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HERMAL agitation of atoms in a crystal produces
plane wave trains in the electronic density of a

crystal. These wave trains, which exist in great number
and are propagated in all directions with diGerent
wavelengths, selectively reflect incident x-rays in all
directions. The intensity of scattering produced in
this way is determined by the frequency, the amplitude,
and the shape of the atomic oscillations which form
the reQecting waves, and by the electronic density.
Conversely, when the intensity of the scattering is
known, it is possible to determine the electronic
density.

We use the following notation: m, a translation of
the crystal lattice; j, the vector which defines the
average position of an atom in the unit cell; and M,
a translation of the reciprocal lattice. The M and m
vectors are related by

M. m= . —2 —10127 i P 7 j

atom in the position j, where here j is an index that
runs over the values 1 to g; p, , mass and e, volume of
the unit cell; m, mass of the crystal; and E, the number
of electrons in a unit cell; so that

p=P y; and m=pX.
7

Also S, T, are the fundamental wave vectors of
the plane-wave trains of the atomic oscillations. They
are vectors inscribed in the first Brillouin zone with
their origin at the center and their extremities distrib-
uted with uniform density, their number being equal
to E. An harmonic oscillation of the atoms that is
related to S, forms an infinity of plane wave trains'
piloted by the vectors, S+M.

We denote by vz„, vz& the frequencies of atomic
oscillations associated with the fundamental wave
vectors S, T, and the 3g modes of oscillation of the
g atoms of a unit cell, where y and 8 are indexes that

Also, g is the number of atoms in a unit cell; X, the
number of unit cells in the crystal; p;, the mass of an phys. radium 15, 545, 657 {1954).
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range from 1, 2, --, 3g over these modes. Also

U(m, j,S,&) is written for the displacement of the
jth atom in cell I, in the mode of oscillation that is
specified by S and p. It is convenient also to write
U(m, j) for the total displacement of the jth atom in
cell m. Here 5 as an index serves to distinguish between
the S diBerent values of the vector S in the first
Brillouin zone, while y serves to label the 3g diGerent
modes of oscillation of the atoms of a unit cell, so

U(m, j)= p U(m, j,S,p).
S,y

VVe write v for the frequency and X for the wavelength
of the incident radiation and f, for the structure factor
of the atom at site j; and X for the scattering vector,

X= (u' —u)/X and X= (2/X) sin(g/2),

where u' and u are unit vectors giving the directions of
propagation of the scattered and incident radiation
respectively, and p is the scattering angle, that is
the angle between u and u'.

Actually' each scattered radiation has a scattered
wavelength X' not equal to 'A, but the relative diGerence

(
X'—X ~/X is less than 10 ' when X=12.
%e use orthogonal axes, and write V for the magni-

tude of each vector V, and V for its corresponding
components along the coordinate axis (a=1, 2, 3).
The scattering power, co, of the thermal agitation per
electron, is to be expressed in terms of the scattering
power cr of a free electron. If I is the intensity of the
incident radiation per unit area normal to u, and dI the
intensity of the radiation scattered in a solid angle
dQ,

co= (NEIo) 'dI/do,

where 0= (rox)' with ro=e'/mc'=2. 8X10 ' cm, andy is
the polarization factor. The incident electric vector
E may be resolved into E„and E&, respectively,
normal and tangential to the plane of scattering, in
which case

xz= (E '+E' cos'y)/E'

Extinction of the incident x-rays produced by photo-
electric eAect and by scattering will be neglected as
their eQ'ect is well known and easy to calculate.

