
REVIEWS OF MODERN PH YSI CS VOLUME 30, NUMBER 1 JANUARY 1958

:Cerrlar. is on t.ie Vi &rations ol': .3iatonlic . attices
A. A. MARADUDIN) P. MAZUR, E. Vil. MONTROLL, AND G. H. GNEISS

University of Maryland, Co1lege Park, Maryland

I, INTRODUCTION

LTHOUGH the modern theory of lattice vibrations
~ ~

~

~

~

originated in the work of Born and von Karman, '
Lord Kelvin had, in the 1880's, already made certain
remarks relevant to the behavior of diatomic lattices
and monatomic lattices with impurities. He had found
the separation of the frequency spectrum into two bands
in diatomic (one-dimensional) lattices, and had shown
that waves driven with a frequency not included in
the bands are not propagated through a lattice and
damp out in a distance that depends on the difference
between the driven frequency and the band edges.
Many of Kelvin's ideas on wave propagation in periodic
media were discussed in his famous Baltimore lectures'
of 1884. It is well known that these lectures were the
"o%cial" statement of the status of physics at the
end of the 19th century, and that they included a clear
description of the unsolved problems of the time.
However, it is not generally realized that the papyro-
graphed edition of these lectures was probably the
first of the long line of "preprints" through which
much of contemporary physics has first been unveiled
to the fraternity. The papyrograph was a precursor
of the modern ditto machine. The two specimens of
the preprints seen by one of the authors (E. W. M.)
have a fresh and well-preserved appearance. The
published copy of the lectures appeared in 1904 after
some of the galley proofs rested uncorrected for many
years in Kelvin's files.

The theory of lattice vibrations has progressed a
long way since the days of Kelvin, but direct experi-
mental determinations of the frequency spectrum and
the phase relations which associate frequencies with
particular points in the reciprocal lattice are a very
recent addition to the subject. The application of the
x-ray and neutron scattering techniques used in these
experiments have been described elsewhere in the
proceedings of this conference. The theory of lattice
vibrations has been developing from two general
points of view: the first is concerned with careful
investigations of the lattice vibrations of particular
materials and the second has been the mathematical
exploration of qualitative features of the frequency
spectrum and of the dispersion relations and of the
effect of various perturbations (point defects, disorder,
etc.) on these quantities.

~ This research was supported by the U. S. Air Force through
the Air Force Ofhce of Scienti6c Research, Air Research and
Development Command under Contract No. AF18(600)1315.' M. Born and T. v. Karman, Physik. Z. 13, 297 (1912).

~ W. Thompson and Lord Kelvin, Baltimore Lectures, 1904.

The main purpose of this paper is to follow the latter
point of view and to discuss aspects of the frequency
spectrum of diatomic lattices through the aid of a
model of the simple cubic lattice with nearest neighbor
interactions~' (central and noncentral), and some
general mathematical theorems. The remainder of
this introduction is a review of properties of the
spectrum of a monatomic lattice. The more systematic
theory as it has been applied to real crystals is discussed
in the book of Born and Huang' and in the IIandblch
article of Blackman' (who was the first to realike the
inadequacy of the Debye spectrum).

The x, y, and z components of the displacement of
an atom in a simple cubic lattice are conveniently
independent of each other. The equations of motion are
those of a lattice with one degree of freedom per
lattice point. We let the displacement of the (1,m, n)th
particle from equilibrium in the x direction be x&, , „.
Then the equations of motion of the lattice are

x& „„=exp(i(&vt+lw&+mw2+n p3)), (I.2)

the p's being chosen as

w, =2v-s~/1V, s, =O, 1, 2, , X—l, (I.3)

so that the x's satisfy periodic boundary conditions

&l, m, n &l+N, m, np etC
y

X being the number of lattice points in each direction
in the lattice. The points (w&, ws, ps) are points on the

' H. B. Rosenstock and G. F. Newell, J. Chem. Phys. 21, 1607
(1953).

'W. A. Bowers and H. B. Rosenstock, J. Chem. Phys. 18,
1056 (1950).

~ E. W. Montroll, Am. Math. Monthly LXI, 46 (1954).
6 E.W. Montroll, Proceedings of the Third Berkeley Symposium

on Mathematical Statistics and Probability, Vol. III, p. 209
(1956).

7 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954).

8 M. Blackman, Handbuch der Physik (Springer-Verlag,
Berlin, 1956), Vol. VII.
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M&l, m. n 'Yl(&l+L m, n 2&l, m, n+Xl—i, m, n)

+72(+l, m+I, n 2+1, m, n+vl, m—1, n)

+ Y&(+&, m, n+i 2+lm, n+&l, ,m, n—1))

where y~ is the central force constant and y2 and y3 the
noncentral force constants between nearest neighbors.
Two similar sets of equations exist for y and z dis-
placements.

It is customary to express the motions of particles
in the lattice as linear combinations of the normal
modes,



MA RA DUD I N, MAZUR, MOib TROLL, AX D KE ISS

reciprocal lattice. The normal mode frequencies are
found to be the function io(pi, y2, p&) defined by

The frequency spectrum of an n-dimensional lattice
is then

3

MoP=P 2y, (1—cose,),
1

oo

(1.5) G„(oim) = I exP (—uroi')
2m~

which is triply periodic in reciprocal space.
It is clear that G(oi'), the distribution function of

co', is simply related to that of

l'2~v ~xQ JOI
E. 3f )

The square of the largest frequency, col.', isI= Q 'ri cosyi (I.6)
Mcoz'=4(pi+pi+ +y„). (I.10)

where each io, is a random variable which (as.V—+~) is
uniformly distributed in the interval (0,2ir). It is not
surprising that the grand master of small vibrations,
Lord Rayleigh, should have been the first to discuss
such distribution functions even though his analysis
appeared in his theory of random walks rather than
in the Theory of Sound. "

The function X is merely the x displacement of a
random walker who takes a step of length y1 at an
angle q» relative to the x axis, then takes another of
length y2 at an angle y2 relative to the same axis,
then a third of length y3 at an angle p3, etc. The
distribution function was found for small values
of pg and it was shown that as n—+~ it becomes Gaussian
when y1= y2= &3= ~ ~ ~ . Rayleigh pointed out that
certain points existed at which the distribution func-
tions changed their character. The values of co' are
finite in number but as .V becomes large the random
variable oi' has a limiting density G(io2). The frequency
distribution G(oi2) is the Fourier transform of its
characteristic function

Then for an n-dimensional lattice'

X 1 2ia ~ / 2m.s, g
If„(a)=— P exp P y, I

1—cos
Qn s1s2 ~ ~ sn~ %21 ( S)

Since Jo(x) is an even function, only the real part of
the exponential contributes to G (cy'). One finds (in
this special model)

G„(oi') =G„(oii'—co'),

so that G„(oi') is symmetrical with respect to -', coz'.
The details of the calculation of G (oP) from (I.9)

are given in reference 6. The frequency spectra for
lattices of 1, 2, 3 and a very large number of dimensions
are sketched in Fig. 1.

The singular points of G(io') were first noticed by one
of the authors" (although they appear in another
context in the Rayleigh random walk theory mentioned
above) in the investigation of the spectrum of a square
lattice with nearest and next nearest neighbor interac-
tions where it was found that two logarithmic singulari-
ties appear in contrast to the linearity in &o of g(oi)
=2&KG(oP) obtained from the Debye theory. A similar
result was obtained by Bowers and Rosenstock' for
the transverse vibrations of a two-dimensional square
lattice. In 1952 Smollett" studied the in-plane vibra-
tions of a two-dimensional ionic lattice and found that
the two infinities found by Montroll and Bowers and
Rosenstock assuming short-range interactions also
exist in the ionic lattice.

Since G(co')dc'' is the fraction of frequencies between
&o' and oi'+des' it is clear that G(co') is proportional to
the rate at which (ioi, +2, io3) space is swept out by a

I
2us ( 2irs~ l= II ~ ' Z exp V, I

1—cos v)I
r"

exp( —2~;M ' cosy;)de,

n

e' »'~ Jo(2ny~/M),
j=1

as .V—+00, Jo(x) being the Bessel function of order zero.

2-D

0 (~/~L. ) i, o

N-0
N- lAROg

FIG. 1.Sketch of distribu-
tion function of squares of
normal mode frequencies in
linear square and simple
cubic lattices with nearest
neighbor interactions. The
N-dimensional case ap-
proaches a gaussian as

The upper four
6gures correspond to equal
central and noncentral force
constants; the lower two to
weak noncentral force con-
stants.

9 Lord Rayleigh, Phil. Mag. 10, 73 {1880).
' Lord Rayleigh, The Theory of Sound (Dover Publications,

New York, 1945), second edition.
"E.W. Montroll, J. Chem. Phys. 15, 575 (1947)."M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952).
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surface of constant frequency as the frequency increases.
The distribution function g(co) can then be expressed
(for a single branch of the spectrum) as the volume
integral"

0

1 8
g (")= —

~

d w id v 2d v~
8~3 Bco &

or the surface integral"

1
I

ds
g(~) =

(2~)'» lg»d~l

(I.12a)

(l.12b)

FIG 2 Curves
connecting maxima
and minima of func-
tions defined on a
doubly periodic
space.

xc

y X

where the integration proceeds over the entire surface
co= constant. Smollett noticed that singularities in the
frequency spectrum are related to the saddle points in
the surfaces of constant frequency in the (w&p2pa)
space. Grad ~=0 at saddle points as well as at minima
and maxima which characterize band edges.

In 1953 Van Hove" generalized Smollett's arguments
and explicitly calculated out the possible types of
singularities g(co) might have in the two- and three-
dimensional lat tices and associated them with the
character of the second-order terms in the Taylor
expansions of co about the points in (p~y2g3) space
where all first-order derivatives of co jointly vanish —the
so-called "critical points" of the frequency. Using the
critical point theory of the calculus of variations in
the large (developed by iaaf. Morse)"" he showed that
these critical points are a direct consequence of the
periodicity of a crystal lattice and not of the detailed
character of the atomic force constants.

