threshold is E=FE;+FE, then by
integrating over tlie neutron distribution one finds that
o(n,2n)~E? These dependences were derived in a
complicated though more rigorous manner by Snow.
As emphasized by him, the energy range of their
validity is so limited that they are of no use for analyz-
ing any presently existing data. As a criterion for their
validity, Snow’® gives the permissible range of £ as the
smaller of D4/2500 and D441/100 where D, denotes
the mean energy spacing between levels of the bom-
barded nucleus 4 at the threshold excitation and D444
is the mean level spacing of the compound nucleus.
Since (#,2n) reactions generally take place at high
excitation energies, these ranges of E are usually of the
order of an electron volt which is much smaller than
any attainable beam resolution. On the other hand,
Weisskopf’s statistical theory®®?* gives an expression
for this energy dependence which is valid in the opposite
extreme where the ranges of energies E involved are
large compared to both level spacings. This expression is

B
0(%,2n)~w02[1~ (l_l_ 1_1) e——E/T:I’

where T is the temperature of the bombarded nucleus
at the threshold excitation. Although this statistical
expression also indicates a o~F? dependence when
E<T, this dependence is unrelated to that just obtained
from the resonance theory ; there is no reason that these
two quadratic relations should join smoothly onto one
another in the intermediate ranges of energies £ which
are comparable to the level spacings as their absolute
coefficients are not expected to be the same.

Wigner® studied also the effect of perturbing poten-
tials on the asymptotic behaviors. His investigation
shows that if the small additional potential is twice
integrable to infinity, i.e., if it drops as fast as r=* with
n>2, the asymptotic behavior is unaffected although
the magnitude of the barrier and the range of validity
of the asymptotic expressions will be affected. This
shows then that the centrifugal potential is just about
the weakest potential to change the asymptotic behavior
but that its effect can even be washed out by the more
influential Coulomb field. The condition that the poten-
tials be insignificant and do not affect the region of
validity of the asymptotic laws is that the second
integral P of the quantity P in the perturbing potential
#2P/2M be small compared with unity (see Sec. VII, 4).
In practice this is equivalent with the condition that

98 G. Snow, thesis (Princeton University, 1950), (unpublished).

A. M. LANE AND R. G. THOMAS

the WKB integral be small. As an example, the pene-
tration of the magnetic moment barrier is considered.
In this case P~ (2M /%% (eh/2 Mc)?(uiuz/7®) for which
the second integral is

e re € uiue
Py= f f P(r)drdr’ = ,
2 VYo 4AMca

which is of the order 10~ thus showing that the mag-
netic interaction should be without appreciable effect
on slow neutron processes even though the height of
this barrier at the radius ¢ may be several kev.

2. Three-Body Disintegration Treated as a Suc-
cession of Two Two-Body Disintegrations

Hitherto it has been assumed that the excitation
energy of the nuclear system was below the thresholds
for its disintegration into three or more bodies. We now
consider the possibility that one of the two bodies, a;
or as, of the disintegration pair & may have sufficient
excitation energy to disintegrate in one or more dif-
ferent ways into additional pairs of bodies, resulting
in a three-body decay for the compound system. The
modifications of some of the formulas of previous
sections to include this possibility are given below, and
the validity and usefulness of the results are discussed.

We can best begin our discussion by reference back
to the relation (V, 1.4),

(EQ—EI)‘/‘\I/Z*‘I’ldT=Z (Vzg*ch—' V]cDQG*). (2.1)

The equation is the fundamental one in R-matrix
theory. The term on the right results from using Green’s
theorem to transform the integral on the left over the
internal region into an integral over the surface 8. In
the case when only two-body breakups are involved,
this surface 8 is defined to be drawn far enough out in
configuration space so that it is equivalent to a sum
over nonoverlapping channel surfaces 8,—hence the
appearance of a sum over ¢ on the right-hand side. A
further consequence of the definition of § is that, from
(II1, 2.1), all the channel surface wave functions . are
orthogonal on 8,

f\bc*¢c’d8=47rac2acc’- (2.2)

The essential complication introduced by the presence
of three-body decay is that, in general, one cannot
define corresponding channel surfaces §.. According to
definition, 8§, is equivalent to the spherical surface
7.=a, which is such that there is no polarizing inter-
action between the two members of ¢ when separated
by a distance > a.. As long as both members of ¢ are
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bound, @, can be assigned some finite value. However if
one (or both) of the members is unbound (i.e., its
wave function spreads over all space), then no finite
value can, in general, be assigned to the a.. It is clear
from these remarks that the theory can be applied to
three body breakup only when the unbound member
has a wave function that is small in all the unbound
channels so that ¢, may be chosen at a finite value
approximately in accordance with its usual definition.
This is equivalent to demanding that the unbound
member be long lived so that the three-body breakup
has the character of two successive two-body breakups.
Of course, if the @, are chosen large enough, these con-
ditions will be satisfied by any type of three-body decay,
but the theory is no longer useful. Given such approxi-
mate channel surfaces for three-body decay, the only
modification of the R-matrix theory that are needed to
cope with three-body decay are those implied by the
occurrence of continuum wave functions. These must
be chosen to satisfy the orthogonality condition (2.2),
and, once this is done, the three-body decay processes
may be included in the sum in (2.1) and the R-matrix
theory can be carried through in the usual way.

The only matter to be settled is the enumeration of a
complete set of breakup states for three-body decay to
include in the sum of (2.1). For a given type of three-
body decay consisting, for definiteness, of a bound sys-
tem a3 and an unbound system as, we first label states
by the kinetic energy T’ of o;. Fixing T’ fixes the amount
of energy E, left with the unbound system as. For a
given E, and spin I, there will be several linearly inde-
pendent states of as, the precise number being deter-
mined by the number of open channels of a» (counting
channel spins and 7 values as well as different breakup
modes). We can conveniently take these states to be
those with outgoing waves in single channels [i.e., the
time-reversed versions of (VI, 1.3)]. Labeling open
channels by 7,

lﬁEgr:ﬁ_*[Or(Ez)—z; Urr'*(EZ)gr’(E2)]; (23)

where O and d are defined in Sec. III, 2. We have in-
serted the factor 7% so that the Yry sansfy the usual
continuum normalization condition:

BotA 8, if | Eo— Eo'| <A
f dEQf szr*lpEz’r'dT: { (2.4)
E9—A )

O otherwise,
where the volume integral is over all space and A is any
small number. [Equation (2.4) follows straightfor-
wardly on inserting (2.3) on the left-hand side and
integrating over all space, then over energy.] Put
otherwise (2.4) reads

f VB By rdr=08,00(Ey— Ey') (2.5)
0 e
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from the definition of the § function. This implies that
the orthogonality condition (2.2) may be extended to
three-body decay,

flpc(Ezr) *ybc’(Eg'r’)dS = 41!‘0«625w'5rr15(E2— EQI), (26)

where ¢ (and likewise ¢’) specifies the composition of the
subsystems a; and a, along with their spins and the
channel spin s and the relative angular momentum /,
but not the energy E; or the state r of s.

We may now carry through the R-matrix theory with
the simple modification that _. is everywhere replaced
by 3" c2_+/ dE,, the first replacement being on the right-
hand side of (2.1). The collision matrix elements
U, gyr). c for unbound channels ¢ are defined such that
the total asymptotic wave functions have the form

W,~g,— Z UeoOc—Y.

c'r!

Uc’(Eo 771),eQer dEg ,

where the first sum is over two-body channels. This
definition gives U, (z,), . the dimension (energy)—* and
leads to the following cross section for the initial two-
body breakup:

dO'a,a’(Ez"r ) ™

dES Z gJI Ue (Ez’r’) cJ|2
2

k 2 Jsls’l (27)
The cross section for producing three definite end
products, irrespective of their kinetic energies follows
on integrating over E,' and summing over all #' con-
sistent with the three products, (i.e., over channel spins
and / values).

In the particular case of the one-level formula, (2.7)
becomes

I‘)\CPXO’(Ez’T’)

(Ex+Ar—E)*41Ty2

dO'a,a’(Ez'r')="‘ 8J
ka2 sls’l’

dEy, (2.8)

where the quantity Iz, is dimensionless and where
the total width and shift in the denominator include
integrations of I (zy) over dE, besides the usual
summations over discrete ¢’

The reduced widths vy (zy)? for three-body decay
are unknown functions of E," so that (2.8) is generally
not as useful as the one-level formula for two-body
decay. However, if the continuum systems ¢'7’ can also
be described over a range of the energies E»’ by a one-
level formula, the following useful approximation can
be justified:

YAe!(Ea'r’) z'y)w,“,)?f ’l!/c'(Ez’r’) I 2d7’a2’, (29)
Tag
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in which the constant reduced width factor vy, o2 is
independent of #' and E.’ but depends upon a2’ and
the energy level A’ of the system as’. The basis for this
factorization is (Sec. XII, 2), that in the ome-level
approximation (even with a constant R° term included)
the shape of the internal wave function for a particular
a2’ is independent of both 7 and Ey’; the vy () is
expected to be proportional to the absolute square of
this wave function in the internal region 7as’ of the
system as’ and thus also to the integral over ras of the
absolute square of this wave function. For the proba-
bility integral in (2.9) we can apply (XTI, 2.1) obtaining

1 Trpr
Ve (Bar )2 = —yr e (A2 ,  (2.10)
27 (E)\r-f—A)\r —E)Z—"-—}F)\/Z

in which a factor #7! has been included as indicated by
(2.3) for the energy normalization. If I'y,» and Ay do
not vary with E,’ over the resonance A’ (we could con-
sider Ay as a linear function of E,"), Eq. (2.10) may be
integrated over the A’ resonance with the result that

F)\'r'

f’YM'(Ez’r’>2dE2l“’YM’(R’)Z (2.11)

X Ty

Finally, we may sum (2.11) over the various possible 7/
with the result that

Z ’y)\c’(Eg’r’)szzl"~"’Y)\cr()\')2. (212)
’ A/

Thus we have obtained the result that the ordinary
one-level formula

T Taelaerary
Oa,a’ (\)= T

2 ¢
ko® stV J(EA+AA*E)2+iI'x2

(2.13)

is valid for the cross section for the production of a
given continuum state A’ of @y’ provided that this state
may be described as an isolated level. From (2.11) it
follows that the cross section for producing a definite
trio of end products is obtained by multiplying (2.13)
by the ratio (3_Tx»/T'\) where the sum over »’ is
over all spins consistent with the three products.
These considerations provide some background for
the usual treatments of three-body disintegration given
in the literature.?* Almost all of these are based on
assumption of successive two-body decays with the
consequence that the cross section for definite end
products becomes a product of two parts in the manner
just described. Although we have only discussed the
case of isolated levels, these considerations can be ex-
tended to the case where the (first) compound states
are overlapping by using the considerations of the
statistical picture described in Sec. XI, 3. In applica-
tions, this type of treatment based on successive decay
has been successful not only for three-body disintegra-
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tions, but for reactions giving as many as seven simul-
taneous end products.”