L QUANTIZATION OF THERMAL OSCILLATIONS

To each harmonic oscillation piloted by the wave
vector S is associated an harmonic oscillation of the
same frequency piloted by —S. The energy of these
two oscillations is that of a two-dimensional degenerate
harmonic oscillator. Quantization of this energy gives
progressive oscilla, tions, the displacements U(m, j,S,y)
of which have as components (matrix elements)'

2zrU (m, j,S,p)„,„~z——P (j,S,p)(hn'/2Ntz, vs, )Z

Xexp&Q (m, j,S,&), (2)
~ Compare reference 1(b), p. 546.' L. Brillouin, J. phys. radium 6, 185 (1935).Also see reference

1(b), p. 550.

where the phase Q is given by

Q (m, j,S,y)=2zri[vs, t S—(m. +j)+p (j,S,&)j.

Here e is the vibrational quantum number for the wave
mode in question, n' means (n+-', +—', ), and the ampli-
tudes P are normalized by the condition

j,a

the range of j being 1 to g and on 0., one to three.
The (real) vectors P(j,S,y) and the phases P (j,S,y)
are given by the Fourier matrix. '

II. SPECTRAL ANALYSIS OF THE TOTAL RADIATION
SCATTERED BY THERMAL AGITATION

The total scattered radiation (excluding incoherent
scattering) from the crystal has a displacement which
can be expressed in terms of the radiation scattered
by a free electron through the factor,

L P f; exp2zriX. (m+j) g exp2zriX U(m, j,S,y)j
S,y

Xexp2zrivt. (3)

It is convenient to introduce amplitudes K(j,S,y)
and phases g(j,S,y) such that

p X P (j,S,&) exp2zr+ (j,S,&)

=XK(j S y)(tz /tz)& exp2zr+(j, S,&) (4)

and also to write

a(j,S,y) =XK(j,S,&) (h/2rnvs„) &.

These expressions give the following forms for the
matrix components:

$2zrX U(mj, S,y)$ „~z=a(j,S,y)(n')
XexpwQ(m, j,S,y), (&)

in which Q(m, j,S,y) is defined like Q (m, j,S,y) with
the phase $(j,S,&) in place of P (j,S,&) The expone. n-
tial factors in (3) which involve these matrix components
can be evaluated by using the power series for the
exponential factor in the form,

exp2zri X U(m, j,S,y) = 1+(i/1!)Z'" (n,nz')

+ (z~/2!)Z&z& (n,nz')+, (6)

in which Z&»(n, n„') is the sum over nv' of the (n,n„')
matrix elements of the matrix representing (2zr X U) v.

Introducing this development (6) into (3), we obtain
the displacement of the total scattered radiation in
the form of a series, each term of which defines a
monochromatic scattered radiation.

The radiation that is unaltered in frequency by the
scattering process is that for which the Bragg condition,
S=M, is satisfied. The frequencies of the other radia-
tions scattered by the thermal agitation of the atoms

4 Compare reference 1(b), p. 549.
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are v+pv»+qv»+, where the integers p, q,
run over all positive values.

We define the order of the scattering n as the sum of
the integers p, q. . . Thus scattered radiation of order n

consists of photons which have acquired or lost n
quanta of thermal energy, hv», hv». . -.

However, photons which exchange several quanta
with a single harmonic oscillation of the atoms are
extremely rare in the total scattered radiation. It has
been shown' that one can simplify the calculation of
scattering power without introducing appreciable error
by substituting for each radiation which has the fre-
quency of the form written in the foregoing, when each

p, q, etc. , is greater than unity, another radiation of
the same frequency but which has exchanged single
quanta with p, q, etc. , incoherent harmonic oscillations
of the same frequency, v», v&z, . In this way the
frequency of every scattered radiation may be expressed
as v&v»&v»&, where the terms other than the
first may repeat several times.

