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A. SYMBGLs AND NoTATIGN

' 'N PART IIc the symbols 2' or T„G, F, v„v„v„,va, hG(v+-', ) are used in-
' - stead of F",F', F',v",v', v', v', and hF'(vi, sn) of Parts I, Iia, Iib. In place
of the more or less inaccurately defined subscripts a and b of Part IIb, more
clearly defined subscripts c and d are introduced (cf. section C3) for differ-
entiating the members of a A-type doublet, and s and f for the 0-type doub-
lets of case c (cf. section Hl). In this section and hereafter we shall speak of
"regular" and inverted multiplet states (A )0 and A (0) instead of "normal"
and inverted states. Other symbols used here are the same as before, but
certain additional symbols and expressions have been introduced, as fol-
lows:

Positive and negative (+and —) rotational levels, cf. section CI
Z+ and Z electron states, cf. section C2

Q branch =series of band-lines having J'= I"
M= J' —J";b,E= E' —E"
s, 3,s,p, g =small coefficients (cf. Eqs. 56, 63)
B*,D* (cf. Eq. 57)
Sub-bands and sub-systems, cf. section 61
"For a genera1 discussion of band spectrum notation cf. Report on Notation, R. S.

Mulliken, Phys. Rev. 35, 6ii (1930).
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Even and odd (g and u) electron states (of molecules composed of two
atoms of the same element): cf. section X1

Symmetrical (Sy) and antisymmetrical (An) wave-functions f: cf. sec-
tion X2

Symmetrical (s) and antisymmetrical (u) wave-function factors f „of
the nuclear angular momentum: cf. section X2.

B. PRELIMINARY REMARKS

Before beginning the discussion of band types, which is the object of
Part IIc, it is necessary to describe certain properties of molecular energy
levels which have not yet been considered. This is done in Section C. The
terminology used in describing A-type doubling is also revised (Section C3).
Later on (Section Z) it will be necessary to go into certain additional prop-
erties of molecules composed of two atoms of the same element, before dis-
cussing the spectra of such molecules. Sections II1 and II3 also contain new
material on the nature of case c and its relations to cases a and b.

A good brief treatment of the structure of electronic bands has recently
appeared in Ruark and Urey's "Atoms, Molecules, and Quanta, " and a more
complete one in R. Ruedy's "Bandenspektren auf experimenteller Grund-
lage. """ For this reason it has seemed best to make the account here given
more detailed than was at First intended. For those not interested in details
of band structure, a study of the figures is suggested as the best way of get-
ting a general idea of the various types of bands and their relation. to energy
levels. For such readers Sections C1,C2, and Z should also be of interest.

It was originally the writer's intention to prepare as a portion of Part IIc
a discussion of the evaluation of molecular constants by the analysis of band
spectra. " This, however, will be postponed until after Part III is finished.

C. POSITIVE AND NEGATIVE ROTATIONAL LEVELS. Z+ AND Z ELECTRON
STATES. REVISED NOMENCLATURE FOR USE IN

A-TYPE DQUBLING

l. I'osi6ve and negative ro/ational terms. Before entering on the discussion
of band types, it is necessary to describe certain properties of the energy levels
of diatomic molecules which have not yet been considered. In the absence of
disturbing external fields, all molecular energy levels or terms can be divided
rigorously into two classes, which Kronig has called even and odd, and Wig-
ner and Witmer have called positive and negative. ~ Ke shall use here the
latter terminology, in order to avoid possible confusion with Hund's earlier
use of the words even and odd in describing the electron states of molecules
composed of two atoms of the same element (cf. section Zl below).

"Cf. R. T. Birge, National Research Council Bulletin on Molecular Spectra (1926},for
earlier detailed accounts.

"R.de L. Kronig, Zeits. f. Physik 50, 347—362 (1928}. E. Wigner and E. E. XVitmer,
Zeits. f. Physik 51, 859—886 (1928). For definitions of positive and negative terms cf. Kigner
and Witmer, l. c., p. 865, second paragraph, and p. 867, first footnote; Kronig. L.c., p. 351.
Positive and negative molecular terms are defined in the same manner as the even and odd
{Wigner's positive and negative} terms of atoms.
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The diAerence between positive and negative rotational levels can be ex-
plained only in terms of the quantum mechanics. The complete Schrodinger
wave-function 1i for any stationary state of the molecule, expressed as a func-
tion of the coordinates x.y.z„xf,ybz&, xIyizI, x„y„z„and spins s of the
two nuclei (a and b) and n electrons, always has the property either that
1t(—x.. . —s„, spins) =f(x„, . , s„, spins), or else that p( —x„
—s„, spins) = —li (x„,s„, spins). In the former case we speak of positive,
in the latter of negative levels.

2. 5+ o,rId 2 electron states. As has been noted in Parts IIa, IIb, '4 "the
electron state of any molecule with normal coupling (case a or 0) is charac-
terized by quantum numbers S and A.. Khen A&0, we have "A-type doub-
ling" so that, in addition to the spin multiplicity which is present if S&0,
each rotational level is a doublet composed of an "a" and a "b" sub-level. ""
In each such doublet, one component is a positive, the other a negative level.
The nature of the relation between the a, b (now revised to c, d, cf. section
C2) and the +, —designations can be seen from Fig. 17.

When A =Q(Z states), there is no A-type doubling in the rotational levels.
Instead we find that there are two kinds of Z states. The most usual are
the Z+ states, which have positive rotational levels for even values of E,
negative levels for odd E values. But there are also Z states, which have
negative levels for even X and positive levels for odd E. These descriptions
of Z+ and Z states hold for 'Z, 'Z, , states as well as for 'Z states (cf.
Fig. 17 for 'Z+ and 'Z and Fig. 24 for 'Z states) The . real reasons why the
two types Z+ and Z are possible cannot conveniently be stated here, but
will be given in Part III. Of Z states, only a few are as yet definitely known
to exist, namely one excited '2 state in CH, and six or eight 'Z states. Of
the latter two are the normal states of NH and PH, '"~ one is the normal state
of 02, one is the excited state of the Schumann-Runge bands of 02, while S2

and probably also SO each have two '2 states analogous to those of 02.'" A
probable 'Z state is also known in Os (cf. end of section D1).

3. Revised nomenclature for use in it type doubling. -In Part IIb the two
members of a A-type doublet were referred to as a and b sublevels. The
designations a and b hitherto defined have been little more than arbitrary
empirical labels. Two formal schemes for choosing which levels to call a and
which to call b have been proposed by the writer, "but neither of these makes
it possible to define a and b rotational levels unambiguously in terms of
theoretically significant quantities such as J and X values and + or —char-

~4 Parts I, Ila, Ilb, R. S. Mulliken, Reviews of Modern Physics, 2, 60-115 (1930).
"Additions and Corrections for Parts I, Ila, IIb, R. S. Mulliken, Reviews of Modern

Physics, 2, 506—8 (1930)." For a discussion of the electron states of 02, cf. R. S, Mulliken, Phys. Rev. , 1931. In-
terpretation of S2 bands, S. M. Naudf'. and A. Christy, Phys. Rev. 36, 1801 (1930). SO bands,
E.V. Martin and F.A. Jenkins, Bull. Am. Phys. Soc. 5, No. 6, p. 7 (Los Angeles Meeting, 1930).

~' Scheme (1.): R. S, Mulliken, Phys. Rev. 28, 1205 (1926). Scheme {2):R. S. Mulliken,
Phys. Rev. 30, 791 (1927). Most writers follow the second scheme. Both schemes lead to the
same use of the labels a and b in the case of II states, but give opposite labellings in the case
of Z as mell as in that of ~ states.
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aeter. In the interest of clarity in the following exposition, it seems important
to redefine a and 5 levels so that they will have a definite theoretical meaning,
and this is done in a later paragraph.

One might of course think that it would be sufficient to classify levels

according to their+or —character, but experience shows that an additional
and diRerent sort of classification essentially of the c, b kind is too useful to
be dropped. The relationship between the two kinds of classification can be
seen from some of the diagrams of Fig. 17. The a levels of any electronic
state form one continuous set, the b levels another, while +(also —) levels

belong alternately to the a and to the b set.
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Fig. 17. Rotational energy levels and transitions for most of the important singlet band
types. Only the lowest few rotational levels are shown for each electron state. The widths
of the A-type doublets for the 'Il states are drawn proportional to E(E+1), while the '6
doublets are shown with negligible separations (cf. section I'2 and Ref. 71). The doublet widths
in the 'll states are, however, all exaggerated in order to make them clearly visible. The only
rotational transitions shown are those corresponding to the lowest-numbered possible line in

each branch. These are, however, sufficient to illustrate the selection rules and the nomen-
clature. (Cf. also Fig. 2, where a larger number of band lines is shown, for the 'Z, 'Z type of
band. ) The figure shows the meaning of the symbols Z+, Z, and of c and d levels, in terms of K
values (E=—J here) and positive or negative (+ or —) character of rotational levels (cf. text,
section C).

The order of the + and —(or c and d} levels in A-type doublets, for a definite value of A

and of E, is not always the same as that shown in Fig. 17. For example, Fig. 17 shows the
—level above the + level for E=1 in 'll states, whereas in practice the reverse arrangement
is also possible (cf. Part Ilb, Ref. 39}. The arrangements shown in Fig. 17 are, however, those
which appear to be most usual in practice.
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In the first place, we shall substitute the letters c and d for the redefined
a and b. (These particular letters were chosen after careful consideration as
being about the least objectionable designations available. ) In this review
we shall hereafter always use c and d. It is suggested that these designations
be adopted also in empirical spectroscopy whenever they can be assigned
with a reasonable degree of certainty. But when this cannot be done, it is
suggested that a and b be used as temporary designations, just as hitherto.
In most but not in all of the cases where c and d can now be assigned to
empirically known levels it will be found that they are respectively equiva-
lent to the old a and b.

For singlet and case b states, we define c and d levels as follows. Ke
designate every series of levels whose lowest X value (0,1,2, , for Z, II,

, states) corresponds to a +level or group of levels as a c series, every
series whose lowest X value corresponds to a lev—el or levels as a d series (cf.
Figs. 17,25,26 for examples). In every c series, the levels alternate + —+

, in every d series they alternate —+ —+ ~ ~ ~ . This definition causes
all the rotational levels of a Z+ state to be classed as c levels, those of a Z—

state as d levels, so that we might speak of Z' and Z" instead of Z+ and Z
states. In II states one may often conveniently regard the c and d sets of
levels as respectively associated with a II' and a II" electronic substate, al-
though strictly this is not justified, since the division into c and d levels comes
about only as a result of the rotation. Analogous statements apply to 6 and
other levels. The concept of c and d electronic substates has already been
utilized for the spectra of He&, where the symbols II„II&,h„D&, (also Z,
and Zq) are much used. "

The definitions of c and d levels in case a can best be made by considering
the adiabatic correlation of cases a and b. This is the same procedure that
was used (cf. Part Iib, pp. 112—13) to define F~, F2, ~, levels in case a,
and has the same advantage, namely that it provides a consistent and rea-
sonably convenient notation for all intermediate cases between a and b.
The results' are summarized in Table V (cf. Figs. 22 and 28 for examples).

"The known Z levels of He2 are all Z+ levels, hence could all be called Z'. For the
&II and db, levels, a and b as now used for the He& levels are respectively equivalent to c and d.
For the dII levels, e and b as used by Dieke respectively correspond to d and c.

~' The adiabatic correlation of case c with case b 'II states can be followed by means of Fig.
16 of Part IIb, Let us assume that the dark and light circles in Fig. 16 respectively correspond
to positive and negative levels. [Either this or the reverse is necessarily true, but this correla-
tion (dark=positive) corresponds to what is the usual energy order in practise. ] Then for
X=1, 3, 5, ~ ~ ~ in case b the positive (dark) circles are c levels, the negative (light) circles are
d levels, while for %=2, 4, ~ ~ ~ the negative circles are c, the positive d. Now let us follow
through the c and d levels to inverted case a. We then find that 'Hg begins {J= ~~} with a posi-
tive c and a negative d level, and that 'Di~ also begins (J=1q) with a positive c and a negative
d level. Thus the definitions of c and d levels here are very similar to those in case b. For
regular II states, the definitions of c and d levels prove, however, to be reversed. We find

that 'III' begins {J= 1/} with a negative c and a positive d level. I.e., the c levels are —+—+
~ ~ ~, the d levels +—+— ~ ~ ~ tThe reason for this is simply that the lowest level J=1$

of 'lIII is derived from the second level Z =2 of case b instead of from X=1; for inverted 'II,
however, the lowest levels of both 'II~ and 'III~ were derived from X=1 of case b.] In 'IIy



BAND SPECTRA

In t,use c there are double rotational levels whenever 0 &0. The two series
of levels in this case will be distinguished here as e and f levels (cf. section
II1 and Table V).

TAmE V. Definitions of c and d rotational levels for various kinds of electronic states

Kind of State

All + states
All 2 states

All other singlet and case b states

Regular case a doublet states {'II~~, 'II~„'Ay„etc.)

Inverted case a doublet states

Regular and inverted case a
triplet states ('II0, 'II1, 'II2, 'AI, etc.)

Case c states

Character of
lowest rotational

level*

J+
J+

Series~
Designation

c
d

c
d
c
d
c
d
e

* By the "lowest rotational level" is meant in singlet or case b states the level (or group
of levels) of lowest Z value, in case a states, the level of lowest J value. When the lowest level
is +, succeeding members of the same series (cf. examples in Figs. 17, 24, 25) alternate in
character {+—+ —. ~ ); when it is —,they also alternate (—+—+ ~ ~ ).

In the text of Part IIb (from p. 100 on), the letters c and d should be
respectively substituted for c and b everywhere where a and b refer to A.-

type doublets. Also in Figs. 13 and i4, a and b should be replaced by c and
d, except in the case of the '6 levels in Fig. 14, where they should be respec-
tively replaced by d and c.

D. INTRQDUcTIoN To PART IIc
1. Objects of Part IIc In Part I.Ib we have considered"" the possible

types of electronic states of molecules, for various kinds of coupling of the
electronic and nuclear angular momenta. In particular, energy formulas
have been obtained for the various cases. In Fart I we have considered'4
the band structure, including intensity relations, for the simple case of a
transition between two 'Z states, and have seen how this structure varies
with the temperature 1and with the values of the coefficients 8' and 8".
Ke have also seen how the arrangement and intensity distribution of the
bands in the band system are related to the values of 8' and 8", hence to

we find that the hrst and second levels J=-,' and J=1( both have a positive c and a negative d
level, which is contrary to our principle that c and d levels shall be alternately positive and nega-
tive. A little study shows that the level J=~~ is anomalous, so that we may best assume for
this one level that c changes to d and d to c in passing from case b to case a; an analogous
assumption had to be made (cf. Ref. 49 of Part IIb) in regard to the F1 or F2 character of this
same level. The net result is then that for case a regular 'II~~ we have —+—+ . for the c
levels and +—+—~ ~ ~ for the d levels. Similar methods give similar results for case a'5
levels. Application of similar methods to case a 'II states shows that for regular as well as for
inverted 'II, the c levels are always +—+— and the d levels —+—+ just as in case
b.
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the internal structure of individual bands. In Part IIc we shall now consider
how the structures of bands and the intensity relations within them depend
on the nature of the initial and final electronic states, in other than 'Z, 'Z

transitions.
The object of Part IIc is to explain and describe the types of bands found

in practise. The type to which the bands of a new spectrum belong can then
often be tentatively determined by comparison with these standard types.
[As an aid to this, valuable and rather full descriptions of the structures of
important bands of a number of molecules will be found compiled in R.
Ruedy's recent book. jss It should be pointed out, however, that in many cases
it is necessary to resort to a rigorous analysis in order to determine the band-
type. Such analysis is also necessary in order to determine from band spec-
tra the positions of the molecular energy levels and the values of molecular
constants. It is hoped in a later article to discuss methods of analysis.

No systematic discussion of intersystem combinations is given in Part
IIc, since very little is yet known about the band structures in such cases
One rather we11-known example is the atmospheric oxygen band-system,
which is probably 'Z„~'Z, , but may be a quadrupole transition (cf. sec-
tion D2) 'Z, +s—'Z„." The only other known band spectra now classified as
intersystem transitions are the visible halogen bands~~ and certain systems in
CO, e.g. the Cameron bands ('II, 'Z).

2. SeIecfion rules for tttofecules The .possible types of electronic transi-
tions in molecules are limited by certain selection rules which will only be
summarized here. The most important of these is ~= 0, + 1, which holds
whenever A is a good quantum number, as it is in the two most usual coupling
cases (cases a and b) The ru. le rM =0, + 1 also holds strictly whenever 0 is
rigorously quantized (cases a and c). hZ =0 holds strictly in case a, where
Z is rigorously quantized. In molecules composed of two atoms of the same
element the important rule that "even" electron states combine only with
"odd" states (cf. section Ef) holds strictly.

Considering now the rotational levels, we always have AE =0, +1 when-
ever E is rigorously quantized, as in cases b, b', d, d'; and 6J=0, + 1 when-
ever J is rigorously quantized, as is always true except when 5 is very loosely
coupled to X in cases b' and O'. In cases d, d', e we have AR =0 in electronic
bands. In addition to the restrictions just given, the important rule that posi-
tive terms combine only with negative terms (++~—only) holds strictly in
a11 coupling cases. In external electric fields, however, this rule becomes less
strict. Some OH band lines which violate the +~~ —rules' have been ex-
plained as caused by such fields.

The above selection rules all refer to the dipole radiation. If we consider
also the (usually vastly weaker) quadrupole radiation, '" they do not hold.

~9 R. Ruedy, Bandenspektren auf experimenteller Grundlage, F. Viewers, Braunschweig
(1930}. [Fora correction, cf. last sentence in Ref. 89.] Cf. also Refs. 90, 91.

"Analysis and interpretation, R. S. Mulliken, Phys. Rev. 32, 880—887 (1928), and Phys.
Rev. 1931. Intensity relations, W. H. J. Childs, Nature, April 19, 1930, p. 599.