We give a qualitative analysis of one of 3Iorse's
theorems in two dimensions. ' Let G(q~w2) be a con-
tinuous doubly periodic function of p& and p2 with
continuous first and second derivatives, the derivatives
vanishing only at isolated points. Then |||Iorse's
theorem states that G has at least two saddle points.
Now a doubly periodic function is equivalent to a
function defined on a torus; hence this theorem is
equivalent to the statement that a function G(w, , w2)
with the properties postulated above and defined on
a torus has at least two saddle points.

Since G has been chosen to be continuous it must
have at least one maximum and one minimum point
in each of its periods. Let the location of one of these
maxima be denoted by an X in each period in Fig. 2 and
let the location of one set of equivalent minima be
represented by heavy dots (points D, E, etc.).

If the maxima A and B are connected by a curve such
as 1 in Fig. 2, there is at least one point on the curve
where G has a smaller value than at neighboring points
on the curve. G also achieves a smallest value along

"L.Van Hove, Phys. Rev. 89, 1189 (1953).
'4 M. Morse, Functional Topology and A bstract Variati onal

Theory (Gauthier-Villars, Paris, 1939), Fascicule 92.
'5 H. Seifert and W. Threlfall, Variationsrechnung its Grossen

(Chelsea Publishing Company, New York).

any other curves, for example on 2 and 3, which connect
A and B. The locus of these points forms a continuous
curve which passes through E and D. G must achieve a
largest value somewhere along this locus of smallest
values. Let this be accomplished at the point represented
by the small triangle in Fig. 2. This point must be a
saddle point because as one passes along 4 from E to D
it is a relative maximum, and as one passes from A
to B it is a relative minimum.

The same argument could be applied by the examina-
tion of paths which connect A and C. Hence the
function G has at least two saddle points. It is easy
to trace out the same proof when one period of (pq, p2)
space is wrapped into a torus. The number of saddle
points of a function defined at all points on the surface
of a X-D mainfold is at least equal to the maximum
number of closed paths [(.V —1)-D] manifolds which
cannot be transformed into each other or into a point
by a continuous deformation of the paths. This number
is known as the Betti number of the surface.

The fact that there might be two saddle points in
our reciprocal (p~, w2) space does not guarantee the
existence of two logarithmic singularities in g(co).
The value of &o(w&, p2) at the two saddle points may
correspond to the same frequency. This is the case
when a square lattice is elastically symmetrical.

Van Hove also discussed the number of critical points
that could be expected in a three-dimensional lattice.
He showed that, while in general there will be no
in6nities in g(a&) for three-dimensional lattices, dg(co)/da&
has at least two infinite discontinuities and has the
value —~ at the high-frequency end of the spectrum.
This is in agreement with Fig. 1 for our simple cubic
model. In connection with the numerical estimation
of g(co) he argued that "great attention has to be paid
to location and shape of the critical points of a&(pqy2ya).
This information can be obtained from the shape of the
contours of constant frequency in reciprocal space,
as was done by Smollet for a two-dimensional ionic
lattice. ""It should be noted, however, that knowledge
of the critical points of co(p&+2+3) determines only the
shape of g(co) about the critical frequencies co. but
leaves the magnitude of g(&o.) undetermined, necessitat-
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ing some kind of interpolation scheme to fill in the
spectrum between these frequencies. However, a
greater difhculty exists in that no method is available
for locating all the critical points, knowledge of the
location and nature of these being necessary for a
complete description of the frequency spectrum. In
1955 Rosenstock" presented an algebraic-topological
method for locating critical points for the three primi-
tive cubic lattices but it is not clear whether the
method is capable of locating all of the critical points
exactly or of assuring that all of them have, in fact,
been found. Golovin" has also studied the problem of
determining all the critical points for the three primitive
cubic lattices via purely algebraic arguments, but
again it is not clear that all possible critical points have
been found.

The foregoing discussion applies only to the case
that the critical points in the surfaces of constant
frequency in (s&l, sss, ass) space are analytic. Recently
Phillips" with the aid of topological arguments has
extended Van Hove's treatment to the case where
nonanalytic critical points occur as well. He has
determined the nature of the singularities occurring
in g(ss) due to such critical points and has set up
formulas which relate the number of critical points of
different kinds of an n-dimensional manifold to the
Betti numbers for the manifold.

II. THE FREQUENCY SPECTRUM FOR A SIMPLE
CUBIC LATTICE WITH TWO DIFFERENT

MASSES AND NEAREST NEIGHBOR
INTERACTIONS ONLY

We now proceed to study the eGect of the introduc-
tion of a second atomic species into a simple cubic
lattice. First we consider an ordered diatomic lattice
of the Nacl type.

We identify a typical lattice point by the triple
(ml, ms tss). The masses Ml and Ms will be located at
alternate positions on our simple cubic lattice. The
heavier mass Mi is associated with lattice points with
(tsl+tss+sts) even and the lighter Ms with (ml+tss
+ms) odd. The x, y, and s components of the motion
of a given atom in a simple cubic lattice with nearest
neighbor interactions only are independent of each
other. Hence, we need only consider the equations of
motion of the x component and deduce the behavior
of the y and s components by symmetry.

The equations of motion for particles on the even
points are

Mix (ml &tSs&ms)

pX(ml+el& ms+ et& tSs+ss)
eg~o, 1

clos +es =f
—2x(ml&ms&ms)+x(mi el& tss ss& ms es)j

XLeal+ esses+ esses j; (II.1a)
"H. B. Rosenstock, Phys. Rev. 97, 290 (1955)."

¹ E. Golovin (private communication)."J.C. Phillips, Phys. Rev. 104, 2263 (1956).

for (m, +ms+ms) odd

MsX(ml, ms, ms)

Lx (tsl+ el ms+ st ms+ el)
eg 0, 1

41 +el +f3 ~ i

2x—(ml, ms, ms)+x(ml sl ms es tss ss)

X$sn'1+ en'1+ st's) (II.ib)

Here y& is the central force constant between a pair
of nearest neighbors in the same x, y plane, and y2
and p3 are respectively the noncentral force constants
associated with a pair of particles in the same x, y
plane and with a pair in adjacent x, y planes.

We assume solutions of the form

x(m, ,ms, ms) =e 'g('m, ,m ms),s(II.2)

where u is a function of position only and impose the
cyclic boundary condition in a cube with 2X particles
on each side. If we substitute this expression into
(II.1a) and (II.ib) we obtain a pair of sets of equations
for the I's. These can be reduced to the more compact
single set

M 1» V(tS1,SSs tS's).
+ Q Lv(ms+el& sss+ss& tss+ss)

eg=o, 1
et +es+e3 ~1

—2v(ml&ms&ms)+v(ml el& ms ss& ms es)

X [tips+ esses+

esses

j 0& (II.3)

which is valid for all (tsl, ms, ms) regardless of the
parity of (ms+ms+ms) if we define M* and v(ml, ms, ms)
by19

M*aP (2y 1+2m—s+2ys)

= $311»& (271+2Vs+2'—rs)]

X [M~s—(2yl+2ys+2vs) j&& (II.4)

V(tS 1,SSs,tSs)'

(MlaP (2yl+2ys+—2ys) j N(mi, ms, ms)

P m; even

(II.S)
LMss&& (2'r1+ 2'rs+2'rs) j N(ml&ms&ms)

P m; odd.

In all expressions where square roots appear we adopt
the convention that the positive sign for the square
root is the appropriate one.

The set of equations (II.3) is just that for the vibra-
tions of a monatomic crystal with atomic mass M*.

'9 E. W. Montroll and R. B.Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956).
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Hence the normal mode frequencies are roots of and represent the optical band. The frequencies given
)see Eq. (I.5)] by Eq. (II.12) are limited between

M*os=2+13 V, (1—COSy, ) q, =22rS,/X, (II.6) 2
(Vl+V2+V3) =~'1 (II.14)

where the s; are integers which range from 1 to 2$
(or from —X+1 to E). Substitution of Eq. (II.4)
into Eq. (II.6) implies that when

M,co2) M~2 &~ 2vl+2v2+2vl (II.7)
then

[M&& 2(vl+ Y2+v3)]

XLM2 '—2(vl+v2+vl)]' (II.15)X=+1 vl' cos&pj.
l

and represent the acoustical band. It is not difficult
to verify that the total number of normal mode
frequencies for the x component of motion is equal to
8N', the total number of degrees of freedom in the
x direction.

Each set of frequencies is a monotonic function of
the variable

= —2+1 v&' cosII2 '.
7

In view of our sign convention for the square root the
sum on the right of this equation must be negative.
This limits the possible values of the s; for which
Eq. (II.8) is satisied. Hence when

j.6X2- ~

~2 —1(102 +~22)+1 (~22 ~2 )2+
M)M2

(II.16a)

(II.8)
Then (II.9) and (II.12) can be written more compactly
as

vi cosy'j&0
7

Eqs. (II.7) and (II.8) give us

M1M21Il+ (vl+ Y2+ Y3) (Ml+M2)

+L(vl+v2+v3)'(Ml —M2)'

+4M1M2(+ 13 v, cos32,)2]&.

In a similar manner we find that, when

M~'&MgaP ~& 2yI+2y2+2y3,
then

L(2vl+2v2+2v3) —MloP]&

XL(2vl+2v2+2v3) —M~']'

(II.9)

(II.10)

16X'
~2 —1 (~2 +~2 ) 1 (~2 ~2 )2+ (II 16b)

MgM2

The variable X can be considered as a random
variable whose distribution function might be deter-
mined by selecting a large number of sets (yl Ip2 Ip3)

at random from the range (0,22r) of each 31 and comput-
ing the value of the sum

Ql'Vl cosy'l'

for each selection. The frequency distribution function
associated with each branch can then be determined
from that of X.

Let
F3(x)dx= prob(x &&X &&x+dx), (II.17)

= 2+13v, cosy, . (II.11)

In view of our sign convention for square roots this
implies that

vz cosII2z) 0.

In this cs,se we find from Eqs. (II.10) and (II.11) that

M1M23Il'-= (vl+'Y2+v3) (Ml+M2)
—L(vl+v2+v3)'(M —M )'

as obtained through our random selection of p's.
Then it is well known that

F,(x) =— f3(a)e ' *do,
2m~ „

where, proceeding as we did in the derivation of Eq.
(I 8),

f3(~) =II ~o(ov ).

