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1. GENERAL NATURE OF WAVES IN CRYSTALS
AND THEIR INTERACTIONS

ANY phenomena concerned with waves in

crystals follow very similar theoretical patterns,
and it helps greatly in understanding them if we
realize these resemblances. It is the purpose of this
paper to point out some of these features. Some of the
phenomena, such as Bragg scattering, are familiar to
every crystallographer, and others, such as the theory
of energy bands, are known to every solid-state
physicist. The general theory of elastic or thermal
vibrations in a crystal is somewhat less well known;
and relatively few physicists are well enough acquainted
with the theory of temperature diffuse scattering to
realize its very close resemblance to the scattering of
electrons by thermal waves, which is responsible for
most of the resistivity of a metal, or to the scattering of
light waves by ultrasonic waves. We shall consider all
these cases, and others besides.

In this introductory section we shall outline the
general argument which we shall follow, and then we
pass on to a somewhat more mathematical treatment,
though without going very deeply into the mathematical
aspects of any of the effects. Fundamental to all of
them is Bragg scattering. The earlier treatments of
Bragg scattering of x-rays were based on the scattering
by individual atoms, combining them into linear arrays,
planes, and then three-dimensional crystals. This is
perfectly correct; but we gain a greater insight into the
problem if we analyze the charge distributions of the
atoms by Fourier series, into sinusoidal functions of
position, or essentially plane waves. Then a single
Bragg reflection proves to be produced by a single
plane wave or Fourier component. Pointed out first
by W. H. Bragg in 1915 (references to all the points
we are taking up in this paper will be found in the
Bibliography at the end), the method of Fourier
analysis was brought into practical use by Duane,
Compton, and their co-workers about 1925, and now
underlies a great deal of the practical work in crystal
analysis. The strength of the method is shown partic-
ularly when we have to deal with problems other than
the scattering by a perfect crystal, for instance,
scattering by the temperature vibrations of the crystal.
The essential features of Bragg’s law come merely from
the geometrical character of waves; they arise whenever
we have the interaction of one wave of one type with
another wave of another type, so that one scatters
the other.

* Assisted by the Office of Naval Research.

In all such cases, we start with a wave which is to be
scattered, which we can write as the real part of
expi(wof—ko-r), where wo is its angular frequency,
ko the propagation vector, and r the vector whose
components are z, ¥, z. In the classical Bragg case,
this is the wave of x-rays. Next, we have a wave which
is to do the scattering, which we can write as the real
part of expi(wii—k;-r). In the Bragg case, where we
are scattering by a sinusoidal component of the station-
ary electron density, w; would be zero, and k; would
be the vector representing the particular Fourier
component we were considering. However, by including
w; in the formulation, we can consider scattering by
progressive waves, such as sound waves. Then, if the
interaction between the two waves is small, we find
that the scattered wave will be represented by the real
part of expi[ (wow:1)é— (koz£k;)-r], and its amplitude
will be proportional to the interaction between the
wave which is being scattered, and the wave which is
doing the scattering. In the x-ray case, this scattered
wave has the angular frequency wo, since w;=0, and
it is one of the ordinary coherently scattered waves
encountered in x-ray diffraction. In order that the
scattered wave may have the same angular frequency
wo as the incident wave, it is necessary that the propaga-
tion vector (kox=k;) of the scattered wave have the
same magnitude as the propagation vector ko of the
incident wave. In the more general case where w; is
different from zero, it is still necessary that (kotk;)
should be so chosen that the wave with this propagation
vector may have the appropriate angular frequency
wotw;.

It is well known that the condition that the vector
(ko+k;) have the same length as the vector ko is
equivalent to the Bragg condition. Thus, in Fig. 1,
the horizontal plane is the plane of a wave front of the
scattering wave, and the vector k,, which is perpendic-
ular to it, has a magnitude 27/d, where d is the spacing
between wave fronts. The magnitude of ko, and of
(ko+ky), is 2x/\, where )\ is the wavelength of the
scattered wave, in this case of the x-rays. Then from
Fig. 1 it is obvious that sinf= | %,|/2| k|, or

A= 2d siné, 1)

which is Bragg’s law. We do not have the additional
factor #, met in the form #A=2d sind, because only
first-order scattering results from a sinusoidal disturb-
ance (provided the interaction is not too great, as
we shall see in the next section).

In case w; is not zero, so that the sinusoidal disturb-
ance which is doing the scattering is a progressive
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FiG. 1. Diagram to illustrate Bragg’s law.

wave rather than a fixed disturbance, the frequency of
the scattered wave is different from that of the incident
wave. This fact is interpreted as a Doppler effect,
since the reflection is from a moving rather than a
stationary set of waves. Thus, if the scattering waves
are traveling upward, in Fig. 1, the scattered wave may
be considered to be emitted from a moving image which
is traveling upward twice as fast as the scatterer, so
that its emitted frequency will appear greater than the
true frequency. We remember that in the theory of the
Doppler effect it is shown that a source moving with a
velocity v, emitting radiation whose frequency in a
system of reference in which the source is stationary
would be wo, will have an apparent frequency if observed
in a direction making an angle ¢ with the velocity »
equal to

w=wo[14-(v/c) cose ], )

where ¢ is the velocity of light. In our present case we
are observing in the direction shown as (ko+k;) in
Fig. 1, so that cos¢p=sinf. The velocity of the scattering
wave is w1/ | k1|, and the velocity v of the image emitting
the scattered wave is twice this velocity. The velocity
of light ¢ is wo/|ke|. When we substitute these values
in Eq. (2), and use Eq. (1), we find that the observed
frequency of the scattered wave should be wo+w;,
in accordance with our general statement of the
scattering condition. In other words, we have verified
the interpretation of the frequency shift in terms of
the Doppler effect.

There is another interpretation which we can give
to the scattering process. Let us suppose that we are
considering the scattering of electromagnetic waves,
either x-rays or light waves, by a wave of sound. We
remember the quantum interpretation of a light
wave: The radiation consists of photons, of energy
hvo="hwo, where ="1/2m, and of momentum k/A=#k,,
where X\ is the wavelength. In a scattering process in
which a wave of angular frequency w, changes to
wotwi, and in which ko changes to ko+k;, we must
assume that the energy increases by #w;, and the
momentum by 7k;. But at the same time, we remember
that vibrational waves of sound are quantized. One of
the quanta, referred to as a phonon, has energy #uw;,
and momentum 7k;. The interpretation of the scattering
process which we have just described, then, is that a
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photon of energy #w, and momentum 7k, is destroyed,
a new photon of energy #%(wo+w:) and momentum
#(ko+k,;) is created, and conservation of energy and
momentum are achieved by the destruction of a phonon
of energy #w; and momentum #k;. In an analogous way,
the scattering process in which the final frequency is
wo—ws, the final propagation vector ko—kj, is one in
which a phonon of energy #w;, momentum 7%k, is
created.

We now see the general properties of the scattering of
one wave, such as a wave of light or x-rays, by another,
such as a wave of sound. In the cases we are most
interested in, there are many scattering waves; in
ordinary x-ray scattering, we have all the Fourier
components of charge density, and in scattering by
temperature agitation, or thermal diffuse scattering,
we have a very large number of waves of mechanical
oscillation. In case the interactions are small, the
processes of scattering by the various waves can be
handled independently. This is ordinarily the case, to
a fair approximation, with x-rays. On the other hand,
if the interactions are large, multiple scattering becomes
very important. This is the case in the corresponding
situation of scattering of electrons by the periodic
potential met in a crystal. In any case, a study of the
scattering by an individual sinusoidal wave forms a
very good preliminary to the more complicated general
case. In the next sections we shall take up this case of
scattering by a single sinusoidal disturbance, leading to
the Bragg law; we shall find that there is much more
complication inherent in the problem than one might
have believed from the very elementary description we
have given so far. For comparison, we shall take up
two cases, and show that they both lead to similar
results: the scattering of an electronic wave by a sine
wave of potential energy, handled by Schrédinger’s
equation, and the scattering of an electromagnetic
wave by a sound wave, handled by Maxwell’s equations.
The electronic case is slightly simpler, since we are
dealing with scalar rather than vector quantities, and
we take it up first.

2. SCATTERING OF AN ELECTRONIC WAVE
BY A SINUSOIDAL PERTURBATION

Let us have a particle of mass m, moving in a region
in which the potential energy V is given by V cos (w:?
—k;-r), a plane wave traveling along the direction
of the vector. Schrédinger’s equation for this particle is

—n? 2
W+ V1 COS(wlt—kl' r)¢=iﬁ3.
t

3)

2m

We shall try to solve this equation, to show precisely
the way in which the wave function representing the
particle is scattered by the perturbing potential. We
can easily visualize a physical problem to which this
formulation is applicable. Consider a crystal, in
particular a metal, in which a plane wave of sound
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proportional to cos(wi—k;-r) is traveling along the
z axis. The alternate condensations and rarefactions
connected with this sound wave will be equivalent to
periodic changes of density in the crystal. If we regard
the particle as an electron, moving in a potential
representing the average electrostatic potential of the
nuclei and electrons of the crystal (Hartree’s self-
consistent field for a crystal), the sinusoidal changes of
density will introduce a sinusoidal component V' cos (w:#
—k;r) into the potential energy acting on the electron.
We shall see later how this change in potential energy
is to be computed ; it is what is usually called a deforma-
tion potential. We are interested in the scattering of
the electron’s wave by this particular Fourier compo-
nent in the Fourier analysis of the potential acting on it.
If the electron has a small energy, such as it would have
if it were a conduction electron, this scattering would
lead to electrical resistivity, as we shall mention later.
If it were a fast electron, concerned in electron diffrac-
tion, the scattering would lead to thermal diffuse
scattering of electrons. As an alternative example of
Eq. (3) we may take w; to be zero, and assume that the
sinusoidal potential is one of the Fourier components
of the periodic potential in an undistorted crystal.

Now we must solve Eq. (3). In the one-dimensional
case (Y depends only on z, not on x and ), and in the
case where w;=0, the equation has a form known in
mathematics as Mathieu’s equation, which has been
discussed a great deal. Even in the general case,
however, we can use the same method of solution used
for Mathieu’s equation, which we shall proceed to do.
The first step is to assume that ¢ can be expressed as a
linear combination of an infinite number of plane
waves: not only the incident wave expi(woi—ko r)
and the scattered waves expi[ (wotwi)é— (ke£k;) 1]
mentioned in Sec. 1, but more generally the waves
expi[ (wotnw)i— (ko+#ky)-r], where # is an arbitrary
integer, positive or negative, representing an nth-order
scattering process, in which # phonons are concerned.
We find that all orders of scattering are required to
get a rigorous solution of Eq. (3). Furthermore, we
must use the exponential in the form exp—1[ (wo+ 7w, )¢
— (ko+7ky)-r], in order that the time exponential
may occur with a negative sign in the exponent, as is
required for a solution of Schrédinger’s equation with
positive energy. We then assume

Y=2_ (n)Anexp—i (wotmw))i— (ko+nk:)-r], (4)

and inquire whether we can get a solution of Eq. (3)
in this form, by appropriate choice of the amplitudes A4 ,.
When we substitute Eq. (4) into Eq. (3), we find

2. (m)An exp—i[ (wotwi)t— (kotnk;) 1]
72
X [‘2‘—(k0+nkl)2+ V1 cos (wlt— k;- l')
m

— A (wo+new1) =0]. (5)
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We can expand the cosine in exponentials, combine
with the other exponential factor, and change the
numbering of the terms arising from this cosine, so as
to transform Eq. (5) into the form

> (n) exp—i[ (wotwi)i— (ko+nky) 1]

hz
[[—<k0+nk1)2—h(wo+ml)]Aﬂ
2m

Vi
+7[A a1tA4 M—l]l =0. (6)

Equation (6) states that the sum of an infinite number of
plane waves is equal to zero. This cannot happen unless
the coefficient multiplying each of the plane waves is
zero. Hence the equations satisfied by the A’s are

72
[“—(ko+nk1)2—h(wo+nw1)]/1 n
2m

V1
+7(An—l+An+l) =0. (7)

In Eq. (7) we have something very much like the
familiar perturbation theory treatment of a problem
in wave mechanics. We remember that if we write the
wave function of a problem as a sum, _(%)Anun,
where the u,’s form a complete set of orthogonal
functions, and if the matrix components of the Hamil-
tonian between these unperturbed functions are H,,
then the sum will satisfy Schrédinger’s equation,
provided the 4,’s satisfy the equations

(Hun—E)A w4+ (m#=n)H A n=0. (8)
Here E is the energy. Our situation of Eq. (7) is
equivalent to this: (%2/2m)(ko+nk;)2—%mw; takes the
place of H,,, #w, takes the place of the energy E,
V1/2 takes the place of H, ny1, and the other non-
diagonal matrix components of H are zero.