O' Cf. R.S.Mulliken, Phys. Rev. 32,406 and 997 I'1928). The "Qgglg" and "Q2g2g" branches
of Fig. 3 violate the +~~—rule.



A possible example of a quadrupole transition has been mentioned at the
end of section Di. The foregoing dipole selection rules can be justified briefly
as follows;

The rules hA. =0, + 1, AZ =0 and AQ =0, + 1 which hold for the case of
fixed nuclei (Part IIb, p. 96 and Ref. 36), hold equally for case a, since in
case a the rotation of the nuclei does not appreciably disturb A, Z, and Q.
In case b DA. =0, + 1 still holds, for the same reason, but Z and Q no longer
exist on account of the rotation.

The rule AX =0, + 1 in molecules is precisely analogous to the rule 51 =
0, + 1 for atoms, and 5J=0, + 1 in molecules to 6J=0, + 1 in atoms. Z and
J in molecules refer to the (resultant electronic plus nuclear) orbital and to
the total angular momentum just as I and J in atoms refer to the (resultant
electronic) orbital and to the total angular momentum. The rule that posi-
tive molecular terms can combine only with negative terms is the exact
analogue of the rule that even atomic terms can combine only with odd terms.
(In this connection cf. Ref. 53, last sentence. ) In regard to the selection rules
for R, cf. section Ii3.

E. CAsE a AND c AND SINGLET AND CAsE b BANDs:
GENERAL RELATIONS

j.. Introduction. It is convenient to begin the discussion of band-types
by setting forth certain general relations which hold for frequencies and in-
tensities whenever J and Q exist as well-defined quantum numbers in both
initial and final states of the molecule. This condition is fulfilled in all transi-
tions involving singlet or case a or case c states, exclusive of case d' singlet
states. Case d' singlet states, and cases intermediate between these and
ordinary singlet states will, however, be treated in section I'"3.

Ordinary singlet states can be regarded as case a states having
S=O and so II—=A. , and having J—=Z. In discussing singlet states (exclusive
of case d' states) in Parts I and IIb, we have regarded them as case b' states
and used the symbols A. and E, but we can equally we11 treat them as case a
states and use Q and J. This we shall do in the present section. In later sec-
tions where we wish to emphasize their genetic relation to case b states we
shall return, however, to A and E.

It should be noted that all the results of the present section, as well as
of the next section (F), are directly applicable to case b' bands with S)0,
although here we must replace Q and J of sections 8 and Ii by A and K.

2. Equations for frequencies of band lines. In order to get an expression
for the frequency of any line in a band associated with a transition between
two case a states, we take v = T' —T" as in Eq. (7) of Part I. For T' and T"
we use expressions of the form given by Eq. (31) of Part Ilb. (For the case
S=O these reduce to those given by Eq. 29). Letting"

"This expression for vo applies only for the usual case AS=0. Since in this case 4Z=0
also hoMs, the quantity $~«„(S„.,„~=S 'Z') is the same for the initial and fInal states. The
quantity ~, is equal to ro' —T&"+Z(A'h. ' —2 'h. "). If S=0, the term Z(A 'A' —2 "4")drops
out, as do also the S„.,„terms.
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po ——v, + v„—8'(0" —O' —S',„,) + 8"(0"'—G" —5'„.„),
and for simplicity writing 8' and 8" in place of B„and 8,' and D' and
D" in place of D„and D„",the result may be written (cf. Eq. 8 of Part I):
~ = ~0+ &'J'(J'+ 1) —8"J"(J"+ 1) + 0' (J') —0"(J")

+ DIJI2(Jf + 1)2 DIIJI/2(JII + 1)g y (49)

In the case of singlet states, 0 can be replaced by A, and J by E, if desired.
For a transition between two case c states, Eq. (49) holds just as for case n
states, although the constant vo has a somewhat diferent meaning, which
can be obtained by using T' and T" expressions of the form of Eq. (68).

The possible frequencies given by Eq. (49) are limited by the selection
rule AJ =0, + 1. (By 6J is meant J' —J".) For singlet states, AJ is identical
with AX of the case b' viewpoint. When AJ=0, we have a "zero" (Q) branch.
When AJ=+1 or —1, we have respectively a positive (R) or a negative
(P) branch (cf. Part I, p. 69). In addition to the rule AJ=O, +1, the rule
that positive terms combine only with negative terms is important. " As a
result of this rule, each branch consists of single lines if A' or A" is zero, and
of double lines if A' and A" are both greater than zero." KVhy this is true can
be understood from Fig. 17.

For the R branch or branches, the following Eq. (50) is readily obtained
by putting J'= J"+1=M in Eq. (49) and multiplying out. (Cf. Part I,
Eqs. 8—11 and accompanying text. ) The object of the substitution of M forJ"+1 is to simplify the form of Eq. (50), and also to make this as nearly as
possible like that of Eq. (51).

R,;(M) = vo + (8' + 8")M + (8' —8"+ D' —D")M' + p (M)
—4;"(M —1) + 2(D'+ D")M'+ (D' —D")M4+ (50)

If A' and A" are both greater than zero, R;; stands for R., and E.d~

(usually written R, and Rq) if AA =0, or for R.z and Rq, if AA = + 1."~5 The
relation of the subscripts c and d to the designations of the rotational levels
can be seen from Fig. 17. The lines R.(M) and R~(M), or R,d(M) and R~, (M),
form a (usually narrow) doublet. If either A.

' or A" is zero, "only a single R
line is present for each value of M, and the simple symbol R(M) is used. It
should be noted that the M values, like the J values, are integral.

"The designations "positive branch" and "positive term" have no relation to each other.
'4 This statement applies to ordinary (case b'} singlet states and to case a states, but not

in case c. In case c it must be modified by inserting 0'and 0" in place of A' and A.
" (cf. section

H1}.
Symbols such as R,d and Rd, can if desired be simplified to Rd and R, respectively, it

being then understood that the subscript refers only to the lower of the two energy levels
involved. This convention is analogous to that whereby one gives only J" (abbreviated as J},
and not J', in such symbols as R,(J}.The proper subscript c or d for the upper level can always
be determined by means of the selection rule that positive rotational levels combine only with
negative levels, and vice versa. There are to be sure occasional violations of this selection
rule, as for example in some of the satellite branches in the OH bands. e0 In such cases the
double subscripts must be used.
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Similarly for the P branch or branches, putting J'=J"—1 in Eq. (49)
and then substituting M= —J", one gets

P (M) = o+ (8'+ 8")M + (8' —8" + O' —D")M'+ 4 '( —M —1)
51—4;"(—M) + 2(D' + D")M' + (O' —D")M4 +

P;; stands for P, and P& if DA =0 or for P,~ and Pd, if DA = + 1, or for P if
A' or A" is zero. If we have two P lines for each M value, these form a (us-
ually narrow) doublet.

In so far as we can neglect the small functions p' and p", branches such
as R,~(M) and R~, (M), if both present, are coalescent, and likewise branches
such as P.z(M) and Pd, (M) Henc.e when P' and p" are negligible, we always
have in effect a single P branch and a single R branch. Further, Eqs. (50)
and (51) for these I' and R branches both become identical with Eq. (11) of
Part I (except that v, dilfers by a small additive constant from v, of Eq. 11),
and the two branches form a single series just like the P—R series of the
' Z, ' Z bands in Part I.

For the Q branch or branches, the following equation is obtained by put-
ting J'= J" in Eq. (49), and also substituting M for J":
Q;;(M) = vo + (8' —8")M + (8' —8" + O' —D")M' + 4 (M)

—p;"(M) + 2(D' —D")M' + (O' —D")M4 + . . (52)

If' A' and h.")0, Q;; stands for Q, ~ and Qd, if DA =0 or for Q, and Qa if
AA. = + 1, while if either A' or A" is zero only one branch is present, "and the
subscripts are usually dropped. If there are two Q lines for each M value,
they form a (usually narrow) doublet.

The manner in which the structure depends on 8', 8", D', and D" is
the same in any case a or c or singlet band as in the special case 'Z —+'Z (cf.
Part I, pp. 71—72). The factors governing the formation of band-heads in
P or R branches are also the same as in 'Z —+'Z transitions (Part I, pp.
73—4). The same is true of the factors which determine the arrangement and
relative intensities of different bands (cf. Part I). A new feature, however, in
bands where DA = + 1, is that the beginning of the Q branch often functions
as a band-head because of the crowding together of lines there, even though
these lines are usually weak (cf. Figs. 18, 19). Thus each such band has two
heads. Further, in bands with double I' and R branches (A' and A" both
greater than zero), the I' or R head should appear double in case the doublet
widths in the band-lines are large.

Although the M numbering used in Eqs. (50)—(52) is convenient in dis-
cussing band structures, another numbering in which the value of J" is
given in parentheses, as e.g. in P(2), Q(1), R(3), is usual in referring to band
lines in the analysis of band spectra (cf. Fig. 2 and pp. 70—71 of Part I, Fig.
17, etc. )

3. Intensity relofions and missing lines. The empirical structure and ap-
pearance of any band depend jointly on the arrangement of the lines (Eqs.
50—52) and on their relative intensities. (Cf. Part I, last paragraph of p. 69,
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et seg, for a discussion of this dependence. ) The theoretical emission inten-
sities I or absorption coeKcients 0. for the lines of an emission or absorption
band are given by the set of equations (53)—(55)."

Emission band-lines: I = kv4iE'

Absorption band-lines: a = (k/Ss hc)i iE"
(53u)

(53b)

In these equations, k is (very nearly" ) a constant in any one band, but dif-
fers from one band to another, v is the wave-number of the line, h and c are
Planck's constant and the velocity of light, and i is a function of the rota-
tional quantum number (cf. Eqs. 54—55). R is equal to N/p, where AT is
the total number of molecules at any moment in the proper initial state for
emissioe, or, the number of molecules per cc in the proper initial state for
absorption, and p(=22+1) is the statistical weight of the initial state Th. e
factor v or v' can usually be treated as constant in comparing diBerent lines
in a single band. (In Eqs. 12 and 13 of Part I this was done. )

If the initial distribution is one corresponding to thermal equilibrium at
some definite temperature T, the factor R in Eq (53a.) or (53b) becomes pro-
portional to the Boltzmann factor e ~'~ . Here 8 can be written Z =Z.+E,+
8,. In any one band (s' and v" fixed), Z„ is always a constant or practically so.
In singlet and case c bands Z, is also a constant, so that e ~'~~ reduces to a
constant times e s~i~r. The same is (at least approximately) true in case b.
In case a multiplets each band is composed of two or more sub-bands (same
s'. v", different Z). When the multiplets are widely spaced the sub-bands are
widely separated and are better considered as separate bands belonging to
different sub-systems of a multiplet band-system (cf. section GI). In such
bands we have E,=SO'+AAZ. From the foregoing we see that for thermal
equilibrium Eqs. (53a) and (53b) can always be written as follows:

EmiSSiOn band-lineS: I = g'v4ie ~ '~~~

Absorption band-lines: n = g"vie

(53c)

(53d)

In these equations, g is (very nearly" ) a constant in any one band in case 5
or c or singlet spectra, or in any one sub-band in case a multiplet spectra.

Very often in emission bands the initial distribution of molecules among
different rotational levels of a given electronic and vibrational state is ap-
proximately of a type corresponding to thermal equilibrium, even when the
excitation is not thermal in character (cf. Part I, p. 69 and Ref. 9, also Orn-
stein and Van Wijk, '4 and Kapuscinski and Eymers"), and even when the
distribution between diferent vibrational or electronic states is not at all

' I is in ergs per sec, while a is defined by the equation J=Joe ~, where x is the length
of path through which a light beam has passed when its intensity has been reduced from J0
to J. For a review of the bases of Eqs. (53), reference may be made to Ruark and Urey's
"Atoms, Molecules, and Quanta, " pp. 697—8 {McGraw Hill, 1930).

In connection with the derivation of Eqs. (54)—(55) reference may be made to pp. 716—17
of the same book, and to H. Honl and F. London, Zeits. f. Physik 33, 803 {1925);also (quantuIII
mechanics), to J.H. Van Vleck, Phys. Rev. 33, 467-506 (1929), especially pp. 475-6 and refer-
ences there given.
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like that for thermal equilibrium at the temperature indicated by the rota-
tional distributions. In multiplet bands, for example, the experimental g'
factors may be nearly the same for different multiplet components when for
thermal equilibrium they would differ in proportion to e ~~~1~~, a quantity
which in practise may have values differing greatly from unity. A good ex-
ample of this situation is found in the HgH bands (cf. section J2c).

Under special conditions (e.g. excitation by monochromatic light or by
impacts of the second kind or by electrons of closely regulated velocity) the
function R in Eq. (53@) may of course have values entirely different from
those for thermal equilibrium.

The i factors in Eqs. (53) are independent of excitation conditions, and
are given by Eqs. (54)—(55):

O' = O" and J' = J", i = (4J + 2) 0'/J(J + 1) (54a)
O' = O" and J' = J" + 1, i = 2J —2O'/J (54b)
O' = O" + 1 and J' = J", i = (2J + 1)(J + O)(J —O + 1)/J(J + 1) (55s)
O' = O" + 1 a,nd J' —J" = O' —O", i = (J+ O)(J+O —1)/J (55f)
Q' = Q" + 1 and J' —J" = O" —O', i = (J —O)(J —O + 1)/J (55c)

In Eqs. (54) and (55), the symbol J means the larger of the two quantities
J' and J", if these are unequal. The symbol 0 has analogous meanings.
KVhen A') 0 and at the same time A."&0, each line is double, the two com-
ponents having the sares value of i." In this case Eqs. (54)—(55) give the sum
of the i values of the two components.

In the single series of lines which the I' and R branches together make
when the $'s are neglected (cf. above) 6' one or more lines near and always
including M =0 are missing. One or more lines corresponding to the lowest
M values, and always including M=O, are also missing in the Q branch or
branches. The missing lines are determined by the conditions J'& O', J"&
Q" (cf. Part lib, p. 105). The various missing lines, the intensity distribution
among the band lines, and the effects of the A.-type doubling when the @'s are
not neglected, depend in a very characteristic manner on the values of 0'
and 0".

The relations discussed above can best be appreciated by a study of the
examples in Figs. 17—19. It will be noted that in these examples the energy-
level A-type doublet widths P,(J)—Pz(J) are shown as having very varied
behavior, depending essentially on the value of Q. The P(J)'s and their ef-
fects on the band structure will be discussed in some detail in the following
sections (for a brief discussion, cf. Part Iib, pp. 99—106 and Fig. 16 and recent
revision" of pp. 99—100.)

"In each h.-type doublet rotational level (or in each 0-type doublet level, in case c), the
two components have equal statistical weight. Hence in the resulting double lines (cf. Fig. 17),
taking into account also the equality of the i values, the two doublet components should be of
practically equal intensity, at least under usual conditions of excitation.

68 As will be shown below, branches such as P, and R„or Pd and Rd, may still form a single
series even when we do not neglect p' and p": cf. Eq. (58) for the case of singlet states.
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F. SINGLET AND CASE 6 BANDS

In the preceding section, we have been considering relations which hold
equally for case c, case a, and singlet or case b' bands. In the present section,
we shall consider exclusively singlet and case b bands, with particular refer-
ence to the/(J)'s and their relation to rotational uncoupling of the L vector
(approach to case d'). In Sections G and H we shall then consider several
special features of the bands and band-systems of case a multiplet states and
of case c states.

1. General. In Fig. 17 the arrangement of the rotational levels and their
relation to the band lines are shown for several important types ofsinglet
bands. Empirically, the following types are now known: 'Z, 'Z 'II 'Z.
'Z, 'II; 'II, 'Il; '6, 'II. All of these, it will be noted, are in agreement with the
selection rule DE=0, +1. Fig. 17 and the entire discussion of this section
(F) apply equally well to case b' bands with 5)0, provided hrst we substi-
tute A and X everywhere in the text for 0 and J; the superscripts 1 should
also be dropped in symbols such as 'Z, 'II, 'A.

In Fig. 18 the characteristic missing lines and the intensity relations are
shown for the band types of Fig. 17. In Fig. 17 we use the A and X notation
of case b' in order to facilitate the subsequent discussion of case b states.
Fig. 19 shows again, by means of another type of diagram, first used by For-
trat, the missing lines and intensity relations for a 'II, 'Z transition. Fortrat
diagrams show well the forms of the branches as functions of M. These are
always parabolic arcs, if we neglect small terms in 3P,3II', etc. in Eqs. (50)—
(52). The band-head appears at or near the vertex of the P parabola if 8')
8" or of the R parabola if 8'(8". The vertex of the Q parabola is usually
also noticeable in the band as a well-marked second head, especially if the
low-numbered Q lines are strong (8 large or T low).

