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I. INTRODUCTION

HAT the study of the continuous beta spectrum
is especially useful in providing information con-

cerning nuclear decay schemes and in particular is most
helpful in the assignment of angular momentum and
parity values is well known. That orbital capture has not .

been as useful in providing such information is also well
known. In the latter case, one can observe only the
cllal'actcl'ls'tlc x-I'ays. (ol' 'tllc Allgcl' clcctl'oils), ol tllc
bremsstrahlung photon accompanying it. The first pro-
vides a measure of the appropriate decay constant, The
second constitutes a useful method of measuring the
maximum energy release, ' thus supplementing the
limited data of (p,n) thresholds.

Advances in experimental techniques in recent years
have made rchable quantitative measurements of orbital
capture possible, at the same time that the more ac-
cessible beta decays werc being exhausted; conse-
quently, there has been a sharp upsurge of interest in
the field, some reQection of which can be gathered from
two comparatively recent review articles. ' The inter-
pretation of the orbital capture data has been restricted
by lack of readily available theoretical information. In
an attempt to 611 this need, the present. authors issued
a reports in which the theory was examined in detail,
pertinent CGects were treated explicitly, and the results

. of extensive numerical calculations were presented. The
considerable interest expressed in this report indicates
that a wider and more convenient dissemination of the
results is desirable. In the present paper, the self-
suKciency of presentation striven for in the report has
been given up, and previously published material is
referred to rather than repeated. This paper contains
thc material which is original with us or not otherwise
available in easily usable form, with some revisions
(primarily through the in.corporation of later numerical
data) of the contents of the report referred to in the
preceding. ' Emphasis is on the final results and. their use
rather than on the details of calculation.

Section II consists of a discussion of transition proba-
bilities and branching ratios. Transition probabilities
are explicitly written down for the E shell and the L
subshells for allowed through second-forbidden captures.
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While parts of this are available elsewhere, mostly
implicitly, a full and consistent listing is undoubtedly
much needed. This paper undertakes to supply this and
to correct some errors in numerical factors in the
published literature. The relative contributions of cap-
ture by the various subshells and of positron emission
are examined in detail, with special attention to the
hitherto neglected p electrons (Ill and 1.111 subshells)
which can be very important in some circumstances. To
give the reader a better qualitative grasp of the results,
the discussion 6rst uses approximate expressions from
which trends can be more clearly exhibited in functional
form, following these up with exact values where de-
sirable. The figures supply the values of the bound
electron radial wave functions (with corrections as
described below) that appear in electron capture, and
show the computed branching ratios in what we con-
sider the most convenient form.

Section III outlines the procedure used in obtaining
the electron wave functions. These are relativistic
Coulomb radial functions corrected for the finite size of
thc nucleus aQd thc cGcct of sciccQing, aQd taklQg into
account the variation in the electron wave function over
the nuclear volume. Graphs of the corrections for finite-
size and. screening are given separately because they are
of interest in other contexts.

A. Transition Probabilities

The formal treatment of orbital capture is similar- to
that of electron emission, with three di6'erences:

(1) The electron wave functions correspond to bound
states instead of particles in the continuum.

(2) For a given (sub) shell, the electron energy is
discrete; it follows that the neutrino energy is also
discrete.

(3) An electron in a given (sub) shell is in a definite
total angular momentum state. There is Qo sum over
angular momenta. The neutrino takes on all possible
values of angular momentum consistent with the fixed
electron angular momentum and the rank of the beta-
decay tensor operator, the latter in turn being limited.
by the angular momenta of the initial and final nuclear
states.

To obtain the probability of orbital capture one can
take over the expressions for electron emission' ' by

4 E. Greuling, Phys. Rev. 61, 568 (j.942).' D. L. Pursey, Phil. Mag. 42, 1193 I'1951).
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TABLE I. Formulas for orbital capture transition prpbabilities
S~ t ~, for an interaction consisting of scalar and tensor
couplings. '

Allo@red (no parity change):

E or I,z
.. Sp&') = (4/3)neo. TTII(O,e)g'

J=0~0:
K or I z .. Sp& ) (0 0) = (1/ )nq' ssEpg'

LA=0 (not 0~0}:
S &o) =So&')+So&') (0—4)

First-forbidden (yes):

It or I&. S &&&=(1/32)r&q2R 2nss%[f2+(2/3)qRfg+(1/3)q2R2gsj
+(4/3) q&&2rnr(I&(0, exp/2I)g2
+(2/3)R 2I&(1,e)Lf' —(2/3)qRfg+(1/6)q'R'g'j
—2(2/3)iR 'I&(0, 1;e, exp/3I)g[f (1/3)qR—gj}—(8/3)nq O.sT f (2/3)~R 'Ji{1,e}f'
—(4r) 'R 'I&(0, eXp/2I)gLf+(1/3)qRg j}J=0~0.