We remember from quantum mechanics that a set
of equations like Eq. (8) does not have solutions in
general; in order that there be nonvanishing solutions
for the A,’s, the determinant of coefficients, det
(Hnm—Ednm), must equal zero, where 6&,,=1 if
n=m, 0 if n7%m. This determinantal or secular equation
is satisfied for certain energies, the eigenvalues of the
problem, and for each eigenvalue there is a set of 4,’s,
determining the wave function or eigenfunction by
Eq. (8). In this way Eq. (7) will not in general have
solutions, but the quantity wo must be determined from
the secular equation in order to get an eigenfunction.
This determines wo as a function of ko; that is, for each
propagation constant 2, we can find the frequency,
and hence the energy, of the electron wave.

Since we have an infinite set of A,’s, the deter-
minantal equation would have an infinite number of
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rows and columns, and could not in practice be solved.
However, on account of the specially simple form of
Eq. (7) a solution is entirely practical. We can solve
Eq. (7) for Ay in terms of 4, and A4 ., provided we
know wp and ko. In practice, we can assume values for
two successive A’s, say Ao and A,, and of wo and k.
Then we can find 4., from the recursion relation. We
then use 4; and A4, to find 43, A2 and A3 to find Ay,
and so on. Hence we can extend the procedure to
finding all 4,’s for positive #’s. Similarly we can find
from Eq. (7) an equation for 4, ; in terms of 4,
and A ,;1, and this recursion relation can be used, again
starting with 4, and 4,, to find 4_,, A_,, and so on
for all negative »’s. This calculation is very simple
to carry out.

When we do this, we find in general that the 4,’s
will increase in magnitude without limit as # becomes
positively or negatively infinite. This is much like our
experience in solving Schrédinger’s equation directly:
a difference equation like Eq. (7) is similar to a differen-
tial equation, 4, standing in a sense for the wave
function as a function of a variable #, while (41— A4,)
is similar to a first derivative of 4 with respect to #,
and (4Anp1—2A4,+An) is similar to a second deriva-
tive, so that Eq. (7) has an analogy to a second-order
differential equation, just as Schrodinger’s equation is.
The choice of 4o and 4, corresponds to the choice of
the initial value of the function and its slope in solving a
second-order differential equation. We know that in
solving Schrédinger’s equation with arbitrary initial
value and slope, we generally find that the function
goes infinite at infinite values of the coordinate. By
choosing the ratio of initial slope to function properly
we can make the value of the function go to zero when
the variable goes to plus infinity, or minus infinity,
but not in general at both limits. Only by choosing the
energy properly can the function be made to go to
zero at both limits. In a similar way, we can choose the
ratio 4;/Ao to make 4, go to zero when # becomes
positively infinite, or negatively infinite, but not both;
only by choosing the energy, or wo, properly, can we
make A4 , go to zero at both limits, or secure a convergent
series for Eq. (4). This is not hard to carry out in
practice.

The net result, then, is that we can find wo as a
function of ko, and can find the A.’s for any one of the
eigenvalues. If the amplitude V, of the sinusoidal
oscillation is small, we can use approximations equiva-
lent to the perturbation theory. These are the approxi-
mations usually made in the dynamical theory of x-ray
diffraction, which as we shall see in the next section has
a very close analogy to the problem we are discussing.
They throw a good deal of light on this problem, and
we shall now describe them.

If V, is zero, then the solution of Eq. (7) is trivial.
We set Ao=1, all other 4,’s equal to zero, and #%ke?/2m
=%, and see that all equations of the set given by
Eq. (7) are satisfied. If V, is small, we may then assume
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that the A,’s will be small for #>40, and the relation
between wo and ko will depart only slightly from the
relation #2ke?/2m=%w,, characteristic of the free
particle. This equation states that the energy #uwg
equals 1/2m times the square of the momentum #k,,
or equals the ordinary kinetic energy. In this case we
can use ordinary second-order perturbation theory,
which leads to

hzkoz V2 1
hwo= —_——

2m 4 L (#/2m) (kot+k1)—R(wotwr)

1
1 , (9)
(#2/2m) (ko—k1)2— h(wo— 1)

- 1

Ail':

A 0 .
2 (h2/2m) (ko:tkl)2“‘h(wo:hw1)

This is correct up to terms in V2 in the energy, and to
terms in V, in the A’s. We can show that A4, starts off
with terms in V,!" so that to the first order of small
quantities, the sinusoidal perturbation produces only
first-order scattering, »=-1, but as we consider higher
powers of V1, we see that it produces #th-order scatter-
ing proportional to V,!»l,

Let us inquire, however, what happens when we
approach the condition for Bragg scattering. In Sec. 1
we saw that this was the condition that (ko+k;)?
should equal k¢, or more precisely, in the case where
w; is not zero, it is the condition that (%%/2m)X
(ko+k,)?—7%w; should equal (%2/2m)ky?, which accord-
ing to our earlier interpretation means that both waves,
for n=0 and n=1, have the same diagonal matrix
components of the Hamiltonian, so that we have a
degenerate system. In this case, Eq. (9) would be
inapplicable, for we should have

(#2/2m) (ko+k1)2—% (wo+w;) =0.

One of the denominators would be zero, which shows
that an expansion in powers of V; would diverge. We
must then use the form of perturbation theory adapted
for degenerate problems. We must assume that two
of the 4,’s, namely 4, and 4,, are simultaneously
large, and solve Eq. (7) under this assumption, treating
all other 4,’s as being negligibly small. That is, we
have the equations

(10)

#? Vi
('—koz—hwo)A o+—A 1 =0,
2m 2
(11)
#? V.
[—2—(k0+k1)2—h(wo+w1)]A 1+7Ao= 0.
m

It is a simple matter to solve these simultaneously ; 7wy
is given as the solution of a quadratic. In the special



WAVES

case where

#h? W
2——(k0+k1)2—hw1=;"k02,

m m

(12)

or where the Bragg condition is met precisely, we find
that the equations are satisfied if

2 %4

fsg=—ket—, Ay/Ao==1, (13)
2m 2

so that in this case there are two values, not one, for

wo as a function of ko, and the scattered wave has the

same amplitude as the incident wave.

To show the nature of the solution of the quadratic,
we plot in Fig. 2 the value of 7w, as a function of the
component of ko parallel to k1, which we may take to
be in the z direction, keeping the other components,
kzo and ko, constant. The figure is computed for the
classical Bragg case where w;=0. The Bragg condition
of Eq. (12) is met when k¢, = — k;/2. Similarly we have
a Bragg reflection corresponding to #=-—1 when
ko.=k1/2. We see from Fig. 2 that at these points
the curve of 7wy vs ko, has a discontinuity. There is a
range of energies, equal in magnitude to V,, centered
about the energy for which Bragg reflection occurs,
for which the curve indicates no values of %w,. This is
called an energy gap: it is a range of energies for which
no solutions of Schrédinger’s equation of the type
given in Eq. (4) exist. Closer examination shows that
within these energy gaps there are solutions of formally
the same nature, but in which the propagation vector
is complex, corresponding to a wave damped along the
z direction.

Let us consider the physical meaning of this energy
gap, and of the phenomena which occur in its immediate
neighborhood. We can interpret the situation better
if we consider a simple diffraction experiment. Let us

hae

o

2,2 ,k \2
T [k°l+k°,+(-?!—) ]

-k /2 /2 Koz
Fi6. 2. Energy 7wy as function of z component of propagation

vector, for electron wave scattered by sinusoidal potential.
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Fi16. 3. Plot of k., z component of propagation vector outside
crystal, as a function of &, inside crystal.

assume a semi-infinite crystal, bounded by a plane
parallel to the sound waves which are doing the
scattering; that is, it is as if the plane shown in Fig. 1
as the plane of the wave front were also the surface of
the crystal. Then in the empty space above this surface,
we have an incident wave of electrons, indicated by the
vector ko in Fig. 1, and a scattered wave, indicated by
the vector ko+ki. Schrédinger’s equation in empty
space is like Eq. (3) with omission of the term involving
V1; its solutions are plane waves, satisfying the relation
#?k?/2m=%w, characteristic of free electrons. The
solution in the empty space must fit smoothly onto the
solution within the crystal, satisfying the boundary
conditions that the wave function, and its first deriva-
tive, must be continuous at the surface. This cannot be
done, unless the components of propagation vector
parallel to the surface, k. and %,, are continuous at the
surface, or equal in the empty space and in the crystal.
But there is no requirement that £, be continuous, and
in fact it is not. Instead, in the classical Bragg case
where w;=0, the condition is that each wave, both
within and without the crystal, must have the same
energy 7w, or the same frequency.

Now the relation between wo and £, is slightly different
in the crystal from what it is in empty space. In the
crystal, the relation is shown graphically in Fig. 2.
In free space, the relation is iw= (#2/2m) (k.2 +k,2+k.2),
a parabola, shown by a light line in Fig. 2. We see, then,
that in the immediate neighborhood of Bragg reflection,
there is a difference between the relations inside and
outside the crystal. We may convert Fig. 2 into a figure
giving k. outside the crystal, which equals [ (2mw/%)
—k2—k,”]}, as a function of %, inside, which is the
ko, of Fig. 2. When we do so, the parabola is converted
into a straight line, as in Fig. 3, but the characteristic
gap remains.
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We see from Fig. 3 that there is a range of &, outside
the crystal over which we cannot join the incident
and scattered waves outside onto progressive waves
inside the crystal; we must instead use damped waves,
as we have already indicated. Over this range, there is
total reflection, the amplitude of the scattered wave
equaling that of the incident wave. If we compute the
amplitude of the scattered wave as a function of angle
of incidence, in the neighborhood of the gap, we find
that it is very small some distance from the gap, rapidly
rises to equal the amplitude of the incident wave within
the gap, and falls again on the other side.

We can easily compute the range of angle of incidence
corresponding to this forbidden gap, under the condi-
tions we have described. If 6 is the angle of incidence,
05 is the Bragg angle, then we find that the forbidden
gap is encountered for angles within the range given by

Vi P
™
If V, is of the order of magnitude of the Fourier
components in the expansion of the potential arising
from the regular crystalline arrangement of the solid,
we find that these gaps are of very considerable breadth
in angle; but if we are considering a thermal wave, they
are very narrow.

The only gaps proportional to V; come at ==k,/2.
However, if we carry out the solution of Eq. (7) to a
higher approximation, we find that gaps appear at
nk1/2, where n is any integer. The width of the gap
corresponding to %, or to an nth-order Bragg reflection,
is represented by a power series in V), starting with
the term in V,!*l. Thus, if V, is small, we need consider
only the gap at ki/2, and hence only first-order Bragg
reflection. For larger V,’s, however, we must realize
that a perfectly sinusoidal disturbance will produce
higher order reflections. If we are considering thermal
waves, these higher order reflections are ordinarily
negligible; but this is by no means the case if we are
dealing with scattering by the regular crystalline
arrangement of the solid.

We have now investigated the general nature of
Bragg scattering, showing that it arises over a range of
angles about the Bragg angle, and is connected with a
forbidden gap in the energy or frequency of the electron
wave within the crystal, which results in total reflection
of incident waves approaching the crystal within the
forbidden range of angles. We shall next take up the
corresponding problem in electromagnetic theory, the
scattering of an electromagnetic wave by a sinusoidally
varying refractive index, and shall show that though
the details are different, the final result is substantially
the same.

sinf= [sin’()s:l: (14)
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3. SCATTERING OF AN ELECTROMAGNETIC WAVE
BY A SINUSOIDAL PERTURBATION

The electromagnetic problem is more complicated
than the Schrédinger one on account of the polarization
of the incident wave. Let the propagation vector of the
scattering wave, k;, be in the z direction, and let the
incident propagation vector ko be in the yz plane. Then
the electric vector E may be either in the yz plane, or
may be along the x direction. We shall work through
only the case where it is along x, in which case it can
be handled like a scalar. The other case is somewhat
more complicated, but leads to similar results.

