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I. INTRODUCTION

HE problem of calculating the magnetization in

a ferromagnetic, antiferromagnetic, or ferri-
magnetic material is so complicated that it is always
necessary to adopt some kind of approximation.
Above the Curie temperature the partition function
can be developed as a power series! in the ratio of
the exchange integral to k7, but the convergence is
exceedingly slow and each succeeding term is progres-
sively more difficult to compute. A semiempirical,
semitheoretical approach is provided by the Weiss
molecular field method, or ramifications thereof, and
this procedure works qualitatively even below the

. "‘dNow at the Institute-Lorentz, University of Leiden, Nether-
ands.

! For references and a compendium of the most refined numerical
results to date with the series and W-B-P methods see H. A.
Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955). In this
connection reference should also be made to the easier, constant
coupling approximation of P. W. Kasteleijn and J. Van Kranen-
donk, Physica 22, 317 and 367 (1956).

Curie point. The Weiss-Bethe-Peierls method,! wherein
the interaction inside a cluster is handled accurately
but the coupling with its entourage phenomenologically,
can be regarded as a refinement of the Weiss molecular
field method.

At low temperatures, where the magnetization differs
only slightly from that at absolute zero, none of these
procedures is satisfactory. Instead, for a crystal
composed of regularly spaced atoms, one has the method
of spin waves, which is the subject of the present paper.
Our purpose is twofold: firstly, to assemble in one
place and in a unified fashion many of the results which
are rather scattered in the literature, and secondly to
introduce a simplified version of the quantum-mechan- .
ical theory. Our approach is based on approximating
the magnetic spin system by a system of harmonic
oscillators. The distinction from the conventional
approach of Bloch,? and of Holstein and Primakoff,?

2 F. Bloch, Z. Physik 74, 295 (1932).
3 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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based on creation and annihilation operators, is to a
considerable extent only a semantic one, but neverthe-
less is probably of use to those readers to whom
harmonic oscillators are more intuitive than the
techniques of quantum-mechanical field theory.

Our treatment is based, except as otherwise stated,
on the Heisenberg,* or ‘“localized-spin”’ model for a
magnetic solid, which is analogous to the Heitler-
London model of chemical bonds. The magnetism is
regarded as coming entirely from electronic spins
regularly spaced in the crystal. The question of the
extent to which the model can be generalized to include
intinerant effects of the magnetic electrons, i.e.,
conduction band structures, or to allow for the fact
that actually the number of spins per lattice site is not
integral in most ferromagnetic materials, is examined
briefly in Sec. XI. In our opinion the extension to such
cases is either quite involved or of only qualitative
validity, so that in a certain sense the conventional
spin-wave theory is only academic because it is based
on a too idealized model. This objection does not,
however, apply in equal degree to the application to
nonconducting antiferromagnetics or ferrites.

It is perhaps well to take stock at the outset as to
what results are obtained from the spin-wave theory,
if questions of the applicability of the model are
waived. In ferromagnetics, formulas are obtained for
the approach of the magnetization to the value at
absolute zero (perhaps the most celebrated result), for
the dependence of the magnetization on field strength,
for an exchange specific heat at low temperatures, and
for the frequency in ferromagnetic resonance. The
inclusion of the terms neglected in the usual spin-wave
treatment, but still based on the idealized Heisenberg
or Heitler-London model, furnish a mechanism for
the existence of a spin-spin relaxation time. Corre-
sponding results are also supplied by the spin-wave
theory for antiferromagnetics, though here the approxi-
mations are more open to question on scores of rigor.

The literature of spin-wave theory is considerable.
About fifty references are included in the present
article, and even so our bibliography is probably not
complete. Two different methods have been used to
introduce the concept of spin waves, a quantum-
mechanical and a semiclassical approach. The
quantum-mechanical method was initiated by Slater®
and by Bloch? in attempts to derive approximate
expressions for the low-lying energy levels of a ferro-
magnetic crystal. A different procedure, leading to
essentially the same results, was later introduced by
Holstein and Primakoff.? The semiclassical method was
developed by Heller and Kramers® with the aim of
giving a classical interpretation of the spin waves

4 W. Heisenberg, Z. Physik 49, 619 (1928).

8 J. C. Slater, Phys. Rev. 35, 509 (1930).

¢ G. Heller and H. A. Kramers, Proc. Roy. Acad. Amsterdam
37, 378 (1934). See also N. J. Klein and R. S. Smith, Phys. Rev.
80, 1111 (1950) and W. Déring, Z. Physik 124, 501 (1947).
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introduced by Slater and Bloch. Both methods have
recently been reviewed by Keffer, Kaplan, and Yafet” in
connection with ferro and antiferromagnetic resonance.
We now describe in mathematical terms the localized
spin model which we use. If we include only isotropic
spin coupling, as in the original Bloch theory, the
Hamiltonian function of the spin system is

Je=— HgBY. Si:— 2T neiS:-S;, 1)

where $ is the Bohr magneton e#/2mc, g is the spectro-
scopic splitting factor, approximately equal to 2, and
S, is the spin vector of atom ¢, measured in multiples
of #. It is assumed that all magnetic atoms have the
same spin quantum number S. The first term of (1) is
the Zeeman energy of the spins in a field of magnitude
H, which throughout we suppose directed along the
z axis. The second term is the exchange energy; the
proof that it is proportional to the scalar product of
the two spin vectors is quite standard® and is omitted
here. We restrict ourselves to simple lattices, and
suppose the exchange coupling is negligible except
between atoms which are nearest neighbors. The only
nonvanishing exchange integrals then have a common
value J, and the summation in (1) extends only over
neighboring atoms, as indicated by the subscript nez,
a convention used throughout the paper. The coupling
constant J, which is the same as the familiar exchange
integral between adjacent atoms, is positive for
ferromagnetics, negative for antiferromagnetics. The
more general case where the exchange energy takes the
form —23;.:7:8;-S;, and the sum runs over all
pairs of atoms in the crystal, regardless of relative
distance, can still be treated by spin waves if the
lattice is regular and boundary effects are disregarded,
but we shall not give calculations explicitly for this
generalization; the procedures would be similar to
those which we use.

All calculations with spin waves are based on the
vector or Heisenberg model, wherein the coupling is
proportional to the scalar product S; S;. Ising® instead
arbitrarily used a potential S;.S;,. From a mathematical
standpoint this is a simplification, as then each individ-
ual S, is a constant of the motion and can be quantized.
However, the exchange effects of quantum mechanics
actually lead to the vectorial form. Hence the Ising
model is a purely academic abstraction. It does not,
in fact, give any spin waves at all, and the whole point
of the spin-wave theory is essentially to handle a
situation more real than that corresponding to the
Ising model.

Besides the isotropic coupling included in (1)

7 Keffer, Kaplan, and Yafet, Am. J. Phys. 21, 250 (1953).

8 See, for instance, J. H. Van Vleck Electric and Magnetic
Susceptibilities (Oxford University Press, New York, 1932),
Chap. XII, where the Dirac vector model and the standard
Heisenberg theory are reviewed.

9 E. Ising, Z. Physik 31, 253 (1925). For a review of literature
on the Ising model see G. F. Newell and E. W. Montroll, Revs.
Modern Phys. 25, 353 (1953).



SPIN WAVES 3

(so-called because the scalar product S;-S; depends
only on the angle between the vectors S; and S; and
is independent of the orientation of their resultant),
there are actually anisotropic interactions. Those of
the lowest order are of the “dipolar” or ‘“tensor”
structure

2> Diu[(8i-8;)—3(Ss-1:)) (S, 1) /ri¥). (2)

For classical electromagnetic, i.e., true magnetic
spin-spin interaction, the constant D;; has the value

Dij=3262/rij3- (3)

However, it is now generally recognized that non-
classical values of D;;, and of much larger magnitude at
short interatomic distances, can result from indirect
repercussions of spin-orbit coupling, by a complicated
perturbation mechanism' which we do not describe here.
Such nonclassical values of D;; are often designated as
“pseudodipolar” or ‘‘anisotropic exchange” coupling.
The most important effects of the classical dipolar
coupling are long-range. Hence when the value (3)
of D;; is used in (2), it is essential that the summation
be unrestricted rather than confined to nearest
neighbors. On the other hand, the nonclassical part of
D;; is of comparatively short range, like J,;.

The expression (2) represents the most general
anisotropic coupling between two atoms if their
spins are each 3, and if there is symmetry around the
line of centers connecting them. For spins greater than
3, there can also be quadrupolar coupling terms such as

Eij(S;-14)%(S; -145)%

Still higher moments can also appear for greater spin
values. The quadrupolar interaction can be important
for ferromagnetic anisotropy,”® inasmuch as it can give
rise to anisotropy in a cubic crystal even in first order.
However, interaction of the dipolar structure (2),
though capable, even in first approximation, of giving
anisotropy in a noncubic crystal, can do so only in
the second approximation in a cubic material. This
property is an immediate consequence of symmetry
requirements, since a quadratic form in the direction
cosines, such as results from any first-order calculation
based on (2), degenerates into a spherically symmetric
affair when all three axes are equivalent. On the other
hand, when squared, as in a second-order perturbation
calculation, the biquadratic angular dependence %2
+N?»*+u? characteristic of cubic anisotropy can be
obtained.

We do not include quadrupolar coupling in any of
our calculations, although it may be implicitly reflected
in the artifice of an effective anisotropy field used in
some of the later sections of the paper. For simplicity
we defer until Sec. V the inclusion of the dipolar
interaction (2), which is important for ferromagnetic
resonance and for demagnetization effects.

10 J. H. Van Vleck, Phys. Rev. 52, 1195 (1937),

II. SPIN-DEVIATION QUANTUM NUMBERS

Following Holstein and Primakofff we introduce,
instead of the usual quantum number m which corre-
sponds to the z component of the atomic spin S,
the spin-deviation quantum number #=S—m, which
measures the deviation of .S, from its maximum value
S. The allowed values of # are 0, 1, 2, ---, 25, and
these are the eigenvalues of the spin-deviation operator
n=S5—25,. In a representation in which this operator
n is diagonal, the nonvanishing matrix elements of
the three components of S are given by the familiar
expressions

1| S:z|n+1)= (n+1|S,|n)=1(n+1)}(2S—n);
(n[SuI”+1>=<”+1[SuI”)* )
=—3i(n+1)}2S—n)};
(n|S.|n)y=S—n.

The matrices of the components of S; have the form
(4) with respect to n;, but are diagonal with respect
to the n; of all the other atoms in the crystal. Thus the
matrices of S; are the direct products of the matrices
(4) and N—1 unit matrices.

In the equilibrium state at absolute zero, all the
spins of a ferromagnetic crystal are aligned parallel
to the external field, so that no spin deviations are
present and all the », vanish. It is well known that if in
this state one introduces one spin deviation on a
particular atom, this spin deviation does not remain
localized on that atom: because of the exchange
interaction with the surrounding atoms it will propagate
itself through the lattice, thus constituting a “spin
wave,” or rather a spin-wave packet. A spin wave
corresponds to the propagation of a spin deviation with
a definite wave-number vector. The states of the spin
system which correspond to excitation of spin waves of
definite wave numbers are exact eigenstates of the
Hamiltonian (1) as long as there is only one spin
deviation present in the whole lattice, as we show later.
In other words, if we use primes to denote the resultant
spin of the entire crystal, which is, of course, the
vector sum §'=3_.S; of the spins of the individual
atoms, the eigenvalues of (1) can be computed exactly
for S.))=NS and S,/=NS—1, where N is the total
number of magnetic atoms in the crystal.

The essence of the whole spin-wave approximation is
that for small values of the total crystalline spin
deviation, the difference in energy between a state
with S,'=NS—n and the completely parallel one
S,/=NS can be regarded as approximately equal to
the sum of » rigorously computed differences for unit
deviations. In other words, the assumption of additivity
is made in connection with spin reversals. Actually,
this assumption is not accurate. If, for instance, two
spin deviations are present, the energy of the spin
system will depend on whether the spin deviations
are located (i) on the same atom (this is possible only
for §>3), (ii) on neighboring atoms, or (jii) on more
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distant atoms the spins of which are not coupled in
the Hamiltonian (1). Because of this dependence of
the total energy on the separation between spin
deviations, spin waves interact with each other, and
therefore do not satisfy the superposition principle
accurately. There are two different causes for error.
If we try to visualize the resulting corrections to the
energy, one type of correction can be interpreted as a
repulsion, the other as an attraction between spin
deviations. For S=1, for instance, the repulsion results
from the fact that there cannot be more than one spin
deviation on a given atom. Thus if two spin deviations
approach the same lattice site, they will be scattered
because of this “interaction.” If S>3, this repulsion
appears only if there are more than 2S5 spin waves
present, and the situation is then more complicated.
The attractive part of the interaction arises because
the total exchange energy of a configuration in which
two spin deviations are located on nearest neighbors,
is lower than that of a configuration in which the two
spin deviations are farther apart. In a one-dimensional
lattice, this attraction can give rise to “spin complexes”
(cf. Bethe),! i.e., to states in which the spin deviations
are bound to each other, and of course also to scattering.
It should be clearly understood, however, that the
total scattering cross section and the resulting correc-
tion to the energy are determined by the combined
action of the repulsive and attractive interactions.