E or I I. S1&P)(0—+0}= (4/3}nq~R —'o:TTIp{1,e}
XLf~+ (2/3) qRfg+ {1/9)q~R'g' j

AJ=O (not 0—p0).

SI ' =SI"+S1"(0 0)
First-forbidden unique (( AI) =2, yes):
+ Or I I ~ Sl "——(4/27)nq'nTTle(1, e)g'
Lzzz. Sf&2) = {4/3}nq2R ~lxTTI2(1,e)g'

Second-forbidden ( ~
aI

~

=2, no):
E or I r' S2&2& =(2/45&r)r&q&R 2nssKj [f2+(2/S)qRfg+(1/10)q2IPg2 3

+ (4/45) nq'o. TT(R 2I2(22e)
X t P—(2/5)qR fgy(1/15) PR~g~j
+(5/3)I2(1, eXy/M}g'
—2(5/3)&I2{2, 1; e, eXy/M)R 'graf —(1/5)qRg j
+{2m.) ~{8/45)nq o.sT(R 'Jr{2,e)f'
—(5/3)'R 'I2(1, eX p/3g) g Lf+ (1/5) qRg j}

L&II I ~ S2&"= (2/5')nq'R oiSSE2Lf + (2/3}qRfg+ (2/9) q'R'g'
+(4/5}nq'R 'o}TT{R 'I2(2,e)
xLf' (2/3)qRfg+ (1—/9)q'R'g23
+ (5/3)I2(1, eXp/3g)g2
—2(5/3)iR lI2(2, 1; e, ex p /)&}IfgL—(1/3)qRgj)
+{2 ) &(8/5}nq'R
X (R 2J2{2e) t f&—(1/9) q~R~gq
—(5/3) iR 'I2(t, eXp/2I) g[/+ (1/3) qRgj}

Second-forbidden unique ()aI~ =3, no):
E or II. Sp&') = (1/675)nq'O. TTI3(2,e)g
I rr&

' &2&2& = (2/45)Nq'R 2nrrI2(2, e)g2

a For Lrr, use the "K or Lr" expressions with the substitutions f—+g,
g~ —f.

replacing the continuum electron wave functions by
bound state wave functions and selecting out of the sum

over electron angular momenta that term which corre-
sponds to the angular momentum of the orbit in

question. For the total capture probability, the transi-
tion probabilities due to each of the atomic electrons are
then added up. Some terms, for which the order of

t} P. F.',Zweifel, Phys. Rev. 96, 1572 (1954};ibid. 107, 329 (1957}.

forbiddenness exceeds the spin change, have been
omitted in the above references4 '; however, these can be
obtained from two related articles, "(except for some
Fierz interference terms).

More explicitly, the published shape correction factors
are expressed in terms of the following bilinear combi-
nations of the electron wave functions, f and g, (for full
nomenclature, see below):

(2p2P )
—lg2 —22(g „2~f 2)

~k—1
(1a)

Ma i
(2p2P )

—lg—2k(g 2~f 2) (1b)

= (2p2Fo) '1&." 22(f-sg-s~ fsgs).
E

(1c)

For the corresponding electron capture expressions, re-
place (2p2Fo) ' by (or/2)q2 and then, for the E, Ir, and
Irrl (sub) shells set fs ——gs ——0 in Eqs. (1), while for I.rr
set f s=g 2=0 in Eqs. (1).

For electrons from the E shell and the three I,
subshells, the capture probabilities, 5, are explicitly
listed in Tables I and II for allowed through second-
forbidden transitions. Terms of higher order with the
same selection rules as the ones listed have been
omitted, as have some of the same order which turn out
to be numerically much smaller than the listed ones.

When we issued our report, ' the weight of the experi-
mental evidence was considered to point pretty con-
clusively to a beta-decay interaction consisting of tensor
(T) and scalar (5) couplings only. ' The transition
probabilities for capture are listed in Table I for this
choice of interaction. Recently, some of the evidence for
this choice has been contradicted by other data, from
which a mixture of axial vector (A) and vector (V)
couplings emerges as favored. The transition proba-
bilities for this latter choice are given in Table II. The
advent of parity nonconservation in the theory has
introduced a plenitude of coupling constants and conse-
quent ambiguities that are not yet resolved. It is also
giving rise to new types of experiments relevant to this
question. Inclusion of all 6ve types of coupling in one

~E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(1941).

8 A. M. Smith, Phys. Rev. 82, 955 (1951).
9 H. M. Mahmoud and K. J. Konopinski, Phys. Rev. 88, 1266

(1952); H. Brysk, Phys. Rev. 94, 1794 (1954).

The notation here difFers from that of Greuling and
Pursey in that we replace their f . l by f„and write
k= ~«~ )&1. For reference, note that

&&= —1 for the I& and Il (sub) shells,

I&'= I for Ln,
K= —2 for IIII.
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table was avoided because of the resulting bulk and
unwieldiness. If the beta-decay interaction. turns out to
contain more than two types of coupling (which seems
improbable), it is doubtful that the measurements of
lifetimes and branching ratios can be made to yieM
much useful information in the case of nonunique
forbidden transitions because of the large number of
interfering matrix elements involved.