+4M1M2(pl' v, cos32;)']&. (II.12)
1

The frequencies given by Eq. (II.9) are limited between

Hence
1

F3(*)=—
I

e II &o(oV~)«
2m~

(II.18)

2
(vl+v2+v3) & 1d2+

M2
t1 iq

&~2(vl+Y2+v3)
~

+
~

=o)32 (II.13)

When V,)V2 ——V3 the function F3(x) has the form given
in Fig. 1 but with a displacement in the x axis which
makes F3 symmetrical with respect to the origin.

The frequencies co+ are a monotone increasing
function of X for X)0 LEq. (II.16a)]. Hence the
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distribution function G+(uP) defined by

G+ (co')dc02 = prob(co~ ~& co+' ~& c02+dcd2) (II.19)

is related to F(x) by

Since
3

F, (0) =—
~

+ J ( ~~)
2m~~

G+(~') =F (x) (dx/dcd2) (II.20)

~XI Cku'

U(x)G+(x) dx
0 dx

(II.21)

(with X&=y&+f2+pa). On the other hand E(U) can
be computed directly by averaging over x:

E(U) =
~

U(x)F(x)dx. (II.22)

Since both expressions for E(U) are valid for all U(X),
(II.20) follows.

Now (II.16a) implies

2 L(cd —co &) (&u
—cd q)]&

(II.23)
dx (McM2) & (cd' ——,'(c0'c+co'2)]

so that

(M M )1
C
~' '(~'-+-~', )]

G+(~') =
L( '—')( ' —'~)]'

( (McM2) t

XFI —L(~'—(a', )(co' —cu'2)]t i. (II.24)
2 )

In a similar manner it is easily shown that G (&o ),
the distribution function of k0, the acoustical band
is given by

(McM2) & L:,'(c0'c+(o'2) —aP]
G (cd') =

L(~'c—~') (~' —~')]'

This relation is deduced by the following well-known

argument. Let U be a positive function of co' and hence
of X. Then the average value of U is

Q) 3
2

E(U) = )~ U(cd')G+(co')daP

is not zero we see that as or'—+coc2 in G (co') and c0'~cd22

in G+(~ ) infinities of the one-dimensional type exists
at the band edges Lthe one-dimensional G(cd2) is
proportional to (&ol.

' —cd') &]. We have plotted the total
frequency spectrum G+(oP)+G (cv') as a function of
ko' in Fig. 3.

Returning now to Van Hove's work, we mentioned
that he showed that infinities would not appear in the
frequency spectra of three-dimensional lattices. This
is correct when the critical points are isolated. However,
iu the present nearest neighbor approximation the whole
surface 2yi cosy~+2y2 cosp2+2ya cosy 3=0 turns out
to be a critical surface; hence the square root singular-
ities in G(cd') at the corresponding value of cv'. Mazur"
has calculated the frequency spectrum for a three-
dimensional simple cubic alternating diatomic lattice
with second neighbor interactions included and finds
that in this case the square root infinities at the gap
edges disappear and are replaced by large but finite
peaks. The results of this calculation are shown in
Fig. 4. The calculations are a generalization of those
made by Newell" in his analysis of a one-component
simple cubic lattice with nearest and next nearest
neighbor interactions.

Independently, T. A. HoGman" has used similar
methods to obtain the density of electronic states in
the linear combinations of atomic orbitals approxima-
tion for two- and three-dimensional monatomic and
diatomic lattices. His results qualitatively resemble

IOe ~

8 e ~

6-
C9

Os 4
3

( (M)M2) &

XFf L(sf c
—oP) (cd'.—aP)] i. (11.25)

2

As MI~Mg=N, ~I'~g'~-,'~g,' and
2"

GAP OPTIGA L

BAND

M
G+ (oP) = -,'MF

~

—L~' ——2co'r]
I

for 2oPr. &cd'(aPc,
E2

.05 IO

(CO/ld )

1.0

3f
G ( ')=-,'MFI —(-', ' —']

(
fo

&2

the well-known result for a monatomic lattice.

FIG. 3. Distribution of oP for diatomic lattice with
M=8m and yl/F2=8.

~ P. Mazur, Ph. D. thesis, University of Maryland (1957).
~' G. F. Newell, J. Chem. Phys. 21, 1877 (1953).~ T. A. Hoffman, Acta Phys. Acad. Sci. Hung. 1, 175 (1951).
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those given here for the corresponding vibrational
frequency spectra.

III. LOCALIZED DEFECT MODES IN A CRYSTAL

Various types of disordered two-component lattices
can exist. Three extreme cases are

(a) small number of 8 atoms in a matrix of A atoms,
(b) slightly disordered lattices of A and 8 atoms,
(c) completely disordered lattices of A and 8 atoms.

The influence of cases (a) and (b) on lattice vibrations
can be discussed at considerable length while many
unsolved problems exist in connection with (c). We
discuss some aspects of (a) and (b) in this section.

As was mentioned in Sec. II, if one attempts to drive
a crystal at a frequency outside the band of normal
mode frequencies the driven wave is attenuated in a
short distance, the effective distance diminishing as
the displacement of a frequency from band edges
increases. Hence, if the existence of a localized defect
introduces a new isolated frequency into the frequency
spectrum, the associated normal mode of vibration
must be localized around the defect since the defect
is a source of waves whose frequency is such as to
insure attenuation. Such localized modes are analogous
to bound states of electrons around impurity centers
in semiconductors.

A detailed analysis of the effect of constraints and
variations of parameters on dynamical systems under-
going small vibrations was made by Rayleigh" and
Routh" many years ago. Several of their results show
qualitatively how defects force frequencies out of the
bands and hence how localized defect modes develop
in crystal lattices. The separation of adjacent levels
in a given frequency band is of order 1/N, N being
the number of atoms in the lattice (except near band
edges and singularities in the spectrum). The density
of levels becomes continuous as E~~ and the band
gap has a finite value in this limit. It was shown by
Rayleigh that if a single mass is reduced by 8M all
frequencies are increased, but by no more than the

FIG. 4. Sketch of the
distribution function of the
square of normal mode
frequencies in a diatomic
simple cubic lattice with
nearest and next nearest
neighbor interactions.
Notice that the infinities
at the inner band edges
have become finite peaks.
The distribution function
has lost its symmetry.

2' E. J. Routh, Dynamics of a System of Rigid Bodies (Dover
Publications, New York, 1955).

YAB~ YAA

Fzo. 5. Sketch of
localized mode fre-
quencies in a di-
atomic lattice which
result from a dis-
ordered pair of
atoms. Mg —+MA is
used to identify the
mode that results
from replacing the
mass of an atom of
kind B by that of
one of kind A. Mg
&.Vgg.

Ma Ma

Ma~Ms

MI~M&

7AS~ 7hsi
los ~ 7AA

distance to the next higher unperturbed frequency.
Hence„as cV—+~ in our lattice all frequencies su6er a
change of a,t most 0(1(X) except those associated with
the upper edge of each band. These are raised by
amounts at most proportional to 5M (when 5M is
small) but independent of N as rV~~. These fre-
quencies, being displaced out of the band, are those of
localized modes. An increase of a single mass by bM
reduces all frequencies by amounts no greater than the
distance to adjacent lower unperturbed frequencies.
Since the lowest frequency is only of order 1(N
from zero (n being a constant )0 which depends on
the dimensionality of the lattice) the only localized
mode which can develop is that associated with the
displacement of the lower optical band edge frequency.
The increase (decrease) of a single force constant has
the same effect as a reduction (enhancement) of a
single mass. We have given a more detailed discussion
of Rayleigh's theorem in Appendix A.

The change in the frequency spectrum due to inter-
changing A and 8 atoms in an ordered A8 lattice can
be seen from a consideration of Rayleigh's theorem.
Let the mass of an A atom be M~ and that of the 8
atom be M~ with M~(M~. Then the act of replacing
a heavy 8 atom by a lighter A atom causes a localized
mode to emerge from the top of the optical and another
from the top of the acoustical band. The completion of
the interchange by replacing the light A with a heavier
8 causes a mode to emerge from the bottom of the
optical band. Similar remarks can be made about the
influence of a change in force constants. The various
frequencies of the localized modes and their sources
are sketched in Fig. 5 for the case of y~~&y~~ and
y~~(y~~. The diagram corresponds to our simple
cubic lattice model which posseses one degree of freedom
per lattice point. All degrees of freedom are taken into
account by multiplying each mode by a degeneracy
factor of three. This degeneracy is split by considering
next nearest neighbor interactions. If two force con-
stants are changed at widely separated points in a
lattice the associated localized mode frequencies are
degenerate. The degeneracy is split as the two anomalous
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force constants are brought closer together. If it is
assumed that only central force constants are changed
when an A atom is replaced by a B atom in our ordered
diatomic lattice two new force constants are associated
with the substituted B atom. The pairs of closely
lying frequencies in Fig. 5 are drawn to correspond to
the resulting splitting of pairs of anomalous force con-
stant localized mode frequencies.

Some of the localized modes shown in Fig. 5 might be
suppressed for the following reason. Suppose a small
decrease in a mass is made so that frequencies barely
rise from the bands. A large decrease in the force
constants which reduce all frequencies might return
these modes to the bands. This interplay between
changes of masses and force constants has been
discussed for one-dimensional systems elsewhere. "
Situations exist in which a frequency does not emerge
from the bands until a parameter is changed by more
than a certain critical amount.

The systematic theory of the analysis of localized
modes has been made by Lifshitz'4 and his collaborators,
by Montroll and Potts" (the corresponding analysis
of electron levels has been made by Koster and Slater"),
and by Mantroll, Maradudin, and Weiss."We sketch
the latter work below and then apply it to several
examples.

Let the normal mode frequencies of our crystal be
Go] 072 cl)3 ' ' ' Then we consider additive functions of
the frequencies

(III.1)

1
f(z)d(log detM(z) },

21I'p
(III.2)

where the closed contour C extends in a counterclockwise
direction around the relevant zeros of detM(z) and
where it is assumed that f(z) has no poles inside or
on the boundary of C. Certain corrections are neces-
sary when the latter condition is not satished.