The basis of the spin-wave approximation is the fact
that at sufficiently low temperatures the influence of
the interaction between the spin deviations may be
neglected. At low temperatures the magnetization
deviates but slightly from the saturation magnetization.
The average number of spin deviations in the crystal is
then small compared to the total number of atoms in
the crystal, and their interaction may then be neglected.

III. HARMONIC OSCILLATOR APPROXIMATION
FOR FERROMAGNETISM

The similarity between the spin matrices (4) and the
well-known matrices of the coordinate and momentum
of a harmonic oscillator is the starting point of the
present treatment of spin waves. In this section the
method is explained for the ferromagnetic case without
the dipolar correction (2). The antiferromagnetic case
is discussed in Secs. VII-VIII.

Consider a linear harmonic oscillator of mass m
and angular frequency w. The nonvanishing matrix
elements of the coordinate » and the momentum p
of this oscillator are given by

(n|x|n4+1)= (n+1| x| n)= (h/2mw)}(n+1)}, 5
(n] plnt1)= (n+1]p|ny*=—iGmw/dn+1)s, O

where 7 now corresponds to the number of quanta

11 H. A. Bethe, Z. Physik 71, 205 (1931).
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with which the oscillator is excited, i.e.,

(» ny=n-to.

When we introduce the dimensionless variables
Q= (mw/f)}x and P=(hmw)~tp, )
we can write (5) and (6) in the following form:

(n| S¥Q|n+1)=(n+1|S*Q|n)
=3(n+1)}29)};
(n| S¥P|n+1)= (n+1|SIP|n)* (8)
=—3i(n+1)}(25)};
(n|S—3(P+Q*—1)|n)=S—n.

Comparing these expressions with the expressions (4)
for the matrix elements of the spin components, we
see that there is a striking similarity between the two
sets of matrices. Both sets have nonvanishing matrix
elements only on or immediately along the diagonal,
and the values of these matrix elements are closely
related. There are, however, two important differences,
viz.:

(1) The matrices (8) are of infinite dimension,
while the spin matrices (4) are only (25+1)-dimen-
sional. An alternative way of expressing this is to say
that the spin matrices (4) are, like (8), of infinite
dimension, but all matrix elements corresponding to
n>2S now being equal to zero rather than being equal
to the values (8).

(ii) The factor (2S—n)}? appearing in the spin
matrices (4) is replaced by (25)} in the harmonic
oscillator matrices (8). We note that the matrix
elements connecting the first two states =0 and
n=1 in (4) are equal to those in (8) for any value of
S, while for larger values of # corresponding elements

are approximately equal as long as # is small compared
to 2S.

Let us now replace in the Hamiltonian (1) of the
spin system the spin matrices (4) by the harmonic
oscillator matrices (8), i.e., let us carry out the following
substitutions:

S.=810; S,=8'P; S,=S—-3(PHQ*—1). (9)
We then get the following Hamiltonian:

=—HgB> [S—3(P?+Q2-1)]
—2J8X nei(PiPi+Q:0,)+

=2 neil[S—3(P2+0Q2—1)]
X[S—-3(P/+0 1] (10)
The properties of the system of coupled harmonic
oscillators described by the Hamiltonian (10) are the
same as those of the spin system (1) as long as the
temperature is so low that the states #;>2 of each of

the oscillators are not appreciably excited. At higher
temperatures, however, deviations appear. For S=1%,

1
E——P’+%mw2x’—% (6)
m
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neglect of the repulsive interaction is not justified
when the levels with #> 2 become appreciably excited,
while for larger values of S additional corrections occur
because at higher temperatures the factor (25—#)} may
no longer be replaced by (2S)}. These deviations of
the properties of the oscillator system (8) from those
of the spin system (1) are the result of the ‘“anharmonic-
ity” of the spin variables, i.e., to the deviations of the
spin matrices (4) from the harmonic oscillator matrices
(8).

One can improve the approximation (9) by adding
higher-order (anharmonic) terms in P and Q, so as
to make not only the matrix elements corresponding to
n=0 and n=1 agree, but also those corresponding to
n=2, etc., each additional term in (9) taking care of
the next set of matrix elements corresponding to the
next higher value of #. We shall illustrate this procedure
for S=%. When we introduce the quantities S*=3S§,
+4S,, a=2"%Q+iP) and a*=2"}Q—iP), we can
write the first approximation (9) in the form

St=(28)ta; S—=(29)*; S,=S—a*e. (11)

Only the first four matrix elements, those between
the states =0 and =1, of the right-hand members
of (11) are equal to the corresponding matrix elements
of the left-hand members. In the next approximation,
we can make the first nine matrix elements, correspond-
ing to the states #=0, 1, and 2, agree by replacing (11)
by

S*t=(28)}(a—da*aa); S—=(25)}(a*—a*a*a);

S.=S—a*a+a*a*aa;

(12)

as can be verified easily by writing out the matrices
occurring in (12). For §>1%, the factor (1—#n/25)t
appearing for #< 2S, and the repulsion now appearing
for n>2S, can be taken into account in a similar way.
In the literature, a number of attempts have been
reported!*~* to improve the approximation (11) by
expanding the square root (1—#/25)% in powers of
n/2S and retaining only the first few terms, but ignoring
the “repulsive” interaction corresponding to the
vanishing of the spin matrices (4) for »>2S. In this
way all the matrix elements corresponding to #<2S
are partly corrected (this makes sense only for S>1),
whereas in the present method (applicable also for
S=3) the successive approximations (11), (12), etc.,
make successive sets of matrix elements have exactly
the correct values (4). It should be cautioned, however,
that it is not certain that this approximation procedure
converges. We shall not discuss this point here, since
we are at present interested only in the conventional
spin-wave approximation.

The customary spin-wave approximation is obtained
by neglecting not only the anharmonicity of the spin

2 J. M. Ziman, Proc. Roy. Soc. (London) A65, 540 and 548
(1952).

13R. Kubo, Phys. Rev. 87, 568 (1952).
4 M. R. Schafroth, Proc. Phys. Soc. (London) A67, 33 (1953).

variables, i.e., by using the first approximation (9),
but by neglecting in addition the attractive interaction
between the spin deviations. This interaction is
represented by the fourth-order terms appearing in
the last term of the Hamiltonian (10). The fact that
the fourth degree part of (10) has a negative sign for
J>0 means that this neglected part of (10) can be
interpreted physically as an attraction between the
spin deviations. When these terms are neglected, the
Hamiltonian (10) becomes

J=EJ/+g8(H+Hp) XL 3(P+Q7—1)+
—2/STnei(PiP+Q405), (13)
with
Hg=2JSz/g8.

Here, and throughout the article, z denotes the number
of nearest neighbors of a given atom. Hg, is the familiar
molecular field at saturation, and the constant

Ey/=—NHg3S—1Nz-2JS?, (14)

is the energy of the completely saturated state in which
all the spins are parallel to the external field.

As we see from (13), the Hamiltonian (1) is now
reduced to the Hamiltonian of a system of N coupled
harmonic oscillators described by the (reduced)
coordinates and momenta Q; and P;. Except for the
last term of (13), which represents a coupling
between neighboring oscillators (carefully to be
distinguished from the interaction between neighboring
spin deviations, which we neglect), the expression (13)
is exactly of the form one would expect on a naive
basis, as we shall now show. Since we neglect the
interaction between the spin deviations, we may suppose
that each spin deviation is always surrounded by atoms
without spin deviations. The difference in energy
between a state in which there is one spin deviation on
a particular atom and the corresponding state in which
there is no spin deviation on that atom is then given by

AE=[—HgB(S—1)—2Jz5(S—1)]

—[—HgBS—2725"]=gB(H+Hg), (15)

if we neglect the influence of the x and y components
of the spin, which are responsible for the coupling
term in (13). When we want to replace the spin by a
harmonic oscillator, we must require that the energy
necessary to excite the oscillator to its first excited
state be equal to the energy necessary to introduce one
isolated spin deviation, i.e., we must put the #w of the
oscillator equal to the energy (15). Neglecting again
the coupling between neighboring oscillators, we would
then arrive at the Hamiltonian

1
3(30=Z(—2 b+ Emesl —%hw) +Ey, (16)
i \2m

where E¢’ is given by (14) and is equal to the energy
when all the oscillators are in their ground state.
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When we scale the coordinates and momenta in
accordance with (7), and put 7w equal to the energy
(15), the expression (16) becomes identical with (13),
except that the coupling term, i.e., the terminvolving the
sum over neighbors, is missing. This term is blithely
disregarded in the Ising model,® but is all important
for the present article or any other treatment of spin
waves.

The problem of finding the normal modes of the
system of coupled harmonic oscillators is a simple one,
the desired transformation being the well-known Slater
transformation,® either to the running waves

Qe= (1/N)¥%; exp (ik -1)Q;;

Py=(1/N)¥2; exp(—ik -1,) P;; an
or to the real standing waves
Q«= (2/N)¥3; cos(k-1:)Qs;
k’ZO{P,F(2/N)5§_“,,~sin(k‘r.-)P.-; (182)
Qr=(2/N)*L:sin(k -1)Qs;
kz<0{Pk= (2/N)¥3"; cos(k 1) Ps. (18b)

The choice of the proper values of k requires some
comment. It is customary to introduce the so-called
periodic or von Karman boundary conditions which
imply that the wave function reverts to its original
value after traversing the lattice. Expressed differently,
the imposition of this type of boundary condition
implies that the spins at the very edges of the crystal
have neighbors rather than being without them on
one side. This unreal supposition is made in order to
place all spin situations on a par and so give full
periodicity to the problem, with resulting simplifica-
tion in the analysis. As long as the crystal is large,!®
the error involved in using such boundary conditions
is well known to be negligible, unless there are long
range forces. (Dipolar interaction, however, can cause
trouble as it vanishes only as 1/73.) With the periodic
boundary conditions, the allowed values of the vector
k/2x are represented in general by points in the so-called
reciprocal lattice for the crystal. For a simple cubic
lattice, and a cubic crystal of edge L, the permitted
values of k., k,, and k, are integral multiples of 2x/L.
In terms of the standing waves amplitudes (18), the

Hamiltonian (13) takes the form
3=2_43 (Pe’+Q*— Dhor+Ed, (19)

with

fuor=HgB+2JS[2—2 4 cos(k-a)], (20)

the summation being extended over the z vectors a
that connect an atom with its z neighbors.

From the definitions (18) and (7) it is easily verified
that the eigenvalues of the operator

m=3(P¢+0¢—1),

!5 For adaptation of the spin-wave theory to thin films see
M. J. Klein and R. S. Smith, Phys. Rev. 81, 378 (1950).
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are 0, 1, 2, - - -, so that the eigenvalues of the Hamil-
tonian (19) are given by

E() =2 o+ Eo, (21)

in which the frequency of the normal mode k is given
by the dispersion law (20) We use the German letters 1
to designate the quantum numbers associated with the
various spin waves of the crystal in order to distinguish
them from the spin deviation operators or quantum
numbers of individual atoms, which we denote by #,,
and which are not good quantum numbers when
interatomic exchange coupling is included. Increase of
either 1, or #; by one unit decreases the total spin of
the crystal in the z direction by unity, and the crystal’s
total spin deviation is given equally well by > it or
Efni-

The result, (20) and (21), is the well-known expres-
sion for the spin-wave approximation to the low-lying
energy levels of the spin system (1). It can be used for
the evaluation of the partition function of a ferro-
magnetic spin system at low temperatures. However,
the calculation is practical only if the temperature is so
low that one may expand the right-hand member of
the dispersion law (20) in powers of % and retain only
the quadratic terms. If we do this, (20) becomes

fuor=HgB+JS3_ aa?k? cos%s, o, (22)

where 6,4 is the angle between the vectors a and k.
For any cubic array, cos’, . may be replaced by its
mean value j. Furthermore, for a simple, body- or
face-centered lattice, one has 2a?=6/2, where / is the
length of the elementary cubic cell, and then

Hor=HgB+ 2T Sk202. (23)

IV. MAGNETIZATION AND SPECIFIC HEAT OF A
FERROMAGNETIC IN THE SPIN-
WAVE APPROXIMATION

It is customary to obtain the temperature dependence
of the magnetization from (22) by setting up the
partition function, and noticing that the wvarious
excitation possibilities for the spin waves correspond
essentially to the Bose-Einstein type of statistics.
It is, however, possible to obtain the results more
simply by carrying our harmonic oscillator formalism
a little further. The energy levels of a harmonic oscillator
of frequency w; are, apart from the half-quantum of
zero point energy, respectively, #wk, 27w, - - - for the
successive quantum number assignments =1, 2, - - -.
The corresponding mean energy is well known to be

T

e
exp (hwr/kT)—1

(24)
With our spin waves, the number of spin deviations are,
respectively, 1, 2, - .- forny=1, 2, - - .. Hence the mean

energy of the oscillator wi and the corresponding mean
spin deviation differ only by a factor #w;. The total
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spin deviation associated with all the different spin
waves is consequently

(NS—S.")n=2_r[exp(huwr/kT)—1]7, (25)

where the sum is over all the allowed points of the
k-lattice. The deviation of the total magnetic moment
M, in the z direction from its maximum value Mz
achieved at 7=0 differs from the mean spin deviation
by a factor gg.