In connection with Fig. 17, we note that 'Z, 'Z transitions are of two kinds,
namely 'Z+, 'Z+ and '2, 'Z ." Empirically there is no difference between
these. They have been treated in detail in Part I under the name of 'Z, '5
transitions. "

2. Egects of uncoupling terms p(J) for small uncoupling Theory a.nd ex-
periment indicate" that, so long as P(J) is small, it can be closely approxi-
mated, for singlet states, "by the series

"Transitions 'Z+, 'Z and 'Z, 'Z+ are not possible, because of the joint action of (1) the
rule that only positive and negative terms can combine and (2} the rule AJ= +1 only (no Q
branches) which holds when 0'=0"=0 (cf, Eq. 54a). [For exactly the same reasons, 0+, 0
and 0, 0+ transitions (cf'. section H2} are ruled out in case c.j In 'Z, 'Z bands a departure of
the coupling conditions from those of case b' toward case d' or toward case c is capable, how-
ever, of breaking down the second rule and permitting weak Q branch transitions between
'Z+ and 'Z states. [Similarly in 0,0 bands (case c} a departure of the coupling relations from
those of case c toward b' or d' should make possible 0+, 0 and 0, 0+ bands composed of weak

Q branches. ]
"A slight rehnement, of no practical importance, is the fact that t 0 is now seen to be

slightly diferent from v, +v, . This was not noted in the discussion in Part I.
"Theory of A-type doublet seParations @.(J)—p&(J), R. de L. Kronig, Zeits. f. Physik

SO, 356 (1928); J. H. Van Vleck, Phys. Rev. 33, 484—9 (1929). Theoretical deduction of forms
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where 5;»p,;» , and If.; is of the order of magnitude of 5;. In the
case of Z states, P(J) is single valued, but if A)0 it is double-valued (P,
and Qs). When the Q(J)'s are given by Eq. (56), they can be amalgamated
very easily with the other terms in Eqs. (29), (31), (49), and (50)—(52). If
we put"

8; =8, +b, , D*; =D„+p;, (57)

then in the above mentioned equations we can omit all the functions Q(J)
if at the same time we replace all the 8„'s and D, 's by corresponding 8*'s
and D*'s. For example, Eqs. (50)—(52) become

I

l I

I ~

Fig. 19, Fortrat diagram of a 'II, 'Z band. (The diagram also applies equally well to
any case b' II,Z band. ) Above, Eqs. (50), (51) and (52) for v are plotted as continuous func-
tions of (M(. In the P branch, M= —Z', hence (M (

=Z"; in the Q branch, M=Z"; in the
R branch, M=Z'+I =Z'. If v were plotted against M instead of against ~M~ the I' and R
branches would form a continuous curve. The wave-numbers of actual band-lines are given

by the intersections of the plotted approximately parabolic curves with horizontal lines cor-
responding to integral values of ~M ). The intensities of the band-lines are indicated here by
the areas of the black discs which have been drawn at each such intersection. Missing lines are
indicated by the absence of a disc. The values of B', B",and T assumed here are the same as
for 'II, 'Z in Fig. 18, and the frequencies and intensities are the same as in Fig. 18. Below,
the appearance of the actual band is shown, using unbroken lines for the Q branch, broken
lines for the I' branch, and dotted lines for the R branch.

of Autividgel @;(J)'sof 'Z, 'II, and '3 states for the case of a special model (especially appro-
priate to the excited states of H~ and Heg}, E. L. Hill and J. H. Van Vleck, Phys. Rev. 32,
2 70 (1928) 6 H Dleke Zeits f Physlk SV ) 7 1 (1929) Summary of experimental data (on
states with A. &0), R. S. Mulliken, Phys. Rev. 33, 507-11 (1929); Phys. Rev. 1931.
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P, ;(M)

~ ~

= vo —(8* + 8';")M + (8"' —8* "+D* —D*;")M'
R;;(M) + 2(D* + D*;")M'+ (D* —D*;")M'+ .

Q;,(M) = ~, + (8* —8*;")M+ (8*,' —8*;"+ D", —D*,")M~
59+ 2(D' —D*;")M'+ (D,' —D*;")M4+

In using Eqs. (58) and (59), it should be recalled that in a given band we
have I'„Pq, Q, q, Qq„R Ri qibranches or else P,q, Pq„Q., Qq, R,d, Rq, branches
or else just one P, one Q, and one R branch.

The form of Eqs. (58)—(59)—that of Eq. (58) is the same as that of Eq.
(11)—is exactly the same as if the Q's had all been zero in Eq. (49). But we
see that the "eAective" 8 and D values B~ and D~, which determine the band
structure and which we can obtain from its analysis, are not the true 8,'s
and D, 's which we need in calculating I„r„etc. Furthermore, there is
Usually no way of determining just how much the 6's and p, 's contribute to
the effective 8's and D's. Fortunately, however, the theory gives us assur-
ance that these contributions are always small in cases for which Eq. (56)
holds. %hat happens when this is not true we shall consider a little later.

In the case of 'II states, as Van Vleck has shown, "the function P;(J) has
the two forms

p~(J) = —2C + (C + Ci)J(J + 1) +,and,

q4(J) = —2C+ (C+ Cg)J(J + 1) +. . . (60)

[A letter from Van Vleck shows that P~ goes with Ci. ] In general, the
theoretical determination of the coefficients C requires a knowledge of all
the 'Z and '6 states of the molecule, and is therefore not practicable. But
for the special case that the uncoupling terms Q(J) are due mainly to the
presence of an electron in a large orbit with azimuthal quantum number /

(example of the case of "Pure Precession" ), as in many of the states of Hi
and He„simple formulas can be given for the C's (cf.Van Vleck, and Dieken).
C2 is always zero in this case, and if 1=1, C is also zero, so that one of the
two @'s is also zero, and one of the two 8 's is equal to 8„. This case is
found experimentally in the npII levels of He2, of which a long series is known
(u=2 to ll). When one compares the 8*;values for different members of
this series, it is observed that 8; remains nearly constant, while B~ de-
creases steadily with increasing n. WVe conclude that 8', =8, and that
ad ——9,+CI. The B„values so obtained vary only slightly with n, as is to
be expected since the equilibrium of the nuclei is very little aHected by the
excited electron in its large orbit. The Ci values agree well with those cal-
culated theoretica1Iy. —Fig. 13 of Part IIb corresponds to the case just dis-
cussed, except that here (in Hei) the Z levels are above the corresponding II
levels instead of below them as in Fig. 13.

For the case of pure precession, g(J) is zero for 'Z states if /=0, but if
l=1, it is comparable with the P(J)'s of II states, and if I =2, with those of
'6 states.

For '0 states the theoretical expressions for the coefficients in P;(J) in
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Eq. (56) are in general very complicated, but for the case of pure precession
and a special (qualitatively correct) model they have been evaluated. "

Although simple theoretical formulas cannot be given in general for the
coefFicients of Eq. (56), theoretical expressions are available when A)0 for
the diff'erences q4(J) —$q(J), and these differences can also be determined
experimentally.

The theory shows that for 'II states, 8, —5q (equal to C~ —Ci of Eq. 60) is
of the same order of magnitude as 5, or 6& itself, so that the A.-type doublet
widths in the rotational levels of such states are given by

'II states, Av, q = (8, —Sq)J(J + 1) + (61)

For '6 states, the theory gives 6, —6d 0, but gives p, —p~ comparable
with p,, or p, d. ' The A-type doublets should therefore be very much narrower
than in 'lI states, being given" by

(62)

The theory further shows that 5, 5&, ti, ti& for 'C states (A=3), giving
still smaller Di 's proportional to J'(J+1)', and so on.

The effect of A-type doubling is obvious in the band-lines themselves
only when A.

' and A" are both greater than zero; then each line is double.
The A-type doublet widths in the band-lines are always either the sum or
the difference of the A-type doublet widths of the upper and lower energy
levels involved. If in the Q branches the line doublet widths are sums of
energy-level doublet widths, then in the P and R branches they are dhger
ences of energy-level doublets, and vice versa. This and certain further re-
lations can be better understood from the diagrams in Figs. 22 and 346.
These figures, to be sure, do not show singlet bands, but the relations in
question are equally well exemplified in multiplet bands. (It is also worth
noting that the 'HI, 'll& diagram in Fig. 22 could have been used equally
well as a 'II, 'II diagram. ) Equations for the line doublet widths can easily
be obtained from Eqs. (57)—(59), but these are somewhat complicated and
it does not seem worth while to give them here.

3. Effects of stronger uncoupling; case d' and intermediate cases As we.
have seen in Part Iib (Ref.54, pp. 100—104, and Ref. 55), the terms @;(J) in
singlet states are symptomatic of the beginning of an uncoupling of an or-
bital angular momentum vector I.~ from the electric axis of the molecule
whereby an average component ph/2ir of 1.* parallel to the axis of rotation
is developed. So long as p& &I., the energy is approximately given, as we
have seen, by T =A+8*J(J+1). When the 'uncoupling becomes practically
comPlete (case d'), p becomes nearly constant and of the same order of magni-
tude as I., and the energy is approximately given by

T = A' y g(J —r)(J —r + 1) = A*+ eJ + BJ(J + 1),

"More preciselyv', the doubling in '6 states is proportional to (J—1)J(J+1)(&+2},
which means that 8,—Bd= —2(p, —tttd}, but this times J(J+1) is negligible.
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where I r= R—of Eq. (30) of Part Iib, and r is a small integer approximately
equal to p. During intermediate stages of uncoupling, the energy cannot mell

be expressed over a range of J values by a power series in J," If the un-

coupling does not proceed very far, however, the following expression can be
used:

P,(J) = a; + eJ + 6;J(J + 1) + qJ' + . (63)

Relations corresponding to Eq. (63) have been found especially in some of
the pO levels of He2 which show only moderate uncoupling, and also in other
cases, e.g. that of the '2 upper electron level of the well-known CuH bands. "

If we use Eq. (63) instead of Eq. (56) for the p(J)'s in Eq. (49), the fol-

lowing equations are found for the I' and R branches:

R' (M) = ( +;")+ (B*' + B' "+ —;")M

+(terms as in Eq. 59, if we neglect the q s of Eq. 63) (64)

P;;(M) = (vo —e ) + (B*,'+ B*;"—e + e;")M+. . . (65)

The P, and R, (or Pa and R~, or P, ~ and R,~, or P~, and Rd, ) branches no longer
form a single series as they did in Eq. (58). In addition to the fact that
the coefficients of M (and M', etc. ) are different for P and R, the two branches
do not coincide at the missing line M = 0. Relations of this kind are found in
the He& and CuH bands just mentioned.

If we go now to the case of complete uncoupling (case d'), we have the
rotational quantum vector R* combining with the vector /* or I.* to give a
resultant J*. Since in case d' the interaction between R* and the motions
of the electrons is small, the probability of simultaneous changes in the nu-

clear and electronic quantum numbers is nearly zero, according to classical
electromagnetic theory (using Fourier analysis) applied via the correspon-
dence principle to quantum theory. Hence we expect either (a)DR=+1
(and 6J= 0, + 1), with no changes in the electronic quantum numbers (pure
rotation or oscillation-rotation bands) or (b)DR=0 (and AJ=O, +1) if the
electronic quantum numbers change (electronic bands); in (b) the same selec-
tion rules hold for I or 1. as in atoms (20=+1, or 61.=0, +1). If in Eq.
130) of Part Iib, the term f(R, K —R) is negligible, we have, taking
p=T —T

T' = T,' + G' + B'R'(R' + 1) +
Z

fl y
If + Gll + BIIRtr(RII + 1)

and, calling R'=R"= M,

v = vo + (B' —B")M + (B' —B")M' + (66)

This has the form of an ordinary Q branch (cf. Eq. 52), regardless of the value
ofhJ. In practise, f'(R,K R) and f"(R-,K R) are not ent-irely negligible, and
we expect a group of' branches differing in form somewhat, or even considera-
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bly (depending on f' and f") from that of a Q branch. r' How many branches
there are in such a group depends on the values of L' and L,";e.g. , if I.'=
2, L"=1,there are nine.

As was noted in Part Ilb, examples of case d' states are known only in
some of the higher excited electron levels of H2 and He2. No bands are yet
known, however, in which both the initial and 6nal states are case d . In
many bands the upper level is, or approximates, case d', while the lower is
case b' with a more or less strong departure toward d'. In such bands the
forms and intensity distributions of the branches show many peculiarities,
and vary in a remarkable manner from one example to another. For example,
a single branch may have two heads. ~' Many of the branches which would
occur for case b' are contrary to the selection rules of case d', and even in the
intermediate cases under discussion these are generally weak or absent. On
the other hand, some branches which are absent or weak in case b' become
strong. Even in those bands where both the upper and the lower level ap-
proximate case b', the tendency toward case d' gives rise to considerable de-
formations in the branches, as already discussed, and causes very noticeable
changes in the intensity relations as compared with Eqs. (54)—(55)."

G. CASE g MULTIPLET BANDS

1. Bands and sub-bands; systems and sub-systems. Before taking up band
structures for case a multiplet bands it is well to consider how the bands are
arranged in the spectrum. In a transition between two case a multiplet levels,
the selection rules for the electronic quantum numbers are M = 0, + 1 and
6 Z = 0 (cf. section D2). Because of 6Z = 0 the resulting molecular multiplet
contains the same number of members (25+1,one for each Z value) as do the
multiplet levels themselves, whereas in atomic multiplets the number of com-
ponents in the multiplet is in general greater than the number of members
in either of the two levels. If the magnitude of the coupling constant A (cf.
Eqs. 27 and 31) is not very large, the band lines corresponding to a given v'

and v", but belonging to diferent members of a multiplet, are closely asso-
ciated and may be considered as together forming a multiple band, —the
(v', v") band, —of which they form sub bands (cf. Fi-g. 20a). If ~A

~

is large
compared with the vibrational coefficients co.' and ~,", however, then band-
lines alike in v' and v" but belonging to different multiplet components may
be far apart and form in fact separate bands (cf. Fig. 20b), and the sets of
such bands associated with each component of the multiplet are quite natur-
ally regarded as constituting separate band-systems or as forming sub-sys-
tems of a multiple system. [On p. 68 of Part I we defined a band-system as
consisting of all the spectrum lines associated with a definite pair of elec-
tronic states. It is natural to consider all the members of a molecular mul-

' For a more exact discussion of the energy and intensity relations in case d' and in-
termediate cases, and their relation to the observational material on He2, cf. G. H. Dieke (l. c.
Ref. 71), and R. de L. Kronig and Y. Fujioka, Zeits. f. Physik, 53, 168, 175 (193{)).

~' For a review of the empirical material on H~, cf. %. E. Curtis, Trans. Far. Soc., 25,
Part 11, p. 694 (1929).
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tiplet as belonging to a single "electronic state, " and the corresponding bands
as forming a single system, so long as ~A

~
is not too large (case b and, for not

too large ~A
~

values, case u). But when ~A
~

is large (case a with large ~A ~,

and case c,—cf. section IIl), it is more natural to regard different multiplet
components as separate "electronic states, " and the corresponding bands as
forming separate systems. J

The arrangement of sub-bands in a band, or of sub-systems in a system,
is capable, in respect to the relations of sub-bands or sub-systems to energy
levels, of showing a number of variations which are important from the
standpoint of the experimentalist. These depend on the relative values of
A' and A". They are illustrated in Fig. 21.

2Q Q&y

2

0

5

2

0

V'
e

g gi/ 6
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lI~/,

O,R 0,'I 0,0 1,0 Bg
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0,1. 1,0
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Og 0,0 R,O
O,i 1,0

'h~), lip

Fig. 20. In Fig. 20g is shown a 'II/II system composed of bands each consisting of two
overlapping sub-bands. In Fig. 20b is shown a ~A/II system consisting of two sub-systems
'h&~, 2II&~ and 'A&~/II' which act nearly like independent systems, although if more bands were
shown, they would overlap somewhat,

2. Band structures in case a and their interpretation. Fig. 22 shows the
nature of the band-structures, missing lines, and intensity relations for some
typical examples of case a bands. It is based on relations already discussed
(cf. sections Z2 and Z3, noting especially the paragraph before Eqs. 53c,d),
except as concerns the forms of the p(J)'s. These are treated below.

In connection- with the interpretation of case c bands it should always be
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borne in mind that the ideal case a is rot often closely approached. This is
because if

~

A
~

is too large we get tendencies toward case c, while if it is too
small, or in any case if J is large, we approach case b. Reference shouM be
made to section H3 for a detailed discussion of these deviations (cf. also G4).

In the analysis of case a bands the apparent or effective 8 and D values
obtained may be expected to differ from j3, and D, values ior two reasons:
(1) the effect of the tendency toward case b (S uncoupling) causes the B„
and D„values to be replaced by the quantities B*and D~, and (2) the effect

2Tr
1ir 2j

ip

Fig. 21. Diagrams illustrating, by examples of 'II, 'II and other transitions, how the rela-

tive v values of the different components of a case u molecular multiplet depend on A' —2".
The diagrams correspond to molecules without vibration or rotation. The numbers given are
the 0 values of the various levels. For each of the examples shown, two cases are possible

which empirically are decidedly diferent, namely {1) bands degraded toward higher fre-

quencies, {2) bands degraded toward lower frequencies. A further cause of differentiation

of empirical structure {magnitude of A' —A" relative to ~, ' or ~,") is illustrated in Fig. 20.

of the P(J)'s causes these in turn to be replaced by B~* and D**. (B**;=
B*+b;, etc.—cf. Eq. 57). Fortunately allowance can be made, in the case
of the 8's, for the first of these e6ects, which is usually much the more im-

portant, by means of the relation B*= B(1+ B/AA+ ) for doublet
states (cf. Eq. 46) and by means of the following relation for triplet states:"'

For Z = 0, B~ = B„for 5 = + 1, B* = B„(1+ 2B./Ab. + ). (67)

3. p(J)'s and A tyPe doublin-g in case a. For case a triplet bands" (or in

general, for bands where 5 is integral), the P;(J)'s, for small t. uncoupling, are
of the form given by Eq. (56). In case a the widths of the A-type doublets

depend very strikingly on the value of Q. Thus in 'II states (according to

"Theory {'IIand 'II states}, cf. Van Vleck, /. c. Ref. 71; experimental data, cf. Mulliken,

). c. Ref. 71. Van Vleck gives for the most part only the relations for the A-type doublet
widths, but the relations here given for the individual coe%cients {in particular, 5, and t((d

not necessarily both zero) are very probable when one considers the results of the calculations

of Hill and Van Vleck and of Dieke {I.c. Ref. 71).
'6 Cf. E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 261 {1928}.Eq. {67) follows from

Hill and Van Vleck's equations for triplet states.
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Fig. 22. First few rotational levels and first two lines in each branch, with their intensity
factors i {cf.Eqs. 53-55}for several examples of transitions between case u states. The further
course of the intensities in each branch can be seen from Eqs. {53)-{55).B'=1.158"has been
arbitrarily assumed for the 'II, 'II transitions and B'=1.28" for the 'II, 'II; this is merely to
prevent the Q lines from falling together in the diagrams.