'4 I. M. Lifshitz, Nuovo cimento, Suppl. A1, 3, 591 (1956}.
2' C. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954};

G. F. Koster, Phys. Rev. 95, 1436 (1954};M. Lax, ibid. 95, 1391
(1954).

~'Montroll, Maradudin, and Weiss, Proceedings of the Many-
Body Conference (Interscience Publishers Inc. , New York, 1958}.

For example, the zero point energy of the crystal is
given by (III.1) with f(z) = (~i)ipz, while f(u), the
characteristic function of the squares of the frequencies,
corresponds to f(z)=X 'exp(inz'). The distribution
function of the squares of the frequencies G(pi') is
the Fourier transform of f(a) Furthe. rmore, most
thermodynamic functions are additive functions of the
frequencies.

Let us suppose the coj s to be the zeros of the secular
determinant corresponding to a matrix M, i.e.,
detM(pi;) =0. Then we may write for S,

AS= f(z)d(log deth(z) }.
2m'& e

(III.4)

Since the elements of the matrix Mp
—'5M are

(Mp '5M);i=+ a,pi 'ipp;, (III.5)

those of b, are

(III.6)

The matrix h(p&) is of fundamental importance in
the present theory. It is basic to the calculation of hS.
Furthermore from Eq. (III.4) we see that the roots of

deth(z) =0 (III.7)

give the normal mode frequencies of the lattice contain-
ing defects, while Montroll and Potts" have shown
that the eigenvectors of the matrix D(p&)=d, (pi) I—
describe the normal mode motion of the particles
directly aGected by the presence of the defect.

The determinant 6 is easily constructed when only a
small number of nonvanishing ej,j s exist. For example,
suppose only one element of Mp is perturbed, vis. ,

/0 while all other ~'s vanish. Then ekj ——~ bk 5 j and

Hence we have

~ij ~ij+aia ~aj&aa. (III.8)

detA= detA;, =1+a (III.9)

As a slightly more complicated example we consider
the change in Mp due to the substitution of an impurity
for a normal atom in a three-dimensional simple cubic
lattice of E' identical atoms of mass M connected by
springs with a central force constant y~ and noncentral
force constant y2. The matrix Mp has elements

=(Mpp' 2y, 47p)b ', ,'~™'+—y, (h—', +', '

+~ms' —1, ms', ms')+ (~ms', ms'+1, ms'

gm1', ms' —1, ms~ pm'', m2', ms'+1+ +&m1msms + mtmsml

+ii ', ', ', ' '
), (III.10)

Now suppose the matrix M to be the sum of two
matrices

M=Mp+5M=Mp(I+Mp 'hM j. (III.3)

Here Mp is to be associated with a perfect lattice and
6M is to contain variations from the perfect lattice.
We represent the elements of Mp, Mp ', and bM by
(a;,}, (a;,' "},and (p,,}, respectively, and define a
matrix 6 by E=I+Mp 'iiM. Then detM=(detMp)
(detd). Substitution of this factorization into (III.2)
leads us to an expression for the change in S, b,S, due
to the insertion of defects:
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~ J. Hori and T. Asa i, r . et. Phys.
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where

41p 2y/M~, ~2' ——2r/M2) ((Og +(02 COI, ) (III.17)

are the top of the acoustical band and bottom of the
optical band, respectively. The elements g(k) have a
different form depending on whether we are interested
in the frequencies that emerge from the top of the
optical band (co')&ol.') or in the frequencies which
enter the gap between the bands (&oP(co2(coP).

When oP&coL,' we readily find that

where
(M~' —2y) «

6I= E2
—I

(M )co'—2y) «

(III.21a)

(III.21b)

In the present case the matrix of the determinant

[a! is

t' 1+g(0) (M2 —Mq)~'Cy g(2n+1) (M,—M, )QPE2)

Eg(2m+1) (Mo My)GP6y 1+g(0) (Mg M—2)(Al Eg'

(—1)"co&(ag

g(k) =
27

P(~2 ~ 2)»(~2 ~ 2)» ~(~2 ~ 2)»][k~

X
~(~'—~g') «(~,~,) ~ "~

while for o)P(co' (co2

(III.18a)

The determinant ! 5! becomes

Ih! =1+(M —M )'a)4
g(o)

(M )co' —2p)» (M,co' —2y)»

g'(—0)+g'(2n+1) . (III.22)

g(k) = —i(—1)~»"~

27

$~(~ 2 ~2)» (~2 ~ 2)»(~ 2 ~2)»]~k[

X . (III.18b)
~(~g —co ) (~go2) I

We assume that the particle at k=0 exchanges its
site with the particle at k =2n+1 ~ The set of equations
(111.15) is unaffected by this interchange except for
the following two equations (written in terms of u's)

pf»( —1)+(Mg(o' —2y)I(0)+ (M2 —M g)co'

XN(0)+ye(1) =0, (III.19a)

y«»(2n)+ (Mw' 2p) u(—2n+1)+ (Mg —M2)co'

XN (2n+1)+ yN (2n+ 2) =0. (III.19b)

This has two different forms depending on whether
N )ul. or My (u ((a)2 . Thus jf we substitute Eq.
(III.18a) into Eq. (III.22) we obtain

~22 ~~2 2 ~2

J~!=1+
COy G02 GP —(dl

~(~2 ~~2)» (~2 ~ 2)«(~2 ~ 2)«

X
(~2 ~ 2)»(~2 ~ 2)«

$(&g2 —&g ~)»((g2 —(g 2)« —(g((g~ —~ ~)»y~!
+ I, (III.23a)

((d 1(d 2)

while if we substitute Eq. (III.18b) into Eq. (III.22)
we obtain (cop(oP(&op)

~~2~ 2 ~~2 ~2

~2 ~22 ~2
If we transform these equations according to Eq.
(III.14), we obtain

yv (—1)+ (M*co' —2y) v (0)+ (M2 —Mg)(o'-'

(M~' —2y) '
X v(0)+yv(1) =0,

(M ~(o'—2y) «

yv(2e)+ (M*og —2y)v(2m+1)+ (Mi —M2)cu'

(Marco'

—2y) '*

v(2n+1)+pv(2m+2) =0.
(M~' —2~)'

Thus the elements of the defect matrix 6M are

(M~' —2y) «

(8M),,= (Mg —Mg)co' 8;, gb, , o

(M,cu' —2y)»

!
(~' —~p) «(~2' —~')» —~(~g' —~')»

X
(~2 ~ 2)«(~ 2 ~2)»

[~(~ 2 ~2)» (~2 ~ 2)»(~ 2 ~2)«)2k
+ (III.23b)

COIM2

where for convenience we have put k= 2n+1.
The frequencies of the localized defect modes are

the roots of !6!=0. In general the equations cannot
be solved analytically and recourse must be made to
numerical methods. However, since the off-diagonal
terms in the matrix 6 decrease exponentially with
increasing k, i.e., with increasing separation between
the interchanged masses, in the limit that k~~ the
equation !6!=0 factors into two equations

(Marco'

—2p)»
+ (M$ M2)GP 8z 2tl+$»«j 2S+g. (III.20)

(M~' 2y)»— (M, Mg)(u'egg (0) =—1,

(M, M,)co'v2g(0—) =1.
(III.24a)

(III.24b)
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In the case that co')col.' this pair of equations becomes

+co(co' —co )'= (co' —co )&(co'—coc,')&, (III.25a)

—Pco(co' —co ') * = (co' —coP)*(co'—coc,') &, (III.25b)

where
~ = 1—(~ '/~ ') P = (~ '/~ ') —1 (III 26)

Only the first of Eqs. (III.25) has a solution for co'& col.'.

g 2

Ã/8(771/I
IIXIII

1
co'=-'co '+ —{co '+—'[(1—a')'co '+4cc'co ']~). (III.27)

1—a'

When coP(co'(coP Eqs. (III.24) become

ccco (co
'—co') & = (co' co ') t(co—g' —co') t (III.2ga)

Pco(co' —co ')1= (co ' —co') '*(coc,' —co') t. (111.28b)

Both of these equations have solutions corresponding
to frequencies in the gap between the optical and
acoustical bands:

co.c =~co~ + {coP
1—0.'

2c[4cc'c—oc4—+ (1—cc')'co24]&) (III.29a)

2 5 4 5 6 7 8 9 IO

M, ~M,

FIG. 7. The variation with mass ratios and separation of the
localized frequencies which arise on interchanging the positions
of two unlike atoms in a diatomic linear chain. For any finite
separation of interchanged atoms (k( ~) the curves representing
the frequencies which come into the gap can come arbitrarily
close to the curves corresponding to infinite separation, but they
never touch each other.

are given by the solutions of

—-'[4P'co24+ (1—P')'co 4]&). (III.29b)

co.&' is the frequency which for M&/M2 1 emerges from
the top of the acoustical band while ~0' is the frequency
which at the same time drops out of the bottom of the
optical band. The frequencies given by Eqs. (III.27) and
(III.29) are plotted as a function of M&/M2 in Fig. 7. It
will be noted that coA' and cog cross when M, /M2 —3.75.
Furthermore as M,/M~~ oo, co~'—+-,'col.' while coo'—+coc2.

When k is small, however, a new feature appears.
We have solved Eqs. (III.23) numerically for several
values of k and the ratio M&/M2. In Fig. 7 we have
plotted as the dotted curves the values of coo' and
co&' and the frequency which comes out of the top of
the optical band for the special value k=1. The two
sets of curves for k=1 and k= ~ are the envelopes of
the family of curves which is obtained by letting k
assume successively the values 1, 3, 5, . We see
that for k&~ the two frequencies ~&' and coo' no
longer intersect but remain separated for all values of
Mg/Mg& 1.