3. Inclusion of Photon Channels

The derivation of the theory as given in previous
sections certainly does not apply to the electromagnetic
field particles or “photons” with their special properties.
These properties include the possibilities of production
and annihilation and the nonlocalizability of photons in
space which prevents their description by orthodox
spatial wave functions. We can extend the heavy par-
ticle theory to include photon processes, by exploiting
the fact that the coupling of nucleons to the electro-
magnetic field is relatively small, adopting the usual
perturbation approach to electromagnetic phenomena
and considering processes in which at most one photon,
virtual or real, exists in the system at any given time.
Because of the smallness of the coupling, the proba-
bility of two photons being simultaneously present is
much less than that for one photon and so the “one-
photon” theory should be quite adequate except in
those anomalous situations in which one-photon transi-
tions are forbidden by selection rules. (For example,
transitions between two states of spin zero.)

Although the treatment of photons is different from
the treatment of heavy particles, the qualitative role
played by photons is similar in nuclear reactions to that
of heavy particles. This belief is manifested by the
fact that photon processes are usually included in
theories of nuclear reactions by enalogy with particle
processes.? For example, the dispersion formula for
reactions through a compound nucleus state is extended
to photons by merely including a damping width for
photon processes in the total width. This is made
plausible by the Bohr picture of the compound nucleus
which decays by competition through the various
channels in a manner independent of the mode of
formation. On this picture, photon emission is just one
particular competing mode of decay so it is expected to
damp the formation of the compound state just like
any other mode.

For most nuclear reactions, the widths for photon
processes are so small compared with the particle
widths that their damping effect is quite negligible.
The well-known exception to this rule is provided by
thermal neutron reactions where photon widths may be
even a thousand times larger than the particle widths
and so damping must be taken into account.

a. One-Photon Theory without Damping

We denote wave functions with and without photon-
particle coupling by ® and ¥, respectively, so that

H®= Eq:', where H= (Hpart+thot)+ (H’+Hl*)7 (3'1)
E‘I’=E‘I’, where I-{=Hpart+thoty (32)

® J. D. Jackson, Can. J. Phys. 34, 767 (1956).
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where H’ creates single photons and H'* absorbs them.

Consider the state ®, corresponding to unit incoming
flux in the channel c=e. Allowing for at most one photon
to be present we may write this state as

B,=0,0+3 A,0,0. (3.3)
P

Superscripts signify the number of photons present.
¥,® has the form of a product of a nuclear wave
function and a state vector of a single photon, p, which,
for definiteness, we assume to be in the (k; £Mr)
representation (k=photon wave number, £=angular
momentum, = component, == parity) and normalized
to one photon in a large volume V.

Substituting (3.3) in (3.1), and multiplying through
by ®,©@* and integrating over all coordinates

f &, 0 (H—E)p 045 A, f O, OFH Y, 0 =0, (3.4)
p
Multiplying by ¥,®* and integrating gives

(E,—E)A,+ f W, OF P, =0, (3.5)

Utilizing the well-known Dirac procedure,'®® we assert
that the amplitude U., of the actual outgoing photons
at large distances is

| () emnl,

2mp\ }
= { — (——) f\Ilp(”*H'q)e(O)} , (3.6)
h Ep=E

where p is the energy density of photon states and
E=E, expresses the energy balance for real photons.
(Notice that p* contains a factor V* which compensates
the V=% in the photon state vector.) The amplitudes
U., defined by (3.6) are elements of the collision matrix
appropriate for reactions involving photon states .
Cross sections are related to collision matrix elements
in the same way as for particles (Sec. VIII). The only
difference is that, for the differential cross sections, the
photon wave (£91tr) is not to be associated with the
angular function Y () (2) but with the special photon
vector function Xon ) (Q) that is defined in (3.40) below.,

The discussion may now be specialized to the case of
the first-order theory without damping by replacing
$,© in (3.6) by V., the nuclear wave function in the
absence of photon coupling. From (IX, 1.31), this wave

0P, A. M. Dirac, Principles of Quantum Mechanics (Oxford
University Press, New York, 1947), third edition, pp. 188-204.
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function has the form in the internal region,
VO =—353Q, 3 (ArTut) X 3.7
N

and corresponds to the collision matrix for particle
channels,

Use=i22 Y Ay ueiTy 2. (3.8)
&

Thus, assuming that the internal region is large enough
to include all significant contributions to the matrix
element in (3.6), we may assert that

Uep=190, 3 AnT Tk, (3.9)
A

where the product (2,I'\,*) of the photon phase factor
and width amplitude is defined as

Q= [ (pr)%f\llp(”*H/X)\l (3.10)

Ep=E

In fact, since the matrix element in (3.10) must be
real we may set Q,=1 without loss in generality. Com-
paring (3.9) and (3.8), the expressions for collision
matrix elements for particles and photons have almost
identical forms, suggesting that, once photon processes
are assigned widths in accordance with (3.10), they
may be treated on the same footing as particles. Un-
fortunately this is not quite correct because the Ay,
occurring in (3.8) and (3.9) are for the unperturbed
problem, so that they involve no reference to photons
and are therefore not symmetrical in photon and par-
ticle widths. As an illustration, let us consider a particle-
photon cross section proceeding through an isolated
resonance. In this case, from (IX, 1.21), all 4,, are
zero except

An=[Ex+A\—E— (i/2)T)\] . (3.11)
so, from (3.8) or (3.9), for both particle and photon
outgoing channels,

iQchF)\e%F)\c%
Ve (3.12)

i
EH—A)\—E—EI‘)\
and, from (VIII, 3.3),

™ P}\er‘)\c
Tee™=

=— g .
RS (Bat A= Ep-HAT?

(3.13)

The level shift Ay and width I'y in these three equations
only contain contributions from the particle channels.
In general, since photon widths are < particle widths,
this lack of symmetry in the theory between photons
and particles is of no practical importance. However
there is the special case of slow neutron resonance
capture where often >, I'\,>>T\,. In such cases, Eq.
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(3.13) is known to be quite wrong if one does not in-
clude the photon contribution in the total width and
shift in the denominator. In other words, it is vital to
include the damping effect of photon production. This
means that for insertion in (3.6) one must find a better
approximation to ®,® than that given by ¥, of (3.7).
If photons are to occupy a similar role to particles,
this better approximation must be such that the co-
efficients Ay, of (3.7) are modified to include photon
widths symmetrically with the particle widths. There
are two arguments to show that this modification ought
to be made.

b. Effects of Damping

(2) Plausibility Derivation Based on the Unitarity
Requirement.—The quantities 4y, in the U, of (3.9)
are, at present, to be evaluated for the unperturbed
system, i.e., ignoring the presence of photon channels.
This means the U is not unitary, as is evident in the
special case of an isolated level (3.12). In this special
case, imposition of the condition of unitarity implies
that the photon width should be included in the total
width in the denominator of (3.12), which is equivalent
to its being included symmetrically in 4. We will now
show that, in the general case the imaginary part of
the scalar product defining the &matrix components,

which components are involved in the determination

of the A-matrix components of (3.9), must include an
additional contribution from the photon channels for
each component Au, each of the two factors of this
contribution being specified by (3.10). (The contribu-
tion to the real part of the £ components from the addi-
tional channel remains unspecified by this argument.)
To show in detail the condition for unitarity, one
evaluates the components of the matrix product

UU*= Q[1+21 2w (P X P%YM)A )\u]

X[1=2i Dy (Pia X Ply,) Ay, JQ%. (3.14)
This product reduces to
UU*= Q{1+ 2P} 3 (X v [Are— An*
-_ZIH‘A)\G(EVV_ gvv*)AuM*]P%}g*, (315)

where
§ov= (‘Yv:LYv):

the scalar product including contributions from all
channels. One notes that only the imaginary part of
the £ components are involved in (3.15). In order that
U be unitary, it is necessary that

A— A*— A(E—E) A*=0. (3.16)

If A= (e— E— &1, with the £ components as in (3.15),
then A(e— E—¥)A*=A* and A(e—E—£*)A*=A and
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by subtraction
A— A*= AfA*— AFFA%

thus satisfying (3.16).
(46) Derivation from Proper Damping Theory.—If
(3.3) is substituted in (3.1), and the resulting equation

is multiplied by X»* and integrated, we have, instead
of (3.4):

f X\*(H—-E)®,©+Y 4, f X\ *H™*¥,0=0. (3.17)
P

Let us now assume the expansion

®,0=3 4,X,; (3.18)
m
then (3.5) becomes

(B,—E)A 45 4, f W, ONX,=0.  (3.19)
"

Substituting 4 , from (3.19) into (3.17) and remember-
ing the condition of outgoing waves:

f X =By 0= ;{— +z'7ra(E—E,,)l

P

X f (‘I/,,(l)*H’X,,) ( f XX*H’*\I/,,(U). (3.20)

On extracting from the summation over p the summa-
tion over E, and replacing it by an integration, we have

_ i
fX)\*(H_E)q)e(O) =—2 Au(AMp'_EI‘Mp)y (3.21)
up

where the photon shift Ay,, and width I'y,, are defined
by

A?\#p=fpl‘7pdEp

( f \II,,(‘)*H’X,,) ( f XX*H'*\IIP(U)
X
E—E

»

. (3.22)

Thup=TapiTupt, (3.23)
where I'),? is defined by (3.10).

Equation (3.21) is the basic one of the present con-
siderations. If ®,® were replaced by ¥,©, the un-
perturbed state, the left-hand side would vanish as
demanded by the conservation theorem. It follows that
the right-hand side of (3.21) accounts for the leaking of
probability from the nucleon configuration space due
to photon processes. Applying Green’s theorem to the
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left-hand side of (3.21) gives

f Xo* (A= E)®,© = (By— E) As+X (V.Dyo—DoVre)

)
=Z A,,l (E)\—E)a)\u‘i‘ Z (Axnc__I‘Xuc) }
I c(#e) 2

+ (VeD)\e_DeV)\e). (324)

Combining (3.21) and (3.24), the presence of photon

channels manifests itself in just the same way as all
other outgoing channels. We have

1
A)\uc_'z'r)\uc) ]

= VeD)\e_ De Vke;

(Ex—E)ov+ 2

c(#e)

2 Ay
(3.25)

where the sum over ¢ now includes photon channels.
Evaluating the wave function at the entrance channel
surface from inside and outside gives the relations

S A=V, (3.263)
D= V.L=i(2h)P,, (3.26b)
so the right-hand side of (3.25) is
;
VeDre—D.Vye= —% Au(Axue—EPm)
FiQR)P R (3.27)

Defining the matrix A=[4),] in the usual way,

A=B,
1
By,= (E)\_E)‘SM—I_Z(A)\M'—EFMC)r (3.28)

where the sum over ¢ includes photon channels, we may
extract from (3.25) and (3.27) the solution for the
expansion coefficients 4,

Ar=—i(2h)P Q. Y AriYpe. (3.29)
M

Substituting (3.29) in (3.18) gives the expansion (3.7).
Continuing the solution (3.7) through the channel
surfaces to infinity gives the collision matrix elements
(3.8) for particle channels. Substituting (3.7) in (3.6)
gives (3.9) for the collision matrix elements for photon
channels. This completes the demonstration of the fact
that photon channels and particle channels occur com-
pletely symmetrically in the collision matrix when
damping is taken into account.
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¢. Transitions in the External Region

If the particle channel surfaces are chosen in the
normal way the external region of configuration space
may . contribute to the electromagnetic transition
matrix elements.!” This possibility may be removed by
enlarging the internal region, or may be taken into
account by the method we now discuss. Usually the
contribution of the external region will be relatively
very small. For instance when the bombarding energy is
on a strong resonance, the external contribution can be
ignored. The situation in which the external contribu-
tion may be appreciable is a combination of rather
special circumstances that seems to be occasionally
realized in light nuclei.