In the so-called l-forbidden transitions, the chief
contribution is usually (perhaps always) due to some
admixture of an allowed transition, the result of devia-
tion from a pure single-particle state, the more so the
larger the comparative lifetime. The remaining, truly
l forbidden, contribution includes all the second-for-
bidden terms listed in Tables I and II, additional
second-forbidden terms which vanish for ~hJ~ =2, and
also a small-component contribution of the matrix
element of (P)e. Hence, to the extent that the } for-
biddenness arises from pure single-particle states, there
will be differences from the allowed behavior, particu-
larly as to the extent of the contribution from the I.z~I

shell. Conversely, an experimental investigation sufh-
ciently precise to be able to detect these differences
would reveal how pure the single-particle states really
are.

The nomenclature used is as follows: the nuclear
matri. x element notate. on ss that of Rose and Osborn "
except for the use of (y/M) rather than y as a variable.
(Readers more accustomed to the Cartesian tensor
notation will 6nd the transcription in Tables I and II of
reference 10.) For the coupling constants we use the
abbreviation

nxr = ( x(=r*+("x'{:r'*,

where C is the "parity-conserving" coupling constant
and C' the "parity nonconserving" one. E is the nuclear
radius which, in the usual relativistic units, we take as
0.426ndf (corresponding to 1.2X10 IIAf cm), where u
is the fine structure constant and A the mass number.
The relative occupancy of the X (sub) shell is denoted
by nx, i.e., Is» = 1 if the parent atom has a filled X (sub)
shell. The neutrino energy is qx= We+ Wx, where W's

is the nuclear energy difference and 8"z the energy of an
X electron in mc' units, rest mass included. The Dirac
radial functions are f and g, They have been used in, the
foregoing with subscripts denoting the quantum number
&r. For convenience, the (sub) shell designation will be
used alternatively as a subscript below. (The "large"
components, the ones entering in the allowed and in the
unique forbidden transitions, are gx, gl, &1&, fr,gl&, and
gz&111&, the "small" components are fz fI(I& gl, (11&,

and f I(III& )
Numerical values for the eight radial functions are

given in Figs. 1—4 (for a detailed description of their
computation see Sec. III). These values form the basis
for all the quantitative results quoted below.

'0 M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1326 (1954}.

Tsar.z II. Formulas for orbital capture transition probabilities
S ~' ~~, for an interaction consisting of vector and axial vector
couplings. ~

Alloaved (no parity change):

E or LI. S(}' = (4/3)ng'Gg/II(0}EF)g'

J=0—+0:

X or Lz. So(0) (0-+0)= (1/2r)nq~evvE'0g'

AJ=O (not 0—+0):
0(f})=SOO)+So(0) (0~)

First-forbidden (yes):

E or LI. S,O& = (4/3)r&qsnrr(ig {0,y/M) g'
+(4 ) 'R '&~[f*—(2/3)qRfg+(1/3)q'R*g'j
—i2(4 ) 'R 'J~(0,y/M)g[f —{1/3}qRg3}
+ (8/9)ng'E. 'aggII(1, e)
X[f'+ (2/3) qRfg+ (1/6) q'R'g'7

(3/—3)lq nrem((2/3)IR 'I, (-1,rr'}f*

+i(2/3)'R 'I~ {0,1; yiM, &lg[f+(1/3) qRg3
J=0~0.

Eor LI:Sln& (0~0) = (1/x) r&qsngg(Xsg'+ {4s/3)R sis(1 e}
X[f'—(2/3) qRfg+ (1/9) q'R'g'3
—i2{4lr/3)1R gQ TsP(r, o')g[f—(1/3) Rq]g}

. AJ=O (not 0—+0):
pro&& =S'qO&+S'I(&& (0~)

First-forbidden unique {~LlJ~ =2, yes):
E or LI. SI(» = (4/27)ng'o. pe~(1,e)g'
LIII.' SI&» = (4/3) nq2E ofg@I2(1,o)g~

Second-forbidden (~aJ~ =2, no):
X or I., :S,&» = (2/45~)ng«,

X {R sXr[fs —(2/S)qRfg+ (1/10)qsR'gsg
+ (10~/3)I2 (1,p/M) g2

i2(10&r/3)I—R 'Js(1,y/M)g[f (1/S)qRgg}—
+ (4/4S)r&q R snggII (2,rr)
X[f'+ (2/S)qRfg+ {1/1S)q'R'g'l
+(2 ) &(8/45)nag}f&&~Z V' (2,~)y&
+~(10m./3) &8 'I2(2)1; e,y/3f}gg f+ (1/5)qggg)