To obtain more information about the variation of
the various defect frequencies with the separation
between the interchanged particles we must solve
Eqs. (III.23) as a function of k. If we introduce the
following notations,

co' = xco P coP =ho P col.
' = (1+X)coc'-, (III.30)

we see from Eqs. (III.23) that the defect frequencies

(X-1)-'x
(x—1)&(x—X) &—x&(x-7c—1)i

(x-1)~(x-X) '

[(x—1)~(x—7)'—x'(x —X—1)~]"

1+X—x

x& 1+X (III.31a)

P —1)' x

x&(1+X—x) &—(x—1)&(7c- x) &

(x- 1)~(X-x)~

[xc(1+7c —x)~—(x—1)~(X—x)t]'c

1(x(X (III.31b)

This form for the equations is useful for their numerical
solution, but also allows us to obtain approximate
analytic solutions for them as follows. Both equations
are of the form

A (x) =B(x)—[C(x)]". (III.32)

From the numerical solution we know that the solution
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for k=1 does not dier greatly from the solution for
k= ~ particularly for M&/M2 1 or M&/Mu))1, and
this suggests that we express the solution to Eq.
(III.32) as

(III.33)x= xo+ E&

where xo satisfies

A(xo) =B(xp) (III.34)

and e is assumed to be small. Substituting Eq. (III.33)
into Eq. (III.32) and making use of Eq. (III.34) we
obtain finally the following expression for e correct
to first order:

(0.3086)"
GP =Qloo 1 +

8.1322
(III.37a)

while the frequencies which come out of the top of the
acoustic band and the bottom of the optical band,
respectively, can be expanded as

and

(0 8123)&

A =oo2 — 2 + 0 ~ ~

115.74

(0.7082)'
COO =Choo 1+ + 0 ~ ~

33.845

(III.37b)

(III.37c)

where the a&„'s appearing in Eqs. (III.37) are different
in each case. Thus as the separation between the two
interchanged particles decreases the frequencies which
come out of the top of the acoustic and optical bands
are depressed while the frequency which drops out of
the bottom of the optical band is raised. This behavior

LC(xo)]'

A'(xo) —B'(xo)+kC'(xo) LC(xo)]~'

LC(xo)]"
(III.35)

A'(xo) —B'(xp)

where the primes denote differentiation with respect
to the argument, and the second expression in Eq.
(III.35) is valid for large k. This method of solution
is an application of Newton's method for the solution
of equations involving differentiable functions. The
xo's appropriate to the three out of the band frequencies
are obtained from Eqs. (III.27) and (III.29).

With this result we can make some qualitative
comments about the broadening of the defect frequency
levels due to the distribution of separations between
the pair of interchanged particles. Equations (III.30),
(III.33), (III.35) imply that each of the three defect
frequencies can be expressed generally as

~&' ——(~ )'Li —q(b) "+ ] 0&8&1. (III.36)

For example for the case M~= (3/2)M2, the expansion
for the frequency which comes out of the top of the
optical band is

is just what would be expected from arguments based
on Rayleigh's theorems. "

We have seen that point defects might lead to
localized modes and that when several identical
defects are introduced the defect frequency splits by
an amount that depends on the separation distance of
defects. Large numbers of point defects may appear
in a random manner or may be regularly spaced as
they would be in a screw dislocation or at a stacking
fault. In the random case we would expect the formation
of a defect band which would be a di6use broadening
of the defect frequency. In the regular case we would
expect the defect spectrum to have the characteristics
of that of a periodic system of the appropriate dimen-
sionality. A screw dislocation might have localized
modes with a typical spectrum of a one-dimensional
lattice with more than nearest neighbor interaction.
The indirect coupling between more distant parts of
the dislocation would be related to the Green's function
of the normal lattice in which the dislocation is
imbedded.

We shall discuss the line shape of randomly dis-
tributed defects in the next section.

IV. LATTICE VIBRATIONS OF
DISORDERED LATTICES

The problem of determining the vibrational properties
of a randomly disordered many-component lattice
has received much attention recently and has stimulated
a great deal of ingenious mathematical thought. The
interest in this problem is due in part to the light it
throws on such properties of many-component lattices
as the vibrational contribution to the thermodynamic
functions of binary alloys and the separation of isotropic
mixtures into separate phases at very low temperatures.
This model has in addition a direct application to
the evaluation of electronic energy levels in disordered
alloys as well as to certain aspects of the spin wave
theory of magnetism.

In the earliest paper on the subject Dyson" obtained
an explicit expression for the frequency spectrum of
any disordered linear chain. This expression is given
in terms of the solution to a certain linear, homogeneous
integral equation. He presented a solution in closed
form to this equation only for a simple but physically
unrealistic model of a chain, in which the masses and
spring constants take on any positive values subject
to a certain probability distribution. In the physically
more interesting case where two types of particles are
randomly distributed over the lattice sites (with no
correlations between the position of the particles) the
subsidiary integral equation reduces to a functional
equation. However, he did not attempt a solution of
this equation and indeed seems to have underestimated
the difhculty of a numerical solution. Dyson's technique,
moreover, cannot be generalized for use in higher
dimensions.

' F. J. Dyson, Phys. Rev. 92, 1331 {1953).



REMARKS ON THE VIBRATIONS OF DIATOMIC LATTICES 187

Prigogine, Bingen, and Jeener" studied precisely
this latter model in connection with the evaluation of
the zero-point energy of isotopic mixtures. Their
method, a perturbation calculation, is not restricted
to the one dimensional case as is Dyson's. They use
an exact frequency spectrum for the unperturbed
lattice in the one-dimensional case, but in two and
three dimensions they use a Debye spectrum. As is
frequently the case in perturbation calculations, the
authors did not discuss the convergence of the resulting
series. This point is of some interest because certain
results found by Maradudin and Weiss" cast light on
the question of convergence, and in particular seem to
suggest that in certain cases the perturbation series of
Prigogine, Bingen, and Jeener do not converge.

Lifshitz and Stepanova" presented a formal method
for calculating the frequency spectrum and Helmholtz
free energy of a random lattice. Their paper uses
linear operator theory developed previously by Lifshitz, '4

and is based on an expansion of the various functions
in powers of the concentration of one type of atom in
a lattice composed of atoms of a second type. Although
the method can be used in any number of dimensions,
no detailed calculations are made. The Lifshitz-
Stepanova treatment of this problem seems to be the
most difFicult to apply for computational purposes.

Schmidt'4 has presented a very elegant theory for
the one-dimensional chain. His method, like that of
Dyson, depends upon the fact that the characteristic
matrix is a Jacobi matrix. This limits the use of his
method to one dimension only. Schmidt derives a
functional equation satisfied by the distribution
function together with a convergent iterative procedure
for determining this function. His paper actually
presents an approximate expression for the frequency
distribution function under the assumption of low

impurity concentration although Schmidt does not
calculate averages of any functions of frequency using
this distribution function.

Asahi and Hori" have presented a method of solution
for the one-dimensional problem which is probably
the simplest way yet devised to solve for the in-band
frequencies. Unfortunately the method cannot be
extended to higher dimensions.

We begin our discussion of the effects of disorder by
outlining several methods that are useful when the
concentration of defects in a monatomic lattice is low.
The following presentation follows that of Montroll,
Maradudin, and Weiss"

If two identical widely separated point defects
exist in a lattice each is the source of a localized mode
of the same frequency. As the distance between the
two is diminished the frequency degeneracy is split,

"Prigogine, Bingen, and Jeener, Physica 20, 383, 516 (1954).
'2 A. A. Maradudin and G. H. Weiss (to be published)."I. M. Lifshitz and G. I. Stepanova, Soviet Phys. JETP

3, 656 (1956).
'4 H. Schmidt, Phys. Rev. 105, 425 (1957).

at first symmetrically about the original frequencies.
At separations greater than several lattice spacings
the splitting depends only on the distance between
the two defects (at smaller separations the direction
of the line of centers relative to the crystal axes become
important). Hence all defect levels are broadened in a
system with a small but finite concentration of randomly
distributed defects. The line width at low concentrations
can be estimated by weighting a given frequency
separation by the number of nearest neighbor defect
pairs whose distance leads to that splitting. Interactions
between more distant neighbors can be neglected at
low concentrations.

Let Q= f(r) be the level spacing appropriate to a
pair of defects separated by a distance r. Furthermore,
let W(r)dr be the probability that the nearest neighbor
to a given defect be between r and r+dr. Then the
fraction of levels split into a pair with separation less
than 0

(IV.1)

The distribution of nearest neighbor distance between
random points was derived by Paul Hertz (see also
Chandrasekhar"). If p is the average number of
points per unit volume (unit length in one dimension
and unit area in two), the distribution function is

2pe 2l'" one dimension
W(r)= 2srp exp( —npr') two dimensions

err'p exp( —-', s.pr') three dimensions.
(IV.2)

(Q/A) "i Q (A
1—D: E(Q) =

j. Q)A

4m
3 D: 1V(Q) =exp —-—p[r(Q)$'

3

(IV.4)

where r(Q) is obtained by solving (IV.3) for r. We have
plotted X(Q) in Fig. 8 for the particular choice A =a=1,
p =0.2.

The line width of a defect level due to concentration

"S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).

It is known that the splitting due to a pair of defects
separated by a distance r (greater than several lattice
spacings) is

tAe " in one dimension

[(A/r)e ' in three dimensions.

The constants A and n depend on the nature of the
defects. Hence the fraction of defect pair frequencies
split by amounts &0 are
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~,9
~.8Z',

.7

l.5
1

2
Q

FiG. S. X(a) is
the fraction of defect
pair frequencies split
by amounts (O.

We again consider the three-dimensional simple
cubic lattice with nearest neighbor central and non-
central force interactions between the particles. There
are 2S particles in the lattice of which S are of mass
Mi and X are of mass M2. We can regard it as being
made up of two interpenetrating sublattices one of
which we call the ot sublattice and the other we call
the &3 sublattice. In the ordered state the a sublattice
is occupied by particles of mass Mi only while the
P sublattice is occupied by particles of mass M& only.
Furthermore the six nearest neighbor sites to an n site
are all J3 sites and vice versa. Following Bragg and
Williams'6 we now introduce a long-range order
parameter R which is defined by

splitting is R= 2r —1=2rp —1, (IV.5)
&'" dN (Q)0= — 0 -dfl = '

Q,(r) W(r)dr
p dQ &p

2pA/(n+2p); 1 D—
4n.A p

Jo
.1r exp —nr ——pr' dr. 3—D

As p—&0 in the 3D case

0 4prA (p/a').