The effect of the applied field is usually small
compared to the exchange coupling, so that we can
take %w,=2JSk%% If we assume that the lattice is a
cubic one, and replace the sum by an integral, we get

L\?
—M.=
gﬁ(Zr)
dk.dk dk,

Xjf f exp(2JS (k2 + k24 EDE/RT)—1 20

where L is the edge of the cubic crystal, so that V=L3
is the total volume of the crystal, and where the
integration runs over the first Brillouin zone in k space.
At low temperatures the integral may be extended over
the entire k space, and we then obtain

Mz—M:
ko’dko

L 3 @
=(,,)
2 o exp(2JSkR/ET)—1

( ) (2J5)f0 "
=(7) zgfz(zfs) f VeV e )dV
- (7) ji(zfs)%f<l+2ia+;+’ a )

The saturation magnetic moment achieved at T=0 is

M z=gBNS. For a simple cubic lattice where N= (L/1)3,
our expression for M, can be written in the form

Mz—Mzo[l—— (215) ( ) ~s“(3)]
=M,0[1—0.1187(%)%].

Here and elsewhere {(m) denotes the Riemann zeta
function 3 ,n~™. For the body- and. face-centered
lattice, the coefficients of the T term are, respectively,
one-half and one-fourth as large as given in (28),
corresponding to the fact that (L/I)® is 3N and 1N
instead of N.

2
eV—-l

(28)

The expression (28) is the celebrated Bloch result?
that the deviation of the spontaneous magnetic
moment from its maximum value achieved at T'=0
is proportional to T%. Bloch considered the special
case S=14. The extension to arbitrary S was first given
by Méller.!® The T? law is valid for any three-dimen-
sional lattice, as it is a consequence of the general
structure of the integral (26).

An interesting result of the spin-wave theory is
that it predicts no ferromagnetism for any one- or
two-dimensional lattice, regardless of the number of
neighbors. This is in contrast to Heisenberg’s so-called
Gaussian approximation,*® which made the number of
nearest neighbors the only criterion, and so predicted
that the simple cubic and the two-dimensional hexag-
onal lattice behave similarly. The absence of ferro-
magnetism for one- and two-dimensional lattices is a
reflection of the fact that in these cases the final
integral in k space is in general of the type /'[exp(ak?)
—17k"'dk, where n is the dimensionality of the
lattice. This integral diverges at the origin for n=1
or 2, and then the mean spin deviation is infinite. This
state of affairs means that there is no stability attached
to a ferromagnetic ordered state, and so ferromagnetism
cannot exist if the dimensionality is less than three.

The contribution to the specific heat can be obtained
by a calculation analogous to that of the magnetic
moment. As the energy of a spin-wave state differs
from its contribution to the deviation in magnetic
moment by a factor w,/gB the intrinsic energy is given

by
L3 ©  (2JSk?P)kodkg
U= (—) 47rf , (29)
27 o exp(2JSkeP/RT)—1

instead of (27). Expanding in series, as in evaluating
(27), we obtain

(L/I)ZZSJS) ( 2JS )

X f Vi(e Ve 4. )dV, (30)
0

and consequently the specific heat for zero external
field is given by

Cy=dU/dT=cNE(T/2JS)3, (31)
where for a simple cubic lattice
=t e =r=orss. @
272/ 8 8t

For body- and face-centered lattices, the formula for
the constant ¢ has an extra factor § or 1, respectively.

The exchange integral and temperature drop out of
the ratio CvMzo/(Mz—M:), which has the value

16 C. Méller, Z. Physik 82, 559 (1933).
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0.96 Nk/2S for any three-dimensional structure with
cubic symmetry.

It is to be emphasized that the formulas which we
have presented for the magnetization and specific
heat are based on the approximations of the standard
spin-wave theory. Several authors have attempted
to correct them for the attractive and repulsive effects
described in Sec. III, or in other words developed a
more refined theory.>-4:1"-2 The various writers do
not agree in their conclusions, and so we shall not
attempt to investigate this difficult and controversial
subject of the higher order corrections. The most
recent attempt is that of Dyson. He concludes
“the practical result of the whole (his) investigation is
simply this, that the linear Bloch theory with non-
interacting spin waves is good enough for all practical
purposes.”

In the next section we discuss the corrections which
result, not because of the inadequacy of the standard
spin-wave theory for the Heisenberg or Heitler-London
model, but rather the generalization of this model to
include forces of dipolar structure.

V. INFLUENCE OF INTERACTION OF
DIPOLAR STRUCTURE

We now examine how the eigenvalues associated with
the spin waves are modified when dipolar coupling is
superposed on isotropic exchange interaction. This
problem was first posed and solved by Holstein and
Primakoff? It is appreciably more complicated than
the purely isotropic one considered in the preceding
section. One reason is that the dipolar energy is not
diagonal with respect to the components of the total
crystalline spin, so that >_S;, is not a constant of the
motion.

When interaction of dipolar structure is added, the
Hamiltonian function becomes

0= —2J neiS:-S;+ 2 j»Di;[S:-S;
—3(e;-S,) (@s;-8;) ]

Here the summation over 7 and j has now in general
to be extended over all pairs of atoms in the crystal
rather than only over nearest neighbors. The compo-
nents of the unit vector e;; are the direction cosines
a;j, Bij, and 7;; of the vector r;; that connects the atoms
1 and j. As mentioned in the introduction, the coeffi-
cient D;; has the value g28%/r;;? if the dipolar interaction
has a bona fide electromagnetic origin. Contributions to
D;; can also arise from anisotropic exchange, and the
resulting values of D;; for adjacent atoms can be
appreciably greater than those given by classical

(33)

17H. A. Kramers, 7e Congres International du Froid (1936);
Commun. Kamerlingh Onnes Lab., Leiden, Suppl. No. 83.

18 E, P. Wohlfarth, Proc. Leeds Phil. Lit. Soc. Sci. Sect. 5,
213 (1949).

19 W. Opechowski, Physica 4, 765 (1937).

2 J, Van Kranendonk, Physica 21, 81, 749, and 925 (1955).

21 F, J. Dyson, Phys. Rev. 102, 1217 and 1230 (1956).
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electromagnetic theory. Holstein and Primakoff utilized
the classical values of D;;, but the extension to the
more general “pseudodipolar’” case occasions no
particular difficulty, and so we will not restrict D;;
to classical values.

The spin-wave approximation is introduced by
substituting (9) in (33). The resulting terms may
conveniently be grouped according to increasing powers
of P;, Qi, and n;, where #; is defined by

n;= % (P¢2+Q.;2— 1) (34)

The expression (34) has the physical significance of
being the spin deviation of atom ¢ (cf. Sec. II), and
can be considered of the second order compared with
P; or Q;. When the spin wave, or harmonic oscillator
approximation is made, the Hamiltonian function (33)
becomes

= —2J3 neiS:-Sj+Do+D1+Do+Ds+ Dy,  (35)
where

D=5 ;>:Di;(1—3v:), (36)
Dy=—68*>;.:Di;[eirviQi+BirviiPil, (37

Dy=5% j5iDii (1—30:5)Q:Q,—3a:i8:;(Q:P ;4 P:Q;)

+(1=38:)P:Pj— (1—3v:H)2n:], (38)

Dy=38%Y j5iDij[eizyii(Qin+nLQ;)
+Birvi;(Pm+niP;)], (39)
Dy=3j5iDs;(1—=3viH)nm;. (40)

The terms D; and D,, which can be interpreted as
anharmonic corrections, are of higher order and are
henceforth neglected. We must now examine the
remaining terms Do, Dy, and D; in more detail.

The term D, is an additive constant as far as the
calculation of the eigenvalues is concerned. It can be
interpreted physically as the total dipolar, or pseudo-
dipolar energy which results when all the spins are
aligned parallel to the z axis. This is, however, an ideal
condition achieved only in an infinitely strong magnetic
field, for the dipolar coupling itself spoils the constancy
of the magnetic moment, and so inhibits perfectly
parallel alignment. In case the dipolar interaction is of
the classical type, the constant Dy may be expressed
in terms of the classical demagnetization factor N,,
which is defined by

N.=(V/N)Z i (1=3vi)+ @x/3),  (41)

with analogous definitions of N, and N,. Here V is
the volume of the crystal, and N/V the number of
spins per unit volume. The demagnetization factors
have a meaning only if the demagnetizing field is
uniform throughout the specimen, which is true only
if the specimen is ellipsoidally cut with the external
field along one of the axes; this we assume to be the
case. The sum over j in (41) is then independent of 7.
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When we introduce the saturation magnetization
Mo=(N/V)gBS, (42)

and make use of (41), we can write the purely classical
part of (36) in the form

Dy=—3V M (4n/3)Mo—N.M,]. (43)

The factor in parenthesis is equal to the sum of the
Lorentz field (4r/3)M, and the demagnetizing field
—N.M,, and is thus equal to the so-called effective
field, which is the field at the position of a lattice site.
It is seen from (43) that D, represents the energy of the
magnetic moments in this field. The factor § appears
because the field is a result of the moments themselves
so that (43) is a self-energy. The result (43) verifies
the correctness of the expression (41) for the demag-
netizing factor.

The term D, which is given in (37) and is linear in
Q; and P;, can be neglected for all practical purposes,
for by introducing the running waves (17), one can
show that the order of magnitude of D, is a factor N?
smaller than that of Do and D,. Usually D, is even
smaller, of order NV}, i.e., proportional to the number of
atoms near the surface of the crystal. For the short-
range forces this is true if there are symmetry planes
at each atom. For then

2 iDiaiyii= ZJ'D iiBi7vsi=0, (44)

except for the atoms near the surface. For the long-
range magnetic forces, (44) holds only if the crystal
is suitably cut.

The quadratic term D, is the most significant of the
dipolar terms. It cannot be simplified with the help of
relations such as (44). Our task is now to determine the
eigenvalues of

=273 neiSi-S;+Do. (45)

The first step is to introduce the running waves (17)
into the expression (38) for D.. The first term of D,
then becomes equal to

NS D5 (130 ?) 2k, wrQi Qi
Xexp[—ik-r;—ik’-r;], (46)
where the sum now runs over all 7 and j rather than

over 1< j. The expression (46) can be written in the
form

NSk wQuQu2s exp[—i(k+k') -r;]

X2.iDs;(1—3a:?) exp[— ik’ - (r;—r)].  (47)
We now introduce the following lattice sums
Az (k) =S ;Di;j(1—3a:?) exp[ik- (r;—1,)7]; (8)

Azy(k)=—352",D;,0,8:; exp[ik - (r;—1) ];

and similarly for 4,,(k), 4..(k), A..(k), and 4,.(k) in
an obvious notation (these quantities are clearly the
components of a tensor), and we make the assumption
that these quantities are independent of r;. For the

short-range forces this is justified if we neglect surface
effects. For the long-range magnetic forces, however, the
situation is more complicated. Sums of the type (48)
with D,; proportional to r;;~® have been discussed by
Heller and Marcus?? in connection with exciton theory,
and by Cohen and Keffer.® For k=0, the sums (48)
are related directly to the demagnetization factors
(41), and for ellipsoidal crystals they are then independ-
ent of r;. For k20, however, the quantities (48) are
independent of r; only for atoms 7 that are away from
the surface of the crystal at a distance large compared
to the wavelength, since the contributions of the
terms 7 for which r;; is large compared to the wavelength
cancel because of the rapidly varying phase factors.
Thus for wavelengths that are small compared to the
dimensions of the crystal, the sums (48) are independent
of r; for the majority of the atoms ¢ also for the long-
range forces. It is only for wavelengths comparable to
the dimensions of the crystal that our assumption
breaks down. If we neglect the influence of these
effects, the summation over ¢ in (47) can be carried
out immediately in virtue of the property

N3 exp(ik-r;)=6(k), (49)

where k is any of the allowed vectors in the first
Brillouin zone. The expression (47) then reduces to

%Z kA zz (k)QkQ—k (50)

The other terms in D, can be evaluated in the same
way, and the resulting expression for D, is

D,= %Zk[A u(k) —A4.. (0)]QkQ—-k
+%Zk[‘4 yu(k) _Azz (0)]PkP—-k
+> 1Ay (K)QrPr+iNA..(0). (51)

For crystals of the bravais type, all the quantities
(48) are real. It is then convenient to use the real
standing waves (18) rather than the running waves
(17). In terms of these quantities the expression for
the Hamiltonian (35) (with Dy, D3, and Dy neglected)
becomes

3¢=32_+[A (K)Qi*+ B(k) P;*+2C (k)QxPi ]+ Ey". (52)
The coefficients 4, B, and C are given by
A (k) =how O+ A..(k)—A4..(0); (53)
B(k) =huw @+ Ay, (k) — 4..(0); (54)
Ck)=A.y(k); (55)

where A @ is equal to the energy (20) of a spin-wave
k in the absence of dipolar interaction. The constant
Eo" is

E'=E(+3N(5+1)4..(0) — 2 b,

where E' is defined in (14).

(56)

2 W. R. Heller and A. Marcus, Phys. Rev. 84, 809 (1951).
(1;“513. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 and 1135
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Diagonalization of the Hamiltonian (52) is easily
accomplished by transforming the expression in square
brackets to a simple sum of squares. This can be
achieved by means of an orthogonal transformation to
a new set of variables Q)’ and P;’, which we shall not
write down. The result is

=243 Qi+ P (AB-CP+E".  (57)

Because of the fact that the transformation is orthog-
onal, the eigenvalues of the operator %(Q:*+P:?)
are again of the form mn,+3. The eigenvalues of the
Hamiltonian (57) are therefore given by

E(n) =2 - hwr+Eo, (1:=0,1,2,---), (58)

where the frequency of the normal mode k is now

hoor=[A4 (k) B(k)—C(k)* 1}, (59
and where the total zero-point energy is equal to
Eo=Ey"+32 who, (60)

E,"” being given by (56).