The radiations of order 1 are the ones which at low
and medium temperatures constitute the greatest
part of the total radiation scattered by thermal agita-
tion. These are scattered by a single harmonic oscillation
of the atoms. There are altogether 3Xg of these of
increased frequency v+v», for which the scattering
amplitude or displacement is

iFq(S,y, X) exp2mi(v+v»)t

[Q exp2s. i(X—S) m], (7)

where

F (S v, X)=2 f (&/~(i, S,v))B(i,S,v)

Xexp2si[(X S) j+—P(j,S,&]

B(j S,p)=a(j S,y)(n)&[1—na'/1! 2!
+ (n'+x2)a4/2! 3!— ],

the a s in the series being a(j,S,y). B; is the Debye-
Waller factor

&'= ll ~(i S»)

and

~(jS,v) =1—(n+k)a'/(1 ')'

+[( +')'+'] '/(2l)' —".
Similarly there are altogether other 3iVg scattered

radiations of order unity of decreased frequency,
v —v» for which the scattering amplitudes are given
by analogous expressions,

iFq( —S,y, X) exp2xi(v —v»)t

X,[P exp2s.i(X+S) m], (9)

' Reference 1(b), p. 554.

where

where

F.=P f [a /W(i, s&)A U, T)

X[B(j S&)B(j,T) ]
Xexp2~i[(X~SWT ).j~g(j,Sy)

ay(j, Tbw ], (11)

in which it is to be understood that a C replaces a 8
when the corresponding sign of v», vq~, . is —as in
the contrasting expressions (7) and (9).

III. INTENSITY OF RADIATION SCATTERED
BY THERMAL AGITATION

The various harmonic oscillations represented by
(2) are incoherent, consequently the scattered radia-
tions given by (7), (9), and (11) can have no phase
relations between themselves. Therefore their intensities
add. The radiation (10) of order n that is scattered by
the whole crystal is the resultant (summation over m) of
the individual waves scattered from each unit cell of
the crystal. If

X=MaS+ T+ (12)

all of these individual waves are in phase. In this case
this radiation scattered by the whole crystal has a
maximum intensity, which referred to the intensity of
the radiation scattered by a single free electron is,
~F (,X)

~
1P, in which F (,X) is written for

the factor de6ned in (11)when X has the value indicated
in (12).

Because the energy of each harmonic oscillation mode
of the atoms fluctuates with time, the scattered
radiations show corresponding Quctuations in intensity,
and only the average intensity is measurable. This
requires the use of the average values for the quantum
numbers n, n', and so on, that appear in the preceding
expressions, relative to the intensity of the scattered
radiations. Defme b(Sy) by b(Sy) ,' = [exphv»/—k—8

—1] ', in which 8 is absolute temperature and k is

Fi(—S,v,X)=2 f~(&'/~ (j,S,v))c'(i,S ~)

Xexp2x.i[(X+S) .j—g (j,S,&)],
and

C(j,S,y) =a(j,S,7) (n+1) &[1 (—n+1)a'/1! 2!
+((n+1)'+ ,')a-4/2! 3!— . .].

In general a radiation of order n, scattered by n
harmonic oscillations, Sy, T6, has the scattering
amplitude,

i"F„(+Sy+Tb&,X) exp2si(v&vs, +v»+ )t

X[+exp2vi(X+S+T ) m] (10)
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Boltzmann's constant. Also write

w(s~) += D (s~)~&]b...
and W(sy) =b(sy)hvsq, (13)

and

e(sy)+= (2s vs„) '[2W(sy)+/m]»
and e(sy) = (2s vs~) '. (2W(sy)/m)». (14)

Making some minor approximations involving error
usually less than 10 ', we obtain with X given by (12),

Fzo. 1.

V+ Vsr T

V

iPlones of the woves of

~M+S~,' the electronic density.

F„(X) = (m X)"g f,'K(j,sy)K(j, Tb) . e(s~)+

e(Tb)+. . .exp[M j+P(j,s&)+ ]. (15)

Born cyclic conditions, ' the waves of electronic density
are piloted by wave vectors equal to the translations 6
of the Gibbs lattice, so

6=P.G.(L./X. ),
Here f/ is the reduced structure factor,

f'=f»
obtained by multiplying by the Debye-Wailer factor,
which on the average is, from (8), given by

».=exp[ —s X' P K(j,s&)'e(sp)']

where L are the basis vectors of the reciprocal lattice

(16) and the G run over all positive and negative integers
and nought.

