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1. INTRODUCTION

OR many purposes it is possible to regard each
electron in a crystalline solid as moving essentially

independently in a static periodic potential 6eld. It is
assumed that this 6eld can be so chosen as to take
account of the average interaction between the electron
in question and the remainder of the crystal. This
viewpoint forms the basis of the band theory of solids.
Because of its inherent simplicity and intuitive appeal,
this theory has provided a convenient conceptual frame-
work for qualitative and quantitative discussions of
the electronic properties of crystals. Ever since its
introduction nearly thirty years ago, the band theory
has been used, often with striking success, as a basis
for interpreting various electronic properties of crystal-
line solids.

Many of these properties, such as the intrinsic
optical absorption spectrum of semiconductors and
insulators, can be readily understood simply in terms
of the fact that crystals have an energy band structure,
i.e., allowed ranges of energy levels separated by
forbidden ranges. However, there are other properties
which cannot be thoroughly elucidated in the absence
of detailed information concerning the band structure.

It is now generally recognized that the band structure
of crystals can have considerable complexity, and that
a detailed knowledge of this complexity is basic to the
understanding of many of the electrical, magnetic,
optical, thermal, and elastic properties. This explains
why so much theoretical and experimental effort has
been devoted recently to the study of band structure.
The present paper is intended as a critical evaluation
of the theoretical methods which have been developed
for studying band structure. In a companion paper,
Benjamin Lax discusses some of the experimental
methods which have proved most fruitful for deter-
mining certain features of the band structure of crystals.

The fundamental problem of energy band theory is
the determination of the one-electron states of crystals.
In principle, the distribution of the one-electron energy
levels, and their dependence on the reduced wave
vector 4, which together with a band index serves to
identify the various one-electron states, can be deter-
mined by direct calculation, provided the effective
potential is known. This involves the construction and
the subsequent solution of a set of one-electron wave
equations. While considerable progress has been made
in devising scient and mathematically reliable
methods for solving these equations, the proper choice

1

of the effective potential (upon whose existence the
energy band theory is predicated) is complicated by
computational di6iculties, and obscured by conceptual
difficulties (Mot 56).* In order to overcome the com-

putational di6iculties, one is forced to make drastic
simplifying assumptions. These tend to impair the
accuracy of the results to such an extent that the band
structure is usually not determined with a precision
adequate for most applications. The conceptual ddB-
culties arise when one attempts to de6ne an effective
potential which is more accurate than that given by
the Hartree, the Hartree-Fock, and similar one-electron
approximations.

This unfortunate situation complicates the study of
certain electronic properties, such as the cohesive

energy, which depend upon the behavior of all the elec-
trons in a crystal. Here it is necessary not only to
determine all the occupied one-electron states, but
also to take careful account of the electron correlation
effects not speciically included in the energy band
theory. On the other hand, there are numerous pro-
perties, such as the electrical conductivity, which
depend upon the behavior of those few electrons whose
states can be changed by the application of an external
force. In order to study such properties, it is usually
su6icient to determine a limited portion of the band
structure, i.e., that corresponding to the higher occupied
states and the lower unoccupied states. While electron
correlation effects also play a role here, they may be
ignored in a preliminary treatment without incurring
serious error.

Fortunately, the portion of the band structure just
mentioned can be explored in considerable detail by
combining three distinct approaches: (a) By means of
group theory and perturbation theory, it is possible to
obtain a complete catalog of the possible forms of the
band structure, including the Gne details associated
with each of these forms. (b) Under special conditions,
the correct form can be selected from the many possible
forms with the aid of one or more carefully designed
experiments. (c) Where this approach fails or proves
diBicult, it is helpful to carry out an energy band calcu-
lation, even if this is based on relatively crude physical
assumptions. While such a calculation may yield in-
formation which of itself is too unreliable or incomplete
to permit a precise determination of the band structure,
it may yield a number of important clues concerning

* Reference in parentheses will be found in the Bibliography
at the end of the paper.
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the probable form of the band structure. With such
information, it is usually possible to reduce the number
of possibilities considerably.

By combining the formal (group-theoretical and
perturbation-theoretical) results, the experimental re-
sults, and those of the energy band calculation, it
should always be possible to deduce the correct band
structure. This contention is borne out by our recent
experience with germanium and silicon, and to a lesser
extent, with graphite and indium antimonide. It is our
opinion that the most satisfactory approach to the
study of band structure, at least in the present state of
the subject, is one which involves a concerted program
of experimental and theoretical endeavor.

The plan of this paper is as follows: In Sec. 2
we will present a brief review of the elements of energy
band theory. The uses of group theory and perturba-
tion theory will be examined in Sec. 3. This will be
followed by a survey of numerical methods for solving
the crystal wave equation. In the final section, we will
illustrate complex energy band structures in terms of
a few selected examples.

It is not our intention to give a complete exposition
of the subject under review. Rather, we would like to
bring to the attention of the reader the many theoretical
techniques that are available for studying energy band
structure and to place these techniques in proper
perspective. We have included a fairly representative
list of references for the benefit of the reader who
wishes to pursue this subject further. For additional
references, the reader is referred to the review papers
by Raynor (Ray 52), Reitz (Rei 55), Lowdin (Low 56),
and Slater (Sla 56).

2. PHYSICAL BACKGROUND

Since it is extremely dificult to treat many-particle
systems such as crystals mathematically, it is necessary
to resort to simplifying assumptions in order to make
any progress. Energy band theory is based on two such
assumptions. In the Grst place, it is assumed that an
actual crystal can be represented by a perfect periodic
structure. In this ideal crystal, there are no structural
or chemical imperfections, and all the nuclei are held
Gxed at their equilibrium positions. Secondly, it is
assumed that each electron can be regarded as moving
independently in a static potential Geld which some-
how takes its average interaction with the rest of the
crystal into account. This so-called independent-
particle model shifts the emphasis from that of finding
the states of the electronic system as a whole to that of
finding the states of the individual electrons in the
system.

The essential mathematical idea of the independent-
particle model is that the wave function for the total
electronic system, which depends upon the coordinates
of all the electrons, can be expressed in an approximate
fashion in terms of one-electron wave functions, each
of which depends upon the coordinates of a single

electron. If the many-particle Hamiltonian does not
contain spin-dependent terms, such as the spin-orbit
interaction, it is possible to write each one-electron
wave function as the product of a spatial wave function
and a spin function. In the discussion to follow, we
will confine ourselves to this representation.

By introducing the one-electron approximation, it is
possible to reduce the many-electron wave equation to
a number of one-electron wave equations. The solutions
of the latter describe the one-electron states of the
system. In dealing with crystals, it is convenient to
impose cyclic boundary conditions on the spatial wave
functions. If this is done, and if the periodic nature of
the potential is taken into account, it can be shown
that each one-electron state is specified by two indexes,
P and k. Hence, the set of one-electron wave equations
may be written as follows

L
—(A'/2m) 7'+ Vs(k, r) Ps(k, r) =Es(k)f~(k,r), (2.1)

where Vp(k, r) is the potential acting on the electron
represented by P~(k,r), and where Es(k) is the energy
level corresponding to the state P,k. If the theory is
developed in terms of the Hartree or the Hartree-Fock
approximation, the potential Vs(k, r) will be different
for diGerent states. However, the potential for each
state will have the same symmetry properties as the
nuclear framework. According to the Pauli exclusion
principle, each state P,k can be occupied by no more
than two electrons having opposite spins. Hence, there
is a twofold spin degeneracy associated with each
energy level Es(k).

It is possible to describe all physically distinct
solutions of the above set of wave equations by con-
Gning k, which represents a wave vector, to a portion
of wave vector space known as the reduced zone. If
one chooses a value of k lying outside the reduced
zone, one obtains a solution already given by a value
of k inside the reduced zone. If there are X' unit cells
in the cyclic crystal, there are E' distinct values of k
uniformly distributed in the reduced zone.

For each of these E' reduced wave vectors k, there
is a denumerably infinite manifold of solutions. These
solutions are distingushed from one another by the
integral index P. It is convenient to label the states for
a given k in accordance with the following prescription,

Es ~(k)&Eq(k)&E~r(k), (2.2)

where the equality signs allow for the possibility that
two or more energy levels are degenerate at a given
value of k.

For each value of P, Ep(k) is a quasi-continuous
function of k throughout the entire reduced zone.
Since the energy levels associated with a given P span
a definite energy range, and thus form an energy band,
Es(k) may be called an energy band function, and P
may be used to distinguish one energy band from
another. Accordingly, P is known as a band index.