We wish to solve Maxwell’s equations, which we
shall write in the mks system of units. These are

oB
VXE=——,
at

oD
v-B+0, VxH=?, V-D=0, (15)
¢

where we assume that the current density and charge
density are zero. These equations must be supplemented
by the relations B=uH, D=¢E, where p, ¢, are the
magnetic and dielectric constants. We shall assume that
w equals uo, the value characteristic of empty space,
but that

(16)

where ¢ may be the value characteristic of empty space,
or may be another constant value, while the sinusoidal
term represents the traveling wave which is going to
scatter the electromagnetic wave. As before, we could
have w;=0, in which case this represents a Fourier
component of the dielectric effect arising from the
periodic distribution of charge density in the crystal;
or we could have a progressive sound wave, and in
this case the sinusoidal term of Eq. (16) represents
the perturbing effect of this sound wave on the dielectric
constant, an effect which will be felt both in the visible
and in the x-ray part of the spectrum.

We now derive a wave equation for E, eliminating
the magnetic vectors B and H, by taking the curl of
the first of Maxwell’s equations in the usual way. We
have

e=¢o+ €1 cos(wit—k; 1),

2

Since we are assuming that E is in the « direction, and
since the dielectric constant does not depend on z,
the equation V-D=0 leads to V-E=0, and Eq. (17)
becomes

D 0%

V2E=uoa—[l' =M0(;2‘[€0+€1 cos(wit—ki2) JE. (18)

To solve this equation, let us make an assumption
for E equivalent to our assumption of Eq. (4). That is,
we assume

E.=% (n)Aaexp—i[ (wotnw)t— (kotnky)-r], (19)
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where as stated above k; is along the z direction, ko has
only y and z components. We substitute the function
(19) into Eq. (18), proceed as in the derivation of Eq.
(7), and find that we have a solution of Maxwell’s
equations provided

(ko+nk1)2

[60——_——]A »+E(A w1t An)=0. (20)
po(wotnwr)? 2

The general structure of this equation, and its method of
solution, are like the earlier problem resulting in Eq.
(7). If &,=0, we have only a single wave, Ao, all the
other A4,’s being zero, and the relation between wo and
ko is given by

Ik(ll) (21)

1
we=
(eono)?

which is in accordance with ordinary electromagnetic
theory, in which 1/ (eouo)? is the velocity of propagation
of an electromagnetic wave. The condition for Bragg
reflection, as before, is that two waves, say for n=0
and #=1, have identical diagonal matrix components.
That is, we must have

(kot+ky)?

ko
=€y 8 (22)
Rowe? po(wotwr)?

€0

In case w;=0, this leads to ko,= —1ky,, as before. The
curve of wo as a function of ko, resembles the linear
curve of Fig. 3 rather than the parabola of Fig. 2.
The energy or frequency gaps are interpreted in the
same way as in the case of electron scattering. The gap
comes between angles 6 given by

. €1 ,
sinf= [511120 B:I:——]
2ep

(23)

similar to Eq. (14).

The treatment which we have given is equivalent to
the standard treatment of the dynamical theory of
x-ray diffraction. If we have reflection of a wave from
the surface of a crystal, as we discussed in detail
for the electron case in Sec. 2, the reflection will
be total in the narrow range of angles given by
Eq. (23). The wave inside the crystal in this case has
a complex propagation constant, and is damped as we
go into the crystal. This is the phenomenon of primary
extinction. We shall not go further into these details,
which are familiar to the crystallographer, and which
are described thoroughly, for instance, by James.!
Our only purpose in bringing up these matters has been
to show the general nature of Bragg reflection, and the
similarity of the problems of electron scattering and
the scattering of electromagnetic waves.

'R. W. James, The Optical Principles of the Diffraction of
X-Rays (G. Bell and Sons, London, 1948).
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At least three phenomena form examples of the
treatment which we have just given. First is ordinary
x-ray diffraction. In this case w3 =0, and the sinusoidal
wave of dielectric constant arises from the scattering
of x-rays by the periodic distribution of charge in the
atoms. The way in which this comes about is well
known to crystallographers. If we are far from a region
of anomalous dispersion, it is a familiar fact of wave
mechanics, which can also be proved from the classical
treatment of Thomson scattering, that the current
density J produced in a sample of matter by an electro-
magnetic field whose vector potential is A4 equals
— (e¢/m)AN, where ¢ and m are the charge and mass
of the electron, and N is the number of electrons per
unit volume, a quantity varying from point to point
within the atom. Now by the ordinary equations
E=—9A/dt, and J=0P/ai, where P is the polarization
vector, these relations are equivalent to

9°P e 3A &N

—=———N=—02E, (24)
ot m At m

from which, if we have a disturbance of angular

frequency wo, we have 3°P/d#2= — P, and

—eN
P= E, (25)

w (Fm

giving a polarization proportional to the electric field.
In the mks units, P contributes directly to D, without
any additional factor, so that we have

eéN
D = (60— )E
wozm

If we make a Fourier analysis of the electron density
function N, one term out of the Fourier analysis of
—é®N/wePm will give the term ¢ cos(k;-r) which we
have encountered in Eq. (16). In this way we can
evaluate the numerical values of the coefficients ¢
in terms of the electronic form factor and structure
factor. We then find the well-known relations for
connecting the intensities of x-ray diffracted beams
with the Fourier components of the charge density.
The case where we are in a region of anomalous disper-
sion is more complicated, and we shall omit it in this
discussion.

The second phenomenon which forms an example of
this treatment is the scattering of a light wave by a
sound wave. Since the index of refraction of a solid
or liquid is a function of its density, a longitudinal
wave of sound will produce a sinusoidal disturbance of
the dielectric constant, and refractive index. As a
result of this, light is scattered according to Bragg’s
law by a sound wave. This phenomenon, first discovered
experimentally by Debye and Sears, is a striking and
easily observed ultrasonic effect. It is often used to

(26)
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measure the velocity of sound in the ultrasonic region.
The sound is generated by an oscillator of known
frequency, and the wavelength is determined from
Bragg’s law, so that the velocity can be found. The
amplitude is ordinarily so great that a number of
orders of diffraction are observed. Though the scattered
radiation has a frequency wo+mnw;, where we are
considering nth-order scattering, the frequency w;
of the ultrasonic wave is so small compared to the
optical frequency wo that the frequency displacement is
not observed.

The third phenomenon of the same sort is the
scattering of x-rays by sound waves of very high
frequency, which constitute the thermal energy of the
crystal. This is the thermal diffuse scattering. As we
shall see later, sound waves or elastic vibrations
produce sinusoidal waves of polarization, and of
effective dielectric constant, which can scatter waves of
x-rays. We shall postpone further discussion of this
case until we have considered the thermal vibrations of
a crystal, so that we can go into the nature of the
waves of polarization in detail.

4. ENERGY BANDS IN CRYSTALS

In most of the cases we are interested in, we have
scattering not only by a single wave, but by a great
number of them, with different amplitudes, propagation
vectors, and frequencies. If the scattering by each one
is small, so that it can be handled by first-order approxi-
mations, we can superpose the scattering arising from
the various waves, and do not need to trouble with
multiple scattering. This is the ordinary case with
x-ray scattering. However, if the scattering by individ-
ual waves is greater, multiple scattering becomes
important, and we must consider the whole problem
of scattering by all the sinusoidal waves as a single
problem. This is the case which we meet with electrons
scattered by the sinusoidal potential present in a
perfect crystal. It is the problem which leads to the
theory of energy bands, the wave functions and energy
levels of an electron in a periodic potential, and we
shall now give a short sketch of that theory, to show how
closely analogous it is to the questions which we have
already been taking up.

Let us assume that we are dealing with a crystal in
which the primitive translation vectors are a;, a,, and
a;, and the corresponding reciprocal vectors are b,
bs, and bs, so that a;-b;=34,;. Then if we set up a plane
wave by the expression expiK;-r, where

K;=2x (hib1+hsbo+-hsbs), (27)

where ki, hy, h; are integers (equal to the ordinary
Miller indices %, k, I), this plane wave will have the
same value at corresponding points in each unit cell,
or will be a periodic function which repeats in each unit
cell. To see this, we note that if r is increased by
Ri=mia;+maar+msa;, where m;, my, m; are integers,
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we go from a point r to the corresponding point in
another unit cell. In this case the exponential is multi-
plied by a factor expiK;: Ri=exp2wi(mihi+moh,
+mshs)=1, since the m’s and #’s are integers. The
most general function which repeats in corresponding
points of each unit cell is an arbitrary linear combination
of all plane waves of this sort, with all sets of 4’s.
The self-consistent potential energy of an electron in
a crystal will have this property of periodicity. Hence
we can write it in the form

V=% (K)W(K,) expi(K;-r), (28)

where K ; is given in Eq. (27), and where the summation
over K; is a summation over all sets of integers A,
hs, hs. The amplitudes W (K;) must satisfy the condition
that W(—K;) is the complex conjugate of W(K;) in
order that the potential energy may be real.

We now set up the Schrodinger equation of the
problem, analogous to Eq. (3), and try to get a solution
of the form

y=exp—iEi/h3. (K;)A(K;) expi(kot+K;)-r. (29)

This is analogous to Eq. (4). In place of the time
exponential exp—1(wo+mw:1)t of Eq. (4), we have taken
the single exponential exp—iE:{/%, where E is the
energy, since w; is zero in this case. The plane waves
whose space dependence is given by expi(ko+K,)-r
represent all scattered waves, of all orders, scattered
by all Fourier components of the potential. We sub-
stitute this expression in the Schrédinger equation
arising from the potential energy of Eq. (28), proceed
as in the derivation of Eq. (7), and find

hZ
[—(ko+ K,)2— E]A (Ky)
2m

+2 (K)W(K,)A(K:—K;)=0. (30)

If Eq. (30) is satisfied, then the function of Eq. (29)
forms an exact solution of Schrodinger’s equation for
the periodic potential problem.

As in the preceding cases, we can start a discussion
of Eq. (30) by using perturbation methods. If all the
coeﬂicients W(K;) are negligible [aside from W (0),
which represents the average potential energy through
the crystal], we can use a single plane wave, 4 (0),
whose energy will be given by E= (%2/2m) (k¢?)+W (0).
If we are in the neighborhood of a Bragg reflection, and
the W(K,)’s are small enough to disregard multiple

Fic. 4. Central Brillouin
zone for the face-centered
cubic lattice.
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scattering, we may consider only the incident and the
scattered wave. Thus, if there is a vector K; such that
(ko+K,)? is approximately equal to ke?, just two waves,
corresponding to K,=0 and K;=Kj, will have appreci-
able amplitudes, and we have the equations

h2

(—kH—W(O)—-E)A(O)+W(-K1)A(K1)=O
2m

h?
(—(ko+K1)2+W<0)—E)A(Kl>
2m

+W(K)A4(0)=0, (31)

analogous to Eq. (11), and leading in an exactly similar
way to Bragg reflection. We see, then, that we shall
find Bragg reflection if the propagation vector of the
incident wave, drawn out from the origin in % space,
terminates on a plane which is the perpendicular
bisector of the vector —Kj. This is the origin of the
famous construction of Brillouin, leading to the
concept of the Brillouin zones.

It occurred to Brillouin to take a reciprocal lattice,
draw all the vectors K; leading from the origin to all
lattice points, set up the planes forming the perpendic-
ular bisectors of these vectors, and examine the resulting
construction. Diagrams indicating the results, for the
two-dimensional case, are very familiar. If we find the
energy E as a function of ko, where ko can take on any
value, we expect to find that there is a discontinuity
like that shown in Fig. 2 when we cross any one of these
planes. First we shall fix our attention on that part of
reciprocal space enclosed by those planes closest to
the origin. This is called the central Brillouin zone. In
simple cases it has the form of a regular polyhedron.
Thus, in Fig. 4, we show the central Brillouin zone
for the face-centered cubic lattice. This central Brillouin
zone for any type of lattice contains all those parts of
reciprocal space which are closer to the origin than
to any other lattice point, since it extends out to those
planes which are equally far from the origin and from
another lattice point. Hence if we locate a similar
polyhedron centered on each lattice point of the
reciprocal lattice, they will just touch and fill all
space. This shows us immediately that such a zone
must have the same volume as a unit cell in reciprocal
space, and for many purposes it is convenient to use
the central Brillouin zone in place of such a unit cell.