The wave function of the final nuclear state, X s/,
say, takes the following form in the channel c=asl’:

24\} E(r.)
XpJ’M’ - ("‘“) ethp% -
ac

Ye

(SVV'm! | T M Wasy (¥ Vi @)}

xX{ 2

y'dm! =M’

(3.30)

Here it is assumed that X, is a bound state, normalized
over all space and the normalizing factor N, is defined

by
201’02 0
N, l=14> —— | EZ2(r.)dr..

¢ Q¢ Yac

(3.31)

0. is the dimensionless reduced width amplitude and
E,(r.) is the external radial wave function fixed by the
condition: E,(a.;)=1 so that, in terms of the O function
of Sec. ITI:

E (r;)=0. ("c)/OC(a'c)o

Making the reasonable assumption that external
transitions are only significant in channels e in which
there are incident waves, the external contribution to
the collision matrix U,, of (3.6) is

(3.32)

Uep” (ext)
2mp\}
=N,,(— > (shm|TM)(siV'm'| T M)
/2 y4m =M
o =M’
2 \? E,
Xopc(_.__) (,Ijlrym,(l/)_ Hm(£1r)
AeVe 7
(Ie"" UeeOe)
XY, ® ), (3.33)
Ve

where e=asl, the entrance channel. This term must be
added to N, times the internal contribution (3.9) to
obtain the total collision matrix element. The operator
Ho®™ in (3.33) is the part of H' that remains after

101 R. G. Thomas, Phys. Rev. 84, 1061 (1951).



340 A. M.
the operation of creation of the photon (k; £9r)
specified by p has been made (it only depends on the
nucleon coordinates). As is evident from (3.33), the
channel transitions are assumed to be electric multipole
in nature. (In fact, electric dipole transitions are the
only ones likely to ever have appreciable external con-
tributions.) Using some Racah algebra (3.33) can be
developed a little to give

dmp \ ?
UepJ(ext)=(—)28(—~) (JeMom|J' M)
ha.v,
U(Lly'sl'J)
v (2U+1)}
Ec Ie_ UeeOe
x(iyy(zf)__”HwﬂHitya)_——), (3.34)

Ye Te

where the reduced matrix element has been introduced.

d. Widths for Photons

The procedure for determining -the expressions for
the widths of the photon channels involves the
multipole expansions which have been described by
Blatt and Weisskopf,* Rose,®> MacDonald,'® and
others.

In field-free space, one can consider incoming and
outgoing vector potentials of the form

Sim1e= (k/2nh) 1,3V, V) ey,

3.35
Oim1e= (k/2x7) 70,V D) €4, (3.85)

which are similar to the functions (III, 2.25) for par-
ticle wave functions; they are normalized to unit flux
and the unit vectors e, are

€= 2_%(ex+ieu)7
€)=¢€,

e_1=2"%e,—1ie,)
with the properties
(et* . eu) = 6“'.

The vector potential multipole fields having a definite
total angular momentum £, component 91, are linear
combinations of the form

Queeon  —2 3, (L1mt| £910) (L1—11] LO)
Oseean

R¥ET
Oeare

102 M, E. Rose, Multipole Fields (John Wiley & Sons, Inc.,
New York, 1955).
103 W, M. MacDonald, Phys. Rev. 98, 60 (1955).

X (3.36a)
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for the magnetic multipole fields 3¢, and

Seean

Decon™ — 223 a2 (Mot | £IM)

slmlt
X (L1—11]I10) X {D

iml1t

(3.36b)

for the electric multipole fields &; these fields are also
normalized to unit flux. The respective incoming and
outgoing multipole fields are related according to

k_l(vxlSc‘cmm): l%s,csm

Oreean Oeea’ (3.37)
We can deal with the fields (3.36) in the same way
as the channel functions of Sec. IIL.2 in (VIILL1.5).
The vector potential A for a unit-flux plane wave of
wave vector k, polarization state ¢, may be expanded in
terms of these fields as

A(k,e)=—intk™1274 3 e (2£+1)*
X [(Fsem—O sean)+ e (Jseeon — Oseean) [Dowe ),
(3.38)

where the quantities Dane(®) are the components of the
irreducible matrices representing the rotation from the
axis of quantization to the direction of k.

A semiclassical procedure for determining the colli-
sion matrix components U,, of the above outgoing
multipole fields is given in Appendix B, Sec. 4, of Blatt
and Weisskopf.? In terms of the nucleon current
sources j., and magnetization sources M,,, one finds
from the Maxwell equations that, for magnetic and
electric £-pole radiation, respectively,

U,p=— (2mhk)~(4m/c)
X f r P (X @®)*. (§,,+cV XM,p)dV, (3.39)
U.ep=— (2xhk)~(4m/c)
Xfr“lF,c(iSXm(a))

(W X jeptcEM.,)dV, (3.39b)

where the Xon(®) are the vector angular functions for

photons defined by Blatt and Weisskopf:
Xon@ =[L£(L+1) LY, (3.40)

These functions are normalized :

f [Xo®J*. [Xon () Jd=bm o
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L is the differential operator —srXV. These ampli-
tudes differ from the corresponding amplitudes @¢ and

@3 of Blatt and Weisskopf in the normalization and

the phase. In the case of a transition from an initial
state ¥, to a final (bound) state X,, the quantum-
mechanical current and magnetization expressions are

iep= Z %[Xp* (i‘I'e)+ (jXp) *‘I’e],
Mep= Z (eh/ZMc),u[Xp*o\I/e],

(3.41a)
(3.41b)

where Y indicates summation over all nucleons, j is
the current operator for protons —ie4V, ¢ is the Pauli
spin operator, and u is magnetic moment expressed in
units of the Bohr magneton.

From (3.9), (3.10), and (3.39), it follows that

8rky\?
m,,*=(—2—) f AV je (k) (i X @))*
¢

. 1 j“’+c(v'xM“’) . (3.42)
k719 Xap)+ckMy,

where we have put the free space function jg(kr) for
771F ¢ (kr) and where the source expressions in { are

ixp=5;—lEXp*(iXx)+(iXp)*Xx] (3.43a)

eh
—_f — *
M,, (ZMC)#[XP 0 X) ], (3.43b)
the upper expression in { applies to magnetic radiation
and the lower to electric.

These width expressions can be put into more con-
venient forms for numerical evaluations by performing
a number of partial integrations. One thereby obtains
for the width amplitude of the photon channel p with
multipolarity £:

(8m)3 L+ (L+4-1)} | JCem—+3C eon
%=—————————~{ , (3.44)

ere+1)!! S+ 8 eom
where

Qe+, oh
JCem= —2i———~—(———) de
(L+1)k \2M¢

X{je((®Vm@)*y - (X,*LX))} (3.45a)

Qe+D!ys eh
I e = —-i—————(———)p.
(L+1)kE \2Mc

e]
X f dV{a—(rj,e) (V@) y - (X Fo X))
7

— jo(IPY @)% (X *a- X)) } (3.45b)
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Qe+
(e+1)ke
hkr19d
+——[~—(rj.c) (1 P ) (X,*X,)
Mcl2 or

o (V@)X ¥ X

-l-fs(i’“Ym"e))*Xp(r%)XA” (3.460)

eh \ (28+1)1!
8 em= —i(——)——— ykde
oM/ (e+1)ke

X{je (@Y ©) v - (X,* (rXo) X))}

Eem=ce

i)
(lV.[—(rj,e) (1S m@®)* (X *X,)
ar

(3.46b)

These expressions for the moments JCeom and Eeam are
similar to those given by MacDonald.!® In the long
wavelength approximation which assumes that ka1,
one obtains

-1 eh
Zu(—)de
£41 2M¢

Hem=

X {22V ®)*y - (X,*LX,)}  (3.47a)
eh
JC’,B:‘m:—iu(——-)de
2Mc
X {2 (V) - (X,0X)))  (3.47b)
é’mm=ede{r£(i‘EYm(Q’)*(X,,*Xx)} (3.48a)
—iuk f eh
& em= (——)de
L+1\2Mc
X{re(EEYmE)*w - (X, *(rXe)X)). (3.48b)

These expressions are similar to those derived by Blatt
and Weisskopf.