LIII ' Slls& = {2/Ss)lqsR sory
X (R '&s[f' (2/3) qRfg+(2/9—)q'R'g'j
+ (10~/3) I2(1,y/3r) g&

i2(10~/3)IR—'Js(1,y/M)g[f (1/3}qRgjl-
+ (4/5)ng'E 4nggI2(2, e)
X[is+ (2/3) qRfg+ {1/9)q'R'g' j
+ (2') &(8/5) ng'E-mays

X (R-sJ,(2,11)[f'—(1/9) qsRsg'3
+i(10&r/3)IR 'Is{2,1; rry/M)g[f+(1/3)qRgg)

Second-forbidden unique (~ aJ ( =3, no):
Eor LI: Ssn& = (1 6/7 ) '3IIqsn~si ( t&, 2)Igrs

S,()=(2/45) qZ- I,(2, )g

a FOr I.ZI, uSe the "K Or I.I" ezpreSSiOna with the SubStitutiOnS f-+g,z~-f.

B. s Electrons

To make a semiquantitative comparison of corre-
sponding subshells of different sllells (l.e., states with
the same angular momentum and parity but diGerent
principal quantum number Is), we examine the non-
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'0
0

FzG. 1.Large radial wave functions for s electrons (g) evaluated at
the nuclear radius.

relativistic radial wave functions for a hydrogen-like
atom. "For small values of r (within the nucleus) and

l=0, g(r)=It.'„5(r)=2(nZ/zz)*' so that the transition
probability falls oG as e '. For l/0, the e ' dependence
is still approximately satisfied. Relativistic wave func-

tions have a modified behavior at the origin but, since
this modified behavior is not influenced by the energy,
the result holds for them too. Thus, the contributions
from successive shells of states of a given angular mo-

mentum fall oft, corresponding to the reduced proba-
bility density near the origin of states of higher e, but
this decrease is not so steep that the higher e states can
be neglected in the lifetime. Even where the energy
available for the transition is far above the E-capture
threshold, the Lz contribution is of the order of a tenth
that of the E shell, and the higher shells may add as
much as half of this correction. As the available energy
approaches this threshold, the relative importance of

the higher shells increases.
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FzG. 3. The Lz I radial
wave functions evaluated at
the nuclear radius. fJ.(zz) is
the large component, gz, (zz)
is the small component.
Note the logarithmic scale.

The ratio gz, &zz2/gx' of screened relativistic Coulomb
wave functions evaluated at the nuclear surface is given
by Rose and Jackson. "The wave equations for the K
shell and the Lz subshell differ only in the energy eigen-
value. Within the nucleus, the potential energy greatly
exceeds the binding energy. After all corrections we find
that fz&q&'/fx =gz&q&'/gzr' within one percent. Provided
that qz=qL, (z), i.e., that the energy available for the
transition is not near the threshold for E capture, the
probabilities of E and Lz capture, for any order of
forbiddenness, are bilinear combinations of f and g with
identical coeflzcients (which depend only on nuclear
parameters). Then the Lz/K ratio is independent of the
order of forbiddenness and is simply gz, &z&'/gx' (Fig. 5).
On the other hand, near the E-capture threshold the
neutrino energies are quite diferent for the two shells,
and the Lz/K ratio depends seriously on qz, &»/q» and
also on the ratio of nuclear matrix elements (if more

lO
0 40 60 80 IOO

L
///

/
,
/'

//' /
/ /

than one occurs). In fact. , if the order of forbiddenness
of the transition is known, it is then possible to obtain
information as to the value of WO from the Lz/K ratio.
Figure 6 demonstrates this for allowed transitions.

0

I I
/ /
I /

I
I I
I I
l /

Fzc. 2. Small radial wave
functions for s electrons I'J)
evaluated at the nuclear
radius. Note the logarithmic
scale.

C. Lzz Subshell

The Lzz subshell divers from the Lz subshell in parity
but has the same angular momentum. The change in

parity refl.ects itself merely in a corresponding change in

the parity of the neutrino wave function, so the selectioi~
rules for Lzz are the same as for Lz, with the permutation
of the radial functions f~g, g~ f. In the combina--

tions LO g z5+ fzz, etc. that occur in beta-decay
theory, 4' the first term contributes to the Lz subshell,
the second term to the Lzz subshell. For both subshells
we have (in Bethe's notation") Iz= 2 = iV, Iz' = 1; x = —1

for Lz, ~=+1 for Lzz. In the r~ limit for low Z, we

"H. Bethe, Handbuch der Physik (Springer-Verlag, Berlin,
1933), Vol. 24, p. 283. "M. K. Rose and J. L. Jackson, Phys. Rev. 76, 1540 {1949).
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eszo

Fxo. 4. The I.zzz radial
wave functions evaluated at
the nuclear radius. gL, (zzz& is
the large component; fl, (zzz)
is the smaIl component.
Note the logarithmic scale.
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We