If we assume that all matrix components W (K,) of
the periodic potential are very small, the energy will
be given approximately by E=%%/2m~+W (0), con-
stant on spheres in & space or reciprocal space, but with
perturbations like that shown in Fig. 2 on each of the
planes given by Brillouin’s construction, and in
particular at the surface of the first Brillouin zone.
Brillouin considered not only this first zone, but also
further zones, which he made up by combining segments
enclosed by planes further from the origin. Before

205

considering these, however, there is a feature of Eq.
(30) which we should consider.

This equation, as we have already pointed out, is an
eigenvalue problem: if we fix ko, it allows us to deter-
mine the energy E, in order to have coefficients 4 (K;)
which will result in the series of Eq. (29) being con-
vergent. But now let us point out a feature which we
have not emphasized previously. We can add any
lattice vector K, of the reciprocal lattice to ko, without
changing the results of the solution of Eq. (30),
except in a purely formal way. Thus, the wave function
for a propagation vector ko+ K,, according to Eq. (29),
may be written as

y=exp—iE/nY (KA (K,) expi(ko+ K.+ K;)-r. (32)

Let us however define K,+K; as K/, and let 4(K})
be rewritten in the form A’(K;’). Then Eq. (32) becomes

v=exp—iEt/%Y. (K/)A' (K )expi(ko+K;) -r. (33)

This has the same form as Eq. (29), except for the
primes. When we substitute in Schrodinger’s equation,
we find

h?
—(ko+K/)2— E]A'(K;’)
2m

+2(K,)4'(K/-K;)=0,

which has the same form as Eq. (30), except for the
primes. Hence the secular equation arising from Eq. (34)
must have the same eigenvalues as Eq. (30), showing
that the energies associated with the propagation
vector ko+ K, are identical with those associated with
ko, and furthermore the A’(K,) values found from
Eq. (34) must be identical with the 4(K;)’s found
from Eq. (30), so that the wave function derived from
Eq. (33) must be identical with that found from Eq.
(29). In other words, the eigenvalues and eigenfunctions
of the problem are periodic functions of ko, repeating
at equivalent points in each unit cell of the reciprocal
lattice.

We can understand this periodic behavior from the
one-dimensional case. If the potential energy is a
periodic function of #x, the energy as a function of ko
will have a form similar to that of Fig. 2, with a break
at each of the points nk,/2, corresponding to the nth-
order Bragg reflections. The central Brillouin zone
in this case reduces to the interval along the % axis
between —£1/2 and k,/2, extending out from the origin
to the first break in each direction. This interval, of
k1, is the fundamental translation in the reciprocal of
k space, corresponding to a unit cell in the reciprocal
lattice. The energy must then repeat in each such
region; and to secure this, we show in Fig. 5 the figure
similar to Fig. 2, but repeated periodically in each
equivalent region. We see that the curve of E vs &
consists of an infinite number of branches, each a
periodic function of %o with period %; (and also each an

(34)
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F16. 5. Energy as function of propagation constant %, in a
one-dimensional periodic lattice, showing periodicity of energy
curves.

even function of ko, having identical values for equal
positive and negative values of ko). These are the
so-called energy bands.

For any value of ko, we now see that we have an
infinite number of eigenvalues. This is natural, for the
secular equation arising from Eq. (30) comes from a
determinant with an infinite number of rows and
columns, and hence having an infinite number of roots.
Furthermore, we may limit %0 to the central Brillouin
zone, or to the range between —k%;/2 and k;/2 in
Fig. 5, and get all possible eigenvalues, and hence all
possible eigenfunctions. This is not the procedure which
Brillouin used. In Fig. 5, he would have considered
only that single eigenvalue for each value of %, indicated
by the heavily drawn portion of the curve, which
departs only slightly from the parabolic curve E=7%2k,/
2m~+W (0), which represents the energy in the absence
of perturbations. In the central Brillouin zone, for %,
between —#k;1/2 and ki/2, he would have used the
lowest curve in Fig. 5; the second Brillouin zone in
this case consists of the two ranges, from —2; to
—%1/2 and from k;/2 to ki, and here he would have
used the second lowest curve; and so on. Such a
construction, using many Brillouin zones built up from
segments of reciprocal space, becomes very complicated
in the three-dimensional case, but it is convenient when
the perturbations are small, and the energy does not
deviate far from the parabolic value. However, we
can equally well use only the central Brillouin zone,
and consider all the infinitely many values of energy
within this region.

When the potential energy components W (K;) have
the magnitudes actually found in a crystal, this latter
scheme, in which only the central Brillouin zone is
used, becomes much more natural to use, because the
departure from the parabolic energy becomes so great
that there is no longer any point in trying to show a
parallelism between the true energy and the parabolic
value. For a given %o within the central Brillouin zone,
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we have, as we have mentioned earlier, an infinite
number of eigenvalues. The lowest eigenvalue for each
ko will form a smoothly varying function of ko, and
these energies form the lowest energy band. Similarly
the second lowest eigenvalues for each ko form the
second energy band, and so on. We may denote the
energies as E,(ko), where 8=1 for the lowest band,
2 for the next, etc; and we may denote the corresponding
eigenfunctions as ¥ (ko,r).

There is one point of importance, in understanding
these energy bands. If we have a finite crystal, rather
than an infinite one, all values of ko are not allowed.
Rather, there are boundary conditions at the surface
of the crystal, which limit %, to discrete values, subject
to the restriction that the electronic wave functions
must go to zero at the boundary of the crystal, so that
the dimensions of the crystal must be integral numbers
of half wavelengths, or equivalent conditions. The
allowed values of ko are nevertheless very close together,
and the number of allowed values of ko equals the
number of unit cells in the crystal, an enormous value.
These allowed k¢’s are spaced with uniform density in
the Brillouin zone. This existence of a discrete set of
ko’s is of great importance in understanding the role
of Pauli’s exclusion principle in energy-band theory.
The wave function associated with a given ko, and a
given energy band, forms a distinct wave function in
the sense of Pauli’s principle. Hence each such wave
function can hold only one electron of each spin, which
means that each energy band can hold one electron
of each spin per unit cell of the crystal.

From Eq. (29), we can deduce one very important
property of the wave functions. We can rewrite Eq.
(29) in the form

y=exp—i(wi—ko 1) (K;)4(K;) expiK;-r, (35)

where 7wo=E. That is, the wave function can be
rewritten as the plane wave exp—i(wot—ko-1), multi-
plied by the summation, which from its form must be
a periodic function of r, repeating its value at corre-
sponding points of each unit cell in the crystal. This
result was pointed out by Bloch very early in the
development of wave mechanics. There is another way
in which the same result can be stated: if r increases
by one of the vectors R;, pointing from one point in
the crystal to the corresponding point in another unit
cell, the wave function is multiplied by a factor exp
Xiko- Ry, as we can see from Eq. (29) (since each of the
products K;-R; equals 27 times an integer). This
means that apart from this factor, which is a complex
number of unit magnitude, the wave function will have
an identical form in each unit cell, and the product
¥*, for one of the wave functions, will have identical
values in each unit cell. That means that the charge
density arising from any wave function of the type of
Eq. (29), often called a crystal wave function, will be
identical at corresponding points in each unit cell.

We can now understand the way in which the energy
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band theory is used in applying Hartree’s self-consistent
field method to a crystal. We start with a periodic
potential energy of the form given in Eq. (28), rep-
resenting an approximation to the potential energy
arising from the nuclei and all other electrons of the
crystal aside from the one being considered. We solve
Schrédinger’s equation for this potential, and find the
resulting crystal wave functions and energy bands.
We assume that enough of the energy levels are filled,
starting from the bottom, to accommodate all electrons
of the crystal, allowing one of each spin in each crystal
wave function, or one of each spin per unit cell in each
energy band. When we have accounted for all the
electrons, we take the corresponding crystal wave
functions y¥s(k,r), find the resulting charge densities
¥*y, add these for all occupied energy bands, getting
a corresponding charge density for all electrons of the
crystal, determine the electrostatic potential arising
from this charge density plus that of the nuclei, and
apply a condition of self-consistency, namely that the
final potential must equal the initial potential. In
doing this properly, we should correct for exchange,
obtaining the Hartree-Fock equations rather than the
simpler Hartree equations, and automatically correcting
for the fact that an electron does not act electrostatically
on itself. This whole program has never been carried
through completely for any crystal, but fairly good
approximations to it are used in many energy-band
calculations.

Now we consider the energy bands more in detail,
and can understand why the deviation from the free
electron case is so great that the assumption of small
W (K;)’s is not valid. The lowest energy band in any
crystal will arise from the K level in the heaviest atom
in the crystal, next bands will arise from the L levels,
and so on. The energies of these inner electrons will not
depend on the fact that the atoms are bound in a
crystal; in other words, the energies will not depend
appreciably on k. It is not until we come to the outermost
electrons of the atom that we find energy bands in which
the dependence of the energy on k is appreciable.
Above the occupied bands we have an infinite number

of higher bands, which could be occupied by excited-

electrons, but are empty in the ground state of the
system. If the electrons are just sufficient to fill certain
bands, leaving an unoccupied gap above them, and
empty bands above that, we have an insulator or
semiconductor, in which case the highest occupied
band is called the valence band, and the lowest unoc-
cupied band is the conduction band. If on the contrary
the topmost occupied band is only partially filled,
we have a metal. Most of our interest in the study of
energy bands is centered around these highest occupied
bands, for they are the ones taking part in electrical
conductivity, optical absorption, and other important
solid-state phenomena.

The wave functions ¢ for the lowest bands, arising
from the K and L shells of the atoms, look almost
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exactly like the corresponding atomic wave functions,
except that they must repeat in each unit cell, and be
multiplied by the factor expik-R; in going from one
unit cell to another distant by the vector R;. A very
good approximation to such a wave function is provided
by a so-called Bloch sum, a linear combination of the
corresponding atomic orbitals which has the proper
symmetry. If a(r) is an atomic wave function of the
suitable type, located in the unit cell at the origin, then
the Bloch sum formed from this atomic orbital is
> (R;) expik-Ria(r—R;), where a(r—R;) is a corre-
sponding atomic function located in the unit cell at
vector position R;. Once we realize that the functions ¥
can have forms like this, we see why a.free-electron
approximation is not valid. The expansion of Eq. (29)
is a Fourier expansion of such a wave function, and it
must have Fourier components of appreciable magni-
tudes of wavelengths as short as the smallest features
present in the wave function; that is, as short as the
dimensions of the K wave functions. Such a slowly
convergent Fourier expansion means that in Eq. (30),
the interaction of very large numbers of Fourier
coefficients is essential if we are going to get a good
solution. As a rule of thumb, Fourier components
consisting of plane waves which, if taken by themselves,
would correspond to free electrons of kinetic energy as
large as the ionization potential of the heaviest atom
in the crystal will occur in the expansion of Eq. (29)
with appreciable amplitudes. This holds, not only for
the crystal wave functions arising from the K and L
electrons, but for all crystal wave functions up to very
high energies. In other words, a simple expansion of the
wave function in which we treat the perturbations from
the free-electron case as small is not appropriate even
if we are dealing with energies as large as the ionization
potential of the heaviest atom in the crystal.