The above width amplitudes I'x,? and associated
moment expressions actually refer to the emission of
a multipole £ in a transition from an initial nuclear
state Xy having a definite spin J and component M
to a final state X,;5 having a definite spin J’ and
component M’. Reduced matrix elements may be
introduced in the usual way :

I‘)‘,,(;ngIMIJMﬁ: (,GJ'ST{MI | JM)F)\Z;(,GJ'J)%. (3.49)

4. Alpha Decay

It is of interest to enquire to what extent we can
describe alpha decay within the framework of R-matrix
theory. First we treat the alpha-emitting state as a
resonance level that could in principle (but not in
practice) be excited by bombarding a daughter product



342

with alpha particles. This treatment gives expected
relations between widths, etc., but, being a time-inde-
pendent treatment, it does not mention the quantities
that are actually observed, namely the decay lifetimes.
One knows that the lifetime of an alpha-emitting state
(in a time-dependent description) is equal to #/T', where
I' is the width of the state (in the time-independent
description). This relation is based on the uncertainty
relation between energy and time and is almost self-
evident. Nevertheless it is instructive to investigate a
time-dependent description in detail and to see just
how the relation between width and lifetime enters, and
how an actual decaying state spreads out in time and
space.

a. Time-Independent Description
Following Thomas'® (in whose paper further refer-
ences are given) the wave function in the internal
region corresponding to unit flux in the entrance
channel ¢ is, from (IX, 1.31),

\I/e= —'L';L%(h Z A)\uI‘ue%X)\ (4'1)
Au

and the corresponding reaction elements of the col-
lision matrix are, from (IX, 1.32),

Uee=10:0: 3 AnaIneT ek (4.2)
A

From the discussion of the one-level approximation in
(XII, 1a), we know that, if ROL® is put equal to zero
(where RO=R—[ (1aX 1))/ (Ex—E)], then

3 -1
AM: (E)\-I“A)\—E——Z'F)‘) ) (43)

and all other 4,,=0. In the case when the entrance
channel is one of incident alphas bombarding the
daughter product of an alpha-decay process, R°L® may
certainly be made very small by appropriate choice of
boundary condition. By choosing B=S(E,), where E,
is the energy at the center of resonance, L°(E)
= (E—Er)(dS/dE)E=p,~+1iP(E) which is very small
within the width of the resonance because of the huge
channel barriers. This same choice sets Ey=E,,
AN(E,)=0s0 (4.3) is

7
Ant= (E)\—" E) (1 — dAA/dE) ~EP)\

) | Y
- Y

As discussed in Sec. XII, 3, the term A, essentially
renormalizes the wave function X to unity within the
classical turning points of the channel barriers (instead
of in the internal region). Because of the size of the

104 R. G. Thomas, Progr. Theoret. Phys. 12, 253 (1954).
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barriers, the wave function decays very sharply inside
the barriers so that this difference is very small. In fact,
dAy/dE was estimated'® for alpha decay as <1072
Another consequence of the size of the barrier is that
S(E,) is very large so that the boundary condition
parameter B is very large.

From (4.1) and the ensuing discussion, we can
approximate the running wave ¥, by the single standing
wave X, when the channel barriers are large. If the
barriers are imagined to increase without limit, then
P—0, T'»—0, and the relation ¥,~X), becomes exact.

This is about as far as we can go towards giving a
picture of the alpha-decay process by restriction to a
time-independent theory with real energies.

b. Time-Dependent Description

In the consideration of alpha-particle decay, one
needs to know the relation between the decay rate and
the resonance parameters. By a continuation of the
solutions VI.3, 1a into the complex wave-number plane
solutions with only outgoing waves occur at the poles
of U. All of these poles lie in the lower halves of the
k planes with the exception of those on the positive
imaginary axis which correspond to the bound states
of the system (Sec. IV, 8). If the Ath pole in the lower-
half of one of the &, planes lies at kx.=Ar=Kr.—1Gxc,
it lies in the energy plane at E=H,=F,—4iI'\ where
Fr= (0*/2M ) (Ka2—GrD)+be,  3Tr= (3*/M ) KxGrey
and &, is the binding energy for channel ¢. At such a
pole the time-dependent solutions are therefore asymp-
totically of the form

Y (r,)~>c U(H)) expil kacr— Hyun ]
=3, U.(H,) expi[Krerc— Fxth™]

Xexp(—i\) exp(Grere), (4.5)

where ¢ labels the various alpha-particle channels and
M=T/%. 4.6)

The absolute square of such solutions exhibit the
familar exponential time decay characteristic of radio-
active states; (4.6) gives then the desired relation
between the decay constant A for the Ath level and the
resonance width T',. This solution also exhibits the
expected exponential increase with radius of the ampli-
tude at a particular time: Thus, the second exponential
of (4.5) can be rewritten exp(3A\./vn;) Wwhere o).
=%K /M. is the velocity of emission corresponding to
K.

Although (4.5) may give accurately the asymptotic
form of a decaying system with a long lifetime, it is
subject to the objection of being the solution of a system
with complex energy, which actually does not exist. In
other words, (4.5) represents only part of an actual
solution which consists of a superposition, or wave
packet, of time-dependent solutions with real energies.
It is possible to show that a term of the form (4.5)
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appears in a wave packet representing the emission from
a nucleus of a particle whose energy lies in the neigh-
borhood of the real energy F» of one of the poles. It is
proportional to the residue of the pole U.(H,) which
contributes when it is permissible to displace the wave
packet integration path across the pole to a path at
infinity in the lower half % plane. In the following con-
siderations suggested by N. G. Van Kampen!®® the
subscripts are omitted and the analysis is confined
to the one-channel case and to the /=0 interaction.

In the one-channel, s-wave case the time-dependent
solutions are of the general form

r(r) = f A()exp(—ikr)— U (k) exp(ikr)]
0
Xexp(—1ihk¥/2M)dk

+3 A, exp(—Kar) exp(—ihK2/2M), (4.7)
when 7>a, the nuclear radius; the sum is over the
bound levels # with energies #2K,?/2M while the inte-
gration is over the continuum levels with energies
7?k?/2M ; the A,, A(k) are arbitrary square integrable
amplitudes. A wave packet is now constructed with
amplitudes

An=1/(iKst-A) U (—iK.),
i (exp[—4(6+ka)] : exp[7(6-+ka)]

Ak)y=—
2r k—A k+A

Xexp(—1d); (4.8)
A=K-—1G is the wave number of a pole of U in the
fourth quadrant (K>0, G>0) and A* is the corre-
sponding zero of U in the first quadrant; K, are the
poles of U on the positive imaginary axis associated
with bound states and —¢K, are the corresponding zeros
of U; §(k) is the real phase shift of the collision function
U(k)=exp(240); and a prime denotes differentiation
with respect to k. By means of the symmetry property
U(k)U(—k)=1, the wave function (4.7), with the
amplitudes (4.8) may be written as

- dk
nl/(r,l)—; o (k—A)U (k) exp(ika)

X[exp(—1ikr)— U (k) expikr] exp— (hk%/2M)
exp(— Knr—ihK,2t/2M)
v (iKar+A)U'(—iK,) ’

(4.9)

Tt is now shown that ¥ (r,0) =0 when r> g, so that ¢ (7,t)
represents the emission of a particle by the nucleus.
Thus, when ¢=0, the path of integration for the second

105 N, G. Van Kampen (private communication).
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term of the integration of (4.9) can be displaced
upwards into the complex % plane where the integrand
eventually vanishes vecause r>a. For the evaluation
of the first term the path of integration is displaced
downwards; the residue of each zero of U(k) at —iK,
contributes a term to the sum of (4.9), and according
to Van Kampen the path at infinity does not contribute.
The sum term of (4.9) can be disregarded henceforth
because it tends to vanish when 7 is sufficiently large
and does not give rise to any emission.

By evaluating the integrals of (4.9) after a long time
and at a large distance, it can also be shown that this
packet describes a particle whose energy lies in the
neighborhood of the real part F) of the pole at E= H,.
The outgoing part of the integrand of (4.9) may be
integrated approximately by the method of stationary
phase. The exponential is expressed as expif(k) where
f(k)=k(r—a)— (hk*/2M) and f(k) is expanded about
its stationary value ko= (M /%) (r— a)t where f' (ko) =0:
(&) = f(ko)—% (k—ko)*(ht/M). With this approxima-
tion to f(%) and assuming that (¢—A) is constant, the
integration is immediately found to give

— (M /2nhi) e tim (kg— A)!

Xexpi[ ko(r—a)— (hkot/2M)]. (4.10)
At each point (,/) one observes a wave with a velocity
v="nko/M= (r—a)t™ indicating that ¢ is so large that
all Fourier components in the original packet are
separated owing to their different velocities. Indeed the
condition for the validity of this method is found to be
(#/M)iG=>1 by requiring that the second derivative
of the argument of exp[ —3i(k—ko)?(%¢/m)] be large
compared with that of

(k—A)=[(k—K)*+G*]} exp[i cot 1 (k-— K/G)].

Introducing a “velocity-uncertainty” w=%G/M corre-
sponding to the imaginary part G of A, similar to the
velocity v=#K/M for the real part, this condition
may be put more perspicuously as (wf)G>>1 indicating
that the distance spread wt must be large compared
with the wavelength 1/G. The particle density corre-
sponding to (4.10) is

(ht/2xM)
((r— @) —vt)2+ (wi)?

(4.11)

which is concentrated about the point 7= a9t with a
spread wi. The incoming part of the integration of
(4.10) may similarly be evaluated about its stationary
point ky=— (M/#%t)(r—a)=—k,. One finds it to be

1(M /2nht)be 7 exp[ —iko(r— a) —iko*hit/2M ]

X[(=ko—M)U(—k)T7, (4.12)

which is always small compared with (4.10) because the
magnitude of (ko+A) is always large compared with G.
A different path of integration gives information
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about the shape of the wave packet at distances which
are not so great that the packet is decomposed into its
Fourier components. For this purpose a new complex
variable {=§+in=k—ko is introduced, in terms of
which the incoming part of the integrand of (4.10) is

1 [iM(r—a)Q]fw exp(—iht{Z/ZM)dg" (4.13)

——exp,
2 2ht w0 ko—A-+¢

The path of integration is now turned clockwise in the
¢ plane onto the imaginary axis. It is essential that it
be turned in this direction because in the first and
third quadrant the exponential factor becomes infinitely
large at infinity; it is possible to show that the con-
tributions from the arcs at infinity in the second and
fourth quadrants vanish. By the stationary phase method
one finds that the contribution to the integral of (4.13)
from the integration along the imaginary axis is

(2wht/M)* exp(3im)
" ((r—a)— ) +iG

(4.14)

The condition for the validity of this method is now that

((r—a)—v))2>(vt/K); (4.15)

in other words, the difference (—a)— v must be large
compared with the geometric mean of »2 and the particle
wavelength 1/K, indicating that (4.14) gives only the
tail of the wave packet which is centered about ut.
However, if 2>7—a, the integrand of (4.13) has a
pole at {=A—k in the fourth qudarant; the contri-
bution from the residue, which is to be added to (4.14),
is then

—exp[— (M /2h1) (r— a)*] exp[iA(r—a)]

Xexp(—iA*hi/M). (4.16)
This term is the one that is usually considered as
representing the emitted wave of a radioactive state.
The second and third exponentials of (4.16) correspond
to those of (4.5), and considering the discussion in con-
nection with (14.1), the real part of the arguments of
these may combine to 3(\/9)[(r—a)—vt]. Since the
pole appears in the fourth quadrant only when
i>r—a, it is apparent that the magnitude of (4.16) is
always less than unity.

The result is that at a large distance behind the
wave front at r—ae=1t the wave packet is determined
by an asymptotic expansion whose first terms are (4.14)
and (4.16). At large distances before the front the first
nonvanishing term is (4.14). However, there is also the
incoming part of (4.10) to be considered. For this part
it is not possible to move the integration path through
the second quadrant so that only one-half is moved
into the lower half-plane. Putting

k=ki+s=¢—(r—a)/ (/M)
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one obtains

5— exp[e(M/2ht) (r—a)?]
m
o [ fo exp(—3utE)dE
o (By— K+iG+£) Uk +-£)

e exp(3it?)idn
+ f ], (4.17)
0 (kJ—K-f—iG‘Fiﬂ)Ua(—kl‘!‘iﬂ)

where

U,=exp(2tka)U.