6nd from the expressions for the Coulomb radial func-
tions" fL&xz)'/gL&x)'=3(1 —+")/(1+if ) = (3/16)o ~ so
that the Ln wave functions (f,g) are consistently smaller
{in magnitude) than the corresponding ones for Lx (g, f,
respectively), the ratio never exceeding the order of ten
percent and dropping off sharply for low Z. In com-
paring L fz with Lz capture, the diBerence in binding
energy between the subshells can practically always be
neglected. The ratio fL(zx)'/gL(z)' and gz, (xx)'/fz, (x)'
differ from each other by about 10—30% (the lower
figure applies to high Z where the ratio of Lxi/Ii is
largest —see Fig. /). On the other hand, both ratios vary
strongly with Z, changing by three orders of magnitude
from Z=15 to Z=95. For allowed transitions or the
unique type, the L»/Lz capture ratio is fL(ix)'/gL(i)'.
For other transitions, the Lxx/Lx ratio falls between
fL&II) /g L(I) and g L(II) /f Lg&, although the transcrip-
tion leads from (fL(i)gL&i)) to (—fL(zz)gL(zz)) in the
cross terms, fL&x)gL&i) Is ilegative while fL(II)gz(II) is
positive, so that the numerical values undergo no sign
change. Hence, the Lzz/Li ratio is pretty much in-

sensitive to the order of forbiddenness, barring the
rather negligible energy region where it is incorrect to
assume g L,{zz)=pl.{z).

D. Lzzz Subsh80

The Lzzz subshell has a diferent angular momentum
than the other two L subshells (ss instead of zs). This
alters the selection rules. For allowed transitions, it
forces the neutrino into a higher angular momentum
state, resulting in the occurrence of an additional factor
of the order of {qE)s in the transition probability. For
first-forbidden (~AJ~ =0, 1) transitions, the neutrino
angular momentum can be the same as for the previous
subshells. For ~AJ~ &~2, the neutrino may assume an
angular momentum lower than for the previous subshells,
so that now a factor of the order of {qR) ' enhances the
Lzzz contribution. Comparing the L subshells in low Z
approximation, we find that —gL&zxx)/fL&xz)=(2/3)R
aI1(l gL&zxz)/gL&z) = (1/2 3i)(IZED. Tllus, tlie Lzzz sllbshell

ahvays makes a negligible contribution to allowed and
first-forbidden (~diJ

~

=0, 1) transitions. For (cLJ( &2,
on the other hand, the Lzzz subshell makes a contribu-
tion which is at least comparable to that of Lzz, and
which can in some circumstances become dominant.

sa(o

0$1

$0 ro $0 $0 $)$

Fzo. S. (gL&r&/g)r) as a function of Z. Tbis is the I.I/E branching
ratio for all cases in which the energy release W0 is large compared
to the E'-binding energy. In this case the function plotted applies
to all orders of forbiddenness.

FIG. 7. (fI,(zz)/gl, (z)) and
(gL&zz)/jL&z))s as functions
of Z. The Lzz/Li branching
ratio lies either on the first-
named curve or between the
two curves if the di6'erence
in I z and Lzz binding ener-
gies is ncglcctcd.
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Looking at the matter more precisely, let us examine
the first-forbidden unique transitions (~AJ~ =2, yes).
For an atom with a 6lled L shell, the capture ratio for
the Liii and Li subshells is

9gL&zzz&' (Wp+WL&ziz&)' 9gLzzzz&'
LIII/LI

R gL(l& (Wp+WL(z&) qL R gL(zl

!&iio'

lop

I
l

//~,

/I II~
rr III
I4 II4

I IIIII

lilli~ll
AYAV i' srrruri rr

arrrr'a/i I' l. I
--,~ err.~r~i z I

-- ''j~~~)~ 1&I':Z~55

I~~—Z~45 ~~-Z~35 ~ — Z~Z5 ~-Z~I5

5

lO
LO 0.8 0.6 oA o.z 0 -o.z -0.4 -0.6 0.6 60

lY4

Fxo. 8. The LIII/LI branching ratio for first-forbidden unique
transitions as a function of lVO for various values of Z. The binding
energy difference between the I. subshells has been included.

where the last expression is obtained by neglecting the
difference in binding energy between the subshells. It is
clear that Lips capture is favored by small ql„ i,e., small
W0. To illustrate how the branching ratio behaves, let us
select two particular values of Wo. First consider the
energy to lie at the E-capture threshold, i.e., 8'&= —W&.
Then qL=Wp+WL=WL Wx—=err'D Sinc. e gL&zzz&'/

R'gL&z&'= —II,II'Z', the Lnz/Lz ratio is now 16/3n'Z'. This
is a large number; even for high Z (95 say), it is only
down to 11. The exact Lzzz/Lz ratio for Z=95 is 3 (a
low Z approximation has its limitations for Z=95). On
the other hand, if we raise the energy to the positron
threshold (Wp=1), the importance of Lxiz diminishes.
We now have qL=2 and Lzzz/Iz= (3/16)II'Z' Eve.n for
Z=95, the exact Lzzz/Lz ratio is now only 0.03 and
Lzzz/E is less than 1%.The Lxzz/Lzz ratio is still nearly
unity for 8'0= 1. It shows little Z dependence, varying
from 1 for Z= 15 to 0.2 for Z= 95. Figure 8 exhibits the
Lzzi/Lz ratio for different Z's and Wp's. The sensitive

energy dependence suggests using this branching ratio
in 6rst-forbidden unique transitions to determine Wo.