The energy band structure of a crystal is described
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by the set of energy band functions Es(k). These in
turn describe the nature of the allowed one-electron
energy levels, and in particular, their functional de-
pendence on h. The arrangement and form of the
various energy bands are determined by the chemical
composition of the crystal, its geometrical structure,
and the free atom states from which they are derived.
The energy bands associated with the inner shell
electrons are sharp and well separated, while those
associated with the outer shell electrons are usually
broad and closely spaced.

In semiconductors and insulators, a certain number
of bands are fully occupied at absolute zero tempera-
ture; there is an energy gap, or forbidden band, between
the top of the highest filled band (the valence band)
and the bottom of the lowest unfilled band (the conduc-
tion band). This energy gap defines the minimum
amount of energy required to excite an electron from
the highest occupied state to the lowest unoccupied
state at this temperature.

In metals and semimetals, one or more energy bands
are partially filled at absolute zero temperature. The
surface of constant energy separating the occupied and
unoccupied states in k space is known as the Fermi
surface. Since there are available states immediately
above the Fermi surface, it requires an infinitesimal
amount of energy to excite an electron from one of the
highest occupied states to one of the lowest unoccupied
states.

Since many of the electronic properties of crystals
depend only on that portion of the band structure
which corresponds to the higher occupied states and
the lower unoccupied states, there is usually greater
interest in this portion than in any other. In the case of
semiconductors and insulators, a knowledge of the
upper reaches of the highest valence band (or bands),
and of the lower reaches of the lowest conduction band
(or bands) is usually sufficient in most applications of
the theory. By knowing the width of the forbidden
band, the location in the reduced zone of the valence
and conduction band edges, and the detailed nature of
these edges, it is possible to interpret many of the
observed properties of such crystals. Similarly, in the
case of metals and semimetals, interest focuses on that
portion of the band structure which lies in the immedi-
ate neighborhood of the Fermi surface (Cha 56).

In order to determine the band structure of a crystal
from first principles, it is necessary to construct and
solve a set of one-electron wave equations Lcompare
Eq. (2.1)j. The central problem here is the choice of
the potential appearing in these equations. It is well
to recall at this point that this potential is intended to
represent the eGective interaction between a given
electron and the rest of the crystal. Various approxima-
tions to this eGective interaction have been proposed:

(a) In the Hartree approximation, the electrons are
assumed to move independently of one another, so that
all correlations in the instantaneous motions of pairs of

electrons are completely ignored. This approximation
fails to take account of the fact that electrons tend to
avoid each other by virtue of the repulsive Coulomb
force acting between them.

(b) In the Hartree-Fock approximation, the only
electronic correlations which are taken into account are
those which arise from the operation of the Pauli
exclusion principle. This aGects pairs of electrons of
like spin, but not pairs having unlike spin. In this and
the previous approximation, electrons in different states
experience diGerent potentials, but electrons of opposite
spin in the same state have the same potential (Cor 51).

(c) In the simplified version of the Hartree-Fock
method proposed by Slater (Sla 51, 53(a)) a suitable
average over the potentials of all the occupied states is
taken, and the resultant averaged potential is assigned
to all states.

(d) In the "unrestricted" Hartree-Fock approxima-
tion P ow 55, 56; Pra 56, 57; Woo 57(a)j, some
correlation between electrons of unlike spin is intro-
duced by the device of using spatially diGerent orbitals
for electrons of opposite spin. Here, each electron
experiences a diGerent potential.

(e) In the Bohm-Pines theory LPin 55, 56(a), 56(b);
Boh 57; Noz 58(a)], electronic correlation effects are
taken into account by using a suitably screened
Coulomb interaction between electron pairs.

(f) In the Hubbard theory (Hub 55(a), 55(b), 57),
a local field correction is used to take account of cor-
relation eGects.

(g) In the Brueckner theory (Bru 54 (a), 54 (b), 55 (a),
55 (b), 55 (c); Bet 56; Gol 57; Kro 57; Rod 57; Tob 57),
the interaction of any two electrons is treated exactly,
but the action of any further electrons on the inter-
acting pair is replaced by an average interaction.

Although (a) through (d) are one-electron methods
in the strict sense, (e) through (g) are many-electron
methods, and as such are better able to take account of
correlation eGects. Moreover, these many-electron
methods provide a great deal of physical insight into
the reasons why the one-electron methods are actually
as successful as they are. The same cannot be said for
other many-electron methods, such as the method of
configuration interaction (Nes 55), and the method of
the density matrix (Low 55, McW 56(a), 56(b), 57;
Chi 57). Methods (e) through (g) suggest that cor-
relation eGects can be taken into account to a very
large extent if the potential acting on each electron is
given the proper form. It is in this sense that they
provide a theoretical justification of the usual one-
electron approximation.

In order to determine rigorously the potentials
acting on the various electrons in a crystal on the basis
of any of the above mentioned approaches, it is neces-
sary to carry out a self-consistent calculation. Unfor-
tunately, such a program is ruled out by computational
diKculties associated with the fact that the number of
electronic states one must consider is prohibitively
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large. In practice, the only feasible approach is to choose
a physically plausible potential for each state, using

any of the above methods as a guide, and then to solve
the one-electron wave equations for these assumed
potentials. It is common, though not universal practice,
to use the same assumed potential for all states, since
this greatly simpli6es the work.

In spite of the fact that a large number of energy
band calculations have already been carried out, mostly
on the basis of assumed Hartree or Hartree-Fock type
potentials, two crucial questions have not yet received
definitive answers. These are (a) How critically does a
calculated energy band structure depend upon the
exact form of the assumed potentials' (b) How much
error is introduced by assuming the same potential for
each state?

If it turns out that the band structure does depend
critically upon the assumed potential, it would be fair
to conclude that an energy band calculation based on
an ad hoc potential is not likely to provide a very
reliable picture of the actual band structure. In this
event, it would be necessary to calculate the band
structure for a number of assumed potentials, each
having a somewhat different form. The only results of
the composite calculation which could be considered
physically reliable would be those which are relatively
insensitive to the details of the assumed potential.

Another question having theoretical interest is: (c)
If a self-consistent energy band solution could actually
be obtained on the basis of a particular approximation,
how closely would the results agree with experiment?
It would be extremely dificult to judge the adequacy
of a given approximation without first having a reason-
ably satisfactory answer to this question. It is certainly
unfair to judge the issue by comparing the results of
a calculation based on an ad ho@ potential with experi-
ment. This type of comparison begs the question of
how closely the m hoc and the self-consistent potentials
actually agree.

About the best that can be done at present is to
carry out an energy band calculation on the basis of a
crystal potential which includes the best possible
estimates of the Coulomb and exchange terms, and
which also contains a correlation correction, such as
that suggested by the Bohm-Pines theory. Such a cal-
culation has recently been done by Heine (Hei 57) for
aluminum. Unfortunately, even when extreme pains
are taken to choose the best possible potential that the
present state of the theory will permit, there is still a
substantial disagreement between theory and experi-
ment. This discouraging result suggests that we have
not yet found a way to account for all electronic cor-
relation effects properly.

However, we may take some satisfaction from the
fact that many energy band concepts, such as reduced
wave vectors and effective masses, can be derived from
a many-electron formahsm (Koh 57(a)), as well as from
a one-electron formalism. There is good reason to

believe that the success of the energy band theory, in
accounting for a wide variety of experimental observa-
tions, is far from accidental. The essential features of
the energy band theory will probably persist in future,
more sophisticated theories.

3. FORMAL METHODS

It is possible to learn a great deal about the nature
of the solutions of the crystal wave equation without
solving this equation numerically. By means of group
theory, the form of the various crystal wave functions
can be predicted, as can the over-all form of the various
energy bands in the reduced zone. By combining
perturbation theory with group theory, it is also possible
to predict the detailed nature of each energy band in
any local region of the reduced zone. Still further infor-
mation can be obtained from topological considerations.

In a classic paper, Seitz (Sei 36) showed that each
crystal wave function can be classi6ed according to its
transformation properties under the operations which
leave the crystal Hamiltonian invariant. For a general
point in the reduced zone, the only operation which
transforms a wave function into itself is the identity
operation. So far as symmetry considerations are con-
cerned, this means that each crystal eigenstate at a
general point is nondegenerate (we are ignoring the
spin degeneracy, and the possibility of accidental de-
generacy). For a nongeneral point, operations may
exist which transform a given wave function into itself,
or into another wave function having the same wave
vector. The set of such operations form a group, known
as the group of the wave vector. The wave functions
generated by the operations of this group form the
bases of the irreducible representations (IR's) of this
gl oup.