Both integrals can again be evaluated by means of the
stationary phase method with the same condition
(4.15), yielding together

2U o (ko) (2mht/ M)t exp(—4im)
(r—a)+vt—dwt

, (4.18)

which is always small compared with (4.14), even in
the head of the packet, and it does not affect the
over-all shape of the packet.

5. Isotopic Spin Selection Rule for Reactions
with Light Nuclei

Several authors!®1” have proposed and discussed a
selection rule for nuclear reactions which can forbid
certain reactions involving deuterons and alphas as
bombarding particles on self-conjugate nuclei. This
selection rule is the so-called “isotopic spin selection
rule” which says that “total isotopic spin is conserved
in nuclear reactions.” If, in particular, the two initial
nuclei in a reaction have pure isotopic spins 7'y and T
and the two final nuclei have pure isotopic spins 7y’ and
T,, then, according to the rule, the reaction is for-
bidden unless the isotopic spins satisfy the vector
equation:

(5.1)

If the bombarding and emitted particles are alphas or
deuterons (which have T'=0), the rule forbids reactions
to all those residual states with isotopic spin different
from that of the target nucleus. Although the rule has
had considerable experimental corroboration, it does
not have an exact theoretical basis, even where the
separated initial and final nuclei have a high degree of
isotopic spin purity. For example, let us imagine a
reaction proceeding through a compound nucleus with
an appreciable time delay. If the excitation of the
compound nucleus is to a region where states are
closely spaced, the Coulomb forces acting between
protons, although relatively much weaker than nuclear
forces, may easily be strong enough to mix the isotopic
spins of neighboring states. Then although the initial

T1+T2= T1,+ Tz’-

106 R, K. Adair, Phys. Rev. 86, 155 (1952).
107 R. F. Christy, Phys. Rev. 89, 839 (1953).
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separated system may have isotopic spin purity, this
purity can be destroyed in the compound system with
the result that isotopic spin need 7ot be conserved in
the reaction.

There is recent experimental evidence that under
certain circumstances, isotopic spin need not be con-
served in nuclear reactions. We now try to formulate
the theoretical conditions under which we expect iso-
topic spin to be conserved, for reactions proceeding
through a compound nucleus and for those ‘direct”
reactions that do not proceed in this way.

a. Conditions for Conservation of Isotopic Spin for Reac-
tions Proceeding through a Compound Nucleus

Whether isotopic spin is conserved in a given
compound nucleus reaction depends on the structure
of the compound nucleus. It depends on the relative
magnitudes of the three following. quantities that
characterize the compound nucleus:

(1) the average level spacing D’ between levels of
the same spin, J, and parity

(2) the average total width (I'Y) of such states

(3) the average matrix element (H,) of the Coulomb
forces taken between such states. Presumably, in
contrast to D and (T'), this is not especially
dependent on J and parity.

The most familiar criterion for conservation of iso-
topic spin for states of given J and parity is:

(H)&KD’. (5.2)

This says that the Coulomb forces are so weak that
they are not able to mix appreciably the isotopic spins
of neighboring states. Thus the states of the compound
nucleus have pure isotopic spin, so isotopic spin must
be conserved in reactions via the compound nucleus.
We call this the “static criterion” because it is usually
applied to estimate the isotopic spin purity of bound
stationary states. A second criterion ensures conser-
vation of isotopic spin in reactions has no relevance for
bound states, and we call it the “dynamic criterion.” It
arises from the fact that there is a time ~#/(H,)
associated with the action of the Coulomb forces.!% If
the width of the compound state is large enough so
that the state decays before the Coulomb forces have
time to act, the isotopic spin purity of the initial
separated system will be preserved. Since the lifetime
of a typical compound state is #/(I'’), the dynamic
criterion can be written as

(H )y<&(T7). (5.3)

Considering both criteria, it follows that if the mean
Coulomb matrix element is less than either the mean
level spacing or the mean width, then isotopic spin
should be conserved. Only when the matrix element is

(“static” criterion)

(“dynamic” criterion)

108 H, Morinaga, Phys. Rev. 97, 444 (1954).
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of the order of or greater than botk the width and level
spacing can conservation be violated.

Let us now consider the two criteria in more detail
for the situations (I'V)<D’, and (I'V)>D’ (we drop
the superscript J from now on and consider it as
understood).

(I')<D.—This condition implies that only one iso-
lated resonance can be excited for a given bombarding
energy. The weaker of conditions (5.2) and (5.3) is
(H)&D. This, along with (I')<D, certainly ensures
conservation of isotopic spin because the isotopic spin
of an isolated compound state must be a good quantum
number under these conditions. Thus the stronger con-
dition (H,)<<(I') automatically ensures isotopic spin
conservation.

(I')>D.—This condition implies that many com-
pound states are excited by a given bombarding energy.
The weaker of the two conditions (5.1) and (5.2) is now
(H)<(I') and so we want to see in detail why isotopic
spin should be conserved under the combined conditions
(T)>>(H), (I')>D. From Sec. X1, 2, we have the result
that the cross section o+ for a reaction through
compound states A in the continuum is determined
essentially by the absolute square of the expression:

YAYe!

=

, (5.4)
EX—E~2(I‘)

This was derived by the assumption of random signs for
the reduced width amplitudes v»., and leads to inde-
pendence of formation and decay processes expected for
reactions through the compound nucleus.

As suggested by C. Schwartz,'® we consider the usual
set of states X of the total system, and also another
set X,7° which are defined similarly except for the fact
that Coulomb forces are ignored so that isotopic spin T
is a good quantum number. We can make the expansion,

X)\:’Z a)\uXu’I'o (5.5)
M
and its dual
XuT0= Z d)\,,*X)\, (56)
X
where
2 O™ =0y (5.7)
)
Z a)‘,,a)\',‘*=5)\)‘/. (5.8)
®
From the first expansion, we have the relations
‘Y)\c=z a)\u‘ylacoy (59)
g
(5.10)

Yrer =2, Y pe’’
m

199 C, Schwartz (private communication).
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where v, and v,.° are reduced width amplitudes de-
fined for the states X,r° From (5.5), (5.7), (5.9), and
(5.10) it follows that

? YAV Ae! = Z 7;4007;4c’0- (5 1 1)
M

Let us assume that the isotopic spins of the channels
cand ¢’ are T,, T.. Since the states u have pure isotopic
spin T, Yue, and v, contain 677, and drz, respectively,
so that

3 Yae¥aer = (factor) X7,z (5.12)
»

The states in the sum over A may be restricted to
those within an energy distance A(I") but 3>(H.,) of a
given energy. By the condition (H,)<<(T') and the fact
that a state A only contains appreciable components of
states u from within a distance ~(H), it follows that
the states A or u within such a distance ~A form a
complete set to a good approximation. Thus the above
expansions and, in particular, Eq. (5.11) are still valid
when the states in the sums are restricted this way.

From the condition (I')>D, we can say that for
groups of states N in (5.4) within energy intervals A,
the denominator in (5.4) can be approximately replaced
by a constant outside the sum. From (5.12) it follows
that expression (5.4) contains a factor dr.7., so the
validity of the isotopic spin selection rule under the
conditions {T')> D, (I')>>(H ) follows.

b. Conservation of Isotopic Spin in
Other Types of Reaction

For completeness we mention a few aspects of iso-
topic spin conservation in certain “direct” types of
reaction. In inelastic scattering processes that proceed
by the mechanism known as Coulomb excitation,® the
essential part of the theoretical cross sections is the
electromagnetic matrix element between initial and
final states of the target nucleus. In general this element
is nonzero between pairs of target states such that the
change in the target isotopic spin AT is —1,0 or +1.
A well-known special selection rule®® occurs for
electric dipole transitions which are zero in self-con-
jugate nuclei when AT'=0.

There are also the direct reactions such as (ae’) (dd’)
(pp") (pm) that are caused by bombarding particles with
large impact parameters interacting with nucleons on
the edge of the target nucleus. Since such reactions
involve no time delay, the Coulomb forces between the
target and bombarding particle have no time to
operate so we expect total isotopic spin to be conserved
in such reactions. This does not always imply that the
isotopic spin of the target nucleus cannot be changed.
Clearly, for alpha and deuteron bombardment, it cannot
change because these projectiles have I'=0 so that

10 M, Gell-Mann and V. L. Telegdi, Phys. Rev. 91, 169 (1953);
L. A. Radicati, 7bid. 87, 521 (1952).
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conservation of total isotopic spin implies conservation
of target isotopic spin. For nucleon projectiles® the
situation is different. An example, a 7'=0 target can
be raised to a 7'=1 state by a nucleon collision without
changing the fotal isotopic spin of 3. Whether the target
isotopic spin changes depends on:

(1) whether the outgoing nucleon is the incident
nucleon or a target nucleon; that is, whether it is
a direct or an exchange nucleon.

(2) the existence of charge exchange forces

(14 (zi025) Jo(rsy)

acting between the incident nucleon and the
target nucleons.

When the outgoing nucleon is an exchange nucleon,
the isotopic spin of the target can change in general, so
there is no selection rule on the target isotopic spin.
When the outgoing nucleon is the direct (incident)
nucleon, the isotopic spin of the target can only be
chariged by action of charge exchange forces.

Consider the isotopic spin matrix elements in the
direct and exchange amplitudes.

Direct: M={aTM,Bim|Vou|'T'M', B'sm’) (5.13)

where aTM, B3m are the initial states of the target
nucleus and projectile respectively labeled by isotopic
spin and component and with «, 8 accounting for all
other quantum numbers. The final states are labeled
with primes. V,. is the interaction of the incident
nucleon (0, say) with a target nucleon (n, say) and
has one of the following two forms:

ordinary (5.14)

V0n=v0n(r0n) (5 15)

3[14 (zo-%a)] charge exchange

where ¢, does not depend on isotopic spin.
We can assume a parentage expansion of the initial
target state

<0£TMI =Z(aT[ }0[1T1¢12>
X (o TiM 1 | (agbms| o (T1:Mymo| TM)  (5.16)

(and a similar one for the final state), where the coef-
ficient of fractional parentage is taken to include the
vector coupling of mechanical angular momenta up to
total J; and where a1 T1M 1 and asim, label parent states
and states of the #th nucleon. Upon insertion in (5.13),
corresponding to forms (5.14), (5.15), we have:

M=8010m, 1 2rm 2, aB|v|/B) 1, dir
T1
M=3 87 bm, 7 3rmr+ (— M/'—MA+T—T"
z%{TM M (=) (5175
X (13 (m—m)ym' |3m) AT (M—M"M'|TM)

XUALTT AT} aB|v| /B ) 71 dir
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where we define the matrix element (a8|v|a’8’) 71, dir as:
> AeT| i)' T | Yo' Tway')
aral’ azaz’
X (s8] von| '8 Yair-

As expected, an ordinary force cannot change the
isotopic spin but a charge exchange force can. For the
latter force, the matrix element is zero when the target
and residual states are in the same self-conjugate
nucleus and T'="7". This is on account of the vanishing
of the vector coupling coefficient (77100|70) when
T=T'.