The relations between the 1, —and the c, d designations of the rotational levels are cor-
rectly shown {cf.Table V) in the diagram. The relations shown for the 3II states in Fig. 22

are equally applicable to regular and inverted 'II states. The relations shown for the 'II states
are correct only for regular 'II states. For inverted 'lI states the designations c and d must be
interchanged (cf. Table V).

The order in which the c and d levels are drawn (i.e., d above or below c) is in the case
of the 'II~ level that which is empirically usual for regular 'II~. In the case of the 'II1, levels,
the order shown is that which would be expected theoretically {cf.Fig. 16) to correspond to
the order shown for 'II~, although experimental data on this relation are scanty because the
A-type doublets are usually too narrow to measure in ~III~. (The predicted relation has, however,
been verihed in some cases.) In the case of the 'II levels, the relations shown may not be
typical; neither experimental data nor theory are yet sufticiently available to decide this.

The widths of the A-type doublets are arbitrary, but the mode of their variation with J
is correct for case u states {cf.text, section G3): for Q=0, they are constant, for Q=-,', they
are proportional to {J+$),for Q=i, they are proportional to J(J+1), for Q=i-', and 2 they
are approximately proportional to J' and J' respectively. In the latter two cases they are
ordinarily so small for small J values that they are not shown on the diagram. For diagrams
of A-type doubling in II states intermediate between cases a and Ib, cf. Fig. 34b, neglecting the
difference between light and heavy lines. The diagrams give a good idea of the varied manner
in which the doublet widths in the band lines are related to the doublet widths in the energy
levels. In particular, they show that the doublets may be very different in the I', Q, and R
branches.

The diagram marked 'Do, 'II0 is equally applicable to any transition, for instance ~II0, II0,
between case e states with Q'=Q" =0. The diagrams for Q'=Q" &0 are also applicable to any
transition between case c or case c states with the same Q values. For example, 'II, 'II, or '61,'b, 1,
or any transition between two case c states with Q=1, is like 'III, 'II&.

theory supported by considerable experimental evidence), the 'IIO levels
(0= 0) show a doubling which exists even for J= 0 and remains constant with
increasing J; the II& levels show a doubling proportional to J(7+1), just
1ike 'II levels; and the «II~ levels show an extremely small doubling approxi-
mately proportional to J'(7+1)', just like '6 levels. These relations hold
whether A is positive or negative. For the individual coeScients K„Kg,
5., bd, etc. in Eq. (56) we may probably assume:r'

«II, it, Q f(:, 8, 8g,' «II, z, „, 5, Q $; II, , f(;, $, g„, P, g P„.

As
~

A
~

becomes larger (tendency toward case c) the two components of
«IIo should separate more and more widely and regroup themselves until
there are two separate sets of levels which can be considered as belonging to
two separate electronic states. If

~

A
~

is increased sufficiently, these two
states become case c 0+ and 0 states (cf. Fig. 23 and section H1) and are
independent of each other. For moderate

~

A
~

values, however, they and the
«III and 'II2 states are properly considered as forming a case a multiplet. Ac-
cording to Van Vleck, ' the separation between the two 'IIO states, so long as
it is small compared with ~A~, should increase, other things being equal,
about in proportion to A'. Examples of 'IIO states where the A.-type doublets
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are narrower than the distance between the lowest rotational levels are known
in the II, GII bands of C2 and N~, examples where they are much wider proba-
bly exist in the halogen bandsv' where, however, the resulting levels are more
nearly case c than case a.

Going in the reverse direction, toward small
~

A
~

values, the A-type doub-
let widths tend to become proportional, for all three levels 'IIO, 'III and 'II2 as
these approach one another, to X(K+1) of case b

For other than 'II states, analogous relations may be expected, ~' namely for
small A, h.-type doublet widths approaching proportionality to [X(%+1)
as in case b, and for large ~A ~, doublet widths proportional to [J(J+1)j",
with a proportionality constant decreasing rapidly with increasing Q.

In case a 'II, states we have, theoretically and experimentally, i~ p, (J)—
Pe(J) =a(J+-', ), for not too large J values, with the coefficient a approxi-
mately proportional to A. For 'III; states the doublet widths become smaller
with increasing ~A ~, and are experimentally too small to measure if ~A

~

is
fairly large. They are (theoretically) proportional to (J——,')(J+i2)(J+ss)
when ~A

~
is fairly large (true case a).

In case a 'II states, and in general in case a states with 5 half-integral, we

may assume that Eq. (63) holds. For the coefficients in Eq. (63), the fol-

lowing relations probably hold: 'Il„z, zq, e, —eq, with ~e, ~
2a (this re-

lation has been found experimentally in HgH and similar molecules), "
Sti 5P j II]&s Ka Kcfs 6a CP Os 5c Sds

The behavior of the A-type doublets in 'II states in the passage from case a
to case b is discussed in section Js.

H. BANDS OF CASE c AND INTERMEDIATE CASES (a-c, b-c)

1. 1Vature of case c. Energy /eoels, quantum numbers, nomenclature Be-.
fore taking up case c bands, it is desirable to enlarge the concept of case c
given'4'5 in Parts IIc and IIb. In Part IIu the various coupling cases were
discussed in terms of a molecular model obtained (for fixed nuclei) from an
atomic model by separating the latter's nucleus into two parts. A slight
separation of the parts causes only a slight perturbation ("weak electric
field" in Fig. 10), corresponding" to case c. The quantum numbers are L, , S,
and J' as in the united atom (cf. p. 114), together with 0, which is the only
distinctive molecular electronic quantum number here. If L, =0 we get case
b instead of case c. A larger separation of the parts, causing a "strong elec-
tric 6eld, " gives rise to the characteristically molecular quantum number A,
also to Z and 0 if A &0. Only S remains as in the united atom. This is case
a if A & 0, or case 5 if A. = 0.

In addition to the form of case c just mentioned (which we shall refer to
as the "close nuclei" case-c) there is another which results if two atoms, each
one having a strong coupling of its I with its 5 to give a J, form a molecular
state with small energy of dissociation D, and large r„or even with a larger D
and smaller r, if ~A

~

is extremely large. In this "far nuclei" form -of case c,
the molecule as a whole has no electronic quantum numbers L, J, or even

~~ R. S. Mulliken, Phys. Rev. 35, 699—705; 35, 1440-1450 I;j.930).
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S, but has only Q. In practise the far-nuclei form of case c should be the
usual one. Examples approximating this case appear to exist in certain ex-
cited states of the halogen molecules. '

The following definition seems to cover both forms of case c: "Case c
exists whenever the atomic L, 5 couplings are strong compared with the
effects of the departure of the molecule from atomic conditions. "

In case b states, A and 5 are the important electronic quantum numbers.
The same is true in case a, but 0 is also important. In case c only 0 is im-
portant. Case a and b and singlet states are named Z, II, 6, according
as A=O, 1, 2, , and are also classified as 'Il, 'Il, . . . according to the
value of S. The rotational levels of such states show A-type doubling when-
ever A&0.

Case c states must be classified according to their 0 values. Instead of
introducing a new set of symbols similar to Z, II, 6, , it has been pro-
posed" to call case c electronic states simply 0, 1., 2, , states according
as 0=0, 1, 2, . The rotational levels of such states should show a doub-
ling, which may properly be called "0-tyPe doubHng" since it occurs when-
ever Q&0.

The 0 states of case c are divided into two classes which may be called
0+ and 0 states, in analogy to the designations Z+ and Z in case b. The
0+ states have positive rotational levels for J = 0, 2, 4, . and negative
levels for j=1, 3, , while in 0 states these relations are reversed (cf.
Fig. 23).

The two component rotational levels in 0-type doubling are here defined
as e or f levels in the following way: sets of rotational levels (+ —+ — )
whose lowest level is positive are for all electronic states called e levels, sets
( —+ —+ . ) beginning with a negative level are always called f levels
(cf. Table V and Fig. 23)." 0+ and 0 states are thereby automatically classi-
fied as having respectively only e and f levels, and might therefore also be
called 0' and 0~ states. All these relations are analogous to those in ordinary
singlet states where, however, we have used c and d instead of e and f
Singlet states might indeed be classified just as well under case c as under
case a or b'.

To obtain an expression for the energy of a molecule which is applicable
to both the near-nuclei and far-nuclei forms of case c, the discussion on p.
114 of Part Ilb needs to be generalized somewhat. (1) For near-nuclei, we
have J'* giving M as its projection on the electric axis. For ~M

~
)0, we have

two levels + ~M
~

and —~M
~

whose energy is equal if the nuclei are held
fixed (cf. p. 93 of Part Ilb). To this degenerate pair we assign the quantum
number f1= ~M ~. For M=0, there is only one level, with Q=0. When the
molecule rotates, the resulting distortion of the electron system gives rise

"One might attempt, by means of adiabatic correlations between rotational levels of
case c and of cases a and b, to extend the h.-type doublet designations (c and d) of cases a and $
to case c. This, however, leads to conflicting or at least confusing results, so that it seems best
to adopt new designations (e and f) for 0-type doubling. If one wishes, it is possible to use the
case c designations e and f also in case a.
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to a correction term P(J) for exactly the same reasons that give us P(X) in

singlet states. For Q&0, Q(J) has two forms P,(J) and Pd(J) for the same
reasons that g(X) has two forms in singlet states, and we have 0-type doub-
ling. (2) For far-nuclei, the J's (Jt and Js) of each of two atoms give an
Mt and an Ms. The algebraic sum of Mt and Ms is M. When

~

M
~
)0, there

is for every positive M a corresponding negative M. We then have 0=
~
M~,

with 0-type doubling. %hen 3III ——M~ =0, we have a single level 0=0. When
3f& = —.V2, we get two levels 0+ and 0 . These arise from a quantum me-
chanical resonance between the two possible combinations +ALAI —352 and
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Fig. 23. Rotational energy level diagrams of case a and b states, and of the states into
which they go over in case c. The relative spacings of the rotational sub-levels for the difer-
ent E values in the Z state are drawn, assuming y~0 in Eq. (33), in accordance with Kramers'
formula (cf. equations near middle of p. 107 in Part III5). Both 'Z+ and 'Z (not shown) of
case b give $ states in case c, as do also all case u states (e.g. , 'II1) with 0 = —,'. 'Z+ and 'Z would

give each a —,
' and a 1-,' state. 'Z+ states give a 0 and a 1 state, as shown, while 'Z states,

as can easily be seen by making appropriate changes in the 'Z diagram, give a 0+ and a 1

state. By suitably redrawing the 'Z+ diagram, it can easily be seen that the results stated
would not be changed if the 1 state were below the 0 state in case c. 'Z+ states give a 0+,
a 1, and a 2 state, «Z a 0, a 1„and a 2 state. 'H0 states (likewise 'II0, 'A0, etc. states) of case
a all give a 0+ and a 0 state in case c, This breaking up of states like 'II0 into two states occurs,
however, for large (A

~
values even in case o, before case c is reached (cf. section G3).

—Mt+Ms. (3) in both forms of case c, 0 and 0 combine to give J*just as in
case a (cf. p. 105 of Part Ilb), and the energy is given by

T = T'+ G(s) + B„[J(J+ 1) —0'+ H'j + y;(J) + D„J'(J +1)'+ (68)

This is the same as Eq. (48) except for changes of notation and the substitu-
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tion of the more general symbol T' for the not very useful special expression
Fo"+yA J'(J'+1)+ which holds for the near-nuclei case.

2. Bund structures ~n case c. In case c the energy as a function of J is
the same to within an additive constant as in case a and singlet states (cf.
Eqs. 31 and 68). The intensity relations also depend on 0 in exactly the same
way as in case a and singlet states (Eqs. 53—55). The 0-type doubling of
case c should also be like the A.-type doubling of case a states, except that
doubling should be absent when 0 =0, instead of when A. =0.

From the foregoing, we see that case c bands with given 0' and 0" must
nearly always. be just like case a or singlet bands with the same 0' and 0".
For example, case c 0,0 transitions (where the 0's refer to 0', 0") should be
just like 'Z, 'Z transitions; 1, 1 transitions should be like 'II, 'II and case a
'II&,III~', 1, 0 like 'II 'Z. —'

~ like case a 'IIg 'IIg 1~, 1-', like case a 'II&y 'II g.

and so on (cf. Figs. 17—19 and 22).
Case c 0,0 transitions are of two kinds, 0+,0+ and 0,0; 0+,0 and 0—,0+

transitions are impossible in case c for the same reasons that 'Z+, 'Z —and
'Z —'Z+ are ruled out." The diagrams for 'Z+ 'Z+ and 'Z, 'Z transitions
(Fig. 17) also apply to 0+,0+ and 0,0-.

3. Intermediate cases between b, a, and c. For a good understanding of
any of the coupling cases b, a, c, d, it is important to investigate the inter-
mediate cases. This is true because the cases that one meets in practise are
nearly always to some extent intermediate even though they can be approxi-
mately classified under one of the limiting cases a, b, c, or d. Suppose we begin
by discussing the cases approximating case a.

The energy in case a, for a state of specified 0, can be expressed by the
following equation of the same form as Eq. (68) of case c:

T = T' + G(s) + B*[lJ(J+ 1) —0' + C] + p;(J) + D*J'(J + 1)' +
Case a in practise only approximates the following characteristics of ideal
case a: (1) T'= TO'+AAZ; (2) G(v) is. independent of Z; (3) B*=B„,D~=
D„C=G'+S'~,„„(cf.Eq. 31), where C is the same for both doublet com-
ponents if S=-,', but in general depends on Z, since S'~,„~=S(S+1)—Z'.
In ideal case a, A, 5, Z and 0 are all sharply defined quantum numbers.

The real case a lies between case b, where A is so small that the coupling
of A and S is overpowered by the rotation, so that Z and 0 are not defined,
and case c, where the coupling of I- and S to J (near-nuclei) or the couplings
of L& and S„ to J& and of Lm and S& to J2 (far-nuclei, with L&S&J~ and L,S,J,
belonging to the separate atoms) are so strong that h. , Z, and (for far-nuclei)
even S are not good quantum numbers, although 0 is." In the real case a,
therefore, none of the quantum numbers A, S, Z, 0 of ideal case a are quite
sharply de6ned, so that the functions T', G(v), F(J) and the band structures
show deviations toward either case b or case c or even toward both simul-
taneously.

7' Of course if the rotational energy is very small (small Jor large reduced mass p) we can
come close to ideal case e for small A values, avoiding the inAuence of both cases b and c. We
are here assuming, however, that the rotational energy is moderately large, as is usually true
in experimental work with band spectra.
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The deviations toward case b show themselves 6rst in a departure of the
B* values from the true B„values (cf. Eqs. 46 and 67). The C values also
show departu'res from case a (cf. Eqs. 46-47). The B,'s themselves, however,
likewise the G(s)'s and the P(J)'s, become more and more nearly the same
for different multiplet components as ave approach case b.

Case f2 states, speaking practically, are states in which neither the case b

departure of the B 's from the B,'s, nor the case c departures of the G(v)'s,
B,'s, etc. from a single value (cf. next paragraph) are too large. When the de-
partures toward case b or c are large, we speak of "intermediate cases"; inter-
mediate cases between a and b have been treated in Part IIb and are further
treated in section J.

Deviations from ideal case a toward case c cause the different multiplet
components to depart from the equidistant spacing given by T'= ro'+
AA Z, and also produce differences in the U(r) functions of the different mul-
tiplet components, so that (cf. Eqs. 3, 4, 6 of Part I) G(s) and the coefficients
B„D„etc.differ somewhat for different multiplet components. This can be
seen in the following way. If, starting from r =r. for a good case c multiplet
state, we follow the U(r) curves of the different multiplet components either
toward r =0 or toward r = Qo, these different curves approach asymptotes
whose separations are determined by energy levels of multiplets of the united
atom (r =0) or of the separate atoms (r = ~). These asymptotic separations
are practically certain to be different from the separations of the U(r) curves
for r =r, . The magnitude of this effect and of the deviations toward case c
depend of course on the size of the I., S coupling coefficients A of the mul-
tiplets of the united atom and separate atoms. It is clear, however, that all
case a states must pass through case c when r—&0 and when r—&~ ." The re-
lations just discussed are illustrated in Figs. 2 and 3 of Ref. 77.

Departures from cases a, b, and c toward case d or e (rotational uncoupling
of h. or 0 with increasing J) express themselves in the occurrence of if'(J)'s.
These are responsible for the occurrence of B~'s instead of 8„'s.

In the previous paragraphs we have seen how case c states go over to case
b states as A —+0 or J increases, and into case c states as r—+0 or r~ when

~A
~

is large enough to prevent case b. Now let us consider what happens to
case b states when r—+0 or r—+. For this purpose we must treat separately
case b states with A)0 and those with A, =O. Case b states with A)0 cor-
respond to small ~A~ values in the molecule and usually also for both
united atom and separate atoms. Such states should remain case b for practi-
cally the entire range of r values. More interesting are the states with A =0
(Z states). ff these go over as r~0 or r &~ into atomic —states with 1.=0, or
with very small ~A

~

values, then of course we again have case b throughout,
or practically throughout, the entire range of r values. But in many cases 2

"Case c occurs when the effect of the forces associated with the electric axis is weak com-
pared with the I., 5 coupling or couplings I', "weak electric field" in Fig. 10 and Part Ilu) 0

case a or b when these forces are so strong as to break down the I., S couplings ("strong electric
6eld"), or t,'case b) whenever the I.'s or 5's are zero or the couplings between them are very
small.
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states go over into atomic states with L)0, and if ~A
~

is not too small, we

get case c for r values near r = 0 and for large r values. " If the ~A ~'s are large

enough, we should get appreciable deviations from case b toward case c

even for r near r,.
Fig. 23 shows some typical examples of the way in which the rotational

energy levels of case a and case b states go over into those of case c states.
In the examples shown, there is a regrouping of the rotational levels, often in
such a way that levels (such as 'Z and 'IIO) which are classi6ed as belonging to
a single electron level in case a or b are divided between two electron levels
in case c (but cf. discussion of IIO states in section G3). (Splittings of this
kind have already been discussed, for fixed nuclei and small r, on p. 95 of
Part IIa).