We take the same origin for reciprocal lattice, Gibbs
lattice, and X. The end point of X we call the scattering
pole. If the scattering pole falls on a point 6 of the
Gibbs lattice, that is if X= 6, all the radiations scattered
by the waves (18) of electronic density such that

IV. X-RAY SCATTERING CONSIDERED AS
SELECTIVE REFLECTION BY WAVES OF

ELECTRONIC DENSITY FORMED BY
THERMAL AGITATION

On analyzing the electron density of a crystal by
means of a Fourier integral one finds the harmonic
components developed by thermal agitation. A compo-
nent of order n, produced by n harmonic oscillations
of the atoms, has at the point x the displacement,

i"F (X)v ' exp2si[st —(M&SAT& ) x] (18)

in which X is given by (12) and

s= +vg&+ vz'g+ '

These waves of electronic density are piloted by
R=M&S&T&, or by —R according as the
quantity s is positive or negative. These are precisely
the waves of electronic density (18) which scatter the
radiation (10). They reflect the radiation selectively
when the condition (12) is satisfied, that is when X
equals their wave vector R, if s is positive, or —R, if s is
negative. En the first case the reflected radiation is of
increased frequency v+s, in the second case it is of
diminished frequency v —~s~. Thus, by Doppler eBect
interaction, we find again the alteration of frequency
resulting from quantization of thermal energy.

V. SCATTERING POWER OF THERMAL AGITATION

The scattering power of thermal agitation does not
depend sensitively either on the volume or the shape
of the crystal. To simplify the calculation, we suppose
that the crystal is a parallelopiped with edges parallel
to those of a unit cell and containing N~, N2, N3 lattice
units in these directions, so N= N&N2$3. Assuming the

M+S+T+ . =G

are selectively reflected (12); and all other radiations
scattered by thermal agitation are completely extin-
guished by interference.

When the scattering pole is not on a point 6 of the
Gibbs lattice, we find, on adding up the intensities of all
the scattered radiations that the total intensity is
sensibly that which we would obtain if a point of the
Gibbs lattice coincided with the scattering pole, that is,
if waves of electronic density (18) existed in the crystal
such that (12) might be satisfied. "Thus the calculation
of scattering power always reduces to the calculation
of intensities of selectively reflected radiations.

The scattering power, co, of thermal agitation may be
developed into a series,

f'd= Gl]+Cog+ ' ' ' (20)

the nth term representing the contribution of scattering
of order m. I et us suppose that the scattering pole is
in a first zone M, on a point G of the Gibbs lattice. One
single fundamental wave vector S satisfies the equality
X=M+S, another S', satisfies X= M —S', and S'= —S.
Each of the two wave vectors, M+K and —(M —S')
which are respectively equal to X and —X, pilots 3g
harmonic oscillations of the atoms. Those piloted by
M+S form 3g wave trains of electronic density (Fig. 1)

iv 'F, (M+S) exp2mi[vs„t (M+S) x]. —(21)

Likewise those piloted by —(M —S') produce 3g wave

'I. Wailer, thesis (Upsala, 1925); M. Born and M. Goppert-
Mayer, Haldbech der Physik (Verlag Julius Springer, Berlin,
1933), Vol. 24, pp. 2, 645. Repts. Progr. in Phys. 9, 294 (1942—
1943).' Compare reference 1(a},p. 55.
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The harmonic components of thermal agitation have
frequencies distributed according to a density D(v)
which increases with v, roughly like v', passing through
secondary maxima up to a principal maximum v~,
slightly below the upper boundary of the spectrum.
Thus the atomic oscillations of highest frequency are
most numerous. Among scattered radiations of order n,
those which are scattered by oscillations of high fre-

quency form a numerical ratio which increases with n.
Consequently for large n, the scattering power, ou, is
almost entirely caused by the oscillations whose

frequencies are only slightly less than v~, and

trains of electronic density (Fig. 2),

iv 'F~(M —S') exp 2si—/vs~t+ (M —S') x]. (22)