From a knowledge of the structure of the group of
the wave vector ir, G(k), it is possible to predict the
types of contacts which must occur between different
energy bands at k. For every m-fold degenerate IR,
there must exist a set of m-fold degenerate energy
levels; each of these corresponds to the contact of m
different bands at k. Under certain conditions, a contact
between bands may be wholly or partially destroyed if
one moves from a point of high symmetry to a neighbor-
ing point of lower symmetry. Such behavior can be
investigated by constructing compatibility or correla-
tion tables relating the IR's at the high-symmetry point
to those at the low-symmetry point.

In some cases, contacts between energy bands arise
not from the crystal symmetry, but from time-reversal
symmetry. Such contacts have been considered in
some detail by Herring (Her 37(a)). It often happens
that contacts occur which are not required by crystal
or time-reversal symmetry. Such accidental contacts
have also been discussed by Herring (Her 37 (b)).

Group theoretical analyses have been carried out for
a number of crystal structures. References to such work
are given in Table I. For further information on this
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TABLE I. Character tables for space groups.

Crystal structure

Simple cubic
Body-centered cubic
Face-centered cubic
Diamond
Zincblende (sphalerite)
Hexagonal close-packed
Wurzite
Graphite (2-dimensional)
Graphite (3-dimensional)
Selenium and tellurium
Miscellaneous

Single group

Bou 36
Bou 36
Bou 36, Ant 52, Dre 55(c)
Her 42, Dor 53, Dre 55(c)
Par 55, Dre 55(b)
Her 42, Ant S2
Par 57, Dre 57a
Car 53 (a), Lom 55
Car 53(a)
Ase 57(b), Fir 57
Ven 49, Kos 57

Double group

Ell 54(b)
Ell 54(b)
Ell 54(b), Dre 55(c)
Ell 54(b), Dre 55(c)
Par 55, Dre 55(b)
Ell 54(b)
Par 57, Dre 57a
Slo 55(a)
Slo 55(a)
Ase 57(b), Fir 57
Kos 57

a k =0 only.

subject, the reader is referred to the following papers:
Win 49; Bel 54; Kos 56, 57; Mel 56; Mar 57.

Until 1954, energy band theory was based on a
crystal wave equation which did not take account of the
spin-orbit interaction. In that year, Elliott (Ell 54(a),
54(b)) and others (Dre 54) recognized that this inter-
action could split otherwise degenerate bands, and
thereby profoundly modify the band structure in
regions where this splitting occurs. Elliott showed how
the group-theoretical analysis of crystal wave functions
and energy bands can be carried out when spin-orbit
eGects are included. In this case, the analysis involves a
consideration of the double group (Ope 40), rather than
of the single group, i.e., the space group of the crystal.
The double group has already been determined for
several crystal structures (compare Table I).

While it is possible to classify the crystal eigenstates
at each point of the reduced zone according to their
symmetry properties, the relative order of the eigen-
states at a given point, or at diBerent points in the
reduced zone, cannot be determined without actually
solving the crystal wave equation numerically.

However, a group-theoretical analysis might still
prove fruitful in a particular application, where the
overall form of the band structure is not required, and
where the principal physical interest focuses on a
limited portion of the band structure. For example, in
the case of semiconductors and insulators, it is usually
sufhcient to know the detailed nature of the valence
and conduction band edges, including the form of E(k)
and the location of these edges in the reduced zone.

Under such conditions, a group-theoretical analysis
can provide an exhaustive list of the possible types of
energy band structure. By interpreting pertinent experi-
mental data in terms of each of these possible types in
turn, it is often possible to determine which type is
actually the correct one. From this point of view, group
theory provides a catalog of possible band structures,
and the ultimate determination of the correct band
structure is left to experiment.

The form of E(k) in the neighborhood of a state
having a specified symmetry classification can be
obtained by standard perturbation theory. The first
application of perturbation theory to this type of
problem is contained in a note by Shockley (Sho 50) on
the band structure of germanium. Improved perturba-

tion-theoretical treatments of diamond-type crystals,
particularly silicon and germanium, have since been
published by a number of authors (Ell 54(a), 54(b);
Ada 54; Dre 55(a), 55(c); Kan 56). Our present
theoretical knowledge of the band structure of zinc-
blende-type crystals, notably indium antimonide (Dre
55(b); Kan 57) and of graphite (Slo 55(a), 55 (b); McC
57; Noz 57(b)) is based largely on perturbation-type
calculations. It is also possible to determine the relation-
ship between the band structures of geometrically
similar crystals by perturbation theory (Her 55(a);
Cal 57(a)).

A further source of information about energy band
structure not involving numerical calculation is to be
found in topology theory. Using methods developed by
Morse (Mor 34, 38, 42), a number of authors, in par-
ticular Van Hove (Van 53), Phillips (Phi 56, 57), and
Rosenstock (Ros 57(a)), have shown how the critical
points of electronic energy level distributions can be
treated. LAt a critical point, grad~p(k) =0.]This work
is concerned with the prediction, enumeration, and
topological classification of critical points, and with the
description of the analytic singularities which occur in
the energy level distribution at these points. Similar
problems arise in the study of lattice vibrational
frequency distributions.

A group-theoretical analysis also proves useful in
connection with numerical calculations. In order to
map out the energy band structure of a crystal, it is
necessary to solve the crystal wave equation at a
representative set of points in the reduced zone. By
choosing nongeneral points, and constructing trial
wave functions which have the proper transformation
properties under the operations of the corresponding
wave vector groups, it is possible to factor the high
order secular determinants arising in this work into a
number of lower order determinants. Each of the latter
can then be solved independently of the others. Before
undertaking an energy band calculation, it is always
advisable to carry out a symmetry analysis erst since
this greatly simplifies the calculation. The theory and
practice of symmetry factorization is clearly explained
in works by Koster (Kos 56) and Wilson, Decius, and
Cross (Wil 55) .Information on the symmetry properties
of spherical harmonics, which is often helpful in this
connection, may be found in a number of papers
(Bet 29, Von 47, Bel 54, Mel 56, Alt 57, Ros 57(b)).

While the symmetry analysis of a crystal leads to
much useful information about the band structure, such
an analysis does not indicate the order in which the
various electronic states are arranged on an energy
scale, or their energies. In order to determine the
actual arrangement of the various states, and the
symmetry classification and energy of each, it is ulti-
mately necessary to solve the crystal wave equation
numerically. Methods for carrying this out are con-
sidered in the Sec. 4.
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4. APPROXIMATE METHODS

Since the central mathematical problem in energy
band theory is the solution of the crystal wave equation,
it is understandable that a great deal of eGort has been
devoted to the development of eS.cient methods for
carrying out this solution. Among the many methods
which have been developed for obtaining approximate
solutions of the crystal wave equation, the following
are worthy of mention: (a) the method of plane waves;
(b) the method of orthogonalized plane waves; (c) the
method of modified plane waves; (d) the method of
augmented plane waves; (e) the linear combination of
atomic orbitals (LCAO) method; (f) the method of
Wannier functions; (g) the cellular method; (h) the
scattering matrix method; (i) the variation-iteration
method; and (j) the quantum defect method. Detailed
descriptions of these methods may be found in a number
of review articles (Ray 52, Rei 55, Low 56, Sla 56), as
well as in the selected references given below. In the
discussion to follow, we will confine ourselves to some
general remarks about these various methods.

Although the methods listed in the foregoing diGer
widely in their particulars, they all have certain
features in common. In the first place, each method can
be formulated in terms of a suitable variational principle
(Koh 52). Where several methods are based on the
same variational principle, they diGer among themselves
through the introduction of diGerent restrictions and
simplifying assumptions. Secondly, each method makes
use of the Ritz variational procedure (Mor 53). A set
of suitably chosen basis functions (plane waves, atomic
orbitals, etc.) is introduced, and trial wave functions
are expanded in terms of these basis functions. Enough
terms are included in the expansion to insure a faithful
representation of the crystal wave functions. The basis
functions are held fixed, and a variation of the expansion
coefficients is performed. This leads to a set of linear
equations of the secular type. The expansion coefIicients
and the corresponding energy levels are obtained by
solving the secular equation.