For second-forbidden ( ~

6J
~

=2) transitions, the
Lzzz/Lz ratio appears to be a bit larger, though the
multiplicity of matrix elements precludes an exact
statement. For second-forbidden unique transitions, the
Lzzz/Lz ratio is obtained from that quoted for first-
forbidden unique by . multiplication with a factor
(10/3) (qL&m&/qL&z&) =10/3.

Thus we 6nd that the Liiz subshell makes a negligible
contribution to

(
6J

~
=0, 1 transitions. For (hJ ( =2, its

contribution is at least comparable to that of Lzi,
increasing as the energy di6'erence between the parent
and product atoms decreases, and ultimately becoming
dominant. For unique transitions the L ziz/Lz ratio could
be used to deduce Wo with due care not to apply the
approximation qL, ($]J) gl, (i) when Wo is so small that
the diGerence in binding energy between the subshells
is no longer negligible.

E. Cajpture-to-Positron Ratio

As we have seen, when positron emission is ener-
getically possible capture occurs almost entirely from
s-electron orbits, predominantly from the E shell.
Graphs of the K/positron branching ratio for allowed
transitions (calculated with Coulomb wave functions)
have been given by Feenberg and Trigg'3; Zweifel has
computed values corrected for the e6ect of screening. '
For orientation, let us disregard the small correction due
to the p electrons and the energy difference between the
E and L shells, and make the common approximations
for the electronic wave functions that O.Z«1 and
nZ/2R»1. Then f,= —(nZ/2)g I. To the beta-decay
expressions' Lp, Mp, and 1Vp there corresponds /see
Eqs (1)j
Lp~(z/2)q'(Ipxzgxz'+IILII&g L&z&'),

M p~(6/2) q'R '(IIIIfx'+I L(z&fL(I&')

= (Ir/2)q'(IIZ/2R)'(tzxgiz'+IIL&z&gL&x&'), (4)

&p-+—(6/2) q'R '(Ipx fxgz+II Lz» fL~I&g L(I&)

= —(~/2)q'(«/2R) («gx'+~L(z&gLiz&').

But, apart from the common factor (Ir/2)q'(nxgx'
+IIL&z&gL&z&p), these are just the approxixnate values of
these quantities for continuum electrons. The signi6-
cance of this fact is as follows:

Allowed transitions involve Lo only. First-forbidden
transitions ( ~

6J
~

=0, 1) depend on a linear combination
of Lo, 3fo and Eo for the 5—T and V—2 interactions.
Hence, to the approximation used above, the capture-
to-positron ratio is about the same for allowed as for
first-forbidden (~AJ~ =0, 1) transitions, i.e., for all
"allowed shape" transitions. The argument is weakened

by the reversal of sign of the S—T or V—A cross term
for capture as against positron emission, but this
appears unlikely to upset the qualitative features. These
statements cannot be refined because of our inaccurate
knowledge of the relative magnitude of the matrix
elements contributing to the first-forbidden nonunique
transitions. For an interaction including other couplings
the situation is further confused by the possible occur-
rence of energy-dependent interference terms (Fierz
terms).

For first-forbidden ( ~

lPlJ
~

=2) transitions, there is an

"E.Feenberg and G. Trigg, Revs. Modern Phys. 22, 399 (1950).



ORB I TAL CAPTURE li75

energy dependent "correction factor" to the allowed

shape spectrum. This correction factor is approximately
proportional to p'+q', whose mean value is roughly
(1/2) (W02 —1).The corresponding factor for capture is

qx = (Wo+Wx)'= (Wo+1)'. Hence, the capture-to-
positron ratio is increased. by a factor of about 2 (W0+ 1)/
(Wp —1) as compared with the branching ratio for
allowed transitions. This enhancement is traceable to
the fact that there is about 2 nsc' more energy available
to capture than to positron emission. Since a single
matrix element appears here, it is possible to improve
the estimate by using the precise wave functions.

For higher forbidden transitions, the increase in the
ratio is accentuated. For second-forbidden (~hJ~ =2),
there are shape correction factors proportional to
(p'+q'), (1/2)p'+q', and (1/4)p'+q' associated with
the various matrix elements, indicating some enhance-
ment of the ratio, but the multiplicity of matrix
elements prevents any precise statement. For second-
forbidden (~hJ~ =3), again a unique matrix element
case, there is a factor compared with first-forbidden

( ~
6J

~

=2) of about the same magnitude as that linking
the latter to allowed.