Consequently there are 6g selectively reffected radia-
tions of order 1. Of these, 3g, reQected by the waves
(21), are of increased frequency, v+vs~, and have an
intensity relative to the scattering by a free electron of

3g ~'S~
(&X'/2t ) 2 I4~(») I',

1 v 2
Sy

in which

4»(S&) =P f K(j,S&) exp2mi[M j+P(j,S&)j. (23)

Similarly the 3g radiations reQected by the waves
(22) have diminished frequencies, v —vs„whose total
intensity is given by a similar expression having 8'+
in place of W, S' in place of S in P&, and —4 (j,S'y)
in place of +p(j,S&). Since the atomic oscillations
which give rise to (21) and (22) are piloted by two equal
and opposite wave vectors, it follows that they have
the same frequency in pairs, so vs „=vs~, and K(j,S'y)
=K(j Sy), also P(j S'y) = P(j S'r), so—4~(S'y)
=4~(Sy), and the crystalline structure factors 4&(Sy)
and 4»(S'p) are equal in pairs. Thus altogether the
6g selectively reQected radiations of order 1, have a
total intensity

3g

(A'X'/&) 2 (W,„/;, ) l4, (S~) Im. (24)

(X=M+S); and the scattering power, of order 1,
per crystal electron, relative to that of a free electron,
co&, is the same expression divided by XE.

In similar fashion we may evaluate the higher
order scattering powers by adding the intensities of
the radiations that are selectively reQected by the
electronic density waves produced by more harmonic
oscillations of atoms. ' The number of selective reQec-
tions which contribute to the nth-order scattering
power is N" '(6g)"/ !.IAs m increases their number
increases, but each of them weakens still more rapidly.

Compare reference 1(a), pp. 68—80. Also P. Olmer, Bull. Soc.
franq. mineral. 71, 144 (1948); H. Curien, ibid. 75, 197 and 343
|,'1952). Also see reference 1(b), pp. 659-665.

3gZPW(v~) "
~=—(I4'. I'/~) (') '.

v

Here W(v~) is the average energy (13) of the oscilla-
tions of frequency v~. The factor C„ is determined by
the structure factors of the atoms, by their positions in
the unit cell, by the amplitudes K(j,sy), and phases

4(j,Sy). As n increases the ratio I4 I'/I4„&l' fluc-

tuates, but only slightly when n is large, and as a
whole remains near 3, giving on the average, co /co„~
&C/n with C=gX'W(v~)/pv'~.

For all crystals the frequency v~ is near to 5X10"
sec '. Besides when the product X'W(v~) increases
the reduced structure factors, f,' vanish, because f,
and H; are rapidly decreasing functions of X, and
moreover II; decreases when W(v~) increases. The scat-
tering power of thermal agitation becomes infinitesimal
and ceases to be measurable as soon as 3X'W(v~)/p
exceeds about 10"cgs, that is, as soon as C reaches the
value unity. As long as the x-rays scattered by thermal
agitation have appreciable intensity, the series (20)
converges rapidly, roughly like that for e' when x
is less than 1.And by an averaging eff'ect, every scatter-
ing power co„, of high order e, varies only slightly for
a large change in direction of the scattering vector,
the more slightly as n is larger.