The purpose of using the Ritz technique is to convert
the dificult problem of solving a diGerential or integral
wave equation to the simpler one of solving an equi-
valent secular equation. After this is done, the secular
equation is easily solved by standard matrix methods.
A major advantage of the Ritz technique is that it
permits a considerable degree of ingenuity to be
exercised in the choice of the basis functions. If these
functions are properly chosen, it is possible to obtain
an accurate solution. with a relatively small number of
such functions.

Next, each method is designed to take full advantage
of the periodic nature of the crystal potential. This is
accomplished by requiring each trial wave function to
have the Bloch form. In methods (a) through (f), the
same trial wave functions (or the same basis functions)
are used everywhere in the crystal, and these are so

constructed that they automatically have the Bloch
form. In the remaining methods, the crystal is decom-
posed into disjoint regions which fill all space, and the
trial wave functions are expanded in terms of different
sets of basis functions in each region. By imposing
suitable boundary conditions at the surfaces of each
region, it is possible to insure the continuity of the
trial wave function and its first derivatives at these
surfaces. In addition, it is possible to obtain wave
functions which have the Bloch form everywhere in the
crystal. An important advantage of the variational
principle formulation is that the boundary conditions
can be incorporated directly in the variational principle.

Finally, each method, with the exception of the
method of plane waves, is designed to take advantage
of the fact that the crystal potential is approximately
spherically symmetric in the neighborhood of each
nucleus, and nearly constant elsewhere in the crystal.
This is particularly true for methods (g) through (j),
where the decomposition of the crystal into disjoint
regions is performed specifically to exploit this feature
of the crystal potential. In these methods, the trial
wave functions are expanded as products of radial wave
functions and spherical harmonics in the neighborhood
of each nucleus, since this is the natural expansion for
a spherical potential. In the cellular method, the
crystal is decomposed into space-filling polyhedra, one
centered at each nucleus. In methods (h) through (j),
the crystal is decomposed into nonoverlapping spherical
regions, one surrounding each nucleus. The crystal
potential is assumed to be spherically symmetric in
each of these spherical regions, and constant elsewhere.
While neither of these assumptions is strictly true,
they do represent good first approximations. In any
event, the small diGerence between the assumed and
the actual form of the crystal potential can be taken
into account by perturbation methods in a late stage
of the work.

We will now make some brief remarks about each of
the methods listed above.

(a) Method of Plane Waves

The crystal potential and the electronic wave func-
tions are here expanded in terms of plane waves. In the
case of high energy electrons (kinetic energy) 100 ev),
the secular equation can be solved by perturbation
techniques, since the spatial fIuctuation of the periodic
potential is of the order of j.0 ev for most crystals.
Since the wave functions for such electrons can be
represented quite accurately by relatively few plane
wave terms, this method forms a convenient basis for
the theory of electron diffraction (Bet 28, Mor 30).

It is well known that the wave functions for core,
valence, and low-lying conduction band electrons fIuc-
tuate rapidly in space, and exhibit an atomic-orbital-
like nodal structure in the neighborhood of each nucleus.
Hence, a large number of plane waves is required to
represent such wave functions. Since it is impractical
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to solve the high-order secular equations which describe
these electrons by perturbation theory or otherwise,
the method cannot be used for quantitative work in
such applications. However, in view of the inherent
simplicity of the plane wave representation, the method
can be used to advantage to demonstrate the qualitative
features of energy band structure (Bri 30).

(b) Method of Orthogonalized Plane Waves

In this method, which was devised by Herring
(Her 40(a)), the core wave functions are expanded in
terms of linear combinations of atomic orbitals. Further,
the noncore wave functions are expanded in terms of
plane waves each of which has been orthogonalized to
the core wave functions by the Schmidt process. The
orthogonalization process serves to introduce into the
wave function a nodal structure which approximates the
actual one quite closely. This leaves a slowly varying
portion to be represented by plane waves. One may
thus expect a relatively small number of orthogonalized
plane waves to be necessary to describe the wave func-
tions for valence and low-lying conduction bands.

This expectation has in general been realized in
numerous applications. These include energy band
calculations of: beryllium (Her 40(b)); lithium (Par
52, Gla 57); diamond (Her 52, 54(a)); silicon (Woo 55,
57(b), Bas 57); germanium (Her 53, 54(a), 54(b));
silicon carbide (Kob 58); cesium (Cal 57(b)); iron
(Cal 55(b)); potassium (Cal 56); aluminum (Hei 57,
Beh 57); copper (Fuk 56); and hypothetical FCC
carbon (Cas 58). As a whole, these calculations indicate
that the method converges very rapidly for the lowest
valence band states, but more slowly for the higher
states. In all cases, however, the convergence is sufE-
ciently rapid for the method to be considered practical.

On the credit side, this approach requires no special
assumptions to be made about the form of the crystal
potential, except that it have the proper symmetry.
Unfortunately, the orthogonalization procedure is eGec-
tive in speeding the convergence only if all the crystal
states are eigenstates of the same Hamiltonian. There-
fore, it is necessary to assume that the potential is the
same for all states (having the same spin). In addition,
there are certain noncore states which are automatically
orthogonal to all core states by reasons of symmetry.
For such noncore states, the orthogonalized plane
waves reduce to plane waves, and the convergence
rate is markedly decreased (Her 52, 54(a); Zeh 53).
For further critical discussion, the reader is referred to
the papers by Callaway (Cal 55(a)), Heine (Hei 57),
and Woodruff (Woo 57(b)).

(c) Method of Modified Plane Waves

An interesting generalization of the previous method
has recently been proposed by Brown and Krumhansl
(Bro 58). A variational procedure is applied to a set of
trial wave functions which consist mainly of plane

waves of low-wave number. In order to hasten the
convergence, one or more auxiliary functions are in-
cluded in the trial wave functions. These auxiliary
functions are chosen so that their Fourier spectra in
the high-wave number range closely approximate those
of the exact eigenfunctions. In the special case where
the core wave functions are used as auxiliary functions,
this approach reduces to the previous one. While the
present method appears to be a promising one, it is
hard to judge its relative merits on the basis of the
limited amount of work that has been done with it
thus far.

(d) Method of Augmented Plane Waves

Originally proposed by Slater (Sla 37), and sub-
sequently modified by Slater and Saffren (Sla 53(b),
Saf 53), the APW method is designed to combine the
best features of the plane wave and cellular methods.
Here the crystal potential is assumed to be spherically
symmetric inside a set of nonoverlapping spheres which
surround the various nuclei, and constant elsewhere.
Inside each sphere, the trial wave function is expanded
as a sum of products of radial wave functions and
spherical harmonics. In the constant potential region,
a plane wave expansion is employed. The crystal wave
equation is solved inside and outside each sphere, and
the solutions are joined smoothly at their surfaces.
There is a discontinuity in the slope of the wave func-
tion at each surface, but its contribution to the total
energy is taken into account.

Since the APW method employs the most natural set
of basis functions in each region of the crystal, it
requires fewer spherical harmonic terms than the
cellular method, and fewer plane wave terms than the
plane wave method. Hence, the convergence rate is
more favorable than that for either of these two other
methods. Furthermore, the convergence rate is better
than that for the OPW method, since the nodal structure
is obtained in a more rigorous fashion.

There have been a number of calculations based on
the APW method. These include work on copper (Cho
39, How 55), sodium (Mat 52, Saf 57), aluminum (Ant
52), and magnesium (Trl 52). These calculations, par-
ticularly those by Howarth and Siren, suggest that
the APW method is one of the most satisfactory yet
devised for solving the periodic potential problem
accurately and efhciently.

Leigh (Lei 56) has recently reformulated this ap-
proach in terms of a variational principle, and has
introduced a number of modiications. It is still too
early to decide whether Leigh's proposals will lead to
any substantial improvement in the basic method.

(e) Method of Bloch

In the method of Bloch (also known s,s the tight-
binding approximation), the crystal potential is repre-
sented by a superposition of atomic potentials, one
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centered at each lattice site. The trial wave functions
are expressed as linear combinations of atomic orbitals
(LCAO's). These atomic orbitals are here taken as the
eigenfunctions of the isolated atomic potentials. In
order to simplify the solution of the secular equation,
it is assumed that each portion of the band structure
arises from a certain set of free atomic energy levels,
and further, that the dominant terms in the trial wave
function expansion are just those atomic orbitals which

correspond to these atomic levels. On this basis, it is
possible to investigate a particular portion of the band
structure by limiting the expansion to the corresponding
atomic orbitals. If the orbitals associated with neigh-

boring sites do not overlap appreciably, as is the case
for tightly bound states, the secular equation can be
solved by standard perturbation theory (Bio 28).