The result (58) shows that in the presence of the
dipolar interaction the spin system may in first approxi-
mation again be described by a set of harmonic oscil-
lators, the normal modes of which are now specified
by (59). The fact that the result (59), unlike that
Sec. ITI, involves a radical sign is a reflection of the
presence of the cross term QiP; in the Hamiltonian
(52), which is absent if there is only isotropic exchange
coupling [cf. Eq. (19)]. It can also be regarded as a
reflection of the fact that S,'=32_:S: is no longer a
constant of the motion.

The question now arises: what are the rather com-
plicated formulas for the eigenvalues good for? Holstein
and Primakoff® made their calculation primarily to
see how much at T=0 the dipolar coupling reduced
the saturation magnetization from that corresponding
to perfectly parallel alignment. When numerical
values of the various constants are substituted, and
the mean total spin deviation evaluated numerically, it
turns out that the actual reduction in the saturation
moment arising from this cause is not important, and
that the Bloch relation Mo— M = AT is not appreciably
affected. Holstein and Primakoff® also studied the
intrinsic susceptibility (dM/9H), in other words how
the moment is influenced by field strength after the
directions of easy magnetization have already been
rotated into alignment parallel to the applied field.
The calculations® are rather intricate. They find that
for a large range of field strengths (9M/9H) « T/H?.
This result appears to be in accord with the limited
amount of experimental evidence available.

Another physical quantity which can be studied
with the aid of spin waves is ferromagnetic anisotropy
near the absolute zero. This anisotropy can be caused
by pseudodipolar coupling for arbitrary S, or to
quadrupolar coupling, such as we mentioned in Sec.

VAN KRANENDONK AND ]J.
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I, for S>1. In nickel the experimental evidence
indicates that S=%; hence the pseudodipolar mech-
anism is presumably responsible for the anisotropy in
this material. (Purely classical dipolar coupling would
give some anisotropy, but the numerical value is
insufficient.) At T=0, the anisotropy results from the
fact that the zero-point energy (60) depends on
direction. The amount and form of this directional
dependence have been obtained by Tessman.* With
certain simplifications, the results which he obtains
are precisely the same as Van Vleck?® obtained in 1937
with a semiphenomenological model based on the
Weiss molecular field. At first sight the agreement of
the results seems quite remarkable, as the method of
approach is quite different. On tracing through the
calculations, however, the accord is to be expected,
being a consequence of the fact that in either calculation
the change in the energy for AS:;=7F1 at T'=0 is
taken to be +=2Jz where J is the exchange integral and
z is the number of nearest neighbors. Thus the “fre-
quency denominators” in the perturbation calculations
are the same, and when the denominator is independent
of the transition, the completeness relation, or theorem
of spectroscopic stability concerning the invariance of
the sum of squares of matrix elements assures that the
results will be similar. Ferromagnetic anisotropy with
the dipolar model was also previously examined by
Van Peipe? in a rather intricate calculation with
essentially the spin-wave model and less drastic
assumptions. The results do not differ greatly from
those obtained by Tessman or Van Vleck.

The calculation of the anisotropy resulting from
quadrupolar interaction is simpler than that for
dipolar, as it can be deduced from a first rather than
from a second-order perturbation calculation. The
usual theories utilize some sort of a molecular field
model. However, it is also possible to attack the
problem with spin waves for isotropic exchange coupling
as the unperturbed system on which the quadrupolar
terms are superposed as a small perturbation. This
approach has been utilized in an interesting paper by
Keffer.?” The most striking result is that the anisotropy
should vary as the tenth power of the magnetization,
in accord with experiments in iron.

One of the most interesting applications of the
dipolar spin-wave theory is to ferromagnetic resonance,
discussed in the next section.

VI. SPIN-WAVE THEORY OF FERROMAGNETIC
RESONANCE ABSORPTION

In a ferromagnetic resonance absorption experiment,
a small oscillating magnetic field H,=H, cosw! is
applied perpendicularly to the constant external
field H, supposed to be along the z direction. As first

2 J. R. Tessman, Phys. Rev. 96, 1192 (1954).
2 J. H. Van Vleck, Phys. Rev. 52, 1195 (1937).
26 W. Van Peipe, Physica 5, 465 (1938).

27 F. Keffer, Phys. Rev. 100, 1692 (1955).
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observed by Griffith,® a sharp resonance occurs in
the resulting absorption of energy from the oscillating
field. The expression for the resonance frequency is

ho=g8{[H+ (N.—NJIMIH+(N,—NJMJ}}. (61)

Here M is the magnetization of the crystal, correspond-
ing to the external field H and temperature T. The
quantities N, N,, and N, are the classical demagnetiza-
tion factors, for which the microscopic definition is
given in Eq. (41). The simple expression (61) is valid
only for an ellipsoidal crystal with axes along the
x, v, and z directions, and also only if the anisotropy
is neglected.

The expression (61) was first derived by Kittel*® with
classical theory. A quantum-mechanical derivation
was given by Van Vleck.® Both derivations are based
on deductions from the equations of motion, and do
not utilize spin waves. The present article derives (61)
by the method of spin waves, although this is not the
easiest way to derive (61). At first sight it appears
that there is a sharp contradiction between Kittel’s
result, and the spin-wave model, for the latter has 3N
oscillators or normal modes, where N is the number of
magnetic atoms in the crystal. Most of these proper
vibration frequencies are distinct, and so one might
expect practically a continuum of resonance frequencies
rather than only one line as predicted by (61). The
answer to this riddle, as we show below, is that out of
the practically infinite number of spin-wave frequencies,
only one is normally ‘““active” in magnetic resonance
absorption, i.e., is allowed by the selection principles
for magnetic dipole radiation. This particular frequency
is the one which is symmetric in all the spins of the
different atoms, and corresponds to zero propagation
vector k. Essentially this point was made in a derivation
of (61) given by Polder,® and it is our purpose to derive
the same result by means of our harmonic oscillator
model. It should be noted that (61) does not involve
the exchange integral at all, unlike the general spin-wave
frequency. Without the demagnetization corrections,
the frequency (61) reduces to the Larmor frequency
gBH, which is the same as the spin-wave frequency of
Sec. III for the particular case k=0 [cf. Eq. (20)].
The nonappearance of the exchange frequency in
ferromagnetic resonance is to be expected, for the
total dipole moment S,'=);S;, commutes in matrix
multiplications with the exchange energy —2J3 5eiS;+S;.

To derive an expression for the resonance frequency
on the basis of the spin-wave theory, we assume that
the skin depth of the oscillating field H, is large
compared to the dimensions of the crystal. The field
H, may then be considered to be uniform throughout

8 J. H. E. Griffith, Nature 138, 670 (1946).

» C. Kittel, Phys. Rev. 71, 270 (1947); 73, 155 (1948) ; J. phys.
radium 12, 149 (1951).

¥ J. H. Van Vleck, Phys. Rev. 78, 266 (1950); Physica 17,
234 (1951).

3 D. Polder, Phil. Mag. 11, 99 (1949).

the crystal, and the interaction of the spin system with
the oscillating field is then given by

3¢'=—H .gB8> :Si, (62)

where the sum runs over all the atoms in the crystal.
In the spin-wave approximation, the operator S;, is
replaced by the harmonic oscillator coordinate S*Q;,
cf. Eq. (9), and 3¢’ then becomes equal to

X' =—HgBS*3_Qi=—H.g8(NS)¥Qo,  (63)

where according to Eq. (17), Qo is the completely
symmetrical normal coordinate N—*3_.Q;. Finally, we
have to carry out the orthogonal transformation to
the variables Q) and P,/, which are the normal co-
ordinates in the presence of dipolar interaction, cf.
Eq. (57). Now Q' and P;’ depend only on the Q) and
P, which have the same wave-number vector k, and
Qo is therefore a linear function only of Qo' and Py'.
Consequently 3¢’ is of the form

3'=—H g8(NS)*(aQy+bPy), (64)

where @ and b are functions of the quantities (53),
(54), and (55), the precise form of which is irrelevant
at present.

The energy eigenstates of the spin system are
characterized by the quantum numbers mn; which
indicate the degree of excitation of the various normal
modes or, equivalently, the number of excited spin
waves with wave-number vector k. Because of the
fact 3¢’ contains only the variables Qo' and Py’ of the
zeroth normal mode, the matrix elements of %’ in
the n, representation, between the states Mo, ---
My, --- and no’, e nk’,
only if

my=mne1 and n/=n,

b
are different from zero

for k=0. (65)

Thus the oscillating magnetic field can excite only the
zeroth normal mode, i.e., only spin waves of zero
wave number. The frequency of this normal mode,

hwo=[A4(0)B(0)—C(0)2]}, (66)

is evidently equal to the resonance frequency. When we
substitute the expressions (53), (54), and (55) for
A(0), B(0), and C(0), the expression (66) for the
resonance frequency becomes

hwo= {[gBH+A xz(o) —Azz(o):l
X[8BH+A4,(0)—A.:(0)]— A, (0)*}}.  (67)
Let us first assume that only purely classical dipolar
coupling is present. The expression (67) then reduces to
Kittel’s formula (61). According to (41) and (48) we
have
A4::(0) =52 ,;g6r:;* (1—3v:7)
=gBN.(N/V)gB8S=gBN.M,, (68)

and similarly for 4..(0) and 4,,(0), while 4.,(0) may
be assumed to vanish. When these results are sub-
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stituted into Eq. (67), we get for the resonance
frequency

huo=gB{[H+ (N.—N)MJLH+ (Ny—No)MoJ}}, (69)

which is identical with Kittel’s expression (61), except
that the magnetization M is replaced here by the
saturation magnetization M, Thus, as was to be
expected, the spin-wave theory gives only the low-
temperature value of the resonance frequency.

Let us now consider the short-range dipolar forces.
These have no influence on the resonance frequency if
the lattice has cubical symmetry. All the quantities
A.2(0), etc. then vanish identically (apart from surface
effects which ordinarily are negligible) because they
would give rise to a quadratic dependence on the
direction cosines of the external field relative to the
crystal axes, and such a quadratic dependence is
incompatible with cubic symmetry. The only way
the short-range forces can influence the resonance
frequency is through the higher order perturbations of
the anharmonic terms D3 and D4 which we neglected.
If, however, there is no cubic symmetry, the situation
is quite different. The contribution of the short-range
forces to the quantities A4.,(0), etc., then does not
vanish, and the anisotropy arising from these forces
then has a direct effect on the resonance frequency.
The same is true for the anisotropy arising from the
quadrupolar coupling between the spins, as has been
discussed by Van Vleck.®

Finally, we discuss an alternative derivation of
the expression (61) for the resonance frequency,
following Luttinger and Kittel.®? From the fact that
the interaction (62) between the oscillating field and
the spin system commutes with the square of the total
spin J=3_:S; of the crystal (for which we previously
used the symbol §), it follows that the oscillating
field induces transitions only between states having
the same value of the total spin quantum number J.
To calculate the resonance frequency, we must therefore
calculate the energy difference between states corre-
sponding to a definite value of J of a magnetized
crystal interacting with an external field and the
demagnetizing field. The classical Hamiltonian describ-
ing the energy of the crystal as a function of the
orientation of its magnetization M of constant magni-
tude M is given by

=—VMH+3V(N.M>+N,M>+N.M2). (70)

Luttinger and Kittel® observed that for deriving the
ferromagnetic resonance frequency, it suffices to
calculate the eigenvalues of (70), rather than those of
the much more complicated Hamilton function employed
by Holstein and Primakoff,® and utilized here in Sec. V.
Luttinger and Kittel showed that to a certain ap-
proximation the eigenvalues of (70) are evenly spaced

2 J, M. Luttinger and C. Kittel, Helv. Phys. Acta 21, 480
(1948).
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with a separation given by (61). Their proof utilized
an ingenious, but somewhat devious method, in
which a difference equation was replaced by a differen-
tial equation, with the axis of quantization perpendic-
ular to the external field. The proper result can also
be obtained by using an axis of quantization parallel
to the magnetic field, with a rather straightforward
application of the harmonic oscillator approximation.

If we assume that M?=M 2+ M >+ M2 is constant,
which is legitimate because M? commutes quantum-
mechanically with (70), then, apart from an uninterest-
ing additive constant, (70) is the same as

=—VMH+LV[(N.—N,)M 2+ (N,—N,)M 2]. (71)

We neglect saturation effects, i.e., we assume that
M, deviates but slightly from its maximum value M.
Saturation effects, such as observed by Bloembergen
and Wang,® appear for very intense oscillating fields
which we do not consider.