To sum up our investigation of the capture-to-
positron ratio: The ratio apparently cannot tell whether
an allowed shape transition is allowed or first-forbidden.
It does show a detectable change for first-forbidden
unique and higher forbidden transitions, intensified
with increasing order of forbiddenness. However, these
latter transitions can probably much more easily be
identified on the basis of the shape of the positron
spectrum and of the lifetime.

III. BOUND ELECTRON WAVE FUNCTIONS

In principle, to obtain the bound electron wave func-
tions used io orbital capture, one should solve the Dirac
equation for an electron in the field due to some sort of
extended charge distribution (the nucleus) in the pres-
ence of other electrons (say, a Thomas-Fermi-Dirac
calculation), and then perform some sort of weighted
average over the nuclear volume. This wouM require a
large scale machine computation, and have the addi-
tional disadvantage that to study the e8ect of a change
of assumption at any point would require a complete
rerun. Instead we start from the relativistic Coulomb
wave functions" (a definite analytical form) and 6nd
the solution for a nucleus of finite size without screening
(again an analytical form, though with approximations).
We then obtain independently the effect of screening (in
numerical form); this requires machine computation but
fortunately we were able to extract it—as a bonus—
from the printout of computations on internal conver-
sion coe%cients. " We treat analytically the average

'4M. E. Rose eS al. (unpublished}. These computations were
carried out on the National Bureau of Standards (Eastern)
Automatic Computer —SEAC.

over the nuclear volume with the wave functions for the
inside of a 6nite-size nucleus.

A. Finite Size of the Nucleus

Upon integrating this equation, considering the integra-
tion space divided into two regions bounded by r=R
and matching the wave functions at the boundary, one
obtains"

t &pout &pinl
R'g'(R) =

i( BW BWJ s, sI
(6)

where p= f/g and p„„, is the value of p obtained from
solutions which are properly behaved at inhnity while

p;„ is determined from solutions which are regular at the
origin. Here W' is the energy eigenvalue, and after W' is
inserted for S', p; =. p, &. In every case the first term in
the right hand side of (6) is positive, the second term
negative. Equation (6) automatically yields normalized
wave functions. In view of the smallness of the nuclear
volume in comparison with the atomic volume, the
former makes a negligible contribution to the normaliza. -

tion and the second term in the bracket can. be ignored,
as can be easily verihed. Thus, except for an immaterial
overall real phase factor, f(R) and g(R) can be evalu-
ated in terms of the quantities p and Bp/BW (for the
external solution) and the latter do not involve the
normalization. The external wave functions di6er from
the point case in that the solution irregular at the origin
is now admissible so that the wave function is a linear
combination of two Whittaker functions. "The change
in the potential results in a shift in the energy levels.
While this shift is quite small, its inclusion is necessary
to introduce the irregular solution. Since the charge
distribution inside the nucleus is not known to an
appreciable extent, the choice of potential in this region
is rather arbitrary, except that it should remain finite
at the origin, increase monotonically, and join continu-
ously to the Coulomb potential outside the nucleus.
Fortunately, the electronic wave functions are not
overly sensitive to the choice of potential once these
conditions are satisfied. "We used the simplest possible
such potential which is, at the same time, a reasonable

"M. E. Rose, Phys. Rev. 82, 389 (1951}.
I. Malcolm and C. Strachan, Proc. Cambridge Phil. Soc. 47,

MO (1951};I. Malcolm, Phil. Mag. 43, 1011 (1952}.
'~ M. E. Rose and D. K. Holmes, Phys. Rev. 83, 190 (1951);

Oak Ridge National Laboratory Report No. 1022 (unpublished).

The circumstance that the nuclear charge is distrib-
uted over a finite volume removes the singularity in the
potential (at r=0) and also eliminates any singularity
from the wave fun. ctions. To evaluate f and g at the
nuclear surface, we make use of an identity satisfied by
the Dirac radial functions for a central field, "

8 ( Bg Bf)—g2( f —g ~

=)2(f2+g2)
Br. E BW BW)
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Fra. 9. Ratio of the radial wave functions at the nuclear radius
for a finite size nucleus to the wave functions for a point nucleus.
The full curves (right-hand ordinate scale) refer to the large
components, the dashed curves (left-hand ordinate scale) to the
small components.
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Fro. 10.Ratio of the radial wave functions at the nuclear radius

P) for a screened atom to the corresponding wave functions in a pure
Coulomb field. This ratio applies to both large and small wave
functions.

which corresponds to a uniform nuclear charge distribu-
tion. The expression for the energy level shifts (from
first-order perturbation) and the resulting p's and
Bp/BW's are given in our report. ' The leading term in
the hnite-size wave functions has the same E depend-
ence as the Coulomb functions, so that the finite-size
correction depends very little on the value chosen for the
nuclear radius. The ratio of the finite-size wave function
to the Coulomb wave function is given io Fig. 9 for all
eight radial functions.