We must realize that the energy band theory, with
essentially identical mathematical features, enters in
two quite different ways into solid-state theory.
First, we have the applications which we have just
been sketching, in which we are dealing with the
occupied or slightly excited energy bands, and hence
the normal constitution of a crystal, or those electrons
which are excited by thermal action, optical absorption,
electrical conductivity, and so on. Secondly, we may
have fast electrons traversing a crystal, as in the case
where we are dealing with the problem of electron
diffraction. From what we have said in the preceding
paragraph, we can see that the standard approximations
made in treating electron diffraction, namely, that we
can handle each Bragg reflection independently of the
others, and treat it as a small perturbation, will not
be valid even if the kinetic energy of the electron is
as great as the ionization energy of the heaviest atom in
the crystal; one must go considerably above this energy
to have it approximately valid. Consequently electron
diffraction by slow electrons is a much more com-
plicated process than x-ray diffraction or electron



208 JOHN C.
diffraction by fast electrons, and it should properly be
handled as a branch of energy band theory. Unfor-
tunately such treatments of the problem have not been
given. Again, the fine structure of x-ray absorption
edges deals with the transitions of electrons from the
bound levels to the energy bands some hundreds of
electron volts above the top of the occupied bands.
This can only be handled theoretically by means of a
thorough study of these excited energy bands, and such
a thorough study has never been made. The existing
theoretical treatments of the fine structure of absorption
edges are based on very inadequate theories of the
excited energy bands.

There is one feature of energy bands which is of
great importance in their detailed treatment. This is
the question of their symmetry properties. We can
illustrate these properties by a simple example. Let
us consider a cubic crystal, and the energy band arising
from an atomic p state of an atom located at a symmetry
point of the crystal, so that this atom is in an environ-
ment of cubic symmetry. We remember that the p
state is threefold degenerate (if we disregard the
electron spin), and that the three atomic orbitals can
be expressed as xf(r), yf(r), zf(r), where f(r) is a
function of the radial distance from the nucleus. These
may be denoted as p., p,, p.. We can form Bloch sums
from each of these types of atomic function; in general,
a linear combination of these three Bloch sums must
be used to approximate a solution of Schridinger’s
equation. However, for the case where the propagation
vector k is along the x direction, each Bloch sum by
itself is a good approximation, and there are no interac-
tions between them. The sum formed from p, is in a
sense a longitudinal wave, and the two formed from
Py and p. are in a sense transverse waves. By symmetry
one can show that the two sums formed from p, and
. functions will be degenerate with each other, whereas
that formed from p. will have a different energy. At
k=0, where there is no wave propagation at all, all
three states will be degenerate with each other. Thus,
we shall find energy bands which are threefold de-
generate at £=0, and which split into a single and a
doubly degenerate state as we go out along the x axis,
or the 100 direction. Similarly in the 111 direction such
a state will split into a single and a doubly degenerate
state. On the other hand, in an arbitrary direction, the
degeneracy will be removed. Here we have three
separate bands, capable of holding three electrons of
each spin per unit cell, which nevertheless must touch
on account of symmetry at £=0. They are referred to as
degenerate bands.

The problem of indicating graphically the energy in
an energy band as a function of % is obviously difficult,
since we are dealing with a three-dimensional problem.
To show the results fairly adequately, the common
procedure is to show the energy along one or more
lines in £ space. Thus, for example, one shows the
energy first along the x axis in % space, the 100 direction
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(in a cubic crystal), from the origin of the Brillouin
zone out to its boundary, corresponding to the point
k1/2 in our one-dimensional case. One also shows the
energy along a line in the 111 direction in % space, again
from the origin to the boundary of the zone. Finally one
can join up these two points on the boundary by a
path crossing the various faces of the Brillouin zone and
can give the energy as a function of position along this
path. In this way a fairly adequate picture of the energy
as a function of % is given.

We have tried in this section to give something of
an introduction to the theory of energy bands, enough
to serve as a preliminary to the reading of more detailed
papers, and at the same time enough to show the close
connection between this theory and the theories of
Bragg scattering which we have outlined in Secs.
2 and 3 of the present paper. Now we shall go on to
quite a different problem, namely, the elastic vibrations
of crystals, and shall show that in spite of the differences
still there are important resemblances. Here again we
meet the Brillouin zones, and the frequency of vibration
(which for harmonic oscillators is proportional to the
energy of the phonon) is given as a function of %
throughout the zone. We shall consider this problem
in the next section; and then we shall be prepared to
go on to the interactions between thermal waves and
electronic or electromagnetic waves, which we have
already mentioned in a descriptive way.

5. THERMAL VIBRATIONS OF A CRYSTAL

The fundamental theory of the vibrations of a
crystal was set up by Born and von Karman many
years ago. Its main features can be presented in very
simple form. We proceed by classical mechanics to set
up Newton’s equations of motion for the elastic vibra-
tions of the atoms of a crystal, acting on each other by
linear restoring forces. Let us assume that each unit
cell of the crystal contains g atoms, and that the
undisplaced position of the sth atom in the ith unit
cell is p,+R;, where g, is the vector displacement of
the atom from the corner of the unit cell, R; is the
vector from the origin of the coordinates to the corre-
sponding point in the 7th unit cell. When the atoms are
at these undisplaced positions, it is assumed that they
are all in equilibrium. However, we consider the case
where the sth atom in the ith cell is displaced from its
equilibrium position by a small amount u(s,i). Then
we assume that there will be a force acting on each
atom, which is a linear combination of the displacements
of all atoms. The ordinary linear theory of vibrations
disregards the terms in the force involving higher
powers than the first of the displacements.

We must, then, express the fact that each of the
three vector components u(s,s) is a linear combination
of the three vector components of the u(t,4)’s of all
other atoms in the crystal. That is, we have

Fp(sit) =2 (@h)Cr st Ri— R, (8,7).  (36)
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Here the subscripts p, ¢ take on three values, corre-
sponding to #, ¥, and z components. F,(s,i) is the p
component of force acting on the sth atom in the unit
cell at R;, and u,(¢,7) is the ¢ component of displace-
ment of the ¢th atom in the unit cell at R;. The coeffi-
cient Cpe(s,t, R;—R;) in the linear relation depends on
the components p and ¢, on the question of which atoms
in the two unit cells are being considered (the indices
s, 1), and on the vector displacement R;—R; between
the two unit cells, but not on the absolute position in
the crystal of each of the unit cells, on account of the
periodicity of the crystal. There is no implication in
Eq. (36) that the forces are derived from central forces
between atoms, or any such restriction.

We can now set up Newton’s second law for the
motion of the atoms. If m, represents the mass of the
sth atom in the unit cell, we have

(8,8) =F p(s,7)
ms 5,8)=F (s,
Z (q )t7j)c rq (“ )t) Il] Ili)"((t’j)'

We shall try to satisfy these equations by assuming that
the solution consists of an elastic wave, in which the
displacements are given by

(37)

45 (5,1) =w,(s) expi(wt—k-R;), (38)

where w,(s), w are to be found as functions of the
propagation constant k. If we insert this assumption
in Eq. (37), that equation reduces to

— My (s) =2 (4,4,0)C (5,4, Ry)exp—ik- Ry, (¢), (39)

where we have replaced R;—R; by R,. In Eq. (39)
we have 3g simultaneous equations for the 3g displace-
ments of the g atoms in a unit cell. These are linear
homogeneous equations for the constant quantities
w,(s), where p goes through the three indices %, y, 2
and s goes from 1 to g, running over the atoms in the
unit cell. We know that such simultaneous equations
will not have a nonvanishing solution unless the
determinant of the coefficients vanishes. This is an
equation of the 3gth degree determining w? in terms of
k. It is a secular equation similar to those of quantum
mechanics, but on account of the finite number of
atoms in the unit cell, it is of finite order, and with
digital computers it can be solved exactly, if we know
the C’s. Once we have found the frequency, we can find
the w’s. We shall then find the frequencies, and atomic
displacements, for 3g normal modes of vibration of the
crystal, for each value of k.

We note that the displacements defined by Eq. (38)
are unchanged if the propagation vector k is increased
by one of the translation vectors K; in the reciprocal
lattice defined by Eq. (27); for K;-R; equals 27 times
an integer. Hence all distinct solutions will be found if
k is allowed to run through a unit cell of reciprocal
space. We may equally well let k run through the
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central Brillouin zone, since this is equivalent to a unit
cell, and if we choose, we may interpret w? as being a
periodic function of position in K space, just as the
energy is in the problem of energy bands. We can plot
w as a function of k, by using the same sort of device
that we use in plotting energy bands, giving w along
certain lines in k space, such as the 100 or 111 directions,
passing from the center to the edge of the Brillouin
zone. We shall have 3g separate curves, which in some
cases can show degeneracy at certain points in k
space, in a way entirely analogous to the energy bands.
In particular, we find that for three of the curves,
called the acoustical branch, w goes to zero as k goes to
zero, which is the reason why this is called the acoustical
branch, since it leads to vibrations of acoustical
frequency in the limit of long wavelengths (small k).
These three modes are degenerate at k=0, each having
zero frequency. In a cubic crystal, and for propagation
along the 100 direction, the degeneracy will split for
k>0, in such a way that we have one longitudinal
wave, and a doubly degenerate transverse wave, for
which the oscillation could be either along y or z. In
general directions of propagation, the degeneracy is
entirely removed, and the oscillations cannot be
described as either longitudinal or transverse. In
addition to the acoustical modes, the other 3g— 3 modes
have frequencies which never go to zero, but lie in the
infrared region of the spectrum, and consequently are
called optical modes.

If we have a finite crystal, then just as in the energy
band case the waves of Eq. (38) must satisfy certain
boundary conditions, as a result of which only discrete
values of k lead to allowed vibrations, the normal modes
of vibration. As before, these k’s are uniformly dis-
tributed through the Brillouin zone, and are N in
number, if there are N unit cells in the crystal. Thus the
total number of modes is 3Vg. In the theory of specific
heat, each of these normal modes is treated as an
ideal linear oscillator, so that at high temperatures it
has an average energy of k7, where %k is Boltzmann’s
constant, 7 the absolute temperature, leading to a heat
capacity of 3Ngk, which is the familiar law of Dulong
and Petit. At lower temperatures, we must treat the
vibrational energy of each oscillator by the quantum
theory, and are led to the sort of treatment of specific
heat given by Blackman; the Debye theory forms a
very crude first approximation to this treatment.

There has been a good deal of treatment of the
vibrations of crystals in the literature; but most of
it is based on very arbitrary assumptions regarding
the coefficients C,4(s,t,R,), which are really independent
microscopic elastic constants, subject only to certain
interrelations on account of crystal symmetry. There
are an infinite number of such constants, though there is
every reason to think that they decrease rapidly to
zero as the two atoms concerned get further and
further apart, so that in practice one need use only a
small number of such constants. The principal ways of
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determining these constants experimentally are by the
use of thermal diffuse scattering of x-rays, or by the
inelastic scattering of neutrons, as we shall describe
later. The macroscopic elastic constants can be deter-
mined as linear combinations of the C’s, since in the
limit of low frequencies the vibrations approach
ordinary acoustic oscillations, which can be described
in terms of classical elasticity theory. Many workers
have tried to work backward, from the macroscopic
elastic constants, to deduce the C’s, and hence set up
Eq. (39) and determine the vibrational frequencies.
This in principle is impossible, however, for the number
of macroscopic elastic constants is very small, and we
have theoretically an infinite number of C’s. The only
proper procedure seems to be to find the C’s, as we
have mentioned, by thermal diffuse scattering of
x-rays or by neutron scattering, and then to test these
C’s by computing the macroscopic elastic constants
from them. In cases where such tests have been carried
out, they have given a satisfactory check with
experiment.

The theory of elastic vibrations as we have presented
it assumes only linear restoring forces between the
atoms. Of course, this forms merely the first term in a
power series expansion of the forces in terms of the
displacements. Once the higher order terms are included,
different elastic modes can no longer propagate
independently of each other; there is rather an interac-
tion between different waves. In other words, one
elastic wave can scatter another. When it does so,
we come back to the sort of problem which has been
our main concern in this paper: either wave can be
considered to undergo Bragg reflection by the other.
Such scattering of one thermal wave by another is
operating in the problem of thermal conductivity.
Heat flows through a body in the form of elastic
vibrations. These waves are scattered by other thermal
waves, so that there is the equivalent of a thermal
resistance. The well-known theory of thermal conductiv-
ity of Peierls is based on an analysis of this scattering.
The reader will see from this that the departures from
linearity in the elastic vibrations, which become
particularly important at high temperatures, involve
the same sort of problem which we have been consider-
ing. But such problems have not been by any means
completely treated in actual crystals.