This scheme is particularly appropriate for investi-

gating the core bands of all crystals, the d bands of
transition metals, and the lowest valence bands of ionic
crystals, and other bands which arise from tightly
bound atomic states. In other applications, this scheme
cannot be expected to yield quantitatively reliable
results, since its basic approximations are not fulfilled.

(f) LCAO Method of Lowdin

Lowdin (Low 50, 56) pointed out that the failure to
work with an orthogonal set of functions, as is the case
when Bloch's method is applied to noncore states, can
lead to serious errors. In Lowdin's approach, which is a
refinement of Bloch's, the crystal wave functions are
expanded in terms of a mutually orthogonal set of
atomic orbitals. Moreover, the LCAO secular equation
is solved by exact methods, rather than by perturbation
theory. The Lowdin method bears a close formal re-
semblance to methods employed in molecular orbital
theory (Roo 51). In fact, recent developments in
molecular orbital theory have influenced Lowdin's work,
and vice versa (Low 56). It should perhaps be pointed
out that while Lowdin has made important contribu-
tions to the LCAO method, his own work is more
concerned with the cohesive energy than with the
band structure.

A number of crystals have been studied by the LCAO
methods of Bloch and Lowdin. These include work on
nickel (Fle 51, 52; Kos 55), diamond (Mor 49(a); Hal
52, 53), bismuth (Mor 49(b)), aluminum (Mat 48),
uranium (Fri 56), silicon carbide (Kob 56), selenium
and tellurium (Rei 57, Ase 57(a)), boron carbide
(Yam 57(b)), graphite (see Sec. 5 for references), and
various ionic crystals (see Low 56 for complete refer-
ences). In some studies, the matrix elements of the
LCAO secular equation are estimated, or simply
guessed, while in others, they are calculated from first
principles. Only the work in the latter category (ionic
crystals —Low 56; graphite —Cor 56) can be considered
quantitatively reliable.

The principal drawback of Lowdin's method is that
the generation of a mutually orthogonal set of atomic

orbitals is a cumbersome process. This is especially true
if one is concerned with energy bands which arise from

very loosely bound atomic states. Even though the
valence and low-lying conduction bands can be deter-
mined with a fair degree of rigor, this rigor is attained
only at the expense of an inordinate amount of numeri-
cal labor. For this reason, we feel that the LCAO
method is not as promising as others, which attain the
same rigor with far less effort.

(g) LCAO Interpolation Scheme

Slater and Koster (Sla 54) have recently suggested
that the LCAO method be used as an interpolation
scheme, rather than as a primary means for determining
energy band structure. Instead of attempting to
evaluate the matrix elements of the LCAO secular
determinant from first principles, which is very dificult,
it is proposed that these matrix elements be evaluated
by making use of information derived from energy
band calculations carried out by other, more scient
methods. This information usually consists of the
energy levels at a limited number of points in the
reduced zone, usually symmetry points. Once the matrix
elements are known, the secular equation can be solved,
and the band structure determined in the remainder
of the reduced zone.

Slater and Koster have applied their scheme to
various cubic-type crystals. Their work has been
extended to hexagonal close-packed crystals by Miasek
(Mia 57). While this approach to the periodic potential
problem has much to recommend it, it is unlikely that
the results will be particularly accurate unless a
sufhcient number of basis functions is employed in
constructing the LCAO secular determinant. If too
few basis functions are used, the interpolation scheme
can introduce spurious maxima and minima in the
energy bands, just as truncated Fourier series often do
in other contexts.

(h) Method of Wannier Functions

In this approach, which owes its development to
Wannier (Wan 37) and Slater (Sla 49, 52), attention is
focused on the Fourier transforms of the Bloch func-
tions, and on the Fourier coeKcients of the energy band
functions, rather than on the Bloch functions and the
energy band functions themselves. Since the Fourier
transforms of the Bloch functions, or the Wannier
functions, as they are commonly called, form a mutually
orthogonal set of highly localized functions (Sla 52,
Car 57, Gib 57), they prove useful for discussing the
formal properties of perfect and nearly perfect crystals
(Sla 49, Koh 57(b)).

The problem of determining the Wannier functions
has been formulated in terms of a variational principle
(Kos 53, Par 53), and has been examined for a number
of simple cases (Sla 52, Wai 53, Win 54). Unfortunately,
the Wannier functions are not easily determined in a
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direct fashion. In practice it is easier to derive the
Bloch functions first, and then the Wannier functions

by carrying out a Fourier transformation, rather than
the other way around. For this reason, the method of
Wannier functions cannot be considered a practical
approach for obtaining approximate solutions of the
wave equation for actual crystals.

(i) Cellular Method

This was originally developed by Wigner and Seitz
(Wig 33, 34), and subsequently generalized and refined

by Slater (Sla 34(a), 34(b)) and others. In this method,
the crystal is decomposed into atomic cells or polyhedra,
one centered at each lattice site. By assuming that the
crystal potential is spherically symmetric in each cell,
it is possible to solve the crystal wave equation in each
cell by the method of separation of variables. The
solutions in difterent cells are then joined together by
imposing appropriate boundary conditions at the sur-
faces of these cells.

In the Wigner-Seitz version, each atomic polyhedron
is approximated by a sphere of equal volume, and the
boundary conditions are imposed at the surface of this
sphere. In the Slater version, the boundary conditions
are imposed at a certain number of points on the
surface of each polyhedron. It was realized very early
(Sho 37) that more and more matching points are
required as one goes from the lowest noncore band to
the higher bands, and that the nature of the solution
is dependent upon the particular choice of matching
points. A number of proposals have been made for
minimizing the dependence of the solution on the
choice of matching points (Von 47, How 52, Koh 52).
The most satisfactory proposal is that by Kohn, who
showed that the cellular method could be derived from
a variational principle, and that a rigorous boundary
condition criterion could be deduced thereby. Kohn's
work has recently been generalized to apply to poly-
atomic lattices (Jen 54(a)).

Energy band calculations by the cellular method
have been carried out for a large number of crystals.
References to the earlier work, which is based mostly
on Slater's version, may be found in other review
articles (Ray 52, Low 56, Sla 56). Recent applications
include work on beryllium (Don 52), sodium (How 53),
lead sulfide (Bel 53), lithium (Sch 54), titanium (Sch 55,
Alt 56), silicon (Hol 52; Jen 54(b), 54(c), 56; Yam 53),
magnesium (Rai 50), and barium oxide (Mor 52).

At present, the principal objection to the cellular
method is that the spherical harmonic expansion of
the crystal wave function converges very slowly out-
side the inscribed sphere of the atomic polyhedron
(Koh 52). Since this difhculty is removed in the method
of augmented plane waves, where the wave function
is expanded in terms of plane waves in this region, the
method of augmented plane waves is decidedly superior.

A question which has not yet been fully resolved is
how important an error is introduced by assuming the

potential to be spherically symmetric in each atomic
polyhedron. It is generally believed that this error is
smaller for metals than for nonmetals, since metallic
structures have a higher coordination number and a
more uniform charge density away from the nuclei
than non-metallic structures. However, this view is
not firmly established. In any event, it would be
desirable to have reliable estimates of the error.

Closely related to the cellular method is the quantum
defect method. Since the latter is more concerned with
the determination of the cohesive energy than with the
band structure, we will not discuss it here. For a
detailed discussion of the quantum defect method, the
reader is referred to a review paper by Ham (Ham 55).

(j) Scattering Matrix Method

While all the previous methods are based on a
differential equation formulation of the periodic poten-
tial problem, the scattering matrix method and the
next are based on an integral equation formulation.
The present approach, as developed by Korringa (Kor
47), bears a close formal resemblance to the dynamical
theory of x-ray diGraction. One starts by considering
the problem of the scattering of an electron wave by a
single spherical atom. The solution of this problem
yields the relationship between the incident and the
scattered wave. The electron wave incident on each
spherical atom must then be given by the superposition
of the electron waves scattered from all the other atoms
in the crystal. This condition provides a means for
determining the electron wave everywhere in the crystal.

The scattering matrix method has been applied to a
variety of idealized one-dimensional crystals (Sax 49;
Lut 51; All 53; Ker 54, 56). as well as to lithium (Koh
52) and niobium (Tre 54). It has been discussed briefly
by Harrison (Har 53), and has been derived on the
basis of a variational principle by Kohn and Rostoker
(Koh 54). The latter work has been generalized to
apply to polyatomic crystals by Segall (Seg 57). A
similar approach to the periodic potential problem has
recently been proposed by Morse (Mor 56).