B. Screening

In evaluating the screening effect, we again exploit
the fact that we are really only interested in the wave
functions at the nucleus, their behavior elsewhere in the
atom being of consequence only insofar as it a6ects the
normalization. At the nucleus or near it, the potential
felt by an electron is essentially unscreened —the nuclear
charge is near and therefore acting strongly, while the
other electrons are far away. As a result, the wave
functions in the nuclear region have the same functional
form as for a "hydrogen-like" atom, but with an altered
normalization factor. The ratio p of the two Dirae radial
functions obeys an inhomogeneous nonlinear equation
and, as stated before, no normalization problem arises
for it; since the potential is essentially unscreened in the
nuclear region, p is the same as without screening, i.e.,
screening affects the two functions in the same manner.
We can thus define for every shell or subshell a screening
factor, as the change in normalization. The SEAC
computation of the I and I. internal conversion coefFi-

cients' includes values for the normalization of the
bound, state X and I wave functions for a Coulomb
potential modi6ed for screening eGects. Since the func-
tional form is the analytically known one for the

Coulomb field, we have the wave functions at small r
for a screened Geld. We have independently computed
the wave functions for a Coulomb 6eld with Rnite-size
corrections added. For the "large component" radial
function (which is relatively insensitive to the fiiute-size
correction), we multiply the finite-size wave function by
the screening factor. For the other radial function, this
result is multiplied by the 'ratio p of wave functions
computed with the correct eigenvalues (including both
finite-size and screening). This last refineinent is not
very important, as the results are rather insensitive to
the exact energy value because the potential greatly
exceeds the binding energy in the nuclear region. For the
E shell and the Ly subshell, we had a rough check in
Reitz' tables of screened wave functions" (the accuracy
of this check was limited by difhculty of interpolation
in these tables). The screening factors are given in
Fig. Io.

C. Average over the Nuclear Volume

The transition probability involves an integral over
the nuclear volume whose absolute value squared is
summed over magnetic quantum numbers. In terms of
any coupling scheme, the angular integration and the
summation can be carried out, yielding the usual
Clebsch-Gordan and Raeah coefficients expressing the
angular momentum and parity selection rules. There
remains a radial integral

r'dr(Rr*Tn(r) R;1.(r),
0

» J. R. Reitz, Relativistic Electron 8'we Functions for u Permi-
Thonsas-a~rue Statistical Atom (University of Chicago Press,
Chicago, Illinois, 1949).
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where the R are the nuclear radial functions, Tg is a
radial operator whose form depends on the choice of
interaction 0, and L(r) is a bilinear combination of the
electron and neutrino radial functions. This integral
combines the rather accurately known lepton functions
with the poorly known nuclear functions. The neutrino
radial functions are spherical Bessel functions" which
for small r (in the nucleus) are quite accurately

into the coupled radial equations, thus obtaining re-

cursion relations between the coeKcients. ' It turns out
in our case that four terms in the series give an accuracy
of better than 0.1%even for the highest Z. We can now

perform some sort of average on the power series,

leaving an integral

r'drI f*TgN. ~'+'

where /' is the "orbital angular momentum" corre-
sponding to the ~ value given by the subscript. For the
electron functions, we go back to the inside solution of
the 6nite-size nucleus. The quadrature solution of the
two coupled Dirac radial equations" immediately sup-
plies us with the indicial behavior of the radial functions,

f„~r&(-~) g ~rt(~)

and yields an infinite series whose terms diGer by an
even integral power of r, oscillate in sign, and decrease
in magnitude; the convergence and sign alternation are
preserved if the series is reordered into a power series.
Knowing these properties, the solution for a particular
potential is achieved by substituting the two functions,
expressed as the indicial factor times a power series in r'

'" M. E. Rose and R. K. Oshorn, Phys. Rev. 93, 1315 (1954).

which is independent of lepton characteristics (except
for the trivial appearance of the orbital angular mo-

ments which merely react the selection rules). This
matrix element is the same for capture of any orbital
electron, and for beta decay for that matter. The
traditional procedurev amounts to evaluating the series
at the nuclear surface. Instead, we have used a uniform

weighting over the nuclear volume. For the large com-

ponents, the two procedures dier by only Ave percent
at most. For the small components, the discrepancy is

larger, but then the small components only occur where

there is a mixture of matrix elements, so that there is
merely added a small uncertainty to a much larger one.
In short, for a nucleus of 6nite-size, the variation of the
wave functions over the nuclear volume is so small that
the method of averaging matters little.

Erratum: Normal Modes of Aluminum by Neutron Syectrometry

/Revs. Modern Phys. 30, 236 (1958)j
8, N, SROCKHOUSE AND A. T. STEWART

j hysies Division, Atomic ENergy of Cueadu, I.td. , Chalk River, Oeturio, Cunada

'N the legend of Fig. 13 the 611ed circles for L110j directions
~ . should have o= (0,0,1) and the balled squares a=1jV2'(1, 1,0).