When defects are present in a lattice in large numbers
their influence on thermodynamic quantities can
usually be expressed as a power series in the defect
concentration. The systematic development of the
coefficients for such series has been described else-
where. "We now adapt such expansions to expansions
in powers of one minus the long-range order parameter
for slightly disordered lattices.

In the usual treatments of the order-disorder transi-
tion whether by the various approximate methods of
Bragg and Williams, Bethe, Kirkwood, and others,
or on the basis of the Ising model, it is assumed that
the interaction between the vibrational and configura-
tional contributions to the partition function for the
lattice is negligible so that the partition function Z
can be expressed as

Zvibzcon fig

where the first factor is independent of the degree of
order in the lattice. However, as we will see below,
disorder in a lattice can conveniently be expressed in
terms of the interchange of positions of different pairs
of unlike atoms. Thus the disordering process can be
regarded as equivalent to the introduction of substitu-
tional defects at various lattice sites.

We assume that a long-range order parameter is
given and estimate averages over all configurations
consistent with that order parameter. We do not
discuss the more difficult problem in which the con-
figurational interaction constants vary with instan-
taneous lattice spacings during vibration.

where r and rp are the fractions of a atoms on P sites
and P atoms on o. sites, respectively. When r =rp=1,
R= 1, and this corresponds to a state of perfect order.
When r =rp=0, R= —1, and this also corresponds to
a state of perfect order since here every n atom is on
a P site and vice versa. Thus the long-range order
parameter R is symmetric about r =rp=-,' for which
R=O, and this corresponds to a state of complete
disorder. We will accordingly consider only those
values of R which satisfy

O(R &1.

We consider now how the degree of order decreases
in the lattice. The first degree of disorder corresponds
to the interchange of the positions of any two unlike
particles in the lattice. In this case r =rp=1 —1/N
so that

R&= L(2N —2)/N] —1=1—(2/N).

The next degree of disorder corresponds to a second
pair of unlike particles interchanging their positions
and for this case r =r»= (N —2)/N so that

Rp ——
I (2N —4)/N] —1=1 4/N—

In general the nth degree of disorder corresponds to
the interchange of the positions of n different pairs
of unlike particles, and here

R = (N —2I)/N= 1 —(2e/N). (IV.6)

We can now apply these results to the expansion of
an arbitrary additive function of the normal mode
frequencies of a disordered lattice in powers of the
parameter (1—R) for R)0. Let us assume that n
different pairs of unlike particles have interchanged
their positions. Let us denote the functions of interest
by S(r»"&, r&p&'& . . . , r&p~" '&, r&p'"&) where r»(»=r, (»
—r2") is the vector joining the positions of the jth
interchanging pair. Now it is clear that any given
degree of disorder in the lattice can be realized in many
diferent ways. For example the first degree of disorder

36 W. L. Bragg and E. J. Williams, Proc. Roy. Soc. (London)
A145, 699 (1934).
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can be realized in ~V' distinct ways corresponding to
the interchange of any one of the X particles on the
n sublattice with any one of the cV particles on the
P sublattice. In order that our results be applicable to
a real crystal lattice we must therefore average S(r&1&",

, rip&"&) over all distinct configurations of the n
interchanged pairs. Since this latter function depends
only on the number of interchanged pairs we may
denote it by S(n). The averaging process may include
any correlations between interchanged pairs. However,
the results given below are completely general; the
passage from the S(r&o"', .

, r»&"') to the S(n)
includes all such information and may be handled
in an analogous fashion to that given in reference 26
for a similar problem.

By a well-known formula from the calculus of finite
differences S(n) can be expressed in the form

and
As(0) =S(1)—S(0)

6"+'S(0)=h(A' S(0)).

(IV.8a)

(IV.8b)

We can now introduce the long-range order parameter
into the expansion given by Eq. (IV.7) since by
Eq. (IV.6)

.V
n =—(1—R„) if R„)0.

2

In the following we will omit the subscript n in Eq.
(IV.9) and will express our results in terms of R.
If as X~~

S(0)=Sp

SI
AS(0) =S(1)—S(0)=-

2zV
(IV.10)

S2
LVS(0) =S(2)—2S(1)+S(0)= etc. ,

4&V'

and n +~ whil—e iV—&~ in such a manner that (n)$)
=p(1 R), Eq. (IV.7) be—comes

SI S2
S(R)=Sp+—(1—R)+—(1—R)'

4 32

(n'l
S(n) = P

~
~~ S(O) =S(O)+n[S(1)—S(O)]

,~ Eg')

n(n 1)—
+ [S(2)—2S(1)+S(0)]+ (IV.7)

2 t

where

sions of a function about two points we find that for
—1 (R&1

S(R)=Sp+—(1—R')
8

1
+—(S,+-,'S,) (1—R')'+ . (IV.12)

32

where the right-hand side depends explicitly on the
coordinates of n distinct pairs of interchanged particles,
we obtain the following expression for 5"S(0):

1
~"s(o)= f(.)x

2m's4,

II l~, (s) I()
din

j=k, k —2, &O

j=k —1, k —3, WO

where () denotes an average over all the distinct
configurations that the n interchanged pairs of particles
can assume. The first two 6"S(0) are

1~s&o)=,&f&.)s& ~~,&p~) gv. is )2' ~,

~a, (s)
~

6'S(0) =
~ f(s)d ln . (IV.15b)

2pri,
~

A, (s) ~'

Equations (IV.10), (IV.11), and (IV.14) constitute
a formal solution to our problem.

Several specific calculations have been made for the
zero-point energy for a one-dimensional chain. If we
assume that the chain has 2V particles, then a detailed
evaluation of the integrals involved yields as the zero
point energy per particle

Eo(R) f«dr,
[0.9995—0.000109(1—R')

2~V x

Since S has been specified to be an additive function
of the normal mode frequencies of the lattice we can
obtain convenient expressions for the S s by employing
Eq. (III.4). Then since we can express S(r»"', r»&",

, r&p&"') —S(0) as

1
S('n) —S(0)=

~t f(s)d ln
~
A„(s)

~
(IV.13)

2m'~ o

+0( (1—R')')] M& = 1.2Mp
(IV.16)

A similar expansion exists about the point R= —i.
Through the use of known series which give expan- +0( (1—R')') ] Mi = 2Mp

S3
+ (1—R) '+ . . (IV.11)

384 Eo(R) A&pi,

[0.9892—0.00151(1—R')
2.V
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where the values of the zero point energy for the
ordered lattices have been calculated from the expres-
sion given in reference 27. col. is the maximum normal

mode frequency of the unperturbed lattice. We thus
see that the zero-point energy of the chain is lowered

by disordering, in agreement with other results of

Prigogine, Bingen, and Jeener, " and Maradudin and
Weiss."

This same approach has been exploited" to yield
the low concentration expansion of additive functions
of the normal mode frequencies. If we denote by c
the concentration of A atoms in a lattice of B atoms,
and we express the mass of the foreign A atoms by
M(1 —o) where M is the mass of the B atoms, then we

may express S=P f (cd,) in the form

paragraphs we may write

1
S=So+&S= f(z)d lnl Mo(z) I

2x'z& g

1
+ I f(z)d lnl h(z) I. (IV.20)

2~i ~,

I
~( ) I

=II (I+lc~) (IV.21)

Presumably one knows the value of So so that all we

need to find is the value of hS. To do this we write

I &(cd) I
in the form

S= P a„(o)c".

where the Xr are the eigenvalues of Mo '(co)bM(co)

(IV 17) Hence, if each X, satisfies the condition
I X;I & 1 we

may wrcte

The method of this section has been used in finding the
following expression for the average zero-point energy
per particle of a linear chain

lnl A(or) I
=P ln(1+X,)

ipgo+ipgo (IV.22)

&o(c) fico'. l'1+ —',(1—o') & cos( —o) ——c~l 4 Denoting the matrix Mo '(co)bM(or) by D(co) we
finally find

t or —3q f 16—5rr~

g )
Tr(D")

»l~(~) I

= 2 (—1)"
n 1

(IV.23)

(63m —200+3%2 tanh '2 &)

+"I )96

In spite of the ingenuity shown by the authors
listed at the beginning of this section, very few results
have been actually calculated by their methods.
Only Prigogine, Bingen, and Jeener" have attempted
any discussion based on a detailed evaluation of their
formulae. Maradudin and Weiss" derived a formal
solution for the evaluation of additive functions of the
normal mode frequencies Lof the form given in Eq.
(III.1)]that can be adapted to a numerical calculation,
at least of the first few terms of the relevant expansions.
Their method has the advantage that it is independent
of dimension, and that the convergence properties of
the resulting series can be discussed (it appears that
at least in some cases, the perturbation series of
reference 31 do not converge). We give a brief outline
of the method.

We may start with an expression for S=P f(cd;)r
as a contour integral as in Eq. (III.2). Since the
secular determinant can be factored:

IM(~) I
= IMo(~) I I ~(~) I

(IV.»)
where Mo(co) and d (co) have been defined in previous

Henceforth we shall confine ourselves to the simple case
in which we have two types of atoms, A atoms and
B atoms, the A's having mass M~ and the B's having
mass M2. We assume that an A atom occupies a lattice
site with probability p and a B atom occupies a lattice
site with probability 1—p. All of the spring constants
are assumed to be equal. The method is of greater
generality, and other more complicated situations can
be treated using it.

We may write the mass at lattice site m= (oroi, ore&, orco)

as

M(m)=M+o hM, (IV.24)

where o. is a random variable with the property

M, —M
with probability p

M2 —M
with probability 1—p.

AM

(IV.25)

The choice of M and hM is arbitrary and can be chosen
in several ways all of which are consistent with the
conditions IX, I

&1. Now we may choose the matrix
Mo(co) to be the secular matrix corresponding to a
lattice consisting only of atoms of mass M. The elements
of Mo(co) and Mo '(co) are known through the work of
Montroll and Potts."In particular, the expression for
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the a, & o, the elements of Mo '(co), are

a, & '&=X "Q P,o(s)] '

Xexp[2xis (m —m')/1V], (IV.26a)

where n is the dimensionality of the lattice and

24rs, )
Xo(s) =Moo' —2 P y,

~

1—cos ~. (IV.26b)j
When the AM and M are chosen so that

~
X,

~
(1

(it can be shown" that this is always possible) then
we may write

Tr(Do) = (AM(o')" Q Q am1mo& '&

ml mk

amom1 o'mg' ' 'o'm4. (IV.27)

This expression together with Eqs. (IV.20), (IV.23),
(IV.24), and (IU.26) is a formal expression for S.