We have now presented the theory of the thermal
vibrations of crystals in sufficient detail so that the
reader will be able to understand the next problem
which we shall take up, namely thermal scattering of
x-rays or of electrons. This involves examining the way
in which the thermal oscillations of a crystal introduce
waves of dielectric constant (in the case of x-rays) or of
electrostatic potential (in the case of electrons), capable
of scattering x-rays or electron waves according to the
principles taken up in Secs. 2 and 3.

SLATER

6. SCATTERING OF X-RAYS BY THERMAL
OSCILLATIONS

The treatment of the coherent scattering of x-rays
by crystals is based on making a Fourier analysis of
the electron density function, analyzing it into plane
waves. By means of Eq. (26), we can convert this into
an analysis of the dielectric constant into plane waves,
and by the methods of Sec. 3 we can study the
scattering of an electromagnetic wave by such plane
waves. The scattering is weak enough so that each
plane wave can be handled separately, so that we can
associate the scattering of an incident wave of x-rays
of monochromatic wavelength, through a given
scattering angle, uniquely with a single Fourier compo-
nent of the electron density. By the methods of Sec. 3
we can find-the amount of scattering produced by a
wave of given amplitude, in an infinite perfect crystal.
The amplitude of the scattered wave is proportional to
the amplitude of the wave of dielectric constant, or
of electron density, doing the scattering. Of course, the
problem of scattering by real crystals of finite extent
is much more complicated than this; when proper
account is taken of the size of the crystal, and its
mosaic structure, it is well known that the final scattered
intensity is proportional to the square of the corre-
sponding amplitude of the wave of electron density.
We shall not go through any of this elaborate theory,
but shall merely use the fact that the coherent scattering
from a crystal in a given direction is uniquely related to
the amplitude of the Fourier component of electron
density, arising from the propagation constant k; which
must be added to the propagation constant ko of the
incident x-rays to yield the propagation constant ko+k;
of the scattered x-rays, according to Fig. 2. The
magnitude of this vector k;, as we see from the deriva-
tion of Eq. (1), is

| k1| =4m sind/A, (40)

where 6 is the glancing angle of incidence, or 26 is the
scattering angle.

We now wish to consider the scattering by a crystal
in which the atoms are undergoing thermal oscillation;
and we see from the preceding paragraph that our
problem is simply to carry through a Fourier analysis
of the electronic charge density of the crystal, or its
analysis into plane waves. Each such plane wave will
scatter radiation according to the principles we have
already considered. First we remind the reader of the
well-known results of this Fourier analysis in the case
of the undistorted crystal. To find the amplitude of
the Fourier component of propagation constant k; we
multiply the charge density by exp—ik;-r, and integrate
over the crystal, multiplying by a suitable constant
depending on the type of normalization we use. If we
can approximate the charge distribution as the super-
position of spherical distributions for each atom, as we
can do to a good though not perfect approximation,
the resulting integral can be written as a sum of terms,
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one for each atom. For the atom located at the vector
position ¢,+R; (as in Sec. 5), it is convenient to
rewrite the exponential as exp—ik;- (9,1 R:) exp—ik,
- (r—ps—R;), in which the second factor now involves
the vector distance from the nucleus of the atom
considered. We multiply this latter factor by the
charge density of the atom, and integrate, obtaining a
result which is the atomic scattering factor f, of the
atom of the sth type, a function of the magnitude of
k1 only, or of 4w sind/A, according to Eq. (40). Since
the nature of these atomic scattering factors is so
well known, we shall not go further into their nature
here.

Next we must sum over all atoms, and in doing
this, we may sum separately over the index ¢ involved
in R;, and the index s involved in g,. As for the sum of
the factor exp—k;- R;, we are summing over the whole
crystal, and we find as the crystal becomes larger and
larger that the sum becomes smaller and smaller,
unless k; is very close to one of the vectors K; defined in
Eq. (27). If k, exactly equals one of the K;’s, the sum
is equal to the number of unit cells in the crystal.
Since we are not concerning ourselves here with the
problem of the finite crystal and its influence on the
breadth of scattered beams, we shall merely assume that
the sum is zero unless k; precisely equals one of the
K;’s, so that it can be characterized by the integers
ki, he, hs. Then the summation over s becomes a
summation of the factor f, exp—iK;-p, over the atoms
of the unit cell, which is the structure factor

F (ha,ho,hs) =3 (s)fsexp— 2w (hib1+hoba+-hsbs) - 0., (41)

This quantity, then, is proportional to the amplitude
of the plane wave of electronic charge density with
propagation constant K;, and hence its square is
proportional to the intensity of scattering from this
plane wave in a real finite crystal. For the undistorted
crystal we then have Fourier components of the charge
density only for those propagation constants k; which
equal vectors K; of the reciprocal lattice (the K’s
are actually 2x times the vectors in the reciprocal
lattice).

Now our problem is to inquire how this situation is
modified by thermal agitation. We may assume that
the atom which would be located at p,+R; in the
undistorted crystal is displaced by an amount u(s,z),
as in Sec. 5. If it is legitimate to write the charge
density of each atom as a spherical distribution, it [is
equally legitimate to assume that when the atoms are
displaced, their spherical distributions are rigidly
displaced along with the nuclei. Neither of these
assumptions is of course rigorously correct, but the
errors of the assumptions are so small that extreme care
is required even to detect them experimentally, so
that the usual assumption of rigid displacement of
the atoms is justified to a very good approximation,
though it is not perfect. If we make this assumption,
we can then again integrate first over the charge density
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of the atom s, 7, obtaining the same atomic scattering
factor f, as before; and our problem is resolved into
calculating the sum Y (s,2) f.exp—ik;- [0, R,4u(s,7)].
We must now investigate the nature of u(s,z), according
to the methods of Sec. 5, so as to be able to evaluate
this sum.

In Eq. (38) we have an expression for the displace-
ments of the various atoms, provided we have one
plane wave of thermal oscillation traversing the
crystal. The general thermal oscillation is a superposi-
tion of all possible plane waves, with amplitudes which
on the average are determined from statistical mechan-
ics. To describe this mathematically, we need somewhat
more notation than we have used. We have mentioned
that for each value of k, we have 3g normal modes of
oscillation, where g is the number of atoms in the unit
cell. Let these modes be denoted by an index f, which
runs from 1 to 3g, and by the value of k, so that we may
write the frequency of the mode as w(f,k). In writing
the displacement of an atom, analogously to Eq. (38),
we should use a real function of time rather than the
complex exponential of Eq. (38), since otherwise we
shall get into trouble when we take the square of the
displacement, as we must do. When we do this, we
note that the quantity w,(s), the amplitude function for
the pth component of the sth atom, will in general be a
complex quantity, for different atoms in the unit cell
will vibrate not only with different amplitude, but with
different phase as well. If we write w,(s) as W,(s)
exp—ia(s), where W,(s) is real, and a is a phase
factor, the real part of Eq. (38) can be written in the
form W,(s) cos[wi—k-R;—a(s)]. We must really
have indices f, k attached to the quantities W,(s)
and a(s), as well as to w. Furthermore, it is convenient
to normalize the W ,’s, and to have a separate amplitude
for each plane wave. Thus, we shall write

u(s,5) =2 (k)4 (f,k)W(s, f k)
X cos[w(fk)i—k-Ri—a(s,/K)]. (42)

This equation gives the vector displacement u(s,z) of
the sth atom in the ith unit cell. The summation over
f and % is over the normal modes of vibration. The
amplitude A (f,k) is arbitrary. The quantity W(s,f,k)
will be assumed to be normalized according to the rule

2 (s;))m[W(s,fR) =1, (43)

where the summation is over all atoms of the crystal,
m, is the mass of the sth atom in the unit cell and
[W(s,f,k)? is the square of the magnitude of the
vector. The phase a(s,f,k) is not determined by the
normalization; the relative phases of vibration of the
various atoms are uniquely fixed by the solution of
Eq. (39), but we may assume an arbitrary additional
phase associated with each normal mode.

Our problem now is to calculate the summation
2 (s,9) fs exp—iki-[os+ Ritu(s,i)], where f, is the
atomic scattering factor, and where u(s,s) is given by
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Eq. (42). This can be rewritten in the form
Z (577:)fl exp— ik, [9’+ Rit+u (5)1’)]
=2 (s,0) fo exp—iks- (e,+ R)TI(f k) exp— ik,
{A(fIK)W(s,f k)
XCOS[w(frk)t_k' Ri_a(s’fyk)]}- (44)

Let us consider one of the terms from the product.
It can be written as expiz cos¢, where

z=—A4 (f,k)kl'W(S,f,k),
¢’=w(f)k)t_k' Ri—d(S,f,k).

Now we note that

(45)

exp[+z cosp ]=Jo(2)+ i 2inJ (3) cosng,  (46)

ne=l

which follows from the well-known integral relation

(=o)r

Ja(2)= f ’ expi(z cosp+ng)dz, 47
0

T

Jn(2) being the Bessel function of the xnth order, and
where by definition

Jn(a)=(=1)"Ja(2). (48)

The expression of Eq. (46) can be rewritten in the form

exp[iz cosp]=Jo(&)+ 3 i"T(3)

n=l

X (exping+exp—ing). (49)

We now substitute the expression of Eq. (46) or
(49) in Eq. (44), and remember the definitions (45)
of zand ¢. We see that we can combine the exponentials
exp==in¢ with the exponential exp—ik;- (o,+R;), to
give exponentials whose dependence on R; is given by

exp—i(k+3+nk)-R,, (50)

where the summation is over all normal modes, each
having its appropriate value of #, and k. When we
carry out the summation over R;, then as before we
find that we get nothing, unless the propagation vector
ki+2_+nk equals one of the vectors K; of the reciprocal
lattice. Hence we find Fourier components, or plane
waves, with propagation constants k, given by

ki=K;+3 (£nk), (1)

or one of the K,’s plus or minus an arbitrary number of
propagation vectors of the various thermal waves. In
practice, as Laval has shown, the only important
terms in this summation are that where all #’s are
zero, giving the propagation constant equal to Kj,
and leading to an undisplaced Laue spot in the x-ray
scattering, and the terms for which one of the »’s
equals =1, the others all being zero, leading to single
scattering of the x-rays by a single elastic wave. We
shall therefore consider only these two types of terms.

SLATER

First we take the case where all #’s are zero. For this
term, we have from Eq. (44)

3 (s,8) f« exp—iky- (o4 R)II(f k)
XJOEkl : W(Syf7k)A (f’k):l

The product of Bessel functions is known as the Debye-
Waller factor. Let us evaluate it. In doing so, we
must average over the thermal distribution. We shall
carry out this average in the case of classical statistics,
where we have equipartition, in which case it can be
carried out very easily, and shall quote the result of
the same calculation for the quantum-theoretical case
which must be used at low temperatures. In classical
statistics, the amplitude 4 (f,k) acts like the amplitude
of a classical oscillator of frequency w(f,k) and we
know that the probability of finding this amplitude
in a range d4 is given by the Boltzmann factor exp—
Energy/kT, where k is Boltzmann’s constant, T' the
absolute temperature, and the energy concerned is the
energy of the oscillator. The first step in carrying out
the calculation is to find the energy of the oscillator,
in terms of 4.