4. Band structures in intermediate cases. In intermediate cases between
case a or 6 and case c, changes in the forms of the branches as compared with
either of the limiting cases must occur, except in some special kinds of transi-
tions. Approach to case c also tends to break down the case a selection rule
6 Z =0, thus gi~ing rise to new multiplet components (e.g. , 'II&t, 'II1 and 'IIt,
'II~1 in addition to the usual 'II;, 'Ilt and 'Il, y, 'Il, t of case a) and new branches.
It also tends to increase the intensity of intersystem transitions (6540),
especially for far-nuclei case c, where the molecule has no quantum number 5.
A summary of the changes in band structure which occur in going from case b

through case a to case c will be found in section I8.
In Z, Z transitions, the influence of a tendency toward case c should bring

in new branches fulfilling the rule AJ=O, +1 but having AE =0, +2,
and so (cf. Eqs. 69—71) forbidden in case b (or, strictly speaking, in

case b') It shou. ld also make possible (BJ=O, +1, 6K=0, +2, ) some
transitions between Z+ and Z states, although all such transitions are
strictly ruled out in case b.69 Again, deviations from case c toward case a or
b make combinations possible (Q branches only, however) between 0+ and
0 states, although these are strictly ruled out in case c." In some other cases
too, new branches are to be expected in intermediate coupling cases which are
not possible in the limiting cases.

I. CASE 6 M ULTIPLET BANDS

1. Relation of case b rnultiplet bands to case b' and singlet bands When in.
an electron state with S&0 the total energy is independent of the relative
orientation of 5 and Ewe have case b'' (cf. Part IIb, p. 108). The band
structures corresponding to quantum jumps between two case b' singlet
states (5=0) have already been discussed (cf. sections 8 and F and Figs.
17—19). Those for case b' multiplet states (5)0) are exactly the same. In
case b multiplet states (cf. Part IIb, p. 106), each case b' rotational level of
given X and given + or —and c or d character is split into a narrow group of
25+1 levels differing in J, but all having the original + or —and c ord
character. Similarly in the spectrum arising from a transition between two
case b electron states, each band line (K', It") of case b' is replaced by a nar-
row group of lines (several values of J', J" limited by the selection rule
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AJ=0, +1). If we add the intensities of all the components for each such
multiple line, the intensity relations among the resulting intensity sums are
exactly the same as the intensity relations (Eqs. 53—55) among the undivided
lines of case b, provided the distribution factor R in Eq. (53a) or (53b) is
the same for all J values associated with a given E value, as is normally to
be expected.

These various relations can be understood from the examples shown in
Figs. 24—27. In Fig. 24 the energy levels, and the band lines and their
intensities, are compared, for 'Z+, '5+ case b transitions, with the energy levels
and band lines of a case b' Z+, 2+ transition. (For the corresponding Z, Z
transitions, one needs merely to change every + sign in Fig. 24 to a —sign,
and vice versa. ) In Fig. 25 a similar comparison is made between a case
b 'II, 'Z+ and a case b' II, Z+ transition. The nearly case b '6, 'II transition
shown in Figs. 26 and 27 should be compared with the '6, 'II transition in
Fig. 17.

2. Notation for band lines in case b. In Part IIb (pp. 112—13), a classifica-
tion of case b levels as FI, F2, according as J=X+S, X+S—i,
has been given. It is often more convenient to speak of TI, T2, etc. , if we wish
to refer to the complete terms instead of just to the rotational part I". In
transitions between two case b electron states, the band lines can be desig-
nated in a similar manner, by appending numerical subscripts to the designa-
tion P, Q, or R which gives the values of hJ. The way in which these sub-
scripts are used can be seen from some examples.

Pi(J) = Ti'(J —1) —Ti"(J)
P2(J) = T2'(J —1) —Tg"(J)

&P„(J) = Ta'(J —1) —T&"(J)

Qi(J) = Ti'(J) —Ti"(J)
&Rg, (J) = Tg'(J + 1) —Ts"(J)

"Q2i(J) = T2'(J) —Ti"(J).

The first numerical subscript refers to T', the second to T". %hen 1' and
'1" have the same subscript, only one subscript needs to be used after the
symbol P, Q, or R. The superscript at the left gives AX, which is important
in that it determines the form of the branch. For instance, &R» is of practi-
cally the same form as Q, and Q„and falls together with these in case b',
although it is technically classed as an R branch. The superscript is really
implicit in the main symbol and the subscripts, and so can be omitted, but
it is often helpful to use it in order to make the classification of the branches
more obvious. Not all the combinations P2~, R», Q», etc. occur in every type
of band.

In a similar way, subscripts are used to indicate, just as in singlet and
case a bands (cf. Fig. 17), which levels (c or d) in A-type doubling are in-
volved in any band line. (For definitions of c and d levels, cf. Table V.)
Examples:
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~E„1g(J) = T2,'(J —1) —T1g"(J); R1,(J) = T1.'(J + 1) —T1,"(J).
The allowable combinations of the subscripts c and d differ in the different
branches and in different kinds of electron transitions, as in case e and
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Fig. 24. Lowest rotational levels, and first few lines of each branch with their intensity
factors i (cf. Eqs. 53, 70, 71), shown graphically, for a case b'Z+, Z+ (cf, Fig. 2 of Part I) pnd a
case b~Z+, ~Z+ transition. The satellite branches {4J&4X)in the ~Z, ~Z are shown with dashed
lines. The spacings of the levels are drawn in accordance with the following relation (cf. Eqs.
32 and 33 of pp. 106-7 of Part IIb with A. =O and m=0): T= Const. +8E(E+1)+~~y[J(5+1)
-E(E+1)—S(5+1)),with y'=0.48", y"=0.28",and S=$, for the case b levels, y=0 for
the case b'levels. 8'=1.18"is assumed in both cases. The order of the sub-levels (T~ above

Tg) in the Z states is typical, but T2 above T~ for one or both is also possible. The rotational
levels shown, like those of all Z+ states, are all classed as c levels. The M values given under

the diagram (M= —E"for E'=E"—1 and M=E"+1 for E'=E"+1) help )o make clear
the relation of the case b lines to those of case b'.



I2i

singlet bands, but can always be readily determined by means of the +~~-
se1ection rule.

3. 'Z, 'Z bands. The way in which the positions of the band lines in

case b diBer from those of the corresponding single Iines of case b' depends on
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Fig. 25. Lowest rotational levels, and first one or two lines of each branch, with their

intensity factors' (cf.Eqs. 53, 72, 73) shown graphically for a case b II,Z transition and for a

case b 'II, 'Z+ transition. For simplicity, B'=B' is assumed. The main branches {AJ=~)
are shown with full lines, the satellite branches (b,J&~}with dashed lines. The case b

levels and lines are the same as for 'II, '2+ {cf.Figs. 17, 18, 19). The levels of the case b ~II state

are drawn exactly the same as those of the case b'II state except for the addition of a term

f{E,J-Z) as in Eqs. {32)-{33)of Part IIb to give the spin doubling (Ti and T2 levels, i.e.
J=Z+ ~). The A-type doublet widths for both Ti and T& levels are proportional to X{X+1)
and are the same for a given E value as those of the case b'H state. The spin doublet widths

in the 'II levels have been drawn corresponding to A =B/2 and y =0 (also m =0, of course) in

Eq. (33}of p. 107, Part IIb.
The way in which the intensities of the band lines for a case b'II, Z transition are divided

among the various component lines in case b can be seen, for the first one or two band lines,

from the figure. The course of the intensities for higher J values can be read from Eqs. {73),
and is also described in the text. The 3f values given under the diagram (M= —E"in the I',
3I=E" in the Q, and M=+X"+1 in the R branch) help to make clear the relation of the
case b lines to those of case b'.

The figure is in one respect not typical, although also not impossible, for 'II 2Z: usually

when A is very small for the 'II state, giving case b, y~0 for the 'Z state. Here, however, a
large p has been assumed in order to show the satellite branches more clearly. %hen p=0
for the ~Z state, the satellite lines coincide with corresponding main lines.
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the magnitude and sign of the energy splittings of the rotational levels of the
initial and final states in a way which can be seen from Figs. 24—27. Ke can
conveniently discuss this question first for the important case of 'Z, 'Z
transitions.

First we may note an important relation which holds for '2 states: the
magnitude of the coefficient y in the equations (33 and 36, with 4 =0, w=0)
which govern the doublet separations of the rotational levels is usually
roughly proportional to the coupling constant A of a neighboring 'll level
of the same molecule. @ Commonly the Ti doublet component (I=X+-', ) has
a higher energy than the Ti component (/ = If —,'), bu—t this rule is not with-
out exceptions.

In 'Z, 'Z bands, the structure consists theoretically of two series of triple
lines, one series corresponding to the I' and the other to the R branch of case
b' (cf. Fig. 24). The P series is composed of the sub-series Pi, P2 and PQ»,
the R series of Ri, R2, and sQ». Except for the lowest values of X, thesatel-
lite branches Q» and Q» are, however, of negligible intensity (cf. Eq. 70c and
fifth paragraph of section I3), so that for practical purposes the P and R
series are composed of doublets (Pi and P2, Ri and R2). In each doublet
line, the intensities of the two components are practically equal, except for
very small IC values (cf. Eqs. 70u, 70b, and fifth paragraph of section I3).

If one takes the center of each doublet line, i.e. , —,'Pi(Z)+-,'P2(R') or
—',R, (E)+-',R&(K), the equations for these doublet-centers are of practically"
the same form as Eqs. (50)—(51) and (58) for P and R branches in case

Z, Z transitions. The doublet separations in the band lines are usually
differences of the energy-level doublet separations of the upper and lower
'Z states, and are often very small. Either Pi(X) &P&(K) and Ri(X) &R,(IC)
or P&(X) &P2(K) and R,(E)&R2(X) is possible, depending on the relative
magnitudes and signs of the upper and lower energy-level doublets. The
doublet widths of corresponding lines in the I' and R branches are more or
less unequal, for reasons which can readily be seen from the diagram in Fig.
24.

In cases where the doublets are resolved for the smallest X values, their
components become noticeably unequal in intensity in such a way that
I(Pi) &I(P2) and I(Ri) &I(R2). At the same time some of the intensity is
diverted to the satellite branches. In the first line in each series there are
are only two components, of which one is the Q (satellite) component. In
the first line of the P series we have Pi(1-,') and ~Q»(-,') while in that of the R
series we have Ri(2) and ski(-', ), with the Q component half as strong as the
other in each case (cf. Fig. 24).

'Z, 'Z bands have in general two heads (a P, and a P2, or an Ri and an R,

8' Cf. J. H. Van Vleck, Phys. Rev. 33, 497—500 (1929).
8' If the doublet separations are measurable for small X values, the doublet-centers no

longer follow Eqs. (50) and (51) exactly, since the energy-level doublet splittings become dis-
tinctly unsymmetrical for small X values (cf. Eq. 33 of Part Ilb with A =0, and Fig. 24).
If suitable centers of gravity are used for each doublet (or rather, triplet), Eqs. (50) and (51)
should, however, still hold exactly.



head). These are visibly separated, however, only if the doublet widths are
fairly large, as in molecules with large A, 5 coupling (large A in states with
A)0), e.g. HgH.

The intensity relations which have been discussed in the preceding para
graphs are expressed quantitatively by the following theoretical equations;"
these can be obtained as special cases of Eqs. 70—71 by putting A' =A."=0
in the latter:

P„or R& branch: i = 2K(K + 1)/(2K + 1) = (J —4)/J (69@)

P2 or R2 branch: i = 2h(K —
1. )/(2K —1) = (J' —~)/J (69b)

Qq2 or Q2q branch: i = 2K/(4K~ —1) = (2J + 1)/4J(J + 1). (69c)

In these equations, E, or J, is the larger of the two quantities X' and X",
or J' and J",except that in the Q branches J=J' =J". The complete inten-
sity relations are determined by Eqs. (69) in connection with Eqs. (53),
which apply exactly as before.

In practise, Eqs. (53c) and (69) usually hold well for 'Z, 'Z emission
bands. "~ The predicted approximately symmetrical distribution of the I'
and R series, with slightly higher intensity of the I' series because of the
Boltzmann factor in Eq. (53c), is fulfilled. The approximate intensity equal-
ity of the doublet-components for large X values, and the inequalities and
other relations predicted for low X values, appear usually to be fulfilled. ""
There are, however, exceptions. In the C bands of CaH, whose upper level
seems to be of an unstable type, one component of each doublet is much
weaker than the other or even entirely missing under some conditions. " In
certain HgH bands, s' the I'I and R2 branches are about two or three times as
strong as the I'2 and RI branches for all X values. The explanation of these
peculiarities is not known. In the case of CaH they can be attributed to
unusual excitation behavior reflected in the distribution factor R' in Eq.
(53a). In the HgH case, however, even this possible explanation fails.

4. '2, 'Z and other Z, Z bands. Other Z, Z transitions should showchar-
acteristics similar to those of 'Z, 'Z. In all such transitions, excepting inter-
system combinations, the number of strong components (main branches)
into which the lines of the I' and R series of case b' split is 25+1. There are
also other components (satellites) whose intensity is negligible except for the
lowest X values. In '2, 'Z transitions, for example, using the rule AJ=O,
+ 1, we see that the P branch of case b'(K' =K"—1) should split into P~,
P2, P3 (all strong), ~Q~2 and ~Q23 (very weak), and ~R~3 (exceedingly weak),
while the R branch (K'=K"+1) should give R~, R2, R3 (strong), sQ~2 and
sQ» (very weak), and sP» (exceedingly weak). The strong branches, as in
'Z, 'Z transitions, are those in which AJ =AX. That this must be true can

"R.S. Mulliken, Phys. Rev. 30, 138 (1927}.
'4 Violet CN bands, F. A. Jenkins, Phys. Rev. 31, 556 and Fig. 1, F (1.928}. N2+ bands,

L. S. Ornstein and W. R. 4 an Wijk, Zeits. f. Physik 49, 315 {1928).
"CaH bands, cf. E. Hulthen, Phys. Rev. 29, 97 (1927); and another reference (1930).

HgH bands, E. Hulth6n, Zeits. f. Physik 50, 332—33 (1928); W. Kapu4cinski and J. G. Eymers,
Zeits. f. Physik 54, 251 (1929};the subscripts 1 and 2 are reversed in Hulthen's notation.
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be seen by an application of the correspondence principle, and also follows
from the quantitative intensity equations (not yet given for this case, but
easily derivable).

In 'Z, 'Z transitions, no general rules can be given for the order and
spacing of the three components PIP2P3 or RIR2+ of a given line of the P or
R series. The order of the three levels J=X, %+1 in a 'Z state depends on
the sum of two energy functions, usually both small, "namely w(K, J—K)
and f(K, J'—K) of p. 107, Part IIb. (Cf. Fig. 34 foran example showing actual
spacings in a Z state. ) Since these functions are quite different in form, and
both also di8er for initial and final states, the possible arrangements of the
components of the band lines are numerous. Crossings of component branches
with changing X are often to be expected. " 'Z, 'Z bands should have in gen-
eral three heads, visibly separated, however, only if the triplet separations
are fairly large. Examples of 'Z, 'Z bands are known in 02, S~, and SO.»&»

No 'Z, 'Z bands or Z, Z bands of higher multiplicity are yet known.
5. Other case b bands. The band structures for transitions between arsy

two case b states are always related to those for the corresponding case b' or
singlet states in the manner already discussed for 'Z, 'Z and 'Z, 'Z bands.
Each line of the case b' band is replaced by a group of 25+ 1 strong compon-
ents for which 6J=AX, together with additional weak components for which
5J=0, + 1, but 6Jgd E. The strong components corresponding to a given
case b' line are practically equal to one another in intensity except for very
small X values. The weak components are of altogether negligible intensity
except for the very lowest Z values.

Fig. 25, which with its caption is largely self'-explanatory, shows the band
structure and intensity relations for a typical case O2II —+'Z transition. " It
also shows mell the arrangement of the rotational levels for a typical case
b 'II state with A &0 (in the figure, A =8/2 is assumed). In a case b 'lI, 'Z
transition, we have for large K values the branches Qi, Q, (about equally
strong), R&, R„P, and P2 (each about half as strong as each Q branch). For
low X values, the R branches gain in intensity at the expense of the P
branches, just as in a 'II, 'Z transition (cf. Fig. 18). For the lowest K values
the satellite branches take on appreciable intensity. The R and P branches
each have one satellite, namely Q» and Qi2 respectively, while the Q
branches have two satellites, P» and ~R». Some equations for doublet
separations applicable to case b bands mill be found in section J. Of these
only Eq. (85) is of much interest, since the others (Eqs. 77, 85m, 85b) involve
the very weak satellite branches.

Diagrams similar to Fig. 25 can readily be constructed in an analogous
manner for other case b transitions. Figs. 26—27 show a (nearly) case b
'5, 'lI transition. Fig. 31 shows the possible main and satellite branches (full

"The magnitude of f, as in the case of 'Z states, should become larger for heavy mole-
cules, increasing approximately in proportion to the A values of their II states."For further details in regard to an actual example, cf. W. Lochte-Holtgreven and G. H.
Dieke, Ann. der Physik [SJ, 3, 937 (2929): Og bands.
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and dashed lines) for a 'II, 'Z transition in case b I.t also shows additional
transitions (dotted lines) which are expected for 'II, 'Z with case a 'II, but
these can be disregarded for present purposes.