By all present appearances, the scattering matrix
method is the most satisfactory way yet developed for
solving the crystal wave equation. It is superior to the
APW method, its closest competitor, in the following
respect: In the APW method, the solution inside each
atomic sphere is joined to plane waves at its surface.
Since this joining procedure does not include spherical
waves representing the scattering of the plane waves
by the atomic sphere, it cannot be exact, so that one is
left with a discontinuity in slope at the surface. On the
other hand, in the scattering matrix method, the
solution inside each sphere is joined to incoming and
outgoing spherical waves, thus eliminating the dis-
continuity difEculty.

Most of the labor involved in the present method is
devoted to the calculation of the scattering matrix, a
quantity which depends only on geometrical factors.
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Once this calculation has been completed for a given

crystal structure, it may be applied with relative ease

to all other crystals having this structure. Thus, there
is a great economy of eGort in cases where one is

interested in calculating the band structure of several

crystals having the same crystal structure.

(k) Variation-Iteration Method

In the variation-iteration method developed by
Dank and Callen (Dan 52), one attempts to solve the
integral crystal wave equation by an iterative process.
In addition, one seeks to improve the convergence rate

by resorting to a process of successive variation and

iteration modeled after similar work in other fields

(Mor 53). Not enough work has yet been done with

this method, as applied to crystals, to provide a basis
for judging its relative eGectiveness.

Broadly speaking, an energy band calculation in-

volves the choice of (i) an approximate crystal potential;
(ii) an approximate method for solving the crystal
wave equation; and (iii) a set of points in the reduced
zone at which the crystal eigensolutions are to be
determined.

The choice of a crystal potential has already been
considered briefly in Sec. 2. The choice of a method is
determined largely by the available computing facilities,
though the interests and personal tastes of the investi-
gator may also play an important role. Unless an
investigator is prepared to carry out his calculations
on an automatic computor, and not stop until he is
satisfied that his results are "convergent, "or nearly so,
it is not likely that he will obtain a completely satis-
factory solution, no matter what method he employs.

There is a definite correlation between the method
adopted and the minimum storage capacity and speed
of the computor which must be used if the calculations
are to be carried out with reasonable dispatch. The
scattering matrix and the APW methods require fast
computors with large memories, such as the IBM 704,
the Sperry-Rand Univac Scientific, or the Burroughs-
Datatron 205. The cellular and the OPW methods can
be carried out on smaller, slower computors, such as
the Datatron 220, the IBM 650, or even the IBM CPC
or the Burroughs E101. If the LCAO method is to be
carried out rigorously, with all overlap integrals deter-
mined from first principles, a very large and fast com-
putor is required. On the other hand, if a very rough
solution is desired, and if the only calculational aid
available is a desk calculator, the only practical ap-
proach is the LCAO method in a highly simplified form.

In principle, the results of an energy band calculation
should be independent of the method employed for
solving the crystal wave equation. The results should
depend only upon the assumed crystal potential. In
practice, so many simplifying assumptions are intro-
duced that it is usually not possible to judge which
features of the results arise from the particular choice

of crystal potential, and which from the assumptions.
It is hoped that the increasing use of fast, large-memory
automatic computors will minimize the need to intro-
duce too many simplifying assumptions.

In general, the limiting factor in an energy band
calculation is not the solution of the crystal wave

equation, but the choice of the crystal potential. The
widespread availability of high-speed automatic com-

putors with large memories, and of powerful computa-
tional methods, has removed the computational
bottleneck that has plagued energy band theory for so

many years. The central problem today is the develop-
ment of a theory which can provide a satisfactory
potential for use in energy band calculations.

Let us now turn to the question of choosing a set of
points in the reduced zone. In order to map out the
band structure of a crystal, in particular the valence
and low-lying conduction band structure, it is necessary
to obtain solutions at enough points in the reduced
zone to provide a comprehensive picture of the whole
zone. Without sufhcient information it is normally
impossible to locate the Fermi surface (in metals and
semimetals) and the valence and conduction band
edges (in semiconductors and insulators). Unfortun-
ately, the literature abounds with calculations confined
to so few points in the reduced zone that the Fermi
surface or the band edges cannot be located with any
confidence.

Since the numerical labor is markedly reduced by
choosing symmetry points or points lying on symmetry
axes, most calculations encompass only such points.
Once the energy eigenvalues, Ep(k), and the crystal
wave functions, fp(k, r) are known at a given point in
the reduced zone, it is possible to determine the first and
second derivatives of Ep(k) with respect to k by 6rst-
and second-order perturbation theory. In practice, the
gross features of the band structure in the entire zone
can usually be mapped out in considerable detail once
Es(k) and its first and second derivatives are known at
a selected set of symmetry points. Once the symmetry
classification of the states at diBerent points of the
reduced zone is determined, the states can be arranged
into bands with the aid of group-theoretical connec-
tivity rules. It is also possible to generate the band
structure everywhere in the zone from information at
a few points by interpolation methods. However, the
improper use of such a scheme can introduce spurious
maxima and minima.

5. ILLUSTRATIVE EXAMPLES

In semiconductors and insulators, the valence or
conduction band edges can have one of several possible
forms, depending upon their location in the reduced
zone, and the symmetry classification of the states
which define these edges. Among the possible types of
band edges are the following:

(a) Single, nondegenerate band edge. (The band
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FIG. 1. Reduced zone for crystals having the translational
periodicity of a face-centered cubic lattice. These include ger-
manium and aluminum.

edge occurs at a single point in the reduced zone, and
is defined by a nondegenerate state. )

(b) Single, degenerate band edge. (The band edge
again occurs at a single point, but now is dered by a
degenerate state. )

(c) Multiple, nondegenerate band edge. (The band
edge occurs at a number of well separated, symmetri-
cally equivalent points in the reduced zone, and is de-
fined by a nondegenerate state at each of these points. )

(d) Multiple, degenerate band edge. (The band edge
is de6ned by a degenerate state at each of several well
spaced, symmetrically equivalent points. )

Gexmaninm

Before considering still other types, we shall illustrate
the above four by examining the band structure of
germanium. The reduced zone for this crystal is shown
in Fig. 1. Its valence and low-lying conduction band
structure is shown schematically in Fig. 2. The latter
6gure is based on a variety of experimental results
(see the companion paper by Lax), and also on theore-
tical work by the author (Her 54(b), 55(b)). In the
interest of simplicity, the spin-orbit splitting has been
ignored. In Fig. 2 (and in subsequent drawings of the
same type) the s~nmetry classification of certain states
is indicated in the standard notation (compare Table I
for references).

It is known from experiment that the conduction
band edge lies at the points L, and is dehned by a
nondegenerate state at each of these points. Although
there are eight points L, one at the center of each
hexagonal face, the pairs lying on opposite faces are
physically equivalent, since they are separated by a
reciprocal lattice vector. Hence the conduction band
edge of germanium is dered by four nondegenerate
minima. This is an example of band edge type (c).

As can be shown by perturbation theory, the surfaces
of constant energy in the neighborhood of each of the
four minima are ellipsoids of revolution. This descrip-
tion would apply whether the symmetry classi6cation
at the band edge were L~ (as it appears to be) or L2.
On the other hand, if the conduction band edge were
defined by the doubly-degenerate states Ll Lexample
of type (d) band edgej, the surfaces of constant energy
near L would be warped or Quted surfaces.
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FIG. 2. Schematic diagram of the
band structure of germanium.
The spin-orbit splitting has been
omitted.
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FIG. 3. "Empty-
lattice" band struc-
ture for crystals hav-
ing the translational
periodicity of a face-
centered cubic lat-
tice. The heavy lines
denote the posi-
tions of the highest
valence band and
the lowest conduc-
tion band in dia-
mond-type and zinc-
blende-type crystals,
as well as in crystals
having the rock salt
or the antifluorite
structure.
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The author's calculations (Her 54(b)) predict that
there are actually three sets of minima in the lowest
conduction band edge of germanium. In addition to
the four L1117 minima which define the band edge,
there are six along the L1007 axes (symmetry classifica-
tion 6i), and one at L0007 (F2 ). Experiment bears this
out. Thus we see that the band structure of a crystal
may be complicated not only by a complex band edge,
but also by the presence of auxiliary extrema lying very

close to the band edge on an energy scale, but quite far
apart in the reduced zone.

If the conduction band edge in a diamond-type
crystal is defined by F2, as might prove to be the case
in grey tin, we would have an example of band edge
type (a). In this case, the constant energy surfaces
near the band edge would be spherical.