The quantum-mechanical operator corresponding to
(71) is obtained by replacing M by g8J/V,

se=— HgBJ,+3(g8M/J)
X[(N:=N)J 24 (Ny—N) T2 (72)

We are interested in the eigenvalues of (72) for a very
large value of J (of order 10%) and for average values of
J. that do not deviate appreciably from J, this being
the analog of the classical condition M,~M. [If
N.#N,, J. does not commute with (72), and does
not correspond to a good quantum number; hence we
must then deal with the expectation or average value
rather than with the eigenvalue of J,.] But these are
precisely the conditions under which the harmonic
oscillator approximation (7), vz.,

J.=J¥Q; J,=JP; J,=J—-%(P24+Q'—1), (73)

isan extremely good approximation. When we substitute
(73) into (72), we get

JC=const+gB1 (aQ*+bP?), (74)

where a=H+(N,—N,)M and b=H+ (N,—N,)M. By
carrying out the simple transformation,

Q=(/a)!Q', P=(a/b)tP, (75)
the Hamiltonian becomes
3C=const+gB(ab) 3 (P"?+Q"), (76)

from which it follows immediately that the eigenvalues
of H for which M,~M are uniformly spaced with an
energy difference g8(ab)}. Substituting the values of a
and b, this reduces exactly to the expression (61) for the
resonance frequency.

From this derivation as well as from the analogous
classical derivation, it is clear that for the higher energy
levels, from which the average value of J, differs

# N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1954).
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appreciably from J, deviations will appear from the
uniform spacing (61), since for these states the harmonic
oscillator’ approximation (73) is no longer a good
approximation.

In closing this section, it is well to give a word of
caution that it is becoming increasingly clear experi-
mentally that often the phenomena of ferromagnetic
resonance are much too complex to describe by the
simple Kittel formula (61). Subsidiary peaks sometimes
appear, especially at high power levels, where saturation
effects must be considered. Because the dipolar forces
fall off only as the inverse cube, boundary corrections
cannot be dismissed as debonairly as is usually done,
and there can be important distorting effects because
of perturbations between the main mode (61) and
subsidiary modes of nearly equal frequency. We do
not discuss this intricate, but practically important
subject, of which the literature is rapidly increasing.
Particular reference should be made to papers by
Clogston, Suhl, Walker, and Anderson.®

VII. HARMONIC OSCILLATOR APPROXIMATION
FOR ANTIFERROMAGNETISM

The starting point of a spin-wave theory of the
low-temperature properties of a spin system is the
ground state of the spin system: spin waves are intro-
duced to describe small deviations of the state of the
spin system from the ground state. When one wants to
investigate the effect of a small perturbation, such as
the application of a weak external field or of a small
amount of thermal energy, the spin-wave theory is
applicable only if the ground state is stable against the
perturbation. In that case, the resulting small deviation
of the state of the spin system from the ground state
can be analyzed with the help of a set of appropriate
normal modes, as explained in Sec. III for a ferro-
magnetic spin system. If the ground state is not
stable against the perturbation, the spin-wave theory
breaks down. The resulting large deviation of the
state of the spin system from the initial state cannot
be described in terms of the spin waves, and the
results of spin-wave theory diverge for such a case.

Let us first consider the question of the stability of
the ground state, and the applicability of the spin-wave
theory, for the ferromagnetic case discussed in Sec. III.
When we assume that there is no external field present,
and no anisotropy of any kind, the Hamiltonian
function of the spin system is

= —ZJZ,MS;-S,-. (77)

In the ground state all the spins are lined up parallel,
but the direction of the resulting spin is arbitrary,
so that the ground state is degenerate. One can, of

4 Clogston, Suhl, Walker, and Anderson, Phys. Rev. 101, 903
(1956); J. Phys. Chem. Solids 1, 129 (1956) ; H. Suhl, Phys. Rev.
101, 1437 (1956); Proc. Inst. Radio Engrs. 44, 1270 (1956);
P. W. Anderson and H. Suhl, Phys. Rev. 100, 1789 (1955);
L. R. Walker, Phys. Rev. 105, 390 (1957).

course, select a definite one of these states, which the
spins pointing in a definite direction, as the initial
state in a spin-wave theory. But with the Hamiltonian
(77) this state would not be stable against small
perturbations. A small amount of thermal energy, for
instance, would lead to a vanishing of the total magnetic
moment, corresponding to the fact that in thermal
equilibrium, in the absence of any anisotropy or
external field, the total magnetic moment is zero.
The existence of a freely revolving total spin would give
rise to divergencies in the spin-wave theory, and the
theory would not be applicable. Some of the spin
waves (those with £=0) would have zero energy, or
zero frequency, and at any finite temperature these
spin-wave modes would be excited with an arbitrarily
large number of quanta. This difficulty can be avoided
by removing the degeneracy of the ground state,
either by assuming that from the outset a sufficiently
large external field is present, or by introducing an
effective anisotropy field H,4. In the ground state the
spins are then aligned in the direction of the field.
At temperatures T for which kT is small compared to
gBH or gBH 4, only small deviations from this state
occur, which can be described with the help of spin
waves. In reality, the anisotropy arises from some real
anisotropic coupling between the spins, for example of
the pseudodipolar type discussed in Sec. I. When this
coupling is included in the Hamiltonian (77), the
ground state becomes automatically nondegenerate,
except for a trivial degeneracy resulting from the
symmetry of the crystal. Unfortunately, this problem
is too difficult to be handled satisfactorily, and one
therefore has to introduce the artifice of an effective
anisotropy field. In the ferromagnetic case the anisot-
ropy does not play an essential role, and to remove the
degeneracy of the ground state one usually introduces
an external field, as in Sec. ITI.

Let us now consider an antiferromagnetic spin
system. We restrict ourselves to the simple and body-
centered cubic structures which can be divided into
sublattices, 1 and 2, in such a way that all the nearest
neighbors of an atom on sublattice 1 are on sublattice 2,
and vice versa. This restriction is not essential, and is
introduced only to keep the discussion as simple as
possible. With only isotropic coupling between neigh-
boring spins, the Hamiltonian of the spin system is
given by

= ZJZneiSi'sjy (78)

where ¢ refers to an atom on sublattice 1, and j to
one on sublattice 2; the coupling constant J is positive.
By an antiferromagnetic state of the two sublattice
kind we shall mean a state in which there exists a
certain long range order among the spin directions on
sublattice 1, and a similar order among the spins on
sublattice 2 in the opposite direction. With the com-
pletely isotropic Hamiltonian (78) such a state is
degenerate, since the common direction of the resulting
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antiparallel magnetic moments of the two sublattices is
arbitrary. This degeneracy cannot be removed by an
external field. For a not too large external field, the
spins would arrange themselves antiferromagnetically
in a plane perpendicular to the external field, but the
direction of the spins in the plane would still be
arbitrary.

In any real antiferromagnetic crystal this degeneracy
is removed by the anisotropy which, as we shall see,
plays a much more important role here than in the
ferromagnetic case. The anisotropy must again be
introduced in the form of an effective anisotropy field
which, however, is quite different from the correspond-
ing ferromagnetic anisotropy field. It must be such that
the spins on sublattice 1 are preferentially oriented in
the 4z direction, say, and those on sublattice 2 in the
—2z direction. This can be achieved by introducing a
hypothetical field H 4 pointing in the +z direction at the
sites of sublattice 1, and in the —z direction at those
of sublattice. 2. The Hamiltonian then becomes

30=2TY neiSi-S;—HagB(XiSi:— 2 5Si2),

where 4 runs over all the atoms on sublattice 1, and j
over those on suhlattice 2, a convention we shall
follow throughout this section. In the limit of an
infinitely strong anisotropy field H 4, the coupling term
in (79) may be neglected, and the ground state of (79)
is then the state in which all the spins on sublattice 1
are pointing in the +z direction, and those on sublattice
2 in the —z direction. For a finite value of H4 the
ground state of (79) turns out to be only slightly
dependent on the value of H4 as long as g8H 4 is not
smaller than of order J/N, where N is the total number
of atoms in the crystal. More precisely, g8H 4 must be
large compared to the separation in energy between
the first excited state and the ground state of (78)
which energy is of order J/N. (This is not true for a
one-dimensional crystal. Kasteleyn®® has shown that
for a linear chain the ground state is not ordered when
the anisotropy becomes smaller than some finite critical
value. The same is probably true of a two-dimensional
crystal.)

The ground state of the Hamiltonian (79) for a
finite value of N, and H, rigorously equal to zero,
i.e., the ground state of the isotropic Hamiltonian (78),
is not known. Fortunately, this state is not of physical
interest, because it is never realized in any real anti-
ferromagnetic crystal. The ground state that is realized
for any finite value of the anisotropy is a definite
linear combination of the low-lying states of (78), and
it is this definite linear combination of states of (78)
that we shall call the antiferromagnetic ground state.
We accordingly define the antiferromagnetic ground
state, corresponding to the assumed two sublattice
structure, as the limiting ground state of (79) for small

(79)

3 P, W. Kasteleyn, Physica 18, 104 (1952).
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H 4, or more precisely, as the state obtained when first
N is made to tend to infinity, and then H,4 to zero.
As remarked already, and as is shown in detail below,
this state does not differ much from the ground state
of (79) for a finite value of H 4. In particular it does not
differ much from the completely ordered state obtained
by letting H 4 tend to infinity. This completely ordered
state is used as the initial state in the spin-wave theory
of antiferromagnetism. The antiferromagnetic spin
waves are introduced to describe the small deviations
of the state of the spin system from this completely
ordered state, which result from the fact that in
reality the value of H 4 is finite rather than infinite and
from the application of some other small perturbation
such as a weak external field or asmallamount of thermal
energy. If this spin-wave theory gives convergent
results, the assumed antiferromagnetic ordering corre-
sponds to at least a relative minimum in the energy.
Whether this structure also corresponds to an absolute
minimum cannot be decided until the problem of a
spin system with a true anisotropic coupling between
the spins is solved.

In the completely ordered state all spins on sublattice
1 are pointing in the -2z direction, and all spins on
sublattice 2 in the —z direction, ie., Si=S and
Sj;=—3S for all 7 and j. If S,, is not equal to S, or S;,
not equal to —S, we say that a spin deviation is
present on atom ¢ or j, respectively. The antiferro-
magnetic ground state already defined is then a state
in which there are relatively few spin deviations
present; for a simple cubic lattice it turns out that
on an average about 939, of the atoms have no spin
deviations. This state can therefore be treated to a
fair approximation by the spin-wave theory. In general,
it is not stable against small perturbations, and if one
wants to investigate the effect on the state of the spin
system of an external field or of the thermal energy,
it is necessary to have a finite anisotropy present.
The anisotropy is quite effective in insuring stability;
it is not necessary that g8H 4 be large with respect to
the perturbation, it is sufficient that g8(H . Hg)} is
sufficiently large, where Hpg is the Weiss molecular
field. The fact that the molecular field comes in here
via the anisotropy is the reason why the anisotropy is
so much more important here than in the ferromagnetic
case. Typical values are H,=10%e, Hg=10%e, so
that, for example, an external field of the order of 10%e
may still be regarded as a small perturbation. The
effect of such small perturbations can be described
satisfactorily by the spin-wave theory as long as the
resulting deviations from the completely ordered state,
due to the perturbation in question and the fact that
H , is not infinite, are small.

We now show how the harmonic oscillator approxima-
tion is introduced analytically in the antiferromagnetic
case. When we include the interaction with a parallel
external field H,=H, the Hamiltonian (79) becomes
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equal to

=272 neiSi-Sj— (H+H 4)gB2_ St
— (H—H1)gBX ;S5 (80)
In the completely ordered state we have S;=S and

S;;=—.S, and we therefore introduce the following
spin-deviation quantum numbers

and #n;=S-+m;. (81)

The harmonic oscillator approximation (7) for the
spin variables must be written in the following form

Six—_—S%Q,‘; Siy=S%P{; ST-,=S—% P,‘2+Q,’2—1); (82)
S::=S505; Siy=—SIP;;

Sjp=—8+3(P?+0/—1). (83)
The matrix elements of the left-hand sides of (82) and
(83) are then equal to the corresponding matrix
elements of the right-hand sides for #; and »; equal to
0 and 1, i.e., for m; equal to S and S—1, and for m;

equal to —S and —S-+1. When we substitute (82) and
(83) into the Hamiltonian (80), we get

3=FEy+2J85 0ei(QiQ;— PiP;)—2J Y neittin;
+[27Sz+g8(H 4+ H) X in:
+[27S2+g8(H4—H)]X n;,

where we have introduced the spin deviation operators

ni=S—m1

(84)

n;=3(P#+Q7—1) and n;=3(P?+Q7—1), (85)
and where the quantity Ey’ is equal to
Ef=—NzJS*—H 4g8NS. (86)

The properties of the system of harmonic oscillators
(84) are the same as those of the spin system (80) so
long as the states with #2>2 of the oscillators are not
appreciably excited. For sufficiently large values of H4
this is certainly the case. However (84) is a good
approximation also for small values of H 4.