%hen A.
' and A." are both greater than zero, there are twelve main

branches and eight satellite branches. The latter are of negligible intensity
except for very low J values. As an example, the '6, 'H CH band near) 4300
may be cited (Figs. 26 and 27).'s Here, to be sure, the 'II energy levels for
the lowest J values show a considerable departure from case b toward case a,
but the '6 energy levels, and the intensity relations in the bands, are good case
b for all J values. Fig. 26 shows the energy levels and the transitions for the
lowest values of J, while Fig. 27 shows by means of a Fortrat diagram how the
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Fig. 26. Lowest rotational levels, and first line of each branch, for the '6, 'II band of CH
at X4300. The full lines correspond to main branches, the dashed lines to satellite branches.
The rotational levels are all drawn to scale (cf. R. S. Mulliken, Phys. Rev. , 30, 797, 1927),
except that the A.-type doublet separations in the 'II levels, and the spin doublets {TI, T&) in the
'6 levels, are exaggerated threefold. The 4-type doublets of the '6 levels are so small that they
have not been detected experimentally. The ~d state is good case b with A~ —1,B= 14.57,while
the 'II state has B=14.19 and A/B =+2.0 and is of a type intermediate between cases a and
b for the low Jvalues, but is good case b for high Jvalues. The intensity relations found in this
band (not shown here) are essentially those of case b. The + and —labelling of the levels
is based on data on the X3900 band of CH, assuming this to be a 'Z, 'II transition 1,

'cf. T. Hori,
Ref. 91).

band lines are arranged. A discussion of further relations in this band will be
found in section J4a.

6. Intensity relations in case b. The following equations, taken in con-
nection with Eqs. (53), give quantitatively the theoretically expected inten-
sity relationsee for transitions between any two case b douMet states (5=2):

'8 For derivation of case b intensity relations, cf. R. S. Mulliken, Phys. Rev. 30, 787—88
(1927); or Ruark and Urey, Atoms, Molecules, and Quanta, p. 718 (McGraw Hill, 1930).
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A' = A" E' = E" Q& i = 2A'(2E + 3)/(K + 1)(2K + 1) (70a)

Q, : i = 2A'(2E —1)/E(2K+ 1) (70b)

@P» and &R„:i = 2A'/K(E+1) '(2E + 1) (70c)
A' = i&", K' = E" + 1, P, and R, : i = 2(K + 1)(E' —A')/E(. 2E + 1) (71s)

P, and R2. i = 2(E —1)(E' —A')/K(2K —1) (71b)

~Qi2 and aQ i = 2(E' —A')/K(4K' —1) (71c)

(73a)

(73b)

(73c)

(74u)

(74b)

(74c)

~' = X" + 1, Z' = X",
Qi. i = (E + A) (E —A + 1)(2E + 3)/(E + 1)(2E + 1) (72g)

Q: '= (E + A)(K —A + 1)(2E —1)/E(2E + 1) (72b)

oPui and @R&2.'i (K=+ A)(K —A + 1)/E(K + 1)(2K + 1) (72c)

X' = X" + 1, E' —F" = X' —X",

Ri or P, : i = (E + A)(E + A —1)/E(2K + 1)

R or P: i = (E + A)(E + A —1)/E(2K —1)

sQ2i or ~Qi2. i = (K + A) (K + A —1)/K(4K' —1)
A' = A" + 1, E' —E" = A" —A',

P, or Ri'. i = (E —A) (K —A + 1)(E + 1)/K(2E + 1)

P2 or R~'. i = (E —A) (K —A + 1)(K —1)/E(2K —1)

i'Qig or i~Qgi. i = (K —A)(E —A + 1)/E(4K' —1)

In these i equations, E is always the larger of the two quantities X' and E",
A the larger of the quantities A' and A.". Eq. (73a) applies to Ri if A' =A"+1,
to Pi if A' =A" —1, and Eqs. (73b) —(74c) involve similar alternatives. 1Vhen
A' and A" are both greater than zero, each band-line given by the above
equations shows A-type doubling, and the intensity given by Eqs. (53) and
(70)—(74) is divided equally between the two components unless the excitation
function R of Eqs. (53) is of an abnormal kind.

7. A-type doubling in case b. In the case b 2II state of Fig. 25, the A-type
doublet widths have been drawn proportional to X(X+1), and of the same
width for J=X+-', . Experimentally and theoretically, these relations are
correct. Khen S is loosely coupled to A as in case b, the A-type doublets are
practically the same as if 5 were not coupled at all, or as if 5=0. If the
coupling of 5 to A is increased, however (transition toward case a), the A-

type doublet widths become increasingly different for J=X+-', and J=E ——,
'

(cf sections G3. and J5).
A good example of typical case b A-type doublet relations is found in the

'A, 'II band of CH (cf. Figs. 26, 27), in spite of the fact that the 'II state tends
toward case a for the lowest J values. The A-type doublet widths in the
'II state are given approximately by 0.036K(K+1) for both J=E+-,' and
J=X—~~(the separations are at first slightly larger for the T2 than for the
T, levels, but become equal for larger X values). In the 'A state the A-type
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doublet widths are practically zero, for both J=K+-,' and J=E——,', just as
the theory demands for a '6 state (cf. section G3). The way in which the A-

type doubling appears in the band-lines can be seen from I ig. 27, and is
further discussed in section J.

8. Comparison of band structures in cases b', b, a, c. If we think erst of a
case b', then of a case b, then of a case a transition, a11 with the same values
of 5, A.

' and A", and consider Anally the same transition in case c, we have first

I T

22900 23000 100 23200V~ 300 23400 500

Ill II It s II

4

R,d,

lo

Fig. 27. Fortrat diagram of main branches of CH X4300 band (cf. Fig. 26). The data are
from E. Hulthen, Dissertation Lund, 1923; cf. also R. S. Mulliken, Phys. Rev. 30, 801 (1927).
The intensity relations (not shown here) are essentially those of case b. It will be noted that
there are four main P, four main Q, and four main R branches. For a given value of E or
M(M= —E"in the P, M=X" in the Q, and .'fil =+X"+1 in the R branches), corresponding
lines of the four P branches form a close group. In order that the spacings of the lines in such
a group, and their variation with M, shall be clearly visible, they have all been exaggerated tvflo-

fold both in the Fortrat curves above and in the v diagram below. The same has been done in
the Q and R branches. This should be borne in mind if one wishes a true picture of the band.

In the part of the diagram showing the actual arrangement (except as above noted) of band
lines in the spectrum, the Q branches are omitted because they are too crowded to show to
advantage. In the P and R branches, one has for the lowest

~

M
~

values rather wide doublets
P~ and Ps, R~ and Rs, due to the spin. These, however, contract rapidly with increasing lilI

~

(transition from case a to case b). At the same time each component, e.g. , PI, splits into two
(P I,. and P I,d), as a result of h-type doubling, giving quadruple lines. The 4-type doublet widths
increase rapidly with ~M~. For large ~M~ values the spin doubling becomes almost imper-
ceptible, so that we now have again practically only doublets, e.g. P, and Pd. These changes
can be readily followed and understood from the Fortrat diagram.

in case b a single band with single lines, then in case b a single band each
line of which is split into a narrow group of components, 25+1 in number if
we neglect weak satellites and leave the lowest X values out of consideration,
then in case a erst a division of each band into a group of 25+1 sub-bands,
changing for larger A values into a division of the band system into 25+1
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sub-systems, which in case c become entirely separate. Reference should be
made to Sections H3 and H4, and to section J, for a more detailed treatment
of intermediate cases.

J. MULTIPLET BANDS, INTERMEDIATE AND MIXED
CAsEs BETwEEN c AND b

1. Introduction. —In many band spectra there is case a coupling in the
initial state, case b coupling in the final state, or vice versa ("mixed case").
Important types are: sII(case a)~'Z and 'Z —+'II(case a), 'A(case b)—+

'II(case a), 'II(case a) —+'Z. Another frequently occurring possibility is that
one state is case b or case a, while the other is intermediate between a
and b; or both states may be intermediate between cases a and b ("intermeCk
ate cases"). Hill and Van Vleck have shown" how the theoretical intensity
equations of the band lines can be obtained, when 5=-„ for both intermedi-
ate and mixed cases.

In such bands, equations for the branches as functions of the quantum
numbers often have complicated forms. These can, of course, alwaysbe
obtained by taking T' —T", using suitable term equations (cf. Part IIb, pp.
108—13), but usually this is not worth while. In the following paragraphs,
explicit equations will be given only for the important case of 'Il, '-Z transitions
with a case a'II state.

In bands of the kind now under discussion, the only strict selection rules
are those which are common to case a—+case a and to case 6—&case b transitions.
These are: for the electronic state, DA =0, + 1; for the rotational levels, 6J=0,
+ 1, and positive ~ negative.

In the special intermediate case that both initial and final states are at
about the same intermediate stage between cases a and b, the qualitative
intensity relations can easily be obtained by interpolating between those
which hold for case a~case a and for b~b transitions. In a 'II~'II transition,
for example, we have, if both states are case a, two P, two weak Q, and two
R branches, each wi(h A-type doubling. If both states are case b, we have ex-
actly the same branches, although their arrangement is different, but in
addition have four very weak (satellite) branches with A-type doubling. By
interpolation, intermediate cases here have practically the same intensity
relations as both limiting cases. But if one 'II state were case a or nearly case
a and the other case b or nearly case b, such an interpolation would not be

applicable. In fact the intensity relations for such a mixed case are very
different than for the kind of intermediate case just discussed. In section J4b
an example of a "mixed case" and of an "intermediate case" 'lI, 'II transition
are cited.

In practise, the most numerous examples of transitions of mixed and inter-

' E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 263—67 (1928). For equations for
'II(case u),~Z, cf. p, 266. On p. 33 of Ruedy's book (l. c. Ref. 59), Hill and Van Vleck's equa-
tions are given with Pg and P21 where PI~ and PI should be, and vice versa, also Qq and Qg~

for Q12 and Q1, and Eg and R21 for 812 and EI.
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mediate type are found in 2II, 2Z and 2 II bands, and the following treat-
ment will deal mainly with these. The structure and intensity relations in
such bands are primarily a function of A/B of the 'II state, whose magnitude
determines the extent to which this state approaches case a or b. No cor-
responding variation in the character of the '2 states needs to be considered,
since except for possible tendencies toward case c or d, 'Z levels are always
case b. KVe must, however, consider the eAect of the doublet widths of the 'Z
levels on the band structure, and must also not forget that there is a difference
between &+ and Z states in respect to the selection rules for their combina-
tion with c and d rotational levels of 'II states (cf. last paragraph of section
J2).

2. 'II, '~&' and 'Z, '-II bands with case a 'II state. It will be convenient to begin
with the extreme case (mixed case) of a definitely case a 'II state (large
~A ~/B) The ot.her extreme case (small ~A /B, case 'b 'II as well as '2 state)
has already been treated (cf. Fig. 25 and section I5). Intermediate cases
will then be considered with reference to these two extremes.

KVe shall begin with equations for the band lines. First we need ex.pres-
sions for the term-forms, Neglecting terms in powers of J higher than J',
these are"

'II, : T„(J) = lV, + —',a(J + -', ) + B&J(J + 1) +
T~~(J) = IV~ —2a(J+ 2)+B~J(J+ 1)+

'fly,'.'T2c(J) T2"(J) = 8'2+ B2J(J+ 1) +
'Z, J = K+-', : T, (J) = IV+-', yK+ BK(K+ 1)+

(75a)

(75b)

(75c)

= IV+ 2v(J —k) + B(J —2)(J + 2) + . (75')

'-', J = g' ——::T (J) = II ——', ~(K + 1) + BK(K+ 1) +
= II —-', y(J+1-', ) + B(J+ —',)(J+ 1—',) + (75e)

Eqs. (75a)-(75c) are equally valid for A)0 (regular -'II states) and for
A (0 (inverted 'II). In the equations for the 'II states, B' stands for B,*+8
(cf. Eq. 46 of Part I lb for B*),B2 for B2'"+b, '

"Cf. R. S. Mulliken, Phys. Rev. 32, 388 and 997 (1928), and Ref. 59, for detailed analysis
of examples of II, 'Z and ~Z, "'II bands; also XV. K. watson, Phys. Rev. 32, 600, 1928 and 37',

167, 1931 (BeH}; K. W. Katson and %V. Bender, Phys. Rev. 35, 1513, 1930 (CaH); E. Svens-
son, Zeits. f. Physik 59, 533, 1930 (CdH); G. M. Almy, Phys. Rev. 35, 1495, 1930 (OH). For
a review of experimentally observed intensity relations, cf. p, 393 of the writer's paper.

"Analysis of CH X3900 and X4300, cf. R. S. Mulliken, l. c, Ref. 88. Analysis of CH )3900
and 23143, cf. T. Hori, Zeits. f. Physik 59, 918 (1929)." In obtaining these equations, we assume @,(J) =-',a(J+-,'}+BJ(J+1)+ pd(J)
= ——,'fI, (J+-,'}+BJ(J+1)+~ for the 'IIg state (cf. Eq. 63 and section 63), and @,(J}
=@d(J)= BJ(J+1}+ for the 'III~ state (cf. section G3); 6 is assumed to have practically
the same value for the c as for the d rotational levels, and for 'II1, as for IIt. For the '2 le~ els,
we are using Fq. (32) of Part IIb with A=O and @(E,J) set equal to bX(%+1)1 ~ ~ (cf.
section I'2 and Eqs. 56—58 which, with E in place of J, apply to case b states as well as to case
b' singlet states), where the value of 5 is in general different from that of 8 of the II states.
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Fig. 28. Lowest rotational energy levels and lowest quantum number transitions in the
'Il~'Z+ bands of HgH with v'=0, v" =0. In these bands 8~, B~, 8, a, and y of Eqs. {75)and
{76)have the respective values 6.56, 6.61, 5.39, 3.40, and 2.10 (cf. E. Hulthen, Zeits. f, Physik
SO, 334„1928}.The intervals between the '2, the 'II~ and the 'II&~ states are so large that they
cannot be drawn to scale in the diagram, but they are indicated by the v scales at left and
right. The designations c and d, T& and T&, have been assigned by means of a correlation of
the levels with those of case b (cf, Table V, Ref. 58, and Fig. '16). The notation used for the
lines likewise corresponds to case b (cf. section J2).

The so-called E' values far the 'lI state are virtual values of E' obtained from the J values
according to the definitions E'= J'—-', for 'II&&(T&) and E'= J'+-,' for ~III-(T&), I.e. they are
the E values which the levels would take on if we could make A~O. The lowest level, J=+
of 'lI;, is assigned to E'=(0), since it is classihed as a T~ level in case a, although really, if
we could make A~O, J=~ would become T~{-,'},—cf. Fig. 15—which corresponds to E'=1.

In the band line symbol, the main symbol I', Q, or R represents 6J, which in the "main
branches" {full lines} is equal to AE. The superscript symbol I', Q, or R in the "satellite
branches" {dashed lines), where DJgAE, represents AE; such branches would in case b be
very weak. The superscript symbolO meansE' —E"= —2, 5 meansE' —E"= +2;the branches
with these superscripts are shown by dotted lines corresponding to the fact that they would
be "forbidden'"' in case b by the selection rule AE=0, +1. With a case a 'll state as here, the
branches which in case b would be main, satellite, and forbidden are all strong branches. The
distinctions between them are made here, and virtual E values are assigned in the 'lI levels,



only in order to facilitate comparison with bands having case b 'll levels or 'II levels intermediate
between cases a and b (cf. Fig. 30).

The order of the TI and T~ levels in the gZ state, and of the c and d levels in the ~II' state,
isthat which is usual (cf. Figs. 22 and 24). The separations of thee and 0 levelsare so small
in the gIII~ states that their order is not certain for low J values (cf. E. Hulthen, l. c.) but it
is here shown opposite to that in the 'II~ state, in accordance with Van Vleck's theoretical re-
sults (cf. Part IIb, Fig. 16). The labelling of the rotational levels as + and —is based on the
assumption (extremely probable on the basis of a study of possible electron configurations and
dissociation products) that the 'Z level is 'Z+.

II i=7'i'+ G~(~) + Ci+»'.G' —fI'+ &-'„.„)= Ti'+G~(r) + Ci+»(G-+ 4),

W, = T, + G, (.) + C. + a, (G —n + S,.„,) = T, + G, + C, + 2~, (G' —I-'.),
while a is a small constant, usually positive. In the '5 equations, "8 stands
for 8„+8, W stands for T'+G(v)+BG&, and y is a small constant. The
quantities 8„8, G(v), G', etc. mentioned have of course different values for
the 'II and 'Z states. Experimentally and theoretically (cf. sections G3 and
J3) the coeKcients n and y are both approximately proportional to A of
the "-II state.

It will be convenient to develop the band-line equations in connection
with an energy-level diagram for a typical example. Fig. 28 shows the energy
levels and their relation to the possible branches for the 'II, '-Z+ bands of
HgH, 0 which have a case a regular 'lI state. As a result of the rotational
selection rules AJ=O, +1 and +~~—,there are twelve strong branches,
namely two P, two Q, and two R branches in each of the two sub-bands cor-
responding to 'II&~, 'Z and to 'II, , 'Z. [Really in the 'II of HgH A is so large
that these "sub-bands" are separate bands belonging to two separate sub-
systems (cf. Fig. 20), with six branches in each such separate band (cf. Fig.
2g). ]

Before giving the equations for the different branches, an explanation of
the notation used here is necessary. This notation is one corresponding to a
case b 'lI 2Z+ transition (cf. section I2).98 The reason for using this notation
is that it will facilitate comparison between diferent 'II, 'Z transitions having
'lI states with various intermediate stages of coupling between cases a and b. '4

KVith the definitions of the branches which can be read from Fig. 28, sub-
stituting according to Eqs. (75) for the terms T, and reducing, we get the fol-
lowing equations (76a)—(76e)." The equations are here given, contrary to
the conventional practise, in terms of J, because this form will prove con-
venient below in comparing certain lines which are alike in J'.' To make

"This is possible, since for the 'lI levels there is a one to one correspondence between the
rotational levels of cases a and b {cf.Part IIb, pp. 112—13). Regular 'II~ levels of case a corre-
spond to TI levels of case b, regular 'III~ levels to T2 levels.