When there is disorder in the lattice we are interested
in (AS) the value of AS averaged over all possible
configurations. If AM is so small that (AM)', (AM)',

~ can be neglected in comparison then we may
write for hS

AM
(Z ) lf()d(" -' "()}. (IV2g)

27' m

The element a & " is independent of m. The random-
ness of AS is now described by the term P o

If 1V is large p o has a Gaussian distribution with
a mean equal to

(Q om) = [PM1+ (1—P)Mo —M] (IV.29a)
hM

and variance

g2n

(Q &m )= [p(1—p) (M4 —Mo)o]. (IV.29b)
(AM)'

In general it is not possible to neglect higher powers
of AM so that we will essentially 6nd a perturbation
expansion in powers of AM, using Eq. (IV.23). Let
us denote (a') by 8,. Then, in averaging terms in the
expression, Eq. (IV.27), for Tr(D") we must partition
ea,ch summation since, for example, 8o 48/. Thus
difI'erent types of terms arise from the double sum as
follows

Q Q SmlD12 ao12o11 (&ml&m2)
mI m2

=Po Z &~ ' "}'

+81 p Q Gmlmo Gmoml, (IV.30)
my m2

a1(4o)
+2(8P—po) [ag(4o) —y

—
'ao(4o)]dho

8I2—2—[ao(4o) —p 'ao(co)]d4o+, (IV.31)

where 44=AM/M and the uo(oo) are irreducible sums
given by

(AMoP)"
uo(co) = Z ' ' ' Z amlm2 ' ' ' oo1kml

gn mj. mjc

(AM&o')"—2 [~o(s)] '.
+n S

(IV.32)

Diferent types of irreducible sums appear in higher
order terms of the expansion begun in Eq. (IV.31).
A detailed discussion of these points is found in reference
32.

The most convenient contour to use for evaluating
the integrals of Eq. (IV.20) is a semicircle with the
diameter on imaginary axis, and the circular part in
the right half-plane. A general expression for a&(uo)
with co real, can be given in terms of generalized
hypergeometric functions.

Several calculations for particular functions f(&o)
have been made. The simplest example is f(co) =-',hco,
the zero-point energy. In one dimension the average
value of the zero point energy is given by

&o+ (A&o)

AGOg

[1—0.58u4+ (0.392781—0.01778/)p'

+ (0.60738g8o —0.333384—0.5862814)p'

+ (0.294684+0.09338o'+ 1.66678484

+1.76878'' —3.7358828o)y'+0(p')], (IV.33)

whose coL, is the maximum frequency of the lattice

where the prime excludes the values m~ ——m2 in the
summation. We get a similar separation of terms into
"irreducible" sums from higher terms, and a discussion
of these sums can be given very similar to the discussion
of cluster integrals in the theory of imperfect gases.
An expansion of

& "d(in~A(~) ~)

up to terms of order (AM)' is

-& "d(in~A(~) ~)

2PI=—[&4(~)—~ '~o(~)]d~
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with masses M. For the special choice of parameters

M =pMi+ (1—p)M2 8 M =Mi —M2. (IV.34)

Equation (IV.33) simplifies to

Ep+ (BE2) fu2r,

{1+0.3927p(1 —p)kk2

S m.

+[0.2945p (1—p) (1—6p+ 6p')

+0.9769p'(1 —p)']p'+0(i ')) (IV.35)

Peur,
2 COShPs&k

sinhkPcvk
p=, (IV36)

kT

and the p,
' correction to the Helmholtz free energy is

lk,p(1 —p) ph &q
(AF) = ctnh(

)

~ F2. (IV.37)
8 (2kT) I

When we use the foregoing technique to find the
frequency distribution we find that the calculation
yields a series in delta functions and derivatives of
delta functions. Khile this series does not describe the
frequency distribution it can be shown that if one
integrates functions using the partial sums of this
series the result will be correct. This is how (AC„) and
(DF) were calculated.

In preparation for a discussion of the frequency
spectrum of a disordered lattice of a mixture of two
isotopes we suggest that the largest frequency can be
expected to be that of a monatomic lattice composed
of the light isotope. Suppose our mixture has equal
numbers of both species and let the number of particles
S' approach infinity. Now divide the system into many
cells in such a way that a large number of particles
remain in each cell (and such that this number
approaches infinity as Ã~~). If the surface force
constants of each cell are set equal to zero we find
(following Ledermann22) that a very small number of
frequencies (compared with Ã2) are changed by the
process. As X—+~ we are certain to find at least one
isolated cell with all light atoms. Such a cell will
yield a frequency equal to that of a lattice of pure

"%.Ledermann, Proc. Roy. Soc. (London) A182, 362 (1944).

since all of the odd moments are zero. This corresponds
to the choice of made by Prigogine, Bingen, and
Jeener. However, it appears that the parameters of
Eq. (IV.34) do not always insure the convergence of
Eq. (IV.35). The two-dimensional calculation is
carried out to terms of order p,

' in reference 32. The p'
correction to the specific heat for the linear chain,
using the definitions of Eq. (IV.34) is

p(1—p) kkor, p2
i(ac,)=

2 I sinh2Ps&i,

PkkiC paiL

@2k J
GP g(GO)dk2 I g(M)dCO

—~I. ~L

ra2kg(cv) der (IV.38)

since

p rd g

g (k2) d(d = 1.
0

If we use the theorem of matrix algebra which states
that the sum of the kth powers of the characteristic
roots of a matrix equals the trace of the kth power of
the matrix we find in our case that

TrD2„—Q g k —P ~ 2k

7 1

Since the order of the dynamical matrix is E, the
average value of the 2kth power of the normal mode

' E. W. Montroll, J. Chem. Phys. 10, 218 (1942); 11, 481
(1943).

light component. By Rayleigh's theorem no frequency
can be higher than this in any other cell. It is con-

jectured that in a three-dimensional lattice this
high-frequency point is approached by a tail in the
frequency spectrum. However, in the one-dimensional

case the spectrum may have an infinite tangent at
this point.

We now find approximate expressions for the
frequency spectrum of a completely disordered diatomic
linear chain by the moment-trace method. '8 We again
assume that force constants remain unchanged in the
disordering process.

The squares of the normal mode frequencies of a
lattice are the characteristic roots of a matrix called
the "dynamical matrix" which we denote by D'.
If we denote the jth characteristic root of D' by
X,=co we see that for every X, there exist two fre-
quencies —~, and +~„ the positive one of which is to
be used in obtaining the vibrational properties of the
lattice. The frequency distribution function g(&2) is
defined such that Ng(co)Ck& is the number of normal
mode frequencies in the range co to co+Cd where E
is the total number of degrees of freedom of the lattice.
It is clear that g(k2) =g( —~). We have just shown that
the frequency spectrum of a disordered isotope lattice
is nonvanishing over only a finite range of frequencies,
i.e., there exists a maximum frequency co& which for
the isotopic lattices considered is equal to the maximum
frequency of the monatomic lattice composed ex-
clusively of the light masses.

With these results we see that the odd moments of
the frequency distribution function, p, &k+& vanish,
while the even moments are nonvanishing and are
given by
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frequencies is

1 1
2P —, Tr DPk

X ~ N

which by definition is the 2kth moment of the frequency
distribution function

P2a=
Jp

1
pp'"g (&p)d&p =—TrD'P.

N
(IV.39)

Knowing the matrix D we can in principle calculate
all the moments of the frequency distribution function,
and it only remains to reconstruct the distribution
function from a knowledge of its moments.

Following a well-known technique we expand g(&p)

in terms of Legendre polynomials

g(&p)= Q a„P„]—)(~,)
(IV.40)

where the coefficients a„are given by

2n+1
g(x&d )P (*)dx.

2
(IV.41)

Since P„(x) has the parity of n, and g(&d) is an even
function of &p, we see from Eq. (IV.41) that the odd
coefficients a2„+& vanish. Furthermore, recalling Eq.
(IV.39) we see that ap„ is given as a linear combination
of the moments p, p, p, i, ~ ~, p, 2„, whose coefficients
depend on the coefficients of x'" in the expression for
Pp (x). The final result is that

of an alternating diatomic lattice with only nearest
neighbor interactions contains infinities in the three-
dimensional case as well. However, even in these cases,
calculations of the frequency spectra which have been
carried out using from ten to fourteen moments""
have reproduced all of the qualitative features of the
spectrum such as the occurrence of the requisite
number of peaks, and even some of the quantitative
features such as the locations of the peaks, which have
subsequently been verified by more accurate calcula-
tions. It has been conjectured that these infinities
which occur in the ordered lattices would tend to be
"washed out" in the randomly disordered lattices
since in this case averaging the spectrum over all

configurations of the lattice would destroy any tendency
for large numbers of frequencies to be localized in a
small frequency range. If this is the case, then the
moment-trace method will yield a good picture of the
frequency spectrum, the accuracy improving as higher
moments are calculated.

We outline brieQy the method of evaluating the
moments for the disordered linear chain. Calculations
for two- and three-dimensional lattices are being
carried out in the same way.

Consider a linear chain composed of two kinds of
particles, one kind having a mass M~, and the second
kind having a mass M2. The probability that a given
lattice site is occupied by a particle of mass M& is p,
and the probability for occupation by a particle of
mass Mp is 1—p. It is further assumed that the force
constant y of the "springs" which link nearest neighbor
masses is the same for all springs ("isotope case").

The elements (D'),; of the dynamical matrix are
(assuming the cyclic boundary condition)

cpL,app ——(4k+1)Ppp(x)
~

s~ ——pp (IV.42)

where we have introduced the dimensionless moments
upk

happ/lllL

~ Explicit expressions for the first few
coefficients are

coL,ap= 1

&p r,ap ——(5/2) (3up —up)

&pra4= (9/8) (35u4 30up+2up)

&p J ap = (13/16) (231up —315u4+ 105up —Sup)

&pj,ap (17/1 28) (6435up —12 012up+6930u4
—1260up+35up).