Cyclotron resonance experiments indicate that the
valence band edge in germanium lies at L0007. If the

[ooo] [ioo] [i so] [ooo] 440 IOO

FIG. 4. "Nearly-empty lat-
tice" band structure for ger-
manium (and presumably for
other diamond-type crystals as
well).
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spin-orbit interaction is ignored, the band edge is
defined by the triply-degenerate state FI& [an ex-
ample of band edge type (b)j.Each of the three valence
bands which touch at [000j have fiuted, or warped

constant energy surfaces near [000$. Second order
degenerate perturbation theory (Sho 50) shows that
E(h) is given by the roots of the following secular
equation,

Lk,'+M (k„'+k,') —E(k) Xk,k„ Nk, k

Xk,k„Lk„'+M(k,'+k, ') —E(h) Sk„k,
Nk, k Xk„k. Lk.'+M(k '+k„')—E(k)

=0

where the zero of energy is taken at the band edge.
E(k) is always an analytic function of h at a non-

degenerate band edge. Hence E(k) can always be
expanded in a Taylor series in k, k„,and k, in the
vicinity of such an edge. On the other hand, E(h) is
nonanalytic at a degenerate band edge. In this case,
E(h) must be represented by a secular equation as
above.

When the twofold spin degeneracy which has been
ignored in the preceeding discussion is taken into ac-
count, it is evident that I'» actually represents a
sixfold degenerate state. It can be shown that the
spin-orbit interaction splits this sixfold degenerate
state into an upper fourfold and a lower twofold
degenerate state (Ell 54(a), 54(b); Ada 54; Dre 55(a),
55(c)). ln all crystals having a center of inversion, and
this includes germanium, the twofold spin degeneracy
is not removed by the spin-orbit interaction. Hence
the valence band edge in germanium is defined by two
doubly-degenerate bands which touch at [000$. This
is again an example of band edge type (b). The energy
surfaces for these two bands near [000$ are described
by the following nonanalytic function, E(h) = —Ak'
&[Bk4+C(k 2k 2+k 2k 2+k nk ~)$&, where the zero of
energy has again been taken at the band edge. The
split-off band is described by E(k) = —5—Ak2, where
6 is the spin-orbit splitting [in germanium, 6=0.29 ev
(Kan 56)j.

The valence band structure in germanium near the
edge illustrates another possible complication, namely,
the presence of closely spaced bands in a particular
region of the reduced zone. This is illustrated even
more dramatically by the case of silicon, where the
valence band structure is similar in form to that of
germanium, and where the spin-orbit splitting is an
order of magnitude smaller.

It is instructive to compare the band structure of
germanium (with the spin-orbit splitting ignored) with
that of a free electron gas having a density equal to
the average valence electron density of germanium. If
we "switch ofP' the periodic potential (imagine the ion
cores replaced by a uniform background of positive
charge), the valence and conduction band structure is
described by the free electron expression E(k) =

~
h+h

~

',
where h denotes a reciprocal lattice vector. If this is
plotted in the reciprocal space for germanium, we ob-
tain Fig. 3, which we will call an "empty-lattice" band
structure. ("Empty" refers to the absence of a periodic

potential. ) The spatial degeneracy of each energy band
profile is indicated by the number of dots appearing
between the dashes.

If the periodic potential is "switched on" again,
ever so slightly, much of the degeneracy appearing in
Fig. 3 is removed. This is suggested by Fig. 4, which
shows the band structure of a "nearly-empty lattice. "
It is a simple exercise in group theory to deduce the
various symmetry classifications shown in Fig. 4. In
drawing this figure, we have arbitrarily removed the
degeneracy in such a manner that the various energy
levels appear in the same order as they do in Fig. 2.
It is perhaps helpful to visualize the band structure
gradually evolving from that shown in Fig. 3 to that
in Fig. 4 to that in Fig. 2.

Since there are eight valence electrons per unit cell
in germanium, there must be four valence bands, each
of which has a two fold spin degeneracy. The forbidden
band separates the highest valence band, i.e., the fourth
band, counting upwards, from the lowest conduction
band, i.e., the fifth band. The positions of these two
bands are shown in Figs. 3 and 4 by the heavy dots
and dashes. It should be observed that the fourth and
fifth bands are degenerate along the [100), the [110],
and the [111]axes in Fig. 3. At some places along these
axes, still other bands coincide with these two. On the
other hand, the fourth and fifth bands do not touch
along the square and hexagonal face diagonals. The
shaded regions in Figs. 3 and 4 denote the beginnings of
the forbidden band.

When the band structure in Fig. 2 is compared with
the related band structures shown in Figs. 3 and 4,
many of its features become less "mysterious. " Al-
though there is a significant distortion in the band
structure in passing from Fig. 3 to Fig. 2, some of the
basic features persist. While the actual band structure
can hardly be predicted from a mere knowledge of the
corresponding "empty-lattice" band structure, the
latter may often serve as a useful frame of reference.
It is for this reason that we have included a number of
other "empty-lattice" band structures below.

Indium Antimonide

In the beginning of this section, we listed four
possible types of band edges for semiconductors and
insulators. This list is by no means exhaustive. Under
special conditions, the gross features of the structure
near a band edge may bear a superficial resemblance
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the work of Heine (Hei 57).
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to one of the four types already mentioned, but closer
inspection may reveal the presence of fine detail super-
imposed on the gross band edge. This fine detail or
satellite structure may move the band edge from a
given point in the reduced zone to an adjacent set of
points, or it may move the band edge from a given set
of widely-spaced points to sets of points clustered
around each of the original points. In the former case,
the band edge occurs at a single cluster of points, and
in the latter, at several symmetrically equivalent
clusters of points. Such single or multiple clusters can
be formed when the spin-orbit interaction modifies the
band structure in the neighborhood of a spatially
degenerate band edge in a crystal not having a center
of inversion.

For example, the valence band edge in indium antim-
onide appears to be described by a single cluster of
points lying in the immediate neighborhood of

I 000j
(Dre 55(b), Ran 57). At the present time, there is no
known example of a semiconductor or insulator having
a multiple-cluster band edge. As we will see below, the
valence and conduction band edges of the semimetal
graphite are believed to be of the multiple-cluster type.

Aluminum

Aluminum is a trivalent metal having a face-centered
cubic lattice structure. Its reduced zone is given by
Fig. 1, and its "empty-lattice" band structure by Fig. 3.
The energy band structure of aluminum has recently
been explored theoretically by Heine (Hei 57), and his
results are shown schematically in Fig. 5. Heine finds
that the lower reaches of the band structure are quite
similar to those of the "empty-lattice" band structure
except near the zone faces, where significant departures

FIG. 6. Reduced zone
for hexagonal-type crys-
tals, including hexago-
nal close-packed metals
such as beryllium,
wurtzite-type crystals,
selenium, tellurium, and
graphite.

K'

A
K ~

K

occur. The most interesting portion of the band struc-
ture is that near the zone corners (the points W), where
the four-fold spatial degeneracy in the "empty-lattice"
band structure is split into two nondegenerate states
(W& and W2) and a doubly-degenerate state (W3).
Heine's work suggests that WI lies above W2 and W3,
but there is some doubt concerning the relative order
of W~ and 8'3. The two possibilities are shown in Figs.
5(a) and 5(b).

Cyclotron resonance has recently been observed in
aluminum by Gunnersen. Certain absorption peaks are
apparently caused by holes (Cha 56). Heine is best
a.ble to account for these peaks (including their ani-
sotropy properties) by requiring a hole pocket to exist
at each of the zone corners. If W3 lies below W2, the
hole pockets are as shown in Fig. 5(a), while if Wq lies
below W3, they are as shown in Fig. 5(b). There are
also absorption peaks which may be caused by electrons.
These can be explained by requiring the third band
(III) to dip below the Fermi level in the neighborhood
of the points E, as in Fig. 5(b).

Beryllium

Beryllium is a divalent metal which crystallizes in
the hexagonal close-packed structure. Its reduced zone
is the hexagonal prism shown in Fig. 6. The energy
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packed and wurtzite-type crystals (ideal c/a ratio) in

Fig. 8. Although this figure has been marked for
wurtzite-type crystals in the same manner that Fig. 3
is marked for diamond-type crystals, this should not
obscure the fact that its lowest bands are closely
related to the beryllium bands shown in Fig. 7. The
removal of the spatial degeneracy by the periodic
potential of beryllium is clearly seen by comparing
Figs. 7 and 8. It is interesting to note that the band
structure of beryllium (as given by the work of Herring
and Hill) is less like its "empty-lattice" band structure
than is the case for aluminum. We do not pretend to
know why this is so.