"Except for this, another notation (cf. section J2d) would be more convenient as well
as more appropriate.

"Cf. caption of Fig. 28 in regard to the significance of 0 and S in the symbols P» and
SAI.

"Eqs. {76) can be transformed into the usual explicit functions of J" (conventionally
written simply as J) by substituting the expressions J—1, J, J+1 for the symbol J' in the
equations of P, Q, and R branches respectively.
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clear what is being done, the steps are given in detail for PI2 as an example
(Eqs. 76a).

o&i2(J') = Tie'(J') —T2"(J'+ 1) = » + 2s(J'+ 2) + BiJ'(J'+ 1)

+ 27(J'+ 22) —8(J'+ 12)(J'+ 2k) +
»+ 4(s+ 5v —138) —(48 —Bi —2& —kv)J'

+ (Bi —8)J"+
Pi(J') = T,g'(J') —T,"(J'+ 1) = vi ——,'(a + p + 38)

—(28 —Bg + —',u + -', p)J' + (Bg —8)J"+
'Q»(J') = Ti~'(J') —T2"(J') = » —4(& —»+ 38)

—(28 —8~+ ls —lv) J'+ (Bi —8)J"+
Qi(J') = Ti, '(J') —Ti"(J') = vi+ —,'(a+ v+ 8) + (Bi+ —,'a ——,'v)J'

+ (Bi —8)J"+
&R»(J') = Ti, '(J') —T2"(J' —1) = vi+-,'(a+ y+8) + (Bi+-,'s+-', y)J'

+ (Bi —8)J"+
Ri(J') = Tiq'(J') —Ti"(J' —1) = vi —4(a —37+ 38)

(76b)

(76d)

(76e)

+ (28+ 8, —-', a ——',y)J'+ (Bi —8)J"+

I'~(J') = T~a'(J') —T~"(J'+ 1) = v2+ ~(3V —138) —(&8 —8~ —2v) J'
+ (82 —8)J"+

'I'»(J') = T2.'(J') —Ti"(J'+ 1) = v2 —l(v + 38) —(28 —82+ kv) J'

(76f)

(76')

+(82 —8)J"+
Q2(J ) T2 (J ) T2 (J ) = v2 g( —3'r+ 38) —(28 —B~ ——',y)J

+ (82 —8)J" +
Q&&(J') = T2d (J') —Ti"(J') = » + -'(v + 8) + (8& 2 r)J'

+ (82 —8)J"+

(76k)

(76 i)

(76j)

R~(J') = T2'(J') —T2"(J' —1) = » + 4h + 8) + (8~ + 27)J'
+ (A —8)J" + (76k)

~R„(J') = T„'(J') —T,"(J' —1) = v, ——,'( —3y + 38) + (28+ 82 ——,'y) J'
+ (8. —8)J"+ . (76l)

In Eqs. (76), v, = W~ —W, v2 = W~ —W, and, it should be noted, v, )v, always
(approximately, v2 —

v&
——

~A ~). It should also be noted that the 8's are always
larger (usually much larger) than a and y. Fig. 29 shows graphically by means
of Fortrat diagrams (cf. Fig. 19), for the 'II, '2+ bands of HgH, the forms of
the various branches given by Eqs. (76).

The equations for a 'II(case a),'Z transition are exactly the same as Eqs.
(76), except that the subscripts c and d in the definitions of the branches must



be interchanged, and corresponding to this (cf. Eqs. 75a,b), every a in the
equations must be replaced by —a.

2a. Coalescence of branches: eight bra-nch bands when y=0. Some relation-
ships between the different branches given by Figs. 28—29 and Eqs. (76) have
considerable interest for an understanding of certain special cases, and of the
empirical structure in the general case. These relationships, which can be ob-
tained very simply by subtraction using suitable pairs of equations in the
Eqs. (76) group, are as follows:

Q(2(J') —Pg(J') = r(J'+ 1) = y(K" + —',)

oR»(J') —Q~(J') = vJ' = v(&" + -')

Q2(J') —'P»(J') = v(J'+ 1) = v(&" + 2)

R~(J') —'Q»(J') = vJ' = v(&" + k).

(?7a)

('? 7b)

(77c)

(77d)

From these equations (cf. also Figs. 28 and 29), it can be seen that the eight
branches involved in Eqs. (77) form four pairs such that the members of each
pair, e.g. , vQ»( J') and P&(J'), differ in wave-number by the interval y(X"+-', ).
This interval is the doublet separation of two levels J" =X"+-', of the '&
state. " Thus the magnitude (and sign) of the 'Z doublet separations can be
read directly from the spectrum. Equations for the 'll doublet separations in
terms of differences between the frequencies of two band-lines can also be
given (cf. Eqs. 85a, 85b).

We note further that branches such as vQ» and P~ which form a pair of the
kind just discussed, are usually relatively near together on the Fortrat dia-
gram (Fig. 29). In fact, such pairs of branches become fused 'nto apparent sin-

gle branches if the 'Z doublet separations become vanishingly small (y 0)."
This often occurs, and the number of branches is then apparently reduced
from twelve to eight (four single and four double branches). The necessary
condition y 0 is, however, usually fulfilled only if A is not very large, since p
is usually approximately proportional to A. Hence these eight-branch bands
are usually to be expected only for rather small values of A, where there are
at the same time other deviations from the limiting case of 'II (case a) ~'Z
(cf. section J3, p. 141 for further discussion and examples).

2b. Forms of branches; position of heads The form. s of the branches (i.e.
the v's as functions of J') can be better understood if we 6rst rewrite Eqs.
(76) neglecting a and y. If further we make the substitution J'= —(m+1)
in the P branches and the related vQ» and Qs branches, and the substitution
J' = m in the R, Q~, and sQ2~ branches, Eqs. (76) take the following forms:

oPq2(m) and R~(m): v = v~ —~8" + (8' + 28")m + (8' —8")m' (78a)

P, (m) = vQ»(m), and Q„(m) = @R»(m): v = v&+ ',8"+8'rn+ (8' —-8")m' (78b)

P~(m) and sR~((m): v = v, —,'8" + (8' + 28")m +—(8'—8")m' (78c)

@Pq~(m) =Qz(m), and xQq&(m) = R2(m): v =v2+~8"+8'm+(8' 8")m' (78d)—-
9' From Fig. 28 one sees directly that, independent of the exact forms assumed for the

terms in Eqs. (75},intervals such as Q12(J') -P1(J'}represent exactly the doublet separations
of the 'Z levels, and vanish if the latter vanish.
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In these equations, BI and 82 have been written 8', 8 has been written 8".
In these equations m assumes negative half-integral values in the P, PQis, and

Q, branches, positive half-integral values in the R, Qi, and Qs, branches. It
is instructive to compare these equations with those for P, Q, and R branches
in ordinary case a—icase a transitions. Here (cf. Eqs. 15, 58 and 59) we have
essentially
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Fig. 29. Fortrat diagram (cf. Fig. 19) for HgH, corresponding to Fig. 28, and plotted as
a function of the parameter E' fcf. caption of Fig. 28). E' is the same as ~M~ of Fig. 30 fcf.
caption of Fig. 30) and other figures except in the following cases: OPn, ~M~ =E'+2; Pi,

Qn, and Pi, ~M
~

=E'+1; ' R... ~M
~

=E' —1. In comparing Fig. 29 with Fig. 30 and other
figures, the E' scale in Fig. 29 can he taken as an

~

M
~

scale if the branches just mentioned are
shifted {usually up) by ~M~ E' units. —

The intensities I (cf. Eq. 53c) of the lines have been calculated for a rotational energy dis-
tribution in each of the initial states 'llt2 and 'IIIt corresponding to thermal equilibrium at
T=900'Z, but assuming g of Eq. (53c) the same for 'II Ik and 'II2. 'I'hese calculated intensities
are proportional to the areas of the small white circles. The calculated values make use of the i
factors {cf.Eq. 53c) calculated by Kapuscinski and Eyrners, "and agree rather well with the
measurements made by them, except that the observed g factors are not quite equal for ~III,

and 'II It.
The actual appearance of the band is indicated in the lower part of the diagram. The

heights of the lines are shown proportional to their I values. When two lines fall very close to-
gether on the I scale, they have been represented by a single line with an I value equal to the
sum of those of its components.

If in Eqs. {75d), (75e) and {76),we had had y =0, the pair of branches PI and +QI2 would
become in effect a single branch occupying very nearly a median position. An analogous state-
ment applies to other pairs Qf and @RI2, ~PI~ and Q2, and Q2I and R~. Each of these pairs, it
should be noted, consists of what in case b would be a main and a satellite branch. The positions
of the unpaired branches PI2, RI, P2, and R2~ would also shift considerably if we had y=0.
If we had a=0 in the 'IIt, 'Z band, the branches PIo, Qf and @R12 would be shifted toward the
lef't as compared with their present positions, the branches PI, QI2, and R~ toward the right.
This would make the 'Il t, '2 band nearly a replica, except for missing lines, of the 'II I ~,'5 band.

In Figs. 28 and 29, we have B' &B",and heads are formed on the P2$P f2, Q~, and on the
PI2, PI. and QI2 branches. If v e had had 8'(B", the heads would occur on the other six

branches. For a =0 and p =0 the positions of the various heads would be given by Eqs. (79).
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P(M) and R(M): v = vo + (8' + 8")M + (8' —8")M' (58')

Q(M): v = vo+ (8' —8")M(M + 1). (59')

In the P branch, M has negative integral values, in the Q and R branches, it
has positive integral values. If the forms of the P, Q, and R branches in Eqs.
(58') and (59') are taken as standard for P, Q, and R, the P and R branches
(and their associated Q branches) in Eqs. (78a) and (78c) may be described
as ~sP and -ss-R form, those in Eqs. (78b) and (78d) as ', P an-d —,'-R-form.

If the M or m value of the band-head is denoted by 3I&„& or m&, .&, and
the displacement of the hand-head from the position for which i'lI =0 or I= 0
is denoted by Av~„~, we have the following expressions (cf. Part IIa, Eq. 16)
for the heads of the branches which are given by Eqs. (58'), (59'), and (78):

P or R of (58'): Mq„, ,- —(8' —8")/2C, and

Q of (59'): Mg, .g
= 0, Avg, ,„d ——0

oPu or Ri of (78a), and P2 or 'R. i of (78c):

Avt„, „g —(8' + 8")'/4C (16')

(16")

ml, «q ~ —(8' + 28")/2C, and Dvt, „q —(8' + 28")/4C (79a)

Pl Q12 or Ql R12 and PRI Q2 or Q21 R2 ~

ma, .g
—8'/2C, and Dvg„g —8"/4C. (79b)

In these equations, C stands for 8' 8". In E—qs. (16'), (79a), and (79b), of
course only half the branches named can have heads. E.g. in Eq. (16'), either
the I' or the R branch has a head according as ~V~,.~ comes out negative or
positive. Similar statements apply to the otherequations. If 8'&8"(C&0),
the P-form branches have heads, if 8' &8", the R-form branches have heads
(cf. also Figs. 25 and 26).

Starting with the simplified equations (78) and (79), the reader can per-
haps best see for himself, with the help of Eqs. (76) and Figs. 28 and 29, how
the forms of the branches and the positions of the heads change when we have
aWO and y/0. It sh'ould not be forgotten that a and y sometimes have
negative values.

2c. Intensity retations. For the ideal limiting case of a 'II state with
A =+~, the work of Hill and Uan Vleck ' shows that the intensity factors
i of Eqs. (53) should be given in any 'II(case a)~'Z(case b) band by the fol-
lowing equations (cf. section 2d in regard to the case A = —~):

oP~2 and P~. i = (2J' + 1)(2J' + 3)/32(J' + 1)

vQ„and Q). i = (2J'+ 1)'/32J'(J'+ 1)

oR„and Rg. i = (4J" —1)/32J'

P2 and @P2g. i = (4J" —1)/32(J' + 1)

Qg and sQ2). i = (4J" —1)(2J' + 3)/32J'(J' + 1)

R2 and ~R2g'. i = (2J' + 1)(2J' + 3)/32J'.

Eqs. (80a)—(80c) apply to 'II '~~ and Eqs. (80d) —(80f) to 'lI&!,'Z.

(80a)

(80b)

(80c)

(80d)

(80e)

(80f)



ROBERT S. MULLION

In practise the nearest approach to the intensity relations predicted by
Eqs. (80) is found in the HgH bands, where A/8 =+560. Even with such
a large value of A /B, there are rather pronounced departures from the rela-
tions of Eqs. (80) toward those of case b K. apukcinski and Eymers have
found" in careful measurements that the observed relative intensities in the
HgH bands are in agreement with those calculated from the general equations
of Hill and Van Vleck for A/8 =+560. These intensity relations are shown
in Fig. 29. The observed variation of intensity with J corresponds fairly
closely, for the lower values of J', to a thermal distribution of rotational en-

ergy with a temperature of about 900'K, but deviates considerably from this
at higher J' values. After making allowance for the v' factor, the g values (cf.
Eq. 53c) are apparently about 25% larger for the 'II; 2Z than for correspond-
ing 'III.„'Z bands. This difference is, however, negligible compared with the
ratio of the g values (about 360: 1 in favor of 'II;,'Z) calculated for thermal
equilibrium at 900'E. Evidently the factors determining the distribution be-
tween 'Il; and 'II~~ are quite different from those determining the rotational
distributions (cf. discussion preceding Eq. 53c).

2d. 'II(case a)P Z transitions with inverted 'II. Although Eqs. (75)—(79) all
hold for inverted as well as for regular 'II states in 'II, 'Z transitions, the
branches begin with different J' values when A (0 in the 'II state than when
A &0. This is because for A (0, unlike A &0, the 'II~~ levels are classified as
T~ (cf. Part Iib, pp. 112—13) and begin with J =1-,' while the 'II., levels are
classified as T& and begin with J=-,. Physically, this difference in respect
to the first lines of the branches is more apparent than real, since it results
solely from our use of case b notation for the 'II level. If we had dined all
'II~ levels as TI and all 'II~; levels as T2 for inverted as well as for regular 'II,
then the two cases A &0 and A (0 would be identical in respect to the J'
value of the first line in each branch as well as in respect to the validity of
Eqs (75)—(79). The intensity equations (80) would also probably" apply
unchanged if we defined all 'II; levels as TI and all 'II~, levels as T2, although
they surely do not apply with the notation used here. With the revised
definitions, we should have vI &v2 when A )0 and v2(vI when A )0, instead
of v2& vI for both cases as is true with the present definitions.

2e. 'ZPII(case a) transitions As ca.n easily be shown by comparison of
Fig. 28 with a corresponding diagram for a 'Z, 'II transition, the equations
(76)—(77) given above for 'II(case a),'Z transitions can readily be trans-
formed into the corresponding equations for 'Z, 'Il transitions in the following
way: (1) make the following substitutions of symbols: P for R and R for P,
subscript 12 for 2 j. and vice versa, T' for T" and vice versa, J" for J', X' for

A11 other quantities stand as before, but vI and v2 are now defined by
v&

——W —W&, v, = W —W, . (2) In Eqs. (76), reverse the sign of all quantities

%. Kapu4ci6ski and J. G. Eymers, Zeits. f. Physik 54, 246 (1929};J. G. Eymers, Zeits.
f. Physik 53, 396 (1930}. In these papers the quantities here designated as i are called f(j)."Intensity equations are not given for A (0 by Hill and Van Vleck, but it is fairly obvious
that the equations would be the same as for' A &0 if me define T& and T2 as corresponding to
'II~ and 'III~.
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on the right-hand side after the symbol v, or v2. In Eqs. (77), reverse the
order of the two symbols on the left han-d side.

To illustrate the meaning of these rules, two examples will be given. By
transforming Eq. (76a) for P,,(J') in the manner indicated, we get:

R„(J) = T,'(J" + 1) —T„"(J")
= v, —-', (a + 5y —158) + (48 —8, ——',a —-', y)J + (8 —8,)J' (81a)

Eqs. (81b)—(81f) can be obtained in a similar way. The J' and J" values of
the first lines in each branch in Eqs. (81) can most conveniently be read from
a diagram similar to Fig. 28 (not given here).

From Eq. (77a) for Q»(J') —Pi(J') we get

(82a)

AVhen y~o, we have apparent eight-branch bands as in the 'll, 'Z case.
Equations similar to (78) and (79) can be obtained for 'Z, 'Il transitions

after substituting J"= m in the case of the R and related Q branches, J"=
—(m+1) in that of the P and related Q branches, and putting 8 =8', Bi and
8& ——8", in Eqs. (81). [The desired equations cannot be obtained directly by
substitution in Eqs. (78)—(79) themselves. ] For example, we get in this way

Pi(m) and ~82,(m): v = v, + (15/4)8' + (48' —8")m + (8' —8")m' (83a)

I rom this,

mi„.d —(48' —8")/2C, and 0 vy„.g
—(48' —8")'/4C. (84a)

The forms of the branches are evidently similar to those of 'll, '~~ band .
The intensity relations are probably given'" by a set of equations obtain-

able from Eqs. (80) by interchanging the symbols P and R, and the subscripts
3.2 and 21, and substituting J" for J'.