In addition to the approximation (82) and (83) of
replacing the spin variables by harmonic oscillator
variables, we must neglect the attractive interaction
between the spin deviations, which is represented by
the terms of the fourth degree in (84). When we do
this, the Hamiltonian can be diagonalized by introduc-
ing the appropriate normal modes. We first introduce
running waves fot the sublattices 1 and 2 separately,

{Qlk: (Z/N)%Zi exp(ik- l’i)Qi; 87)

Pui= (2/N)'S; exp(—ik-1.)Ps; (

{QM= (2/N)¥E; exp(—ik-1,)Q;; 5
Po=(2/N)'S; exp(ik-r))P;. (

The wave vector k takes on the 3N different values
allowed by the boundary conditions, so that we have
the correct number of variables. In terms of these
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variables the Hamiltonian becomes

3e=Eq+2_1{[27Sz+g8(Ha+H)]
X3 (PiP1x+0uQ1x—1)
+[2]Sz+g6 (HA—H)]% (PZkP2—k+Q2kQ2—k_ 1)

+ZJS’Yk(Q1kQ2k—P1kP2k)}- (89)
The quantity « is given by
yr=2"1Y . cos(k-a), (90)

where the sum runs over the z vectors a that connect
an atom with its 2z nearest neighbors. By carrying out a
linear transformation (cf. references 7 and 40) of

the form
Qlk = Clelkl+52kQ2—kl 5
Qz_k = C2lelcl+51kQ2—kl;

! !
Py=cuPu’' —carPat/,
7
Py v=—corPrii’+c16Poi ’

where cix=c¢1—, Cax=co and cu?—ca’=1 we can
eliminate the cross terms in (89). When we substitute
(91) into the Hamiltonian (89), we find that the
cross terms vanish if the coefficients ¢;; have the
following values:

o1

(92)
where v is given by (90), and where p;, is defined as
pr=14+H, /Hg+[(1+H4/Hp)—v . (93)
The quantity Hg is given by
Hg=2JS5z/gB,

and is the Weiss molecular field in the completely
ordered state. In terms of the primed variables the
Hamiltonian becomes of the standard form

JH=Eo+> 13 (P’ P1—i’' +Q1:' 01—’ — 1) Aoy

cu=pr/ (p=v)¥; o= —vi/ (PP —viD)},

+ 2245 (Pox' Poi' +Qak' Qot’ — Dhwsar.  (94)
Consequently the eigenvalues are given by
E(Mx,Nox) = Eo+ Dk (Muphore= Norkicosy), (95)

where 1y, and Ny can take the values 0, 1, 2, ...,
The frequencies of the normal spin-wave modes are
given by

{hwlk=gB[(HE+HA)2—’Yk2HEz:|*+gl?H} (96)

hwne= g8l (H g+ H 4)*—v*Hp* )}~ gBH ;

and the energy E, of the ground state is equal to
Eo=E¢+32_ 1 (how+hwsr), 97)

where Eq is given by (86).

As we see from (96), the normal modes fall into two
branches which become identical for H=0. A detailed
discussion and a classical interpretation of these
spin-wave modes has been given by Keffer, Kaplan, and
Yafet.” Also from (96), because of the fact that y;2<1,
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the mode 2, 0 has the smallest energy of excitation,
namely,

hws=gB8(H.—H); H.=[Ha(Hs+2HE)]}. (98)

When H becomes equal to or larger than the critical
value H, the harmonic oscillator approximation
evidently breaks down, even at the absolute zero,
since the mode 2, 0 would be excited to an arbitrarily
high degree. This corresponds to the well-known fact
that when the parallel field H exceeds the critical
value H,, the spins turn to a direction perpendicular to
H. The resulting large change in the state of the spin
system cannot be described by the spin-wave approxi-
mation, and this shows up in the appearance of diver-
gencies in the theory. But the value of the critical field
is given correctly by (98), at least at the absolute zero.

The case of a perpendicular external field can be
treated in a similar way (cf., e.g., Kubo®®). The results
(96) and (97) and the corresponding results for the
perpendicular case can be used to calculate the parallel
and the perpendicular susceptibility. The specific heat
of an antiferromagnetic is discussed in connection with
ferrimagnetism in Sec. IX.

As regards antiferromagnetic resonance absorption,
one can show in the same way as in Sec. VI for the
ferromagnetic case that an oscillating magnetic field
can excite only the spin-wave modes with k=0. From
(96) we see that for a parallel external field the resonance
frequencies are given by

{hau: gB[H4(Hs+2Hg) 1*+¢8H;;
hwe=gB[Ha(H4+2Hg) ]t —gBH ;

showing that the anisotropy plays an important role
in the resonance phenomena. The frequencies for the
perpendicular case can be derived in a similar manner.
Further details of the spin-wave theory of antiferro-
magnetic resonance further are found in the litera-
ture.”3™4 Formula (99) for the antiferromagnetic res-
onance frequencies was first obtained by Kittel.®

(99)

VIII. ANTIFERROMAGNETIC GROUND STATE IN
THE SPIN-WAVE APPROXIMATION

We shall now discuss, for our two-sublattice model,
the antiferromagnetic ground state as defined in
Sec. VII. This is the lowest state of the Hamiltonian
(79) which represents an isotropic interaction between
neighboring spins and an anisotropy energy of the spins
in a staggered anisotropy field H, corresponding to
the postulated two sublattice structure. We show in
particular that this ground state of (79) for H,—0

* R. Kubo, Phys. Rev. 87, 568 (1952); Revs. Modern Phys.
25, 344 (1953).

3 L. Hulthen, Proc. Acad. Sci. Amsterdam 39, 190 (1936).

3 P. W. Anderson, Phys. 86, 604 (1952).

® Nagamiya, Yoshida, and Kubo, Advances in Physics (Taylor
and Francis, Ltd., London, 1955), Vol. 4, p. 1.

“ T. Nakamura, Progr. Theoret. Phys. { 539 (1952).

4 J. K. Tessman, Phys. Rev. 88, 1132 (1952).

# C. Kittel, Phys. Rev. 82, 565 (1951); F. Keffer and C. Kittel,
Phys. Rev. 85, 329 (1952).
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does not differ much from the completely ordered
state realized for H,—, in which all the spins on
sublattice 1 are pointing N, say, and those on sublattice
2 are pointing S.

In the spin-wave approximation, the Hamiltonian
(79) is replaced by a system of harmonic oscillators
described by the coordinates and momenta Qi P;
given by (82) and (83). In Sec. VII a set of approximate
normal modes for this system of coupled oscillators
was found given by the transformations (87), (88),
and (91). In terms of these variables, if we neglect
the terms of the fourth degree in the Hamiltonian (84)
of the system of oscillators, the Hamiltonian becomes
of the standard form (94). In the absence of an external
field, the frequencies of the normal modes are all
positive, as can be seen from (96) by putting H=0.
The ground state of the oscillator system is then
characterized by the fact that none of the normal
modes is excited, i.e., that all 1y, and 1z vanish. This
does not mean, however, that all the original, decoupled
oscillators that replace the individual spins of the spin
system are necessarily in their lowest state. This
is true only for H 4— =, corresponding to the completely
ordered state. For a finite value of H 4, and in particular
for H 4,—0, however, there exists a certain nonvanishing
probability p. that a given oscillator is in its nth
excited state, which we shall calculate presently.
As long as p, for »>1 is small compared to unity,
pn for n=0, 1, ... 2S5 is approximately equal to the
probability to find # spin deviations on a given atom in
the ground state of the original spin system, since under
the conditions p,<<1 for »>1 the properties of the
oscillator system are approximately equal to those of
the spin system. In the oscillator system the p, have,
of course, a meaning for all #.

For the calculation of the probabilities p, as functions
of the anisotropy field H 4, it is convenient to introduce
creation and annihilation operators. For the spin-wave
modes (91) these operators are defined as

A= 2_*(Q1k'-‘|'1:P1—k') 5
Ap*=274Q1'—iPw/), (100)

and similarly for the modes 2k. The spin-deviation
operator %; corresponding to the number of spin
deviations on atom ¢ can be expressed in terms of the
operators (100) by means of the transformations (87),
(88), and (91). The result is

ni=(2/N)Y_ i » exp[i(k’—k)-r;]Bi*Bs,

where

(101)

Bi=cnAdutcudu*. (102)

The expectation value of #; in the ground state ¥ which
is characterized by the relations,

A 1k¢0= 0’ A2k¢0= 01
is independent of 7 and is therefore equal to

(niy=(2/N)Zi(n:)= (2/N)Zi(B:*B*), (103)
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where the sum over 7 runs over all the atoms belonging
to the same sublattice as 7. Only one term in B;*B;
gives a nonvanishing contribution to the expectation
value, viz., Aaxd ¥, and we therefore get

(n)=(2/N)Zica?=T(1+H/Hg),  (104)
where the function I'(x) is defined as
T(x)= /NPTl (1—v/#)1—-1],  (105)

and 7y is given by (90).
In a similar way one can evaluate the expectation
values of the higher powers of #;. For #2 one obtains

(nd)=2/NPL v v8(k+1—k=T)
X {(Bi*ByBy*B;). (106)
There are now two nonvanishing terms, and the result is
(n)=T+2T7 (107)

where use has been made of the relation c¢2=1-cai?
Finally, we have calculated (#?). There are six non-
vanishing terms now, giving,

(n3)=T~+ 62+ 5T, (108)
The expectation values (»;™) are related to the probabil-
ities p, by the equation
(n™)=p1t-27pot3"pat-- -+, (109)
and we thus get the following set of equations for
the pa:
potprtpatpst---=1;
p1+2pe+3ps+ - - =T
pr1+4pet9pst - - - =T+2I%
Prt8pat27pst - - - =462+ 53,

(110)

These equations can be solved by a successive approxi-
mation method by considering I' as a small quantity.
To the third order in T we thus get

po=1—T+I?— (5/6)T%;

=T (5/2)T5,; (1

ps=(5/6)T".
From (105) we see that for H 4~ we have I'—0 and
hence po=1, p1=ps=---=0, verifying the result that

for very large anisotropy the ground state approaches
to the completely ordered state. For H,—0, I' tends
to a finite value which can be expressed as follows in
terms of the integral Jp evaluated by Anderson?:

r1)=3(n—1),

where D is the dimensionality of the lattice. For the
3-dimensional simple cubic lattice we thus obtain
I'(1)=0.078, corresponding to the following values of
the p,:

£0=0.93; $:=0.06; p»=0.01. (112)

From these values it is evident that the ground state
for H4—0 does not differ much from the completely
ordered state, and this result justifies the use of the
spin-wave approximation for the antiferromagnetic
ground state, even in the case S=3 for which the
approximation is worst.

The values of the p, given by (112) are independent
of the spin quantum number S, since the quantity
T'(1) depends only on the lattice structure. As only the
first few p. are appreciably different from zero, it
follows that in the classical limit S—, the spins are
completely aligned even in the absence of the anisotropy.
This should be so, of course, since it is well known that
with classical spin vectors the completely ordered state
is the lowest energy state. For a finite value of .S, the
energy of the ground state can be calculated from (96)
and (97). For further details we refer to the papers of
Anderson®® and Kubo.3¢

Finally, the great service of the spin-wave theory
in connection with antiferromagnetism is to show that
there is some real foundation for the semiphenomenolog-
ical model used by the various writers, wherein the
spins on one sublattice are pointing NV and those on
the other sublattice S. The result (112) shows, so to
speak, that this model is only about 7%, wrong. The
experiments of Shull and Smart* on neutron diffraction
showed unequivocally that the model of interlocking
sublattices has physical reality. Nevertheless it is
reassuring that the same arrangement is predicted by
theory. The worry was that the interlocking structure
might be completely washed away by the perturbations
nondiagonal in the total spin of either sublattice,
though diagonal in their sum. The objection may also
be raised that there is no way of determining which
sublattice points N and which S, rather than vice
versa. Actually there is a quantum-mechanical re-
sonance effect whereby the two alignments are inter-
changed with each other. This, however, is a process
which is almost of geological magnitude in slowness
for any crystal of macroscopic size, as the resonance
comes in only as a result of perturbation theory carried
to the order &V of atoms in the lattice. So the assignment
of one type of spin to one sublattice and one to the
other can be regarded as stable for all intents and
purposes, like isomeric forms of heavy molecules.

IX. HARMONIC OSCILLATOR APPROXIMATION
FOR FERRIMAGNETISM

One of the outstanding developments of the last
decade in magnetism has been the development and
fruition of the concept of ferrimagnetism. The idea of
a ferrimagnetic medium is one introduced by Néel;

4 C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949);
Shull, Wollan, and Strausser, Phys. Rev. 83, 333 (1951); C. G.
Shull and M. K. Wilkinson, Revs. Modern Phys. 25, 100 (1953).

“ L. Néel, Ann. phys. 3, 137 (1948). The magnetic implications
of the ferrites are reviewed very completely in a special issue of
Proc. Inst. Radio Engrs. (October, 1956).
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it differs from an antiferromagnetic material in that
the moments of the two sublattices are unequal,
be it the result of unequal spins, g factors, or number of
sites, so that the resultant magnetic moment of the
crystal is not zero even when the two sublattices are
aligned antiparallel. The spin-wave theory of the
preceding sections can easily be adopted to ferri-
magnetic media in which the two sublattices have
equal number of atoms, and in which the only important
coupling is between adjacent atoms located on different
sublattices. Actual ferrimagnetic media often involve
more complicated geometries as well as interactions
between atoms which are not nearest neighbors. The
spin-wave theory for the case that there is also a
coupling between the spins on one sublattice has been
given by Kaplan.*® With the simplified model, however,
the calculations of the preceding sections can be
taken over with only minor modifications.