However, these conclusions are valid only for large e.
If n is small the scattering power usually varies strongly
when the scattering vector changes its direction, above
all, if the scattering pole is moving near to a point
of the reciprocal lattice on a ray of a first zone. And for
one given angle described by the scattering vector,
the scattering power co~ undergoes the largest varia-
tion because it is only due to 6g atomic oscillations
which in pairs have the same frequency and parallel
displacements. At medium temperature and if X is
large (greater than 2X108 cm '), the scattering power
co& may be less than the scattering power co2. When the
temperature approaches the melting point of the
crystal, the scattering power co3 usually ought to be
taken into account. The first term which seems negligible
is eu4 or a». Therefore retention simply of eu& gives too
small a value for the scattering power of thermal
agitation. Such a result may be applied at most to
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the case of low temperature, or in which X remains
less than 10' cm-'.

The intensity of the selectively reflected radiations
increases like as~' with the average amplitude as~ (14)
of atomic oscillations. At the same time the selective
rejections by electronic waves are weakened by thermal
agitation, like Bragg reflections, each atomic structure
factor, f;, is reduced by the Debye-Wailer factor.
Therefore as the temperature rises from absolute zero,
the scattering power of thermal agitation 6rst increases,
passes through a maximum, and then diminishes.
The ratio ~„/co ~ increases with X and with the
temperature.

VI. EVALUATION OF THE ELECTRONIC DENSITY

Let us assume that the scattering pole D (extremity
of the vector X) is near a point M' of the reciprocal
lattice, and that the Bragg selective reflection M is
strong. The six acoustic oscillations which contribute
to ~j are piloted by S and —S where S is the vector
from M to D, which is very small compared with all
the rays in the erst zone. These oscillations have low
frequencies in the ultrasonic range. They produce an
intense scattering of x-rays, so the scattering power,
co&, is strong and almost entirely the result of them
whereas the other 6g —6 atomic oscillations which
contribute to ~~ are in the j.0" to 10" sec ' frequency
range. Also the scattering power of the Compton efFect
is small in comparison with co~, so the total value of
or& scarcely exceeds that of the 6 ultrasonic oscillations.
These six oscillations take place in pairs along three
orthogonal directions u~, u2, u3, and two oscillations
of a same pair have the same frequency; so there are
only three distinct frequencies, v&, v2, and v3. Thus in
this case the total scattering power is given by

8'
~=(X'/Ey)P cos'(X,u ) ~C~x~'+e, , (25)

a va

where e is small compared with the term written. Here
8' is the average energy (13) of the two ultrasonic
oscillations of the same frequency v and

C~, x=g f/(X) exp2siM jand .X=M+S.

The quantity C ~, x is not exactly equal to the crystalline
structure factor, Ii~, that is related to the Bragg
selective reflection M, because f/ refers to the scattering
vector M+S and not to M. But as S is small compared
to M, the relative difference is very small.

It is always possible, by a suitable choice of the
fundamental vector S to make X parallel to the dis-
placement of two ultrasonic oscillations among the
6 ones, for example to u~, in which case the total
scattering power is almost entirely the result of the
two ultrasonic oscillations which take place along the
direction of u&, so only this one term occurs in the
sum over n in (25) (cosXu2=cosXu&=0).

One may estimate the small correction e caused by
the other atomic oscillations and by the Compton efFect.
If the crystal structure is known, C~, x is known too;
so it is possible to infer the frequency v of the two
ultrasonic oscillations, and their propagation velocity
V, and from V for difFerent directions in the crystal
to infer the elasticity coefIicients of the crystal. '

On the other hand if V is known by mechanical means
the measured scattering power permits a determination
of the factor C~, x.

For a crystal all of the atoms of which are alike one
can find the reduced atomic structure factor f'(X)
from C~, &. Photometry of the x-rays scattered by
thermal agitation gives frequency and form of the
atomic oscillations, ' and also the possibility of calculat-
ing the Debye-Wailer factor, H(X) of (17), and from
this the true atomic structure factor, f=f'/H. These
atomic structure factors so determined apply to the
scattering vectors M+S (not to M) but from these,
owing to the smallness of S by interpolation, we can
find the atomic structure factors f(M) without appre-
ciable error, and 6nally obtain the electronic density,

p(x)=s—'Q F~exp2siM x
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