We can find the energy by finding the mean kinetic
energy, and doubling it, for we remember that for a
linear oscillator the mean kinetic energy equals the
mean potential energy. Let us then start with Eq. (42)
for the displacement, differentiate with respect to time,
find the kinetic energy from this velocity, and average
over time. Since the single summation of Eq. (42) must
be squared, we have a double summation, in which we
have products of cosine factors to be averaged. The
time average of a square of a cosine is 2, that of the
product of two cosines is zero, on account of the different
frequencies (or the arbitrary phases), and we are left
with the result that

(52)

Mean energy of whole crystal
=2 (5,3, ) 3m.A* (1K) [W (s, £.k) Fw? (£, k)
=2 (fR34*(fke*(fk), (83)

in which we have used Eq. (43). Hence we may interpret
(1/2)w*(f,k)A%(f,k) as the energy of the mode fk.
Next we must set up an expression for the probability
of finding 4 in the range d4, in thermal equilibrium.
We must remember that in classical statistics, equal
areas in a phase space in which the coordinate and
momentum of a particle are plotted as variables have
equal a priori probabilities. The area of phase space
enclosed by a curve of constant energy for a linear
oscillator is an ellipse, whose area is proportional to 42,
so that the increment of area between two curves of
constant energy corresponding to 4 and A-+4dA4 is
proportional to d(A4?%), or proportional to AdA. The
probability of finding the system in unit area of phase
space is, according to the Boltzmann factor and the
expression of Eq. (53) for the energy, proportional to
exp—A%?/2kT. Thus the probability of finding the
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system between 4 and A+d4 is

A exp(— A%?/2kT)dA
probability = . (54)

f A exp(— A%?/2kT)dA
0

We now must find the average over 4 of the quantity
Jo[ki-W(s,f,k)A(f,k)], of Eq. (52). To get this, we
multiply the Bessel function by the probability of
Eq. (54), and integrate over d4 from 0 to . In doing
this, we use the theorem

f A exp(—aA?)Jo(bA)dA
0

=exp—b®/4a, (55)

0

f A exp(—ad?dA
0

which can be proved by expanding the Bessel function
in series and integrating term by term. Thus we find
that the average value of the Bessel function Jo[k;
- (W(s,f k) A(f k) Jis exp—[ki-W(s,f k) PRT/ 20 (f ).
The whole factor from Eq. (52) is the product of such
terms over all values of f and k so that we may write
the average value of Eq. (52), as

> (s,2) fs exp— M, exp—ik;- (o,+R)),

where
M=% (f 0k W(s, f k) RT/2*(f k). (56)

We can rewrite this expression in terms of the average
square displacement of the sth atom in the direction
of the vector k;. To do this, we remember that the
average energy of the mode fk is 3w*(f,k)[A%(f,k) I,
and also equals k7T, by equipartition, where &, Boltz-
mann’s constant, is not to be confused with k, the
propagation constant. Thus we may rewrite Eq. (56)
in the form

Mo=3(fK)ki- W (s, £ ) PLA*(f k) In/4. (57)

But from Eq. (42), we can find the mean square of
any component of the displacement of the sth atom,
by squaring and averaging over time, and we find

[up2 (S,i):lkv= Z (f’k) [Wp(syf)k)]2[A2(f’k)jﬂv/z' (58)
Thus finally we may rewrite Eq. (57) in the form
sin%
M =3[k’ (5,0) I Ka | 2= 8m2[aers?(5,5) Jns (59)

A’

where we have used Eq. (40). This furnishes a simple
and rigorous derivation of the Debye-Waller formula
for the temperature factor, in the region of classical
statistics; substantially this form of proof was used by
Waller in his thesis. It shows us that in calculating the
structure factor of the crystal, we are to use the
product of the atomic scattering factor f, and the
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Debye-Waller factor exp—M,, in place of the factor
fs alone, which would be used in the absence of thermal
oscillation. In the scattered intensity from a real
crystal, in which we are concerned with the square of
the structure factor, the factor exp—2M, enters.

The proof we have given holds only at high tempera-
tures; but Ott, and Born and Sarginson, have given the
means of carrying out the same calculation at low
temperatures, where the quantum theory must be
used. To understand the wave-mechanical problem,
we must first recapitulate what we have done. We have
started with the sum Y (s,2)fs exp—iki-[os+R;
+u(s,s)] and have then taken the time average,
which is essentially what we have done by using Eq. (49)
and keeping only the term independent of time, as in
Eq. (52). Then we have averaged over different
amplitudes 4, according to the Boltzmann distribution.
We must proceed otherwise in wave mechanics, for
we are not allowed to localize the displacement u(s,:)
of the atom s,7, or to write it as a sinusoidal function of
time, on account of the uncertainty principle. Rather,
we must assume that the oscillator is in the nth station-
ary state, and find the average of the quantity we
desire, which in this case is exp—ik;-u(s,z), over this
stationary state. This can be done, if we know the
wave function of the stationary state, which we do,
since we are dealing with linear oscillators. Then, having
found this average, we must assume that the probability
of finding the system in the nth stationary state is
proportional to exp—E,/kT, where E, is the energy of
the state, and must average over this distribution.
Ott has carried out this process, showing by an ingenious
method that the twofold procedure of averaging over
the wave function, and over the statistical distribution,
can be combined into a single mathematical process,
and has been able to evaluate the quantity which we
desire in the general case (though he does not actually
carry the steps through as we have sketched them).
Born and Sarginson have carried through an equivalent
proof by another method. The net result of this
derivation is that Eq. (59) is rigorously true at all
temperatures, where it is understood that [u#k:2(r,i) Ja
is to be computed properly according to the quantum
theory, including the zero-point oscillation. Of course,
the form of Eq. (56) holds only at high temperatures.

We have now considered the Debye-Waller tempera-
ture factor, by which the scattering of an indi-
vidual atom is modified, thus reducing the amplitude
of scattering of the Fourier components of charge
density which would be present even without tempera-
ture agitation. But in addition, we are interested in
the temperature diffuse scattering, the result of
scattering of the x-rays by a plane wave of charge
density which is made up from a single acoustical wave.
From Eq. (44) and Eq. (46) we can see that if only the
f,k mode is concerned, and if we use only the term
n=1 for it, corresponding to first-order scattering, the
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corresponding structure factor is to be found from the
summation

Ji[—A(fKki-W(s,fk)]

T ARk W(s, 8]

Xexp—ik;- (g.+Ry)

X {expilw(fk)i—k-Ri—a(s,fK)]
+exp—i[w(fR)i—k-Ri—a(s,f;K)]}.

Here the factor 4 in front of the expression is (—1)%,
not to be confused with the index of summation 4.
As before, the sum will be zero when we sum over 2
unless k; equals K;=k, where k is the propagation
constant of the particular acoustical wave considered,
and K; is one of the vectors of the reciprocal lattice.
Since these vectors k can fill up the complete Brillouin
zone, we see that the propagation constants of the
waves of charge concerned in this single scattering can
have any possible value, so that we are led to a diffuse
scattering, the so-called thermal diffuse scattering.
Though it is distributed throughout reciprocal space,
however, nevertheless the scattering becomes much
stronger near the lattice points of the reciprocal lattice,
as we can show simply.

The essential point is that the amplitude of such a
wave of charge distribution is proportional to the
ratio of J; to Jy in the expression of Eq. (60). These
Bessel functions are to be computed for small values of
the argument, for the quantities 4 (f,k)k;-W(s,fk)
will always be small under the circumstances of experi-
ment. In this limit, J, is approximately unity, and J,
is proportional to its argument. Hence the amplitude
of this wave of charge distribution, and consequently
the amplitude of the scattered x-rays, will be propor-
tional to A(fk)k:-W(s,f,k). The intensity will be
proportional to the square of this quantity. But by
Eq. (53), the average value of the quantity A%(fk)
will be equal to 2kT/w?(f,k), becoming infinite as the
frequency goes to zero. If we are considering the
acoustical branches of the vibration spectrum, their
frequency will go to zero as the propagation vector k
goes to zero, or as the propagation vector of the
scattering wave of charge density approaches K;,
one of the vectors of the reciprocal lattice. Hence we
have a scattering which becomes infinitely large as
we approach these values Kj;, and which can give us
information about the acoustical modes of the vibration
spectrum. The optical branches, which have much
higher frequencies, will contribute to a diffuse scattering
which is not peaked in the same way about the lattice
points of the reciprocal lattice, but is distributed more
uniformly between these lattice points.

We see, then, the general nature of the temperature
diffuse scattering. It helps our understanding of the
problem if we state very simply the way in which the
information about the vibration spectrum can be found

iy (s,0) fsexp— M

(60)
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from the measurements of the temperature diffuse
scattering. Using a monochromatic beam of x-rays, one
observes scattering in a given direction, in which we
should not have Bragg scattering from the undistorted
crystal. This scattering must come from the plane wave
of charge density whose normal is the bisector of the
angle between incident and scattered waves, and whose
wave length is related to the scattering angle by
Bragg’s law. The intensity of this scattered wave then
gives information about a particular thermal wave.
But we have just seen that this intensity is proportional
to 2kT/w?(fk). Thus measurement of the scattered
intensity gives the frequency of the wave, whose
propagation vector is already known from the scattering
angle. It is clear that the method is not as simple as
it seems at first sight, for we can actually have scattering
not only by the three acoustical modes but also by the
optical modes; for this reason, in a crystal having more
than one atom in the unit cell, special means have to be
used to separate out the scattering by the various
branches of the spectrum.

In the cases which have been carried through, it has
been possible to work through to find experimental
values of a number of the elastic constants C,,(s,t,R,)
which we have considered in Sec. 5. Then by use of
Eq. (39) the frequencies of modes with arbitrary
propagation constants have been found. From this
information one can in a well-known way find the
vibrational specific heat of the solid, and in cases where
this has been calculated, it is in good agreement with
experiment. It is worthwhile pointing out, however,
that in addition the Debye-Waller factor could be
calculated once the vibrational frequencies are known,
and it would be a valuable addition to present experi-
mental procedures to find the Debye-Waller factors
theoretically in this way, and compare with direct
observation.

7. SCATTERING OF ELECTRONS AND NEUTRONS
BY THERMAL OSCILLATIONS

The principles of the scattering of electrons by
thermal oscillations are essentially the same as those
of the scattering of x-rays, as will be obvious from our
general mode of treatment. The scattering will be pro-
duced by the sinusoidal waves of effective potential
energy set up by the thermal oscillation, rather than by
waves of density. To a fairly good approximation, the
potential energy within a crystal can be regarded as the
sum of potential energies arising from the separate
atoms, and to the approximation to which this can be
done, we can proceed with the theory along lines exactly
paralle] to those which we have used in the preceding
section, merely substituting for the atomic scattering
factor f, the Fourier transform of the potential energy
inside theatom, rather than the charge density. A good
deal of discussion has been given of the adequacy of this
approximation, and the net result of this is that the
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approximation is not quantitatively very good, though
qualitatively it is correct.

The importance of the scattering of electrons by
thermal oscillations comes not principally from the
problem of electron diffraction, but much more because
it is the main cause of electrical resistivity. In the study
of electrical conductivity, we are dealing with very
slow electrons. Their wave functions must be set up by
use of energy-band theory, as described in Sec. 4;
they can be described as a superposition of plane waves,
as a Bloch sum, or in various other ways. In any case,
however, we use the wave functions characteristic of a
perfect crystal as a starting point in the discussion of
the scattering of the waves by thermal oscillations.
Each electron wave is characterized by a propagation
vector ko, though it is far from a sinusoidal wave, and
such a wave undergoes scattering by the thermal
oscillations of the crystal, just like the thermal diffuse
scattering of x-rays which we have just been discussing.
The intensity of scattering is proportional to the
temperature, provided we are at high enough tempera-
ture to use classical statistics, and this is the origin of
the term in the resistivity of a metallic conductor which
is proportional to the absolute temperature. There has
been a good deal of theoretical study of resistivity from
this point of view ; but this study has not been correlated
to any extent with our knowledge of the thermal
diffuse scattering of x-rays, and our knowledge of the
microscopic elastic constants of crystals derived from
that method. It would seem that a correlation of these
two types of problems would be very fruitful.

Neutron scattering by thermal oscillations differs
from the scattering of x-rays or electrons in one rather
striking way, as a result of the large mass of neutrons.
We have pointed out that in all cases the frequency
of a scattered wave is changed when it is scattered
by a wave which oscillates sinusoidally in time, as a
thermal wave does. However, with x-rays, the frequency
of the acoustic vibration is so small that this change
of frequency is negligible. With electrons, it is not
quite negligible, but still small compared to the total
energy of the electron. It has its importance: it is the
mechanism by which the electron scattered by a lattice
vibration transfers energy, which it has picked up from
the external electric field, to vibrational energy of the
lattice, in the case where we have scattering with the
production of a phonon. This, in other words, is the
mechanism of the production of Joulean heat in a
conductor. With neutrons, on the contrary, the energy
of a neutron whose wavelength is of the order of
magnitude of interatomic spacings is comparable with
thermal energies, so that the %w of the vibrational wave
of thermal oscillation is comparable with, or in some
cases much larger than, the neutron’s energy. Hence
the final energy of the scattered neutron can be very
different from its incident energy.