(IV.43)

8~&, ; IV.44
(M,M~() &

where i, j= 1, 2, . - . , N. With the aid of this expression
TrD'~ was evaluated for k=o, 1, 2, 7, and was then
averaged over all configurations of the masses. As
an example we calculate (up) and (u4) (of course

(«&p) =1).From Eq. (IV.44) we have that

If the frequency distribution function is a reasonably
smooth function of co, i.e., it has no singularities, then
an expansion in a finite number of Legendre polynomials
can be expected to give a qualitatively good description
of the distribution function. It is well known that'
the frequency spectra for monatomic one- and two-
dimensional lattices contain sharp infinities, and
Mazur~ has recently shown that the frequency spectrum

+ i
(IV.45)

)p 1—pl
EM) Mp )

"E.W. Montroll and D. C. Peaslee, J. Chem. Phys. 12, 98
(&944'.
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TABLE I. Moments of the frequency distribution function for a
disordered linear chain (MI 2%2, p=)}.

Sp&=1
Q2) = (3/8) 0.375
(p4) = (29/128) =0.2265625
(pe) = (81/512) =0.158203

Qs) = (487/4096) =0.118896
Qgp) (3063/32768) =0.093475
(pgg} =0.075788
(p,g4) =0.062854

Goz,ap= 1
coL,as 0.3125
col,a4= —0.360352
col.as = —0.363403

~l.as =—0.353140
col,asap= —0.322029

I.a s = —0.01314
coga)4 =0.071460

and

1
(p4) =—(TrD4)

TABLE II.CoefBcients in the Legendre polynomial expansion of the
frequency distribution function for a disordered linear chain.

approximation for the ordered (alternating) diatomic
linear chain is plotted in Fig. 10.

It is known that

Cdl, = llm (Jbt2n+2/+2~) ~ (IV.47)

2.2—
I l

The values of this ratio for n=0 to n=6 are 0.37,
0.60, 0.70, 0.75, 0.79, 0.81, 0.82, which seem to be
approaching the limit 1 as would be the case if our
remarks on the nature of the highest frequency are
correct.

The more general case in which the force constant
of the "spring" joining two masses depends on the
nature of the two masses has been studied by Oguchi
and Takagi, ~ who calculated the first eight moments
for a disordered binary chain and constructed the
frequency spectrum in the manner described above.

] +I ~2 ~2
=—Z + +

M~ M gM; MM~i

2P(&+P) 2P(& —P)
2p2 +

MP MgM2

2(&—P)+ (&—P)'
+

i

. (IV.46)
M2'

3
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6 .8 I 0
f = (~ti)

FIG. 10. The fre-
quency spectrum of
a one-dimensional
ordered diatomic
lattice with

MI=2Ms.
The fourteen-
moment curve is cal-
culated on the same
basis as that of the
disordered lattice
spectrum of Fig. 9.

1.6—
3

I.2—

.8

4

I I

Fro. 9. The fre-
quency spectrum of a
one-dimensional dis-
ordered lattice con-
structed from its 6rst
fourteen moments.
M~ ——2&2, and p=$.

I

.2
I

.4
I

.8 I 0
f -(w~. I

The expressions for the higher moments rapidly
become more cumbersome and will not be given here.
Numerical calculations were carried out for this
model for the particular choice M~=2312, p=-', . The
numerical values for the first fourteen moments in
this case are given in Table I, and the first nine coeK-
cients in the Legendre function expansion of the
frequency distribution function are given in Table II.
The frequency spectrum obtained from the first
fourteen moments is shown in Fig. 9. For comparison
the corresponding spectrum calculated to the same

They were able to study the variation in the frequency
spectrum with changes in the short-range order
parameter. In an earlier paper Oguchi and Hiroike~
studied the eGects of disorder on the vibrational
contribution to the specific heat of two-dimensional
binary lattices using the moment-trace method, and
the three-dimensional case has been studied by Shibuya,
Fukuda, and Fukuroi. ~ A discussion of these papers
and references to other Japanese work on similar
problems is given in the review article by Muto and
Takagi. 4'

Plots of the heat capacity of binary substitutional
alloys as a function of temperature generally have a
X point at the critical temperature, associated with the
disappearance of long-range order. It is usually assumed
for simplicity that the heat capacity contributions of

~ Y. Takagi and T. Oguchi, Busseiron Kenkyu 34, 44 (1951).~ T. Oguchi and K. Hiroike, Busseiron Kenkyu 33, 37 {1950).~ Shibuya, Fukuda, and Fukuroi, Busseiron Kenkyu 37, 160
(1951);41, 17 (1951).~ T. Muto and Y. Takagi in Solid State Physics, edited byF. Seitz and D. Turnbull, (Academic Press, Inc. , New York,
1955), Vol. 1, p. 193
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O

Ta

Fro. 11. A sketch
of the heat-capacity
curves for disordered
lattices for various
degrees of disorder.
The thick line curve
shows schematically
how the vibrational
contribution to the
heat capacity varies
with temperature. T,
is the Curie tempera-
ture for disorder.

The sharpness of the X point is the result of the
configurational contribution to the heat capacity.

APPENDIX A. EFFECT OF CHANGES OF DYNAMICAL
PARAMETERS AND THE INTRODUCTION OF

CONSTRAINTS ON VIBRATIONAL
FREQUENCIES'a

We express the kinetic and potential energies of a
system of coupled oscillators as

lattice vibrations and configurational interactions are
independent and that the observed heat capacity is
merely the sum of these two independent contributions.

An improvement of this approximation can be made
by observing the frequency spectrum to be a function
of the degree of order of the alloy. A family of vibra-
tional heat capacity curves can be constructed for
various degrees of order (see Fig. 11).We have supposed
the Debye-0 to be increased by disordering. Then the
vibrational heat capacity is to be selected from lower
and lower curves as the degree of disorder (and tempera-
ture) increase. A sharp drop to the lowest (completely
disordered) curve occurs at T.. The thick line curve
in Fig. 11 shows schematically how the vibrational.
contribution to the heat capacity varies with tempera-
ture in materials which do not undergo a structural
change.

Fr.o. 12.

=0 (A.2)

The numerator of this function is a polynomial of
degree &&o in o&o and F(o&o) has m roots. Let c be a small
positive number. Then

straint of the system such that

fiQi+foQo+ . +f Q =0,
for any other value of P,f&Q; would cause the total
potential energy to become infinite thus making the
corresponding configuration impossible. The fixing
of the center of mass of a lattice with one degree of
freedom per lattice point can be introduced into its
dynamics through the proper choice of the f s. Three
such conditions are required for a lattice with three
degrees of freedom per lattice point.

The equations of motion of our altered system yield,
after letting Q;=N&e~'

( MgG& +cy)Ny+ fg(r —Got& ) (fyflg+fogo+ ) =0,
( Moo&t+co—)s2+fo(y ao&') (f&N&—+folo+ ) =0, etc.

The characteristic equation for the determination of
normal mode frequencies is obtained by multiplying
the first equation by f&/(c|—M&co') the second by fo/
(co—Moo&'), etc., and adding the resulting equations
to obtain

ttl tn

T=-,' Q M&Q&o and V=-'Q c&Q'
j~l j 1

F(o» —o)~—oo

F(~P+o)~+ ~
as e—4
as e—+0.

o»o =c;/M;.

Now suppose the system to be altered so that terms

&'F=o~(fiQ&+foQo+ +f Q )' (A.1a)
and

in terms of the normal coordinates {Q,).The squares of
normal mode frequencies co,~ are

Hence, if o&o ='r/Q and o&P(o&o ( ' ' (o» (o&o (o»'+1( (o& ', F(co') suffers a change in sign in each
interval

o&o&»)& (o&op»)& '''
(o& o& )

2b & 2 2

(o»'+P, o&o ), ' ' (o&e, o&~& ).
y small.

positive

27(f&Q1+foQ2+ . .+f Qm)' (A.1b)

are added, respectively, to T and V. If we set p=0
and e=M ' —M ;, the alteration in the kinetic energy
is the result of a change in the mass of the jth oscillator
from M; to M . On the other hand, the alteration of a
single spring constant might lead to n=0 and y&0.

he setting of 0,=0 and y= ~ corresponds to a con- Fro. 13.

large,
positive

y negative
~

mrna

e
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Therefore, the square of a normal mode frequency lies
in each of these intervals (Rayleigh"). The alteration
characterized by (A.i) causes each of the unperturbed
original co,~ to be moved in the direction of o&g. Each
new frequency falls between a pair of those of the
unperturbed system except that two fall between
co& and G7~+y .2

We now discuss several special cases of interest in
lattice vibration problems. Generally the changes in
masses and force constants with which we will be
concerned do not cause the lattice to be unstable to
small oscillations. That is, we assume that oP is never
negative. If we rewrite (A.2) as

F(oP) =Fg(sP) —F2(co')
with

and F2(aP) =
CXQP

the determination of the zeros of F(co') is achieved by
observing the intersection of Fi(co') and F2(au~) when
both functions are plotted together. F~(aP) has the
from plotted schematically in Fig. 12 for m=6. If we

set (a) a=0 and y&0, then F2(aP) is a straight line
represented by a dotted line in Fig. 13. As p~~ this
line approaches the horizontal axis in the 6gure.
All frequencies are raised when a=0 and p&0 as can
be seen by the location of the intersection of the
dotted lines with the Fr(&»') curves. Notice that only
one frequency escapes from the original frequency range
(cu„',caP). As y~~, this frequency also becomes
infinite; (b) if a=0 and y(0 then all frequencies are
reduced; (c) if p =0 then F2 (co') = 1/nru' is schematically
represented in Fig. 14 by the dotted curve in the fourth
quadrant when 0.&0 and by that in the first quadrant
when a(0. Hence all frequencies are reduced when
a&0 while all are increased when a(0; (d) if both
y&0, ~&0, F2(oP) is positive for small co' and negative
for large co' with a singularity at y/a. This is plotted
schematically in Fig. 15 where we notice that all fre-
quencies squared co,~, are shifted towards the critical
value y/a.

In cases (a) and (c) we note that one frequency has
been removed from the dense collection of normal
mode frequencies.