Exchange: When the outgoing nucleon is the target
nucleon and the incident nucleon is left behind in the
residual nucleus, instead of the direct matrix elements
(5.17) we have the exchange ones

M=3 (TMun' | TM)(T3Mun| T'M")
T1
X <(Iﬁ ‘ Yon | a’,B’)Tl,ex
M =87m, 1 0m 2, {0B| Von| /B’ )11 ,0x.
T

(5.18)

The charge exchange force has zero exchange matrix
element when m=—m'. This is expected since this
force exchanges charge and so any target (exchange)
nucleon ejected by this force must have the charge of
the incident nucleon, i.e., m=m/'.

It thus seems very doubtful that the surface nucleus-
nucleon reactions will reveal any selection rule on the
isotopic spin of the final nucleus. In general, all four
types of reaction amplitudes should contribute to (pp’)
and (n#’) reactions, and two of them should contribute
to (np) and (pn) reactions. Even if the nucleon-nucleon
interactions contain no charge exchange force, there are
still two and one contributing amplitudes respectively.
Furthermore, since the angular distributions of the
four amplitudes should be qualitatively similar (forward
peaks for medium-high incident energies), there is
probably no possibility of separating out the various
amplitudes from the observed angular distributions in
order to study each one individually.

¢. Discussion of the Experimental Situation

The experimental material has been reviewed by Burcham.!!
First let us consider the reactions ('), (dd’), (ed) and (da). The
last two types are presumably compound nucleus reactions since
a severe rearrangement of nucleons is implied. The first two can
proceed by the surface or compound nucleus mechanisms with
probably the former predominating in general for the production
of definite final states. Since surface reactions should conserve
isotopic spin, breakdown of the selection rule can only arise
through the compound nucleus contribution. For (ed) and (de)
reactions, the ratio of the intensity of a forbidden group to those
of allowed groups should provide a measure of the breakdown in
the rule for the compound nucleus mechanism. For (ao’) and (dd’)
reactions such a ratio may underestimate this breakdown in view
of the possibly large surface reaction contributions to the allowed

1 W, E. Burcham, Progress in Nuclear Physics (Pergamon Press,
London, 1955).
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groups. Angular distribution measurements would reveal whether
these contributions are important.

Any detailed theoretical analysis of data is inhibited by the
fact that states of different spin and parity may have completely
different isotopic spin characteristics. For instance, in a given
nucleus at a given excitation, one can imagine that states of low
spin are dense with D<K(H,) but broad with (I')>>(H.), whereas
states of high spin are rare and sharp ((I')'KD<(H.)). In both
cases the selection rule should work but for opposite reasons
[criterion (5.3) for the low spin states, (5.2) for the high spin
states]. Breakdown of the rule may only occur for states of inter-
mediate spin, but these states usually constitute only a fraction of
those excited so that, in general, the rule should appear to work
experimentally.

Now consider states of a given spin at different excitations. At
low excitations the rule should work by (5.2). At high excitations
it should also work, but by (5.3). A breakdown will occur if the
two regions do not overlap, i.e., if with increasing excitation,
D falls below (H.), before (I') increases above (H.). Such an
intermediate region can occur in practice, at least in one special
case (see ‘“Mass 14" below).

Detailed analysis of data is also rendered difficult by the sporadic
nature of the existing data. Often measurements are made at a
fixed bombarding energy and a fixed angle of observation. It is
significant that one of the first attempts to observe a reaction
over energy and angular ranges discovered the most serious
breakdown of the isotopic spin selection rule yet found (see
“Mass 18"’ below).

We now discuss the existing experimental data from nuclear
reactions that is significant from the point of view of isotopic spin
conservation according to the compound nuclei involved. We
do not mention inelastic and charge exchange nucleon-nucleon
reactions because they are not expected to reveal any selection
rules on isotopic spin." However, we note that there is a curious
experimental absence of a proton group to the first excited T'=1
state at 2.31 Mev in N* from the N*(p,p’) reaction at bombarding
energies of 9.512 and 17 Mev.® This is in contrast to the N(p,n)-
O%(E,=17 Mev) reaction,!* which seems to yield the correspond-
ing isobaric state easily enough. The N¥(n,p)C™ reaction has
been examined only at low energies. A similar situation exists in
Li® where the T'=1 state at 3.6 Mev is only weakly excited in the
Li%(pp’) reaction at bombarding energies of 15 and 19 Mev.1%5 In
the case of the N*(p,p’) reaction, the absence of the group has
been recently interpreted in a convincing way by Levinson and
Bannerjee!'® who have shown that the same fortuitous cancellation
in matrix element that gives C! its long life against 8 decay also
operates to reduce the cross section for production of the group.

Where no references are cited, in the following they may be
found in the published compilations of data.!t’

Mass 8 —The reaction Li®(dd’)Li** at E; 7.4 Mev and §=90°
does not reveal the first =1 state at 3.57 Mev in Li®* although
the 2.19 (T'=0) state is readily excited. The excitation of the
compound nucleus, Be?, is 28 Mev, where levels of low spins would
seem to be broad, dense, and overlapping if one extrapolates from
the situation as observed near 20 Mev.

Mass 10.—The reaction Li%(aa’)Li%* at E,=30 Mev and all
angles excites the 2.19 (T'=0) state but not the 3.57 (T'=1) one.
The 4.52 (T'=0) state is found as well, and an upper limit of 5%3
can be put on the relative intensity of a group to the 3.57 state.
The angular distributions of the observed groups are strongly

112 Freemantle, Prowse, and Rotblat, Phys. Rev. 96, 1268 (1954).

13 R, Sherr (private communication).

4 F, Ajzenberg and W. Franzen, Phys. Rev. 94, 409 (1954).

16 Sherr, Hornyak, and Yoshiki, Bull. Am. Phys. Soc. Ser. II,
1, 231 (1956); Levinson, Banerjee, Albright, and Toboeman, bid.
Ser. II, 1, 194 (1956).

16 C, Levinson and M. K. Banerjee (to be published).

W7 F, Ajzenberg and T. Lauritsen, Revs. Modern Phys. 24, 321
éiggig, 217,77 (1955); P. M. Endt and J. C. Kluyver, ibid. 26, 95
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peaked forward showing that these reactions are mainly surface
ones. Since such reactions cannot produce a T=1 state, the
observed limit on the relative intensity is not a sound guide for
estimating a possible breakdown of isotopic spin conservation
for the compound nucleus contribution. The excitation of the
compound nucleus BY is'about 22 Mev where, from the observed
situation at 7 Mev, levels of low spins are dense and broad.

Mass 12.—The reaction B (dd’)B'* has been observed at 6, 7,
7.6, and 14 Mev. States of 7'=0 at 0.72, 2.15, and 3.58 Mev
excitation are found in the first three cases at special angles,
with the 1.74 state unobserved. An upper limit to the relative
intensity of a group to the 1.74 state compared to those observed
is about 2%. At 14 Mev, however, a group to the 1.74-Mev state
is observed with a relative intensity of ~59%,.118 For the reasons
we have mentioned above, this can be regarded as a lower limit
on the relative intensity of the compound nucleus contributions
to the groups, which is probably several times larger. Since the
excitation of the compound nucleus, C2, is about 37 Mev where
most important spin states should satisfy criterion (5.3), such a
breakdown is surprising. It is conceivable that in general in a
situation like this some process akin to Coulomb excitation con-
tributes to the forbidden group. However, this would be hard to
maintain in the present case because the transition must be
M3 which implies a very small cross section. Theoretical inves-
tigation of such processes for above-barrier energies would be
interesting.

Mass 14.—Although the reaction BY(aa’)BY* has not been
used to look for the 1.74 (T=1) state in BY, the B+« reactions
have revealed a very interesting fact about the isotopic spin situ-
ation in the compound nucleus N* at excitations ~13 Mev. The
reactions B(ap)C3, BY(an)N have been studied for a number
of isolated resonances and the results have been analyzed with
one level resonance formulas.!”® If isotopic spin were a good
quantum number for the compound nuclear states, the reduced
widths for neutron and proton emission from any given state
should be equal. However, it is found that these widths for the
12.69 (3—) and 12.79 (4+) states differ by a factor of five or so,
and this cannot be accounted for by any variation of the nuclear
interaction radii. So resumably isotopic spin is not a good
quantum number. A second 44 state is observed at 12.92 indi-
cating that the level spacing of states of the same spin and parity
is of the order of hundreds of kev. (The levels widths are of the
order of tens of kev.) Coulomb mixing matrix elements of the
order of hundreds of kev would thus be sufficient to give rise to
strong mixing of states of different isotopic spins. From estimates
that have been made in special cases, such values are quite
reasonable.’3.10 Tt seems clear then that for states of spin 3—
and 4+ in N™ near 13 Mev, there exists a region which is inter-
mediate between those regions satisfying criteria (5.2) and (5.3).

Mass 16.—The reactions N*(dd’)N"** have been studied at a
bombarding energy of 6.98 Mev. The 3.95 (T'=0) state has been
seen, but the 2.31 (I'=1) state has not. The upper limit on the
relative intensity of a possible deuteron group to the 2.31 state
is about 5% of the observed group to the 3.95 state. The excitation
of the compund nucleus O is about 27 Mev where one imagines
all low spin states to satisfy criterion (5.3).

Mass 18.—The reactions O%(da)N have been studied at
bombarding energies between 6 and 7.5 Mev and at several
angles.’® The reactions have also been studied at 19 Mev over all
angles greater than 15°.121 In the latter case, the 2.31 (I'=1) state
in N™ is not observed and an upper limit of about 4% on the
corresponding intensity relative to the intensity of the observed
group to the ground state can be imposed. At the lower energies,'®
in contrast, an alpha group is observed to the 2.31 state with an

18 J, M. McGruer (private communication).

119 Shire, Wormald, Lindsay-Jones, Lunden, and Stanley, Phil.
Mag. 44, 1197 (1953)’ E. S. Shire and R. Edge, ibid. 46, 640 (1955).

120 C, P. Browne, Phys. Rev. 100, 1252(A) (1955).

121 Freemantle, Gibson, Prowse, and Rotblat, Phys. Rev. 92,
1268 (1953).
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intensity of the order of 5 to 109, of the groups to the 3.95 (T'=0)
and ground states. The energy dependence of the yield of the
2.31 state shows resonance-like anomalies at 6.2, 6.7, and 7.0 Mev
with widths of the order of 0.25 Mev. At the 7.0-Mev peak, the
intensity at 30° is about one-half of that for the production of
the 1.95 state and one-seventh of that for the ground state; the
excitation curve for yielding the ground state group also exhibits
peaks but not at the same energies as the group to the 2.31-Mev
state.