In contradistinction to the case of a true antiferro-
magnetic, we can no longer assume that the two
sublattices have the same g factors, spins or anisotropy
fields. In place of Egs. (80) and (81), we now have

SC‘—‘ZJZ“;S,"S,'— (H+HA1)811321'S€2
— (H—H 42)8:8%_,S

n,~=52+mj. (114)
We replace S by S, and Ss, respectively, in the expres-
sion (82) and (83) and introduce the appropriate
harmonic oscillator variables in place of the spin vari-

ables. Instead of (84), the Hamiltonian function of the
oscillator system is now

= E0”+ ZJ(SXS2)aZnei(QtQj—Pin) - ZJZneinmj
+ [2J52Z+813(H+H41)]Z{m

(113)
and
n;= Sl—mi,

+[27S1z+gB(H—Ha2) 1. m;, (115)
where
Eo"= —.\7215152—.\7(g151—g252),3H+

The expression (115) has precisely the same structure
as (84); the only difference is that .the coefficients are
different, and that the constant (116) now contains a
term proportional to the external field. Hence the
Hamiltonian function (115) can be reduced to a sum
of squares by essentially the same type of transforma-
tion as was utilized in Sec. VII. When allowance is
made for the new values of the constants, the expressions
for the frequencies of the normal modes become

hwlkth2k
={[J(S1+S2)z+ (K1+K2)+3 (81— g2)BH
“4]2225152‘)%2}*:&[J(Sz—Sl)Z
+%(gl+g2)ﬂH+ (Kl—KZ)]) (117)
instead of (96), where the 4 sign corresponds to wi
and the — sign to wy. Here v, is defined as in (90).
4 H. Kaplan, Phys. Rev. 86, 121 (1952).
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Following Kouvel and Brooks*® who also derived (117),
we use the abreviations

K1=3g8H 41; K2=13g:8H 42 (118)

The expression (97) for the additive constant in the
formula (95) for the eigenvalues now has E¢’ in place
of Ey'. The expressions K; and K, can be regarded as
effective anisotropy constants for the two sublattices.
[An effective anisotropy energy of the form K,S;
Xsin?(S;,3) = K :S71(S:.2 4S5 is by (82), as modified
in the foregoing, the same as K3 (P2+Q2#—1)=Km;,
except for an additive constant, and so can be correlated
with the H4; term in (115).]

The formulas for the frequencies of ferrimagnetic
resonance absorption correspond to the frequencies of
the completely symmetrical modes k=0, and can
hence be obtained from (117) by putting y,=1.
The formulas thus obtained are more general than
those first suggested by Kittel,*> as he assumed that
the two sublattices had equal exchange and anisotropy
fields. However, our calculation is still too special, as
it assumes that the applied field is parallel to the
anisotropy field. For arbitrary orientations, this
situation is not true, and perhaps the most interesting
part of the theory is the dependence on direction.
The more general case is considered by Wangsness and
others.#” The resonance frequencies are there derived
directly from the equations of motion, but doubtless
the method of spin waves could be used instead.
Wangsness*” shows that the formula for the resonance
frequencies in a ferrimagnetic material reduces to the
conventional one for a ferromagnetic medium, provided
the product of the molecular field coefficient and the
net magnetization is large compared to the applied
and anisotropy fields.

If the effects of the applied and anisotropy fields are
relatively unimportant, the specific heat and the
deviation in magnetic moment of a ferrimagnetic
material should be proportional to 7% at low tempera-
tures, as in the case of a ferromagnetic material. This
result perhaps at first sight seems rather surprising,
because the presence of the radical sign presumably
complicates the analysis. The point, however, is that
at low temperatures only the modes with low character-
istic frequencies are appreciably excited, and so only
one branch, iz, the branch 1k corresponding to the
plus sign in (117), which has a vanishing frequency in
the long wavelength limit when H, K, and K are zero,
is of importance at low temperatures. If we take
K,=K,;=0, and if 1—v,2<1, the low frequencies of
(117) are given by

glsl—gzs‘z 2J8.S,
1= BH+ D aa?k? cos¥y, ..
SI_S2 Sl—S2

¢ J. S. Kouvel and H. Brooks, Tech. Rept. 198, Cruft Labora-
tory, Harvard University, May 20, 1954 (unpublished).

* R. K. Wangsness, Phys. Rev. 91, 1085 (1953); 93, 68 (1954);
95, 329 (1954); Am. J. Phys. 24, 60 (1956).

(119)
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This expression differs from the corresponding expres-
sion (22) for a ferromagnetic only in the constants of
proportionality. So it is immediately seen that in
place of (28) and (31) we now have

kT (S1—S2) |}
Mz=Mzo[1—0.1187‘——-—l ], (120)

S152

Sl'—Sz i
) (kTN

w2

and

Cv=cNk( (121)

with ¢ as in (31). The result (121) follows from (31)
inasmuch as comparison of (119) and (22) shows that
J is effectively modified by a factor [S1S2/S(S1—S3)]
as compared with the ferromagnetic case. To obtain
(120) from (28) we utilize in addition the fact that the
deviation in magnetic moment per unit oscillator
quantum number is modified by a factor g'(g.5:
—g252)/(S1—S3), as we see by comparing the coefficient
of H in (119) and (22), and that Mz has now (g15:
— g2S9)8 instead of gB.

The results (120) and (121) were first obtained by
Kouvel and Brooks*® with a semiclassical analysis
rather than the method of spin waves. The standard
ferromagnetic formulas of Sec. IV correspond to the
special case S;=—S,=.5, as one might expect.

Specific heat of an antiferromagnetic—An antiferro-
magnetic medium such as was studied in Sec. VII has
S1=3S,. This case requires special treatment. The
outstanding magnetization, of course, then vanishes
in the absence of an applied field, and (119) cannot be
used because of the zero denominator. Instead, the
two branches 1% and 2k are now degenerate for H=0
and K,=K,=0, and for vanishing applied field and
anisotropy constants the low frequencies are now given
by

fwr=[4J25%*(1—v:?) J}=2JSka[ 23 o cos®0r, . 1. (122)

For a simple or body-centered cubic lattice [cf. discus-
sion following Eq. (22)] this relation becomes

foi= 27 Skl(22)}, (123)

where z is the number of nearest neighbors. The formula
for the intrinsic energy is hence, instead of (29),

© S 3 02
Um2(L/20Y0m f [27Sko(22)} Jko?dk
o exp(2JSkod(22)¥/kT)—1
(RT)*
2w [27S(22)4 P

=2(L/l)? (124)

Xf VieV+e2V+-.-)dV.
0

The initial factor 2 is a statistical weight to allow for
the double degeneracy of the frequencies given by (96)
when H=0. The specific heat Cy= (dU/dT) corre-

sponding to (124) is

For a simple and body-centered cubic lattice the values
of (L/l)*are N and 3V, and of z are 6 and 8, respectively.
The numerical value of (125) for the simple cubic case is

Cy=13.7NE(ET/12JS)}, (126)

a result also obtained by Kouvel and Brooks.*¢
Comparison with experiment.—The predicted specific
heats for ferrimagnetic and antiferromagnetic materials
are thus strikingly different, being proportional to T3
and T3 respectively. The T% dependence is confirmed
in experiments made by Kouvel*® on magnetite. His
measurements on this ferrimagnetic nonconductor
furnish perhaps the most direct experimental confirma-
tion of the whole spin-wave theory. There are, of course,
plenty of magnetic resonance experiments, but the
resonance frequencies involve only the properties of
very special symmetric states. It is easier to test the
theory on specific heats than on the variation of
magnetization with temperature, for the deviation of
of the magnetization from its maximum value achieved
at =0 is small in the range of temperatures for which
the spin-wave theory is applicable. Furthermore,
measurements on ferrites are more definite than those
on the usual ferromagnetic materials, inasmuch as the
latter are conductors and so the results of the simple
theory are complicated by the band structure, as we
shall emphasize in Sec. XI. The exact theory which
Kouvel gives for magnetite involves a somewhat
different constant of proportionality in the 7% law than
that which we have developed, as this material has a
spinel rather than simple cubic structure. Kouvel’s
interesting paper gives details and a discussion of the
possibility of testing other results of the spin-wave
theory experimentally. The 7% formula for an antiferro-
magnetic involves the same form of temperature
dependence as that for the specific heat arising from
the lattice vibrations. Kouvel finds, however, that the
magnetic contribution may involve a considerably
larger proportionality constant than the ordinary
Debije lattice term, and so should be capable of
experimental detection. Corrections for the effect of
anisotropy, however, spoil the rigor of the 73 law.

X. HARMONIC OSCILLATOR MODEL FOR
SPIN-RELAXATION PROCESSES

With the development of microwave spectroscopy,
a great deal of interest has arisen in the relaxation
processes by which the various spin states come into
thermal equilibrium with each other and with the
temperature of the lattice vibrations. Two character-
istic relaxation times have to be distinguished, wuiz.,

48 J. S. Kouvel, Phys. Rev. 102, 1489 (1956).
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the spin-spin and spin-lattice relaxation times. The
former of these is usually the shorter, and arises from
the dipolar or pseudodipolar interactions which spoil
the constancy of the spatial components of magnetic
moment. The latter arises from the modulation of
either exchange or dipolar energies by the lattice
vibrations. We do not go into the details of the theory
of these relaxation processes; they are intricate and
sometimes controversial as to whether the effects are
large enough to be important. We do, however, want
tooutline how the various mechanisms can be formulated
and intuitively visualized in terms of our harmonic
oscillator model. The terms responsible for the relaxation
are in each case anharmonic perturbations which induce
transitions between the states of otherwise unperturbed
harmonic oscillators.

First let us consider the case of spin-spin relaxation,
as it is the simpler of the two. The anharmonic terms of
the form (39) which arise from the S;.S;, or S;,S;
part of the dipolar or pseudodipolar potential, and
which are nondiagonal in S/, couple together the
different harmonic oscillators embodying the un-
perturbed spin waves. The problem of studying the
processes of securing thermal equilibrium among the
spin waves is thus mathematically similar to that of
examining how the anharmonic terms perturb lattice
vibrations and give rise to a finite thermal conductivity.
The orders of magnitude which are calculated for the
spin-spin relaxation times at high temperatures are
reasonable, but ordinary models based on dipolar
or pseudodipolar interaction lead to zero, or practically
zero width of the magnetic resonance line at T=0,
contrary to experiment. If all the magnetic atoms are
similarly situated, the only interactions which contrib-
ute to line broadening are those which conserve energy
and momentum of the spin waves. In a completely
homogeneous material the broadening of a magnetic
resonance line must hence arise from perturbations of
the upper state, since the ground level has a lower
energy than any other state. Thus the upper level can
be broadened only by a third-order anharmonic term
in which a symmetrical, or Kittel quantum (69) is
de-excited and two spin waves of half the Kittel
frequency and of mutually equal and opposite propaga-
tion vectors are excited. This process was suggested by
Keffer and by Kittel and Abrahams.® In our opinion it
is unlikely that it is frequent enough to give appreciable
broadening at low temperatures. The same conclusion
is also reached by Bloembergen and Wang,® and by
Kasuya,® who investigates also still higher order
anharmonic processes, and finds them ineffective near
T=0.

The origin of the finite breadth of ferromagnetic
resonance lines at low temperatures for a long time
presented a perplexing problem. The mystery, however,

9 F. Keffer, Phys. Rev. 88, 686 (1952) C Kittel and E.
Abrahams, Revs. Modern Phys 25, 233 (195
% T. Kasuya, Progr. Theoret. Phys 12, 802 (1954)
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appears to have been removed recently in the case of
the ferrites. In a material such as NiFe;Oy, the irregular
distribution of the Nitt and Fe*™* ions among the
various octahedral sites furnishes the requisiteinhomo-
geneity. Even so there was a difficulty. Until recently,
it was thought that there were no other spin waves of
frequency nearly equal to that of the symmetrical or
Kittel wave £=0. If this is the case the perturbations
caused by the irregularities are not potent enough to
give an appreciable line width. However, Clogston,
Suhl, Walker, and Anderson® have now shown that
the frequencies of the spin waves of low wave number
are -greatly distorted by the boundary conditions in
specimens of finite size, and that as a result the
degeneracy in the vicinity of #=0 which is prerequisite
to line broadening can be obtained. The breadth should
depend on how the body is cut, and so it does.

Previous to the paper of Clogston ef al., Galt,
Yager, and Merritt® proposed another mechanism for
line breadth in those ferrites in which the octahedral
sites contain both ferrous and ferric ions. Examples
are Fe;Oy4, or other ferrites containing excess iron as
an impurity. The divalent and trivalent sites are then
continuously redistributed by the process of electron
transfer. A dynamic mechanism for damping and line
broadening is thereby provided which is particularly
effective when the transfer frequency is comparable with
the signal frequency.

The broadening mechanisms for ferrites described in
the two preceding paragraphs do not apply to ordinary
metals such as nickel. A conceivable source of in-
homogeneity and hence finite line width at 7=0 for
conducting metals may arise from an irregular distribu-
tion of atoms in different stages of ionization (d8,d’etc.)
or possibly even from lattice imperfections. The
requisite line breadth can be secured, however, only if
the inhomogeneities do not fluctuate so rapidly as to
be ineffective; electronic conduction may well average
out the assignment of different valences to different
lattice sites. A quite different mechanism for the
breadth of ferromagnetic resonance lines has been
proposed by Ament and Rado and was also intimated
in an earlier analysis by MacDonald.?? These authors
show that the skin effect damps the signal wave and
broadens the resonance lines.

Further theoretical and experimental study of the
spin-spin interactions as revealed by the width of the
resonance lines is desirable. The experiments of Ger-
ritsen® on antiferromagnetic resonance indicate that
in antiferromagnetics the line width tends to zero at
T=0.