Selenium
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S
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FIG. 7. Energy band structure of beryllium according to
the calculations of Herring and Hill (Her 40(b)).

band structure of beryllium, as determined by Herring
and Hill (Her 40(b)), is shown in Fig. 7. The electronic
properties of beryllium may be expected to be quite
complicated, owing to the presence of several bands in
the neighborhood of the Fermi level.

For purposes of comparison, we have shown the
"empty-lattice" band structure of hexagonal close-

WURTZITE

The reduced zone for selenium is again the hexagonal
prism shown in Fig. 6. Its "empty-lattice" band struc-
ture is shown in Fig. 9. The "empty-lattice" and
"nearly-empty lattice" band structures are compared
with the theoretical results of Reitz (Rei 57) in Fig. 10.
It would appear from Fig. 10(c) that the valence and
conduction band edges occur at the midpoints of the
hexagonal faces (the points A). However, this cannot
be considered as definitely established until the remain-
der of the reduced zone is systematically explored. It is
not out of the question that the valence or conduction
band edge lies elsewhere in the reduced zone. *

Graphite

Because graphite has an unusual layer structure and
highly anisotropic physical properties, its band struc-
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Fzo. 8. "Empty-lat-
tice" band structure for
wurtzite-type crystals.
If the heavy markings
are ignored, this also
applies to hexagonal
close-packed crystals.
Drawn for ideal c/a
ratio.
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*Note added in proof. —Recent experimental work by Choyke and Patrick (Cho 57) suggests that the valence and conduction
band edges lie at diGerent positions in the reduced zone.
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ture has received a great deal of attention. At present,
there is no fully satisfactory theory of the over-all form
of its valence and low-lying conduction band structure.
However, the detailed form of its band structure near
the Fermi level is fairly well understood, and this
should prove sufficient for most applications.

The crystal structure of graphite is shown in Fig. 11.
The atoms are arranged in hexagonal layer planes, and
there are four atoms in the unit cell. Two of these atoms
have neighbors directly above and below in adjacent
planes, while the other two do not. The reduced zone
is the hexagonal prism already shown in Fig. 6.

Since the interlayer spacing (3.37 A) is much larger
than the interatomic spacing in any one layer (1.42 A),
it is convenient to start by considering the band struc-
ture of a single layer. Of the numerous calculations
which have been performed for two-dimensional
graphite (Wal 47; Cou 47, 52; Car 53(b); Ari 54; Lom
SS; Cor 56), the most comprehensive is that by Corbato
(Cor 56). It may be seen from Corbato's results
[compare Fig. 12] that the valence and conduction
band edges occur at the (two-dimensional) zone corners,
where they touch. Furthermore, the highest valence
band and the lowest conduction band are both found
to be tr bands. (In two-dimensional graphite, the elec-
tronic states can be classified as x or o. states. The states
belonging to the o bands are symmetric, and those
belonging to the ~ bands antisymmetric, with respect
to reflection about the layer plane. ) These results con-
firm the earlier ones of Wallace (Wal 47) and Coulson
(Cou 47, 52).

We turn next to a consideration of the band structure
of three-dimensional graphite. Since there are four

atoms per unit cell, rather than just two, as in the two-
dimensional case, there are now eight valence bands

4p 4p

4p

4p

.~(a&
I A

&4a
/

/
I

4gX

/
4Ii

(C)

FIG. 10. Energy band structure for selenium along hexagonal
axis. (a) "Empty-lattice"; (b) "Nearly-empty lattice"; (c)
Results of Reitz (Rei 57). From the viewpoint of Reitz's LCAO
calculation, there are three bands derived from the 4s atomic
states, nine from the 4p atomic states, and fifteen from the 4d
states, etc. Since Reitz ignores the 4s bands, and treats the 4p
and the 4d bands separately, he overlooks the possible interband
mixing strongly suggested by Fig. 10(b). It is conceivable, how-
ever, that in the actual band structure this interbgng mixing iq
not present.
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corners of the two-dimensional zone, it follows that
the most interesting portion in three dimensions is that
along the triad axes, i.e., along HKH and H'K'H' in

the three-dimensional zone shown in Fig. 6.
Although a number of three-dimensional band calcu-

lations have been performed (Joh 55, 56; Hea 57;
Yam 57(a)) with a view to determining the "n" band
structure along (and near) the triad axes, these involve

so many simplifying assumptions that the results must
be treated with considerable caution.

A more fruitful approach has been that initiated by
Slonczewski (Slo 55(a)), and subsequently pursued by
Slonczewski and Weiss (Slo 55(b)), McClure (McC
57), and Nozieres (Noz 57 (b)). In this, the most general
form of the band structure near the triad axes is deduced

by means of group theory and perturbation theory, and
the parameters which enter into this form are evaluated
by comparison with pertinent experimental data.

Fxo. 11.Crystal structure of graphite.
60

GRAPHITE

/

60

~ 50

40
C

C9

~~ 20
Ul

IO

o bands w bands FIG. 12. (Top) Re-
duced zone for two-
dimensional graphite.
(Bottom) Energy band
structure for two-dimen-
sional graphite accord-
ing to the calculations
of Corbato (Cor 56).

rather than four. These eight bands may be expected to
occur as four closely spaced pairs. Each of these pairs
should occur roughly at the same energy (in the k, =o
plane) as one of the two-dimensional valence bands.
There will also be a pair of conduction bands for each
of the two-dimensional conduction bands. The spacing
between the members of each pair should increase as
one moves to higher energies. A good picture of the
gross features of the three-dimensional band structure
in the k, =0 plane may be had by replacing each band
in Fig. 12 by a pair of more or less closely spaced bands.

(It is interesting to note that the "actual" band
structure is more nearly like the "empty-lattice" band
structure in two dimensions than in three dimensions.
The "empty-lattice" band structure for three dimen-
sions is shown, for what it is worth, in Fig. 13.)

Since the two-dimensional work shows that the most
interesting portion of the band structure is that at the

so

40

- 30

C9
R
z 20

FIG. 13. "Empty-
lattice" band structure
for three-dimensional
graphite.
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The present picture of the band structure of three-
dimensional graphite near the triad axes (Slo 55(a),
55(b); McC 57; Noz 57(b)) is illustrated in Figs. 14,
and 15. Along the triad axes, the four "x" bands are
split into two nondegenerate bands (E~ and E2) and a
doubly-degenerate band (E~). From a study of infrared
emissivity, de Haas-van Alphen eGect, and cyclotron
resonance absorption data, Nozieres concludes that the
three parameters appearing in Fig. 14 have the following
values: y~=0.14 ev; y2=0.016 ev; and 6=0.025 ev.

If we ignore certain fine detail which will be men-
tioned shortly, the energy profiles in a horizontal plane
(k, =constant) are as shown on the right-hand side of
Fig. 14. The energy surfaces are circular hyperboloids.
It should be noted that the degeneracy in E3 along the
triad axis is removed as one moves away from the axis
into the zone. The position of the Fermi level (Ep)
relative to E~, E2, and E3 suggests that nearly all the
electrons and holes belong to the two bands which
merge at the triad axis to form E3. Since the curvature
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of the two branches of E3 in a horizontal plane is a
function of k„the electrons and holes will each have a
spectrum of eBective masses.

A closer inspection of the band structure reveals a
satellite structure near each triad axis in any horizontal
plane, as indicated in Fig. 15. The upper and lower
members of E3 are no longer in contact only along the
triad axis. Instead, they overlap very slightly (EM—0.002 ev), giving rise to four conical energy sections.
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FIG. 14. Energy band structure near a triad axis (HK or H'K')
in three-dimensional graphite ("m" bands only). (Left) Band
structure along a triad axis. (Right) Band structure in a horizontal
plane cutting the triad axis at an arbitrary k, . After Nozieres
(Noz 57(b)).

One of these four lies at the triad axis, while the other
three form an equilateral triangle in the immediate
neighborhood of the axis. The constant energy surfaces
are highly warped in the critical region. These are
shown at the bottom of Fig. 15. As one moves away
from the critical region, the warping fades away, and
one is again left with the circular hyperboloids shown
at the right of Fig. 14. From the above characterization,
it may be seen that the valence and conduction band
edges of graphite are of the multiple-cluster type
mentioned earlier.
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