The excitation of the compound nucleus for the bombarding
energies 19 and 6.5 Mev are about 24 and 13 Mev, respectively.
Although the former excitation should be in the region when the
most important states satisfy (5.3), the latter is not. According
to the observed spectrum of F8 many levels are still fairly well
resolved at 11 Mev or so, although dense. It thus seems to be
quite possible that, at 13 Mev, the situation is much like the
situation at the same energy in N* that we have discussed, namely
intermediate between the regions where (5.2) and (5.3) are
satisfied. If this is correct, the observed breakdown in isotopic
spin conservation is quite understandable. Because of the shape
of the excitation curve for the “forbidden” group, isolated reso-
nances are presumably mainly responsible.

The reaction N*(aa’)N* has been observed at E,=21.2 Mev?2
and an angle of 35°. The 2.31 (T'=1) excited state is not observed,
and neither are the believed T=1 states at 8.06 and 8.70 Mev.
However the state at 9.17 Mev is found although its strong E1
radiation to the ground state suggests that it is 7=1. (Possibly
two levels are involved.)!?212 Most other states, presumably 7'=0,
are found, and so, on the whole, isotopic spin appears to be con-
served. The excitation of the compound nucleus is ~21 Mev. The
same reaction has been studied at E,=31 Mev and at all angles
out to 70°. An upper limit of 5% can be placed on the intensity
of a group to the 2.31 state relative to the observed groups.!?%1%

Mass 22.—The reaction Ne?(d,a)F8 for E;=7.8 Mev has been
observed to go to ten states in F18. An interesting feature of the
a spectrum is that the strongest group is centered on an energy
corresponding to the first 7=1 state in F'8 at 1.05 Mev excitation.

There are two possible explanations (1) the group corresponds
to T=0.8 states (those at 0.94 and 1.25 Mev perhaps) (2) isotopic
spin conservation breaks down very seriously. It may indeed
happen that the latter is correct because the situation is quite
like that in the previous O'%(d,)N"r eaction where we have seen
that isotopic spin conservation fails badly. The excitation energy
of the compound nucleus, Na? is about 18 Mev which is rather
higher than the 13 Mev in the 0'%(d,a)N" reaction. Although the
level spectrum of Na??is little known, one can infer that at 18 Mev,
level densities will be higher than in the previous reaction because
of the extra energy and larger number of nucleons.

Mass 26.—The reaction Mg?(d,«)Na?2 has been examined at
bombarding energies of 5, 6, and 7 Mev and at an angle of 90°.125
A group is observed going to the 0.59 state in Na? which has been
established in the F(a,ny) reaction'?® and has about the right
energy to be the first 7'=1127 state. At E4=6 Mev, the yield to
this state is about the same as that to the ground state and a
breakdown in isotopic spin conservation may be implied. The
excitation of the compound nucleus Al% is about 17 Mev.

Mass 30.—The Si?8(d,)Al%6 reaction has been investigated at
E;=7 Mev and 0,=90°128 The first excited state in Al?* at 0.22

122 Carmichael, Sampson, and Johnson, Phys. Rev. 91, 473(A)
(1953); Miller, Gupta, Rasmussen, and Sampson, Phys. Rev. 98,
1184(A) (1955); Miller, Carmichael, Gupta, Rasmussen, and
Sampson, Phys. Rev. 101, 740 (1956).

128y, K. Rasmussen (private communication).

124 ., Watters (private communication).

125 C, P. Browne and W. C. Cobb, Phys. Rev. 99, 644(A) (1955).

126 N, P, Heydenberg and G. M. Temmer, Phys. Rev. 94, 1252
(1954).

1275, A, Moszkowski and D. C. Peaslee, Phys. Rev. 93, 455
(1954); P. Stahelin, Helv. Phys. Acta 26, 691 (1953); Phys. Rev.
92, 1076 (L) (1953).

128 C, P. Browne, Phys. Rev. 95, 860 (1954).
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Mev is not observed and neither is a state at 2.074 Mev. The
excitation of the compound nucleus P® is about 19 Mev. The
states at 0.22 and 2.074 have been established in the Mg? (p,v)Al2¢
reaction'® and the 0.22 state has about the right energy to be the
first T=1 state. It seems then that conservation of isotopic spin
holds in the Si?®(d,x)Al?® reaction at E;=7 Mev and 6=90°.
However a more thorough investigation'® carried out over energies
from 5.5 to 7.5 Mev and angles from 15° to 130° has revealed the
presence of an alpha group leading to the 0.22-Mev state. The
intensity of this group varies by a factor of about 10. Relative to
the ground state group, it varies from 0.65 to 2. At 7.03 Mev the
ratio of intensities decreases from 0.62 at 15° to 0.12 at 60°, and
the group is not seen at larger angles. This accounts for its
absence in the previous investigation.

Mass 34.—The S%(d,a)P¥® reaction has been examined at
bombarding energies between 1.6 to 2.9 Mev, corresponding to an
excitation of the compound nucleus of about 13.6 Mev.13! Ob-
servations at 63° and 90° found that the levels at 0.71 Mev in
P¥ is excited just as strongly as the ground state but that the
level at 0.69 Mev is only weakly excited. From a study of the
Si?9(p,y)P? reaction® it has been suggested that the 0.69-Mev
state is the lowest T'=1 state of P%. Consideration of the Coulomb
energy displacement®! puts the state rather lower at ~0.33 Mev.
If the 0.69 state is T'=1, and the 0.71 Mev state has T'=0, the
(d,a) results imply isotopic spin conservation.

APPENDIX. COULOMB WAVE FUNCTIONS AND
NEUTRON WAVE FUNCTIONS

This Appendix is concerned with the solutions of the
equation (111, 2.9):

u" ()= [1(I+1)p~2+2np7'F 1 Ju(p) =0,

where the prime denotes differentiation with respect
to p; the upper and lower signs apply to positive and
negative energy channels, respectively. p and 7 are
defined by

(A.1)

p=Fkr,

Z 1Z 262M
n=——
h*k

where % is the channel wave number defined in terms
of the channel energy of relative motion by:

2M|E|\}
h( ).
h?
M is the reduced channel mass and Z,, Z, are the charges
on the two fragments. 7 is the radial distance of separa-

tion of the fragments.
Convenient solutions of (A.1) are

(©) Positive energies—u;=F;, G;, the solutions
that are regular and irregular at »=0 with asymptotic
forms

Fi~sin(p—n log2p—Lir+0y), (A.2a)

Gi~sin(p—n log2p—3lr+a)), (A.2b)

129 Sherr, Kavanagh, and Mills, Phys. Rev. 98, 1185 (1954).

130 C, P. Browne, Bull. Am. Phys. Soc. Ser. II, 1, 212 (1956).

B1L. L. Lee and F. P. Mooring, Phys. Rev. 104, 1342 (1956).
(1193;6I§roude, Green, Singh, and Wilmott, Phys. Rev. 101, 1052
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where ¢; is the phase argl'(14I+44n). For the case
n=0 (neutron channels), F; and G, become simply
related to spherical Bessel functions of half-integral
order,

3
m=(§)JM@kmmw, (A.3a)

o}
Gi= (2} Towrn (0) = (=)'pjs(p).  (A3D)
2

(1) Negative energies—The only physically signifi-
cant solution is the exponentially decaying one,

ul=W('—77: l+%) zp)
with the asymptotic form
W~exp(—p—n log2p). (A4)

This W function is the “Whittaker function’’ which has
the integral representation

W(—n, l+3, 2p)

e —p—nlog2 0 AN
_&p(=pnloglo) f t’“e“(l-}-—) . (A5)
I (14141n) 0 2p

For the case =0 (neutron channels), W becomes
simply related to a modified Bessel function of the
second kind:

20\ ¥
PWQH%JM=(—)Km@)

™

(A.6)

a. General Formulas

The quantities involving F, G, and W that occur in
R-matrix theory are S, P, and ¢. It is often convenient
in computation to work directly with these quantities—
or, at least, closely related ones, namely the so-called
amplitude 4 and phase ¢. For positive energies

F=A sing, G=A4 cos¢ (A7)
A=+ (F+G*)i=(p/P)} (A.8)
pAd’
—=5. (A.9)
A

For negative energies, the only relevant quantity is S:

oW’
) (A.10)
w

The description of the F and G functions in terms of a
phase ¢ and amplitude 4 forms the basis of the so-
called phase-amplitude methods, which are useful for
obtaining numerical evaluations when the argument p is
large. According to (A.8) the penetration factor P is
inversely proportional to 42 and the shift factor S is
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p times the logarithmic derivative of 4. In terms of 4
and ¢, the Wronskian (III, 2.12) is

A%’ =1. (A.11)

From Powell’s recursion formulas'® for F and G and
their derivatives, one of us (R.G.T.) has obtained re-
cursion formulas for .S, P, and ¢. They are:

Pi=aPi1/[ (0= S1-1)*+Pii*], (A.12)
Srtbi=ai(bi—Si1) /[ (b= S10)*+Pis®]  (A13)
di1=¢r1—tan [ Pry/(0;—Si)],  (Al4)

where
Q= P2+ (P"I/l)2,
bi=14(on/1).

Since the negative-energy Whittaker function is ob-
tained to within a constant factor by making the sub-
stitutions p— 4p, 7— —in in the expressions for the
positive-energy O function, the recursion formula
(A.13) for .S holds in this case if p? in the expression for
a; is replaced by —p?. Errors will accumulate from the
repeated use of (A.14) in the barrier region where ¢
and P are small. In this region G>>F and the
approximation

FiGi=p/[Q+1)*+a*]t (A.15)

may be valid, so that as an alternative to (A.14) one
may use the approximation

¢1~F1/Gy=~ P, /[ 2+1)2+22T},

x= (8pn)*.

The above formulas and considerations also apply in
the absence of a Coulomb field, when n=0.

The quantity P is always >0 and — 0 as p<K2y
(energy E<barrier height B) and — p when p>>2y
(i.e., E>B).