This fact is used in the method of investigation of
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lattice vibrations by inelastic neutron scattering. Very
slow incident neutrons are used, corresponding to
a very small value of wo. When they are scattered by a
thermal wave, they cannot lose energy equal to that of
a thermal phonon, for they do not have enough energy
to start with. Rather, they must gain an energy equal
to that of a phonon, and this gives them a recoil
energy far larger than their incident energy. The
measurement is then of these recoil neutrons, which
have gained the energy of a phonon from the lattice.
This is a very different sort of experiment, in its
practical arrangements, from the thermal diffuse
scattering of x-rays; but as we see, the principles are
not essentially different.

8. COMPTON EFFECT

There are many other examples which we could give
to illustrate the interaction of waves in crystals, but
we shall omit them, except for a brief mention of the
Compton effect. In Sec. 1 we have seen that scattering
of x-rays by a thermal wave can be regarded as a
problem in which a photon with one energy and
momentum is converted into a photon with another
energy and momentum, and simultaneously one of the
lattice vibrations emits or absorbs a photon; that is,
the vibrating system has a change of energy and
momentum which compensates the changes produced in
the photon, so that we have conservation.

In the ordinary coherent scattering of x-rays by a
crystal, the role of conservation of energy and momen-
tum is not so obvious. The photon changes its momen-
tum on scattering, but not its energy; what takes up
the resulting change in momentum? The answer is
that if we have a crystal freely suspended, as by a
very fine fiber, the crystal as a whole will take up this
momentum, and the resulting change of energy is so
small as to be negligible, on account of the large mass.
If the crystal is fastened, the change of momentum
transmits itself as an impulse to the support. In this
way we see that the coherent scattering still fits in with
the general picture of the conservation of energy and
momentum, but in this case the momentum transferred
to the crystal does not change its internal state, but
merely the motion of the crystal as a whole.

On the other hand, in the Compton effect, the
momentum transferred to the crystal goes into produc-
ing an internal change. With the Compton effect of a
free electron, the situation is very familiar: an electron
at rest before the scattering process has a recoil momen-
tum, and correspondingly a recoil energy, after the
scattering. If we are dealing with the Compton effect
in a crystal, an electron which before the scattering is
bound to an atom becomes free after the scattering
process to travel through the crystal with a momentum
which compensates the change of momentum of the
photon. This shows us that to investigate the Compton
effect in a crystal, we must understand the structure of
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the wave functions and energy levels of both bound and
free electrons.

The way to do this is through the energy-band theory.
The electrons ejected in the Compton effect will
ordinarily be the most loosely bound electrons in the
atom. Their wave functions will be energy-band wave
functions, from the valence or conduction bands,
characterized by a propagation constant k, and an
energy Es(k). After the scattering process, the electron
will have gained energy enough to lie in a higher,
excited energy band, but still its wave function will
be of the same general sort, and it will have a propaga-
tion constant k', and an energy Eg (k’), having been
transferred to a different band 8’ from the initial band
B. The change of energy and momentum will compensate
the change of energy and momentum of the photon.
This is entirely analogous to the case of scattering by
phonons, in which the change of energy and momentum
of the vibrational wave compensates the change of
energy and momentum of the scattered photon. Most of
the existing theories of the Compton effect use a very
crude approximation, either a plane wave or a hydro-
genic wave function, for the excited electronic state. The
Fourier resolution of the bound state, which takes
the place of the initial electronic state, gives the
momentum distribution of the electron, as has been
emphasized particularly by DuMond and his col-
laborators, thereby leading to an experimental deter-
mination of this momentum; but the theory cannot be
regarded as satisfactory until we do a more careful job
than has so far been attempted on the excited wave
functions of the electrons in the crystal, a problem
which is met also in the treatment of the fine structure
of the x-ray absorption edge, as we have mentioned
earlier, and which has received only very inadequate
theoretical treatment.

BIBLIOGRAPHY

Rather than giving references through the body of
this paper, I have preferred to collect here at the end
a rather complete bibliography of a number of the
topics which have been treated in the text. By giving
the titles as well as the references, it will be obvious to
the reader which topic each paper deals with. In the
first place, I have included most of the old and standard
papers in which the first and fundamental treatments
of x-ray scattering were given. The reader will be
surprised, if he is not already familiar with the field,
how rapidly the main theoretical features of x-ray
scattering, and of the Debye temperature factor, were
worked out, by von Laue, the Braggs, Darwin, Debye,
Ewald, and Born, in the years immediately following
the first announcement of x-ray diffraction by Friedrich,
Knipping, and Laue in 1912 (the first paper, in the
Proceedings of the Bavarian Academy of Sciences, is
not included in our bibliography, since that journal is
not generally available, but the paper which we have
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listed, in the Annalen, followed shortly afterward).
In W. H. Bragg’s paper in the Philosophical Transac-
tions in 1915 we find the first use of Fourier analysis,
and we find that Duane’s paper of 1925, based on
Epstein and Ehrenfest’s of 1924, led to the first practical
use of Fourier methods by Havighurst in 1925. We
meet the reciprocal lattice for the first time explicitly
in Ewald’s paper of 1921. Other steps in the develop-
ment of standard x-ray theory will be clear from the
papers we have listed.

Then we can follow the development of the theory
of temperature vibrations, and their effect on the
scattering of x-rays. We start with Einstein’s 1907
paper on the theory of specific heat, followed by Debye’s
theory in 1912 and that of Born and von Karman
almost immediately after. These latter theories came
just before the discovery of x-ray diffraction, so that it
was very natural that the theory of the temperature
factor was worked out almost immediately. As far as
the theory of lattice vibrations was concerned, Debye’s
specific heat theory worked so well that it tended to
delay the progress of Born’s more exact treatment,
and it was not until Blackman in 1935 started applying
the ideas of Born to the vibrations of real crystals
that Born’s methods began to come into their own.
In the years since then, there have been many treat-
ments of the vibrational spectra of various crystals,
which are included in the bibliography.

As for the effect of lattice vibrations on x-ray
scattering, though the Debye effect was interpreted
immediately, it is surprising how long it took to
understand completely the nature of temperature
diffuse scattering, and its value in the investigation of
lattice vibrations. Faxen’s papers are generally regarded
as the first ones which showed an understanding of the
situation, and the complete treatment is essentially
contained in Waller’s thesis in 1925, but there has
really been only a small amount of general understand-
ing of the situation, until about 1940. Laval’s experi-
ments, and his theoretical paper in 1941, laid the
ground for the development which has occurred since
then, and his work wastaken up in England by Lonsdale,
Wooster, and their colleagues, and in America by
Warren’s students, so that now it has developed into a
tool of great power in the investigation of the elastic
vibrations and elastic constants of solids; but even now
it is known to only few physicists, and has not been
exploited nearly as much as it might be. The inelastic
scattering of neutrons, which is just now coming into
use, at Chalk River and at Brookhaven, and which has
so far hardly formed a body of literature, is likely to
prove as valuable as the temperature diffuse scattering
of x-rays for investigating these same phenomena.

Most of the x-ray scattering experiments and theory
deal with frequencies far from the absorption frequencies
of the various atoms in the crystal; but when one is near
an absorption frequency, one runs into anomalous
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dispersion, and into absorption. These topics are
hardly mentioned at all in the text, but it seemed
worth while including the references to them in this
bibliography. The fundamental paper in this field is
probably that of Hoénl, and work of Prins and others
supplements it. As far as absorption is concerned,
Kronig and Penney, and Beeman and Friedman, have
made the principal contributions. But when we are
dealing with anomalous dispersion, we have a problem
which leads over into the Compton effect of bound
electrons, as Waller has pointed out particularly clearly.
We have included a number of papers on the Compton
effect in the bibliography, among them the fundamental
paper by Gordon, a number of other theoretical ones by
Klein, Wentzel, and others, but also the semi-experi-
mental papers by DuMond and his collaborators, who
pointed out the relation between the Compton effect
and the momentum distribution in the atom, and a
number of theoretical papers, by Burkhardt, Duncanson
and Coulson, and others, working along the general
lines suggested by DuMond.

We have included a very few of the earliest experi-
mental papers which were directed toward verifying
the general correctness of the theories, such as those of
James and his collaborators, investigating heat motion,
atomic scattering factors, and other features. We also
include several of the papers concerned with the
calculation of atomic scattering factors; though we have
not given the many theoretical papers dealing with
atomic structure, Hartree’s self-consistent field, or the
Thomas-Fermi method, which underlie these calcula-
tions. In these features, and in fact in all aspects of
x-ray diffraction theory, the great source of convenient
information is James’s book on the Optical Principles
of the Diffraction of X-Rays, which should be familiar
to every physicist interested in these problems.

Then we have taken up some of the papers on the
dynamics of electrons in crystals. The fundamental
papers of Bethe, Bloch, Brillouin, Morse, and Wilson
laid the foundation of the theories both of electron
diffraction and of the energy-band structure of solids.
We have given the references to these papers; but the
further literature of the subject is so extensive that it
seemed impractical to give it here. T have included
references to several of my own papers and review
articles which seemed to be particularly applicable to the
present subject; in particular, my article in Vol. 19 of
the third edition of the Handbuck der Physik contains
a bibliography of papers on the electronic structure of
solids, approximately as long as the present bibliog-
raphy, and similarly arranged. The reader who is
interested may well use that article as a companion
to the present one, in the field of energy bands. As for
the theory of electrical conductivity, as it is affected by
the scattering of electron waves by the elastic waves
of the crystal, I have included some of the main
references in this bibliography.
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As a final comment, I might mention that Brillouin’s
book, Wave Propagation in Periodic Structures, has
much the same aim as the present review article:
to show the similarity of the scattering of one wave
by another, in many fields of physics. He takes up a
number of applications, to such problems as the
propagation of waves in loaded electrical networks,
and in loaded wave guides such as one meets in linear
accelerators and magnetrons, which I have naturally
not included in the present treatment, but which have
interested me as they have interested him. The theory
of the linear accelerator, for instance, is practically
identical with our theory of Sec. 3. The student who
will become familiar with all these various branches of
physics will find that many facts can be carried over
from one to another. He will cease to find it remarkable
that one book which we have not even included in this
bibliography—Rayleigh’s Theory of Sound—can contain
practically everything that has been found out since
in the matter of the theory of waves and their
interactions.
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HERMAL agitation of atoms in a crystal produces

plane wave trains in the electronic density of a
crystal. These wave trains, which exist in great number
and are propagated in all directions with different
wavelengths, selectively reflect incident x-rays in all
directions. The intensity of scattering produced in
this way is determined by the frequency, the amplitude,
and the shape of the atomic oscillations which form
the reflecting waves, and by the electronic density.
Conversely, when the intensity of the scattering is
known, it is possible to determine the electronic
density.

We use the following notation: m, a translation of
the crystal lattice; j, the vector which defines the
average position of an atom in the unit cell; and M,
a translation of the reciprocal lattice. The M and m
vectors are related by

Mm=---, -2, —-1,0,1,2, ---.

Also, g is the number of atoms in a unit cell; N, the
number of unit cells in the crystal; xj, the mass of an

atom in the position j, where here j is an index that
runs over the values 1 to g; u, mass and v, volume of
the unit cell; m, mass of the crystal; and E, the number
of electrons in a unit cell; so that

p=>u; and m=uN.
7

Also S, T, --- are the fundamental wave vectors of
the plane-wave trains of the atomic oscillations. They
are vectors inscribed in the first Brillouin zone with
their origin at the center and their extremities distrib-
uted with uniform density, their number being equal
to N. An harmonic oscillation of the atoms that is
related to S, forms an infinity of plane wave trains!
piloted by the vectors, S+M.

We denote by vsy, vrs- -+ the frequencies of atomic
oscillations associated with the fundamental wave
vectors S, T, - - - and the 3g modes of oscillation of the
g atoms of a unit cell, where v and 6 are indexes that

! (a) J. Laval, Bull. soc. frang. minéral. 64, 1 (1941). (b) J.
phys. radium 15, 545, 657 (1954).