Garnets differ from ferrites in that there is no
possibility in the garnets of redistributions of ions of

81 Galt, Yager, and Meritt, Phys. Rev. 93 1119 (1954); A. M.
Clogston Bell System Tech. J 34,739 (19 )

52W. S. Ament and G. T. Rado Phys. Rev. 97, 1558 (1955);
Proc. Phys. Soc. (London) A64, 963 (1951).

8 Gerritsen, Garber, and Drewes, Physica 22, 213 (1956).
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different valences among the different lattice sites,
and it is indeed found that they have exceedingly
narrow resonance lines.

Let us now turn to spin-lattice coupling. The spin-
lattice relaxation arises from the modulation of the
spin interaction energies i.e., the spin waves by the
crystalline vibrations. We can expand the exchange
integrals J,;; and the dipolar constants D;; which figure
in our various equations such as (1), (2), and (3), as
power series in the normal coordinates representing
the lattice distortions, and retain only linear terms in
this development. As the original Hamiltonian before
such an expansion is of the second order in the spin-wave
oscillator coordinates and momenta, we thus obtain a
perturbing Hamiltonian of the form

2 ik (@i Q:QiqrtbijPiP i), (127)

where the ¢, are phonon and the Q; and P; spin-wave
oscillator coordinates. Since both the spin waves and
the phonons can be interpreted as harmonic oscillators,
we have again the situation of a third-order anharmonic
perturbative coupling of a system of harmonic oscil-
lators. The difference as compared with spin-spin
interaction is that in the spin-lattice interaction one
of the quanta is a phonon and two are spin waves,
whereas in the spin-spin interaction all three are
spin waves. (Besides the third order, there may be even
higher order processes, but we assume for simplicity
that the third-order effect is the most important one.)
Terms of the structure (127) can arise from purely
isotropic exchange coupling, whereas in spin-spin
interaction the significant perturbations are of necessity
those which are nondiagonal in the magnetization.

In an important paper,® Akhieser examined the
spin-spin and spin-lattice relaxation effects in consider-
able detail. His calculations have, however, been
criticized by Polder,® who claims that when properly
revised they do not yield sufficiently short relaxa-
tion times to agree with experiment. Akhieser used
purely classical dipolar interaction, and Kittel and
Abrahams* % point out that larger perturbations are
possible because of pseudodipolar coupling arising
from spin-orbit interaction. They had the ingeneous
idea of taking the constants from the empirical magneto-
elastic constants. In this fashion they claim to obtain
sufficient spin-lattice interaction. The way in which
Akhieser replaced sums by integrals probably tended
to underestimate the effect of the modulation of
short-range exchange integrals, which depend expo-
nentially on distance.

XI. QUESTIONS OF VALIDITY OF SPIN-WAVE
THEORY OUTSIDE THE HEITLER-
LONDON MODEL

So far we have presented spin waves on the basis
of the Heitler-London, or Heisenberg model, wherein

% A. Akhieser, J. Phys. (U. S. S. R.) 10, 217 (1946).
% E. Abrahams and C. Kittel, Phys. Rev. 88, 1200 (1952).

the spins are localized at regularly spaced lattice sites.
The question arises whether these waves can also be
used in more general models of a solid, such as for
instance the conduction band model. Herring and
Kittel®® have shown that from a purely mathematical
standpoint the periodic transformation (17) associated
with spin waves can be used to help diagonalize the
energy in any solid with regularly spaced atoms, even
though the electrons wander from one atom to another.
However, in our opinion spin waves must be used with
caution in an actual conductor. One cannot necessarily
say, for instance, that in the conduction band model
the energy can be regarded as the sum of the Som-
merfeld translational energy, and a spin-wave energy
obeying the 7% law for specific heat. The essence of
the usual spin-wave theory is that in the absence of an
external field energy quanta associated with spin
waves of low propagation wave number k vary quadrat-
ically with k2 [cf. Eq. (22)]. Expressed differently,
the lowest energy levels among the states of spin
S=NS—1 are contiguous to the energy of the state
of maximum spin $S’=NS. In an extreme conduction
band model, the exchange integral is practically the
same between all states. This can be seen from a paper
of Slater,% or more intuitively from the fact that in an
ideal conductor all electrons travel uncorrelated
through the lattice, so that no pairs of states stand in a
preferred or neighborly relation. Under these circum-
stances the energy is determined only by the total
spin, for if J;; is independent of ¢ and 7, the spin-
coupling energy is

=23 55 i8:-8;=—2J% ;58:-S;

=—J[(ZS:)*—=2:(S:)*]
= _J[S/(S'+1)—NSS+1)].  (128)

There is then a high degree of degeneracy, and not a
spreading of the energy values for given S'=NS—1,
such as one associates with spin waves. The quantum
number §’, which is the quantum number quantizing
the resultant magnitude of the spin of the entire
crystal, should not be confused with the quantum
number S, describing a spatial component of this
total spin. The usual spin-wave calculation does not
mention this spin quantum number .5/, but as a matter
of fact, of the IV eigenvalues for the rigorously soluble
case S,/=NS—1, the symmetric solution k=0 belongs
to S’=NS, and the remaining N—1 states to S'=N.S
—1. In the situation corresponding to Eq. (128), all
these remaining states have the same energy. In terms
of the spin-wave calculation, this state of affairs arises
because the spin secular determinant has identical
entries in all places, instead of being essentially a
border determinant, as is the case when only adjacent
atoms are appreciably coupled. The proof that the
spin-wave solution reduces to (128), as of course it

86 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
57 J. C. Slater, Phys. Rev. 49, 537 (1936).
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must, is as follows. When all the matrix elements are
identical, the spin-wave solution corresponding to (20)
is, apart from an additive constant,

E=— ZSZUJH exp(’l:k' Rij) = ‘ZJATSZ] exp(lk R,‘j).

In virtue of the property (49) of the lattice waves, this
formula for the energy levels becomes

{E= —2JNS for k=0;

E=0 for k0. (129)

Thus instead of being a virtual continuum of states,
there are only two different energy values. The differ-
ence of the two roots (129) agrees exactly with the
difference of the general expression (128) evaluated for

'=NS and ’=NS—1.

We can thus say that, so to speak, the spin-wave
properties are essentially expurgated when all the
entries in the secular determinant are similar. That
this state of affairs should occur is not surprising. The
reason that in the ordinary spin-wave theory for the
Heitler-London model the energy is practically the
same for S’=NS and the deepest states belonging to
S’=NS—1 is that in the latter the average orientation
of the spins varies very slowly with position, the total
variation being enough to make the resultant spin be
S§’=NS—1 rather than S’=NS. Thus, two atoms
which are adjacent have their spins practically parallel.
However, the essence of the band model is that the
electron in a given state is distributed equally over all
atomic states. Hence it is impossible to localize the
distribution of spin orientations and bend the electron
spin vector around slowly from place to place. One can
say that electron correlation (in the language of solid
state physicists) is a prerequisite to meaningful spin
waves.

At this stage, the reader may feel that all our preced-
ing discussion of spin waves is wasted in conductors,
since the literal band picture leads to the energy
structure (129), in which all vestiges of spin waves are
suppressed. This, however, is too pessimistic a view.
The result (129) is obtained only if one disregards all
matrix elements of the exchange energy which are
nondiagonal in the orbital translational quantum
numbers k.1, k41, k.1 of the individual electrons.
Actually the exchange energy of any pair of electrons
1, 2, though diagonal in k;+k, (modulus umklapp
processes), because of the conservation of momentum,
need not be so in the quantum numbers of the individual
electrons. Some of these elements need not be very
much off-diagonal in energy. One can blend together
states of slightly different translational energy so as
to construct a wave packet whose spin is zero, and
whose translational energy is only slightly different
from that of a pure translational state. Suppose, for
instance, one had a very large piece of conductor, and
assumed that in one half of it the spins all pointed down,
and in the other half up. Then the resultant spin would
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be zero, and the exchange energy not too different from
the state in which the spins were all parallel. If the
material is ferromagnetic, i.e., favors parallel alignment
of the spins, there is a highly unfavorable exchange
energy connecting the spins on the opposite sides of
the boundary separating the two halves. It would,
of course, be better to make the transition from the
north to the south pointing spins a gradual rather
than sudden affair, as then adjacent spins are nearly
parallel. In fact, one can develop a continuum theory?®
on this basis, on which the exchange energy can be
shown to be proportional to V2M, where M is the
magnetization vector. If the material is anisotropic,
the transition in the spins should not be too gradual,
as then the spin is of necessity unfavorably oriented in
certain portions of the turn-over region, and these
portions should not be allowed to get too wide. Such
considerations, however, would take us into study of
the thickness of the Bloch wall, domain theory, etc.,
subjects into which we do not intend to enter. If the
resultant spin for the entire body is only slightly less
than its maximum permitted value, then one can think
of the local average direction of magnetization as
spiraling around the direction of total magnetization.
This is essentially a statistical spin-wave model. A
sort of generalized spin-wave theory, founded on the
basis of average properties in a conductor, has been
developed by Herring and Kittel.? The details are
rather involved, and the legitimacy of some of the
approximations not very transparent.

The gist of the preceding discussion is that the
papers of Herring and Kittel make it plausible that
the results of the spin-wave theory apply at least
qualitatively to conductors. This is particularly true
if one is in the ferromagnetic state, as then the state
of maximum spin is one in which fluctuations in the
charge per atom are kept to a minimum because of the
exclusion principle. In fact, if there is only one permitted
orbital state per atom and one conduction electron per
atom, no fluctuations at all in the charge per atom is
permitted if the spins are all parallel. Obviously the
degeneracy of the d sites, a complication not considered
in simple spin-wave theory, is an important and
complicating factor. In our opinion, in the statistical
spin-wave construction found in the Kittel-Herring
paper, there is a suppression of states of higher polarity
and a degree of localization established which can in
many ways be regarded as a concealed reversion to
essentially the Heitler-London nonpolar model.

The generalized analysis of Kittel and Herring
indicates that there may be elements of truth in the
spin-wave theory even in conductors, and so casts
considerable doubt on the treatment of the magnetism
of metals by the “collective electron ferromagnetism”
model of Stoner.5® The essential approximation of this

S8 E. C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938);

?1%)%%’) 339 (1939); E. P. Wohlfarth, Revs. Modern Phys, 25, 211
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model that exchange interaction can be represented by
means of a molecular field is more or less tantamount
to the result (129) based on uncorrelated electron
migrations. In this connection one can recall the result
in Heisenberg’s first papert on magnetism, that molec-
ular field theory is equivalent to the assumption that
all states with the same spin have the same energy.
The conclusions of Stoner concerning the variation with
temperature of the exchange specific heat are therefore
suspect. He found that the exchange specific heat should
be proportional to T, and that the deviation of the
saturation intensity of magnetization from its maximum
value at 7=0 should be proportional to 7% in contrast
to the 7% factor obtained in both cases by spin-wave
theory. As a matter of fact there is, incidentally, little,
if any evidence, in favor of the 7" and 77 laws. (In the
case of the specific heat translational effects mask the
exchange contributions.)

The reader should not, however, form the impression
that the results of the spin-wave theory hold at least
qualitatively under any metallic situation, for the
generality is undoubtedly not that great. If, for instance,
the number of electrons, or alternatively of ‘“holes”
relative to closed configurations is small compared with
the number of atomic sites, the fluctuation effects
presumably become rather tremendous, and the
concepts of spin correlation and density begin to lose
meaning. Just where this difficulty arises quantitatively
is at present anything but clear. It is true that very
general considerations suggest wide validity for perhaps
the most significant result of spin-wave theory,*
namely that the energy of long spin waves be propor-
tional to the square of the frequency or propagation
wave number k. If the origin is taken at the state of

% Compare C. Kittel, Varenna Lectures, Nuovo cimento (to
be published).

completely parallel alignment the interaction exchange
energy is proportional to J(1—cosAg) where Ap is
the angle between the directions of the mean magnet-
ization at the sites 1 and 2 [cf. Eq. (1)]. The essential
point is that if & is small, Ap is proportional to £ and so
1—cosAg is proportional to k2. However, if the electron
spins are irregularly distributed, both in position or
time, the concept of a well-defined wavelength may
lose meaning. The difficulties encountered in trying to
generalize spin-wave theory to conductors or other
arrays of irregularly spaced electrons may be likened
to those which one would experience in trying to
extend the usual Born-Karman theory of lattice
vibrations to the case where the atoms are of various
varieties irregularly spaced and continually exchanging
places. Just how long the Debye 7% law for lattice
specific heats retains its validity under such circum-
stances is something of a moot question. At least the
authors are not aware of an appropriate analysis.
So also it is with the 7' laws characteristic of spin-wave
theory when the spin distribution becomes too irregular.
Any mathematical formalism for such more complicated
situations is clearly quite another matter than the
conventional spin-wave theory for uniformly spaced
spins, and so it is well to end the present paper here.
We may, however, terminate by remarking that the
ideal materials for testing the standard theory are the
ferrites. Their nonconducting properties make them
indeed a boon to the theoretical physicist as well as
to the engineer. Garnets are even better.

ACKNOWLEDGMENT

One of the authors (JVK) wishes to acknowledge a
grant from the Netherlands Organization for Pure
Research (ZWO), which made possible his stay at
Harvard University during 1953, when part of this
article was written.