In contrast, the quantity S is always <0 and —0
at p>2n (i.e., E>>B) but remains finite at p<<27 (see
(A.24) below). It is not evident that S is always <0
but one of us (R.G.T.) has proved this by using the
relation,

(A.16)
where

1 P4E
2P 2

[ s,
70
where

Q(2)=exp(2y tan™z) (1427
X oIy (I 14in, —I+in, 1; —2%).
This leads to,

F4G? o
S( ) =FF'4+GG' = —f ze720%()' (3)dz.
p 0

The negative nature of .S follows from the positive
nature of Q’(s) which can be seen from the power
series in z? of the /7y function. -

18 ], L. Powell, 72, 626 (1947).
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We have not been able to prove that dS/dE is
always positive or zero, but this appears to be true in
most cases of practical interest [see (A.30) below ]. In

particular, it is true for negative energy channels
[see (A.27)7].

b. The JWKB Approximation for Coulomb Functions in
in the Barrier Region

In the barrier region the JWKB approximation may
be considered, provided that the quantity [$#>+(/+1)]
is large compared with both p? and 1. It has been found
to be very accurate in alpha-particle decay applica-
tions. The JWKB penetration factor is given by

Pzzp/Gz2=§'l exp(—ZC;), (A17)
where
= (D=t L=l+3,
™ . (1—p) Lo+ D43
Cz=n[w—}—sm“ ]—{;-I—Llog——-————-;
2 (*+12} p(n*+ L)}

the sin™! lies between —ir and %w. The Langer modi-
fication of 13 replacing ! by /47 has been used. The
corresponding shift factor is given by

Si=pG//Gi=— i3 (Fa 1Y), (A1B)

and its rate of change with respect to energy can be
obtained from

aS h?
OE/ \ 2Ma?
=3P LY).

In alpha-particle decay applications, the second term
on the right side of (A.18) is small compared with the
first so that

(A.19)

Si= = (A.20)

Our peneiration factor Py differs by the factor {; from
Bethe's' barrier penetrability P;, as given by his Eq.
(632a). The JWKB approximations to the phase ¢;
and to the product F,G; are given by (A.16) and (A.15),
respectively, with the denominators in each case re-
placed by 2¢;. If the conditions for the validity of the
JWKB approximation are satisfied, these distinctions
are, of course, negligible, and (A.15) and (A.16) may
themselves be considered as the JWKB formulas.

c. Expansions of Coulomb Functions in Terms of Bessel
Functions of Imaginary Argument

The expansions of the Coulomb functions in terms
of the Bessel functions of imaginary argument are useful
for applications in light nuclei at low energies.®*%” Such
expansions converge rapidly if the parameter 7 is large
compared with both unity and the parameter x. We list
here only a few special cases of these expansions which

" 1R, E. Langer, Phys. Rev. 51, 669 (1937).
185 J, G. Beckerley, Phys. Rev, 67, 11 (1945).
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TaBLE A. 1. Quantities characterizing positive energy neutron wave functions in terms of the argument z=p2

. s K2 s
(Azh)2— =(szl)?( )(_)
dz 2Ma?/ \dE,

l Uip! Vipt-t At A1Sizt

0 1 0 1 0 0

1 1 1 142 -1 . 1

2 3—3 3 9432422 —3(6+22) 3(224125+9)

3 15—62 15—z2 22544524622+ 2° —3(225+30z+22%) 3 (2244 6028+ 76532418002+ 3375)

are useful in the consideration of nuclear reactions near
thresholds.
The irregular function G is expansible as

Gi=—xBi(n)Co K11 (%) Qu(2,m), (A.21)
where
Bi= [l 42— D [
=1+ 20+1) 2414 - -
Co=[2mn/ (exp(2mn)—1) I},
(A.22)

x\* n—2
Qz(xm)=1+<5) _2—4?H-—1)

S G

so that in the barrier region where G>>F, the penetra-
tion factor is

Pi=p/G?= (im) exp(—2mn)/

Ko1(2)2Bi(n)*Qu(x,m)%  (A.23)
One can also obtain for S;~ (oG, /G)),
) x Kau(x)
im0 (0GY' /G1) = — = — —1 (A.24)
2 K21+1(x)

as well as the correction term for nonzero energies,
which we list only for /=0,

me(52) ()
My ——— ) =—{ =
a2 /., 24\2

Ki(x)
(E)K—-————ﬁﬁ;@], (A.25)

K,(x) is the “irregular” Bessel function of imaginary
argument, as defined by Watson.’*¢ The leading term
in the regular function expansion is

Fy= (mx)* exp(—mn)I2141(6), (A.26)

186 G, N. Watson, The Theory of Bessel Functions (Cambridge
University Press, New York, 1948).

and the leading term in the expansion for the product
(FG) is the approximation (A.15), where I, is the

" “regular” Bessel function of imaginary argument, as

defined by Watson.

d. Neutron Functions

For neutrons, the positive energy solutions F and G
reduce to Bessel functions as exhibited by (A.3a, b).
It is convenient to write ¥ and G as

o Fi=U;sinp—pV; cosp

A.27
0 'G1="U,; cosp+pV; cosp, ( )

where U; and V; are polynomials in p?(=z, say). In
Table A.1, we list the quantities U, V, 42", 4,2'S,, and
(A412Y%(dS:/dz)—all of which are polynomials in 2. The
phase ¢; of (A.7) is such that

tan(p-—qsl) =Vy/U.. (A.28)

In Table A.2, the quantities W, S, and [dS/d(p?)] are
listed for negative energies. The.expressions for S in
Table A.2 are obtainable by substituting p — 7p in the
expressions for L=S41P taken from Table A.1.

From Tables A.1 and A.2, one sees that dS/dE is dis-
continuous at E=0 in the case /=0 but not otherwise.

e. Energy Derivative of S, the Shift Factor

Let us first consider negative energy channels for
which, by (A.10), S=pW’/W. From the special case
(V, 1.5) of the Green’s theorem relation we have

(Z_j:)a( 2;;2(12) T (i%)) o

1 00
— W1 [ D) T, (A29)
4 »

where we have abbreviated W (—n, I+3, 2p) to W(p).
It follows from this and the definitions (III, 4.7a) of
reduced width 42 and (IV, 1.17¢) of level shift A that:

dA das
(%)
dE dE/ ,

as ®
=+zoz(a( 2)) =—f (W |%dr (A.30)
P eon P
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TaBLE A. 2. Quantities characterizing the negative-energy wave functions in terms of the argument p=*%kr.

: WO, 144, 20) s B e
d(?) 2Ma? dE
0 e —p 1/2p
1 2
1 (A+1/p)e" —p—— A
1+p 2(1+4-p)?
3p+6 3+ 6p2+ 12046
2 (143/p+-3/p)e . o
p*+30+3 2(p%4-3p+3)?
6p2+ 300445 54-12p%+ 60p3+ 15002+ 180p+90
3 (146/p-+15/s+15/p)e " P G il e
p346p2+150415 2(p*+6p24150415)2
i.e., —(dA/dE) is the square integral in the bound p=ka=0.21954M*Eiq
channel of the wave function ¥ that is normalized to 2= 0.048196 ]/ Ea?
unity in the internal region. Consequently if T' is any e ’ o
quantity depending upon the square of the wave n=21Z26"M /hk=0.1580522,Z,M*E~*,
i‘u[ri(:ti(()fjl ;g%t) ]isl normalilzed 1}111 the interr(lial region, 21 =0.99307Z,Z, M} E-,
—(dA ! is equal to the corresponding quan- o o Aa
tity defined for a “renormalized” wave function whose ¥'=8pn=4g"=0.069396M 2120,
normalization region is extended to include the bound B=2712,0"/a=1439812:1Z:a"" Mev,
channel. o Z=E/B=(p*/20n)=0.69451EaZ,"'Z ",
On grounds of continuity, we expect that the same 2 4 8196)E (b 1
result is approximately true for positive energies and k*=4.8196M E (barns)™,
large channel barriers where the channel integral is (47/k?)=2.6073ME~* barns,
extended to th(? classical turning-point. This may be #=0.65817X 10~ Mev sec,
seen by applying Green’s theorem (V,1.9) to the
solution (G-+iF) (2Ma*/h)=3.17216X 10~2M a? sec,
(h*/2M a®)=20.748 (M a®)~* Mev,
P2 17 4S8
f (G2+F2)dp=[- —(E——) where
1 P\ 9oE

2P G oF P2
- ——-{F(E—) —G(E~) ” . (A31)
p oE oL 1
On choosing p; somewhat beyond the turning point po,
and using the fact that, as F and G become sinusoidal,

the first term on the right — 0, and the second term
— p, we find

naS

2Ma?dE pG*(p)

f GE)d,  (A32)

where we have used the fact that F<<K1<G for p<<po. It
follows that the quantity 1— (dA/dE), where A is for
an open channel with a barrier, changes the normaliza-
tion to the extent of including the channel (as far as
the turning point) in the normalization volume.

J. Numerical Formulas and References to
Graphs and Tables

The following numerical formulas are useful for the
consideration of channel functions:

E is the energy in Mev of relative motion in the
gravicentric system,

a is the channel radius in units of 107 cm

M=MM:/M+M, is the reduced mass in units of
the proton mass,

B is the Coulomb barrier height.

Fairly extensive tables and graphs of Coulomb func-
tions have been compiled. The ones that are most
useful for nuclear reaction studies include:

Graphs

(1) R. F. Christy and R. Latter, Revs. Modern Phys.
20, 185 (1943).

These graphs are for proton bombardment of in-
dividual nuclei and plot a quantity I' which we write
I'¢; this is such that
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where I is the observed partial width of a level in Mev
and ¢, M are as in the foregoing.

(2) Sharp, Gove, and Paul, Chalk River Report,
TPI-70 (1953) unpublished.

These graphs are of the functions 4, ¢;, and other
functions in terms of p and 9.

Tables

(1) Bloch, Hull, Broyles, Bouricius, Freeman, and
Breit, Revs. Modern Phys. 23, 147 (1951).
These tables give 4, ¢, F, G, etc., for values of p/29
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from unity down to the point where the JWKB
approximation becomes usable.

(2) National Bureau of Standards Tables of Coulomb
Wave Functions, Vol. 1. Applied Mathematics Series,
No. 17 (1952).
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Errata : Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions
[Revs. Modern Phys. 28, 432-542 (1956)]

K. ALDER, A. Bonr, T. Huus, B. MOTTELSON, AND A. WINTHER
Institute of Theoretical Physics, Copenhagen, Denmark

T has been pointed out by Mr. J. Bro-Jgrgensen that the

estimates of the cross sections for double excitation in Sec. II
D.3 contain a numerical error which has led to an overestimate
of these cross sections.

Thus, the coefficient in (II D.18) should be reduced from 0.240
to 0.0218, while the coefficient in the third term of (II D.20)
should read 0.12 instead of 0.4. As a consequence of these changes,
the numerical factor in (II D.19) is reduced from 2.1 to 0.19, and
the cross section quoted in the third line of the first column of
page 532 is reduced from 50 to 5 mb.

The qualitative estimate (II D.17) now considerably exceeds
that obtained by quantitative evaluation, but the difference can
be understood in terms of the dependence of the excitation proba-
bility on the scattering angle, which was neglected in the order of
magnitude estimate (II D.17).

We also wish to point out that in the last column of Table IL.11,
the factors 1/(148%) in the 44(2) coefficients should be replaced
by 82/ (14-62%).