3 'lI 'Z and 'Z, 'll bands with 'lI intermediate between cases a and b. Ke
wish now to see how the structure and intensity relations of 'Il, 'Z bands vary
with the value of A/8 in the range of intermediate cases" from case a regular
'II(A ))8) through case b 'II( ~A ~/8 small) to case a inverted 'II( —A & )8).
We can do this best in connection with a series of Fortrat diagrams (Figs.
29 and 30). These diagrams have been drawn from the equations of the vari-
ous branches, defined in terms of the T"'s and T"s as in the first equality given
in each of the Eqs. (76): for example, Pi(J) = T,q'(J 1) —Ti"(J)—if the '5
state is 'Z+ (cf. last paragraph of section J2 in regard to 'lI, 'Z bands). IWe
are now using the conventional definitions in terms of J" (identical with J
as here used) instead of in terms of J' as in Eqs. (76)."] The T"s are given in
general by the equation of Hill and Van Vleck (Eq. 37) instead of by the
special equations (75a)—(75c) which hold for large ~A ~/8 values and which
we have used in getting the second equalities in Eqs. (76). There is not much
point in giving for the general case explicit equations like Eqs. (76) in terms

1O' The intensity equations are not given explicitly for this case by Hill and Van Vleck,
but the necessary alterations in their equations for ~II(case a),'5 transitions are fairly obvious.
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Fig. 30. Structure of ~II,'Z bands for a variety of A j8 values in the 'II state. For the
significance of the fell, dashed, and dotted lines, cf. the caption of Fig. 28. The relativeintensities
of the branches are roughly inrlicated by the heaviness of the curves. [The variation of intensity
with M in each branch is not indicated, but can be judged approximately by comparison with
Figs. 19 and 29.] For energy level diagrams corresponding to some of the cases shown, cf.
Fig. 15 and Ref. 90. The Fortrat diagrams are plotted against [Mj values, where M is defined
as follows in accordance with the K values of case b: 3I= —E" for E' —E"=—2 or
M=X" for AX =0, .t[I= +K"+1 for K' —E"=+1 cr +2. The I scale is the samein a/l the

diag rams.
Fig. 30a, which is based on data" for CaH, using the J assignments given by %'atson and

Bender for the Q branches, shows how the two widely separated main branches of each kind

(P» and P2, Q» and Q~,R» and R2), corresponding to the two states 'IIt and 'II», of case a,
rapidly approach each other with increasing J, in the transition to case b. In the contraction of
these doublets, e.g. P»{E}—P~(X}, with increasing J, various cases are in general possible,
depending on the values of p' and y" (cf. Eq. 85). Under some circumstances, the branches P I

and P2 eventually cross, likewise Q» and Q, and RI and R2. This case occurs in CaH, and is
shown in Fig. 30a. In Fig. 30a the separations of the satellite branches from the corresponding
main branches have been exaggerated eightfold to make them easily visible. The positions of the
satellite lines, although not given in Ref. 90, have been calculated from the data given there.

For smaller values of A in the 'll state than in Fig. 30a, doublet separations such as P» —P~
approach zero more rapidly with increasing jMj (cf. Figs. 30c, e, f). For A/II 0, branches
such as PI and P2 practically coincide for all J values, except insofar as they are kept apart by
spin doubling (p 40} in the '5 state (cf. Fig. 25 and Eq. 85), or by the existence of a p &0 in the
'II state {cf.Eq. 85). For A j8 =+4, the relations are exactly the same as for A j8=0, except
for the lines of very low M values. In labelling these lines, the anomalous level with J=-,' is

treated as a T» level, with E=O (cf. caption of Fig, 28). For A /8 =2, however, it is treated as a
Ti level with X=1. In comparing Figs. 30b and c, it should be noted that I'u[2], 'Qii[i j,
and Qi[0] in 30b are the analogues of I'i[2], Qs[2], and Q, i[1] in 30a (the numbers in brackets
are

[
M

[ values). The different nomenclature in 30o and fi is a result of the different classification
of the level with J= —,'.In Fig. 30b, t, , d, &'=p"=0 is assumed, since p' 0, p" 0 are usually
expected when A/8 is small. In Figs. 30b to 30f the forms of the branches are made more
obvious by continuing the curves to j M j

=0 or 1. The actual band-lines are indicated by circles
or semi-circles.

The satellite branches (dashed lines) get weaker and weaker, except for the very smallest
J values, with decreasing jA j

of the '1l state. They usually at the same time, because of v~0
for the ~Z state, get closer and closer to the corresponding main branches, and usually cannot
be separated from the fatter when jA j

is small in the 'l1 state. In Fig. 30 bc, d, since, we have
assumed y"=0, the satellite lines coincide, except for the first line in a branch in one or two
cases, with the corresponding main branch lines. Moreover, their intensities here are negligible
except for the very lowest E values. In Fig. 30a, e, f, the satellite branches are slightly separated
from their main branches (the separations shown are greatly exaggerated for the sake of clear-
ness) but still have low intensity, while in Fig. 29 the satellite branches are strong and quite
distinct from the main branches.

The lines with DE = + 2 (dotted lines) approach zero intensity as [A j~0. This is indicated
in the figure by their omission for small A values except in the special case of the line P »2(1-, )
when A jB=+4. They are also omitted in Fig. 30e, f, for the sake of simplicity, although they
should be present in Iow intensity,

The tzoo diagrams Figs. 30e and f have been included in order to call attention to the eRect
on the band structure, with given A j8,of the magnitude of A or 8. Allov ance should be made
for this eRect in comparing diagrams in Fig. 30 which have diRerent 8 values, also in com-
parisons with Fig. 29. It should also be noted that some of the differences between the various
diagrams in Figs. 29 and 30 are the result of diRerences in the quantity (8'+8 "}/(8'—8"}
which governs the formation of heads (cf. Eq. 16 of Part I and Eqs. 79).
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of J values, and we shall not do so. All that is important can be seen from
the term-forms T' and T", energy-level diagrams (cf. Fig. 15, Ref. 90, and
Fig. 28), and Fortrat diagrams (Figs. 29, 30).

In illustration of the discussion of 'II, 'Z bands we shall include a few ex-
amples of 'Z, 'II bands, which show essentially similar behavior (cf. Eqs. 81—
84 and related text).

Before discussing the changes which occur as
~

A /B is varied, it should be
mentioned that for all intermediate values of ~A ~/B of the 'II state, just as
in the limiting cases jA

~

=~ (cf. Eqs. 80) and A 0 (case h, Eqs. 73 and Fig.
25), the intensity relation Q; &R;)P; is predicted" and found in 'II, ' Z transi-
tions, among the branches with single as well as among those with double
subscripts. In 'ZPII transitions, Q, &P;)R; is expected and found.

Turning now to the effects of varying A/B, let us consider the series of
cases, (1) A/B =+560 (HgH, good case a, Fig. 29) and A/B = —250 (good
case a inverted '-II, not shown), (2) A(B = +19 and —8 (typical intermediate
cases, Figs. 30a, e,f), and (3) A/B =4, 2, 0 (all essentially case h, Figs. 30b, c,d).
The changes which occur as ~A ~/B~O are similar, but not quite the same,
in the two series with positive and with negative A values. Case b is more
rapidly approached for the positive A values, since for the critical value
A/B =+4, case h relations exist, in most respects, just as for A =0, while for
negative A's there is no similar critical value of A/B.

The transition toward case h shows itself first, while ~A
~

is still fairly
large, at high J values (cf. Part Ilb, top of p. 106). Certain rotational levels
of the 'II, state tend to form pairs (J=X+ —',) with levels of the 'II, ; state (cf.
Fig. 15). Corresponding to this, certain branches in the spectrum (the main
branches, full lines in Figs. 29, 30), tend to become paired: R2 with R~, Q2

with Q„and P2 with P, . Meantime the satellite branches Q2~, P2~, R», and Q»
(dashed lines in Figs. 29, 30) become much weaker relative to corresponding
main branches (R2, Q2, Qr,r P~ respectively, in 'II, 'Z bands). At the same time,
the branches R2~ and P» (for 'Z, 'II as well as for 'II, 'Z), which do not be-
come fused with other branches, show an even more rapid decrease in inten-
sity compared with the main branches. These branches are shown by dotted
lines in Figs. 28 and 29. [In considering intensity relations in intermediate
cases, it should be remembered that even for large A/B values such as that
of the 'II of HgH (cf. section J2c) there is a considerable departure, except
for low J values, from the intensity relations (Eqs. 80) which would hold for
A/B =+~, toward those of case b].

If ~A
~

is made smaller and smaller, the eKects mentioned become more
and more pronounced, and become important even at low J values.

[The reasons why the branches with double subscripts fade out as A —+0
or J~~ in the 'II state can easily be understood qualitatively. In case b,
where the quantum number E is sharply de6ned, we have the two selection
rules DX=O, +1 and AJ=O, +1. Branches with DK= +2 are strictly ruled
out. The branches R2~ and P» of 'II(case a),'Z go over into branches with
g& =+2 and —2 in 'II(case b), 'Z. Hence these branches fade out more and
more as E becomes more sharply de6ned for the 'lI levels, and disappear in
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case b. The main and satellite branches, however, all fulfill the case b selection
rules and so do not disappear. In the main branches 6J=AX, which gives
strong lines in case b, but in the satellite branches AJAAX, and this causes
the latter to have, except for very small X values, very low intensities in case
b (cf. Eqs. 72—74 and related text). ]

Since the 'Z doublet separations usually decrease with ~A ~, the satellite
branches, in addition to becoming weaker as ~A

~

decreases, come closer to
the corresponding main branches (cf. Eqs. 77, which hold for all values of
A/8, and accompanying discussion), or often become practically fused with
them, usually long before R& and R„Q, and Q2, R& and R2 in turn become
fused. Fig. 29 shows the main and satellite branches well separated, while
Fig. 30c, e show them almost fused. If the main and satellite branches be-
come fused, we have bands of the eight-branch type. It should be noted that
in eight-branch bands, the two outer branches R~I and P» are usually de-
cidedly weaker than the other branches, since the eight-branch type does not
occur unless ~A

~

is fairly small. whether or not the main and satellite
branches become fused, —usually they do,—as A —&0, the satellite and the
R» and P» branches fade to practically zero intensity, giving an essentially

six-branch type as in case 6 (cf. Fig. 30b, c, d).
Examples~' of typical eight-branch bands are the NO y bands ('Z, 'II),

with A/8 =+29 in the 'II state, and the red CN, the CO+, and BO n bands
(all 'II, 'Z with A/8= —34, —79, and —90). Other bands which strictly
speaking are twelve-branch bands like the HgH, CdH, and ZnH bands, but
in which the outer branches PI~ and R2I and the satellite branches are much
weaker than the main branches so that the bands are practically six-branch
bands nearly as in case b, are the CaH bands (2II(Z, A/8 =+19) and the
OH bands ('Z(II, A/8 = —6.9). The green MgH bands ('II, 'Z, A/8 =+6)
are so near case b that only six branches have been found, although if the R.I

and PI& branches could be detected, the bands would be of the eight-branch
type.

The relations between the forms of the branches in 'II(case a) P Z and those
in case O'H, '5 bands can best be seen by comparing Fig. 29 with Fig. 30a, and
Fig. 30a with Fig. 30d. Comparing Fig. 29 with Fig. 30~, the most important
changes to be noted are the approach of the satellite branches to the main
branches, and the pairing off of the main branches R~ and R„Q, and Q„P,
and I'2 for high J values. Comparing Fig. 30a with Fig. 30d, we note how the
symmetrical contraction of the intervals R2 —R&, Q2

—Q, and P2 P& and th—e
fading out of the branches with double subscripts takes us over to the six-

branch case b type. This in turn differs only slightly from the three-branch
case b' type (cf Figs. 25 .and 19).

If we should draw median curves P, Q, and R in Fig. 30a, corresponding to
averages of P~ and P„Q, and Q. , R, and R„ these would have almost exactly
the forms of the single P, Q, and R branches of case b' (same as the singlet

band 'II, "2 of Fig. 19). This property of the median curves is maintained

throughout the series of cases shown in Fig. 30. The 'R2I and PI~ branches
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in Fig. 30a have approximately the form that S and 0 branches (5%=+2)
would have in case 6' if they were possible there.

3a. Special reLations near case b for A )0. We have now to consider some
spe& ial relations which exist for small positive A/B values. First we may note
that, as A/B is decreased from large values, case b conditions are reached
at A/B=4, except for the 'Ili level T'(-', ) and the lines coming from this
level. As A//8 goes from 4 to 0, there is then at first a departure, especially
in the forms of the branches for the lowest J values, from case b conditions
toward case a, reaching a maximum for A/B = 2 (examples, 'Z, 'll X3900 and
'-'+, 'll X3143 bands of CH), " then again an approach to case b, this time for
all levels and lines (example, BeH bands). The forms of the branches for
A/B =4, 2, and 0 are shown in Fig. 30b, c, d. The arrangement of the energy
levels should be examined at the same time (cf. MgH, CH, and BeH in Fig.
15). The intensity relations, except for a few of the lowest-numbered lines,
are practically those of case b for the entire range of A/B values from —2 or
less to +6 or more.

3b. Spin doublet separations Th.e doublet separations, Ri(K) —R,(K),
Q&

—
Q&, and P, P& a—re determined, for all values of A/B in the 'II state, by

the algebraic difference'" of the doublet separations of the upper ('II) and
lower ('Z) electron levels. For example,

[T ll(J'I I Kll + s) T ll(jlf K/I i
) ]

5'e know (cf. Eq. 36 of Part Ilb, as revised") that the doublet separations
of the 'II state are given by T,n'(K) —T&n'(K) =61b(K')+y'(K'+-,'), where
n = c or d, those of the '~ state by p" (K"+-', ). The doublet separation Dv»
for any branch (i.e. Ri —Rs or Q, —Qs or I'~ —I'i) is then given by

Avis = DP(K') + y'(K' + -';) —p"(K" + —,'). (85)

Vow Alb(K'), which strictly speaking differs slightly for the c and d sets of
levels, is always negative except for A/B„between 0 and +4 (cf. Fig. 15), but
always approaches zero with increasing K as case b is approached. Normally,
then, Avi~ is negative, and, if y' and y" are both approximately zero, AvI2

Dp(K'), so that the behavior of the doublet separations Alb(K') of the 'II
levels can be read directly from the observed doublet separations AvI2 in the
P, Q, and R branches. In other cases, the Av»'s must first be corrected, es-

pecially for large K values, to get the Alb's. When y' —y" (0, and A/B, (0
or )+4, ~Dv, s

~

goes to a minimum with increasing X, then increases again.
In the green MgH bands" we have a similar case: AvI~ approaches approxi-
mately a constant value. With A/B„(0 or )+4 and &' —&")0,hv» finally
passes through zero and becomes positive with increasing K (example, red
CaH bands, shown in Fig. 30a but with the Dv»'s greatly exaggerated. )"

If instead of using the separations Qis I'i etc. as in Eqs. —(77) or I'i I', etc. —
as in Eqs. (85), we take differences such as Q»(K) —Ps(K), we get directly

'" This is the arithmetic sum in the usual case, where Tg(X) &TI(Z) in the 'II but Tq(X)
& T2(E) in the 'Z doublets,
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the doublet separations T~a'(K') —T~a'(K') of the 'II state. Thus (cf. e.g.
Fig. 25 or 29)

~Qgg(K' + 1) —Pp(K' + 1) = R,(K' —1) —sQ2g(K' —1)

= APg(K') + y'(K' + -', ) (85')

iiRi2(K) —Q, (K) = Qi(K) —&P2i(K) = 5 f„l(K') . + y'(K'+ —',) (85b)

A discussion of spin doublet separations in a '6, 'II band near case b is given
in section 4a.

4. Other bands. A few additional examples of multiplet bands other than
'II, '~~ and 'Z, 'II and involving intermediate coupling cases between a and b

will now be treated brieHy.
4a. '6, 'II bands. Spin and A-type doublets near case b. The '6, 'II CH band

near X4300 (cf. Figs. 26 and 27),"has already been discussed (cf. sections I5
and I7) as an example in most respects of case b The '6. state is good case
fi down to the lowest J values, but the 'II state, with A/J3„= +2, belongs for
low J values to an interesting intermediate case (cf. section J3a), so that the
band merits further consideration in the present section. In such a band there
are four main branches of each of the classes P, Q, and R. In the branches of
each class, we can form two sorts of doublet separations DvI2 and Av, d, e.g. , in
the P branches,

»i2 = Pi (K) —P, (K); Dv, q = P;q, (J) —P;,q(J)

Here 0. stands either for dc, or for cd, in the case of I' and R branches, and for
d, or for c, in the Q branches, while i =1, ori =2. From Eq. (32) of Part Ilb
and the revised" Eqs. (33) and (36), and the definitions of the branches (cf.
Fig. 26), we obtain

»i2 = ~4(K') —~4 (K") + v'(K' + k) —v "(K"+ 2) (86)

»..= [~.(K', J') —~.(K', J')] + [~.(K",J") —~.(K", J")]. (87)

The + and —signs in Eq. (87) respectively refer to the P and R and to the
Q branches.

In the 'DPII band of CH, Af(K'), y', and y" are small, so that the doublet
separations Av» taken directly from the band lines give approximately the
quantity —Ap(K") =lf ~(K")—p~(K"). Since pa(K', J') —@,(K', J') 0 for
'6 levels, the doublet separations Avd, in the I' and R branches, or —Av~,. in
the Q branches, represent accurately the term doublet separations $~(J")

(J") Th„.e ban.d lines in CH X4300 show in an interesting way (cf. Fig. 27)
how the spin doublet widths All (K")are large for small K values but approach
zero as K increases, while the A-type doublets if~d(J") —P, (J"),—cf. section
I7,—behave in the reverse manner.

The '6 state in the CH bands is interesting in that the AP's are at first
small and negative, "corresponding to a very small negative value of A, but
become positive for larger K' values, corresponding to a positive y' (cf. Eq.
(33) of Part Iib, p. 107).



ROBERT S. MULLIEEN

The '5 'II band of SiH near 'A4100 '" which in terms of electronic conhg-
urations is doubtless the analogue of the CH band just discussed, shows inter-
esting points of difference in respect to band structure. These result from the
fact that A/8„ is much larger (about 20) for the 'll state than in the case
of CH. The '6 state of SiH has a very small value of A like CH, although here
it is positive.

In this SiH band, case b intensity relations are approximately fu1611ed.

But since the 'II state is nearly case a for low J values, while the '6 state is
case b, the conditions correspond fairly well for low J values to the "mixed
case" of section J1, and there is a distinct tendency for the development of
all the twenty-four branches which fu1611 the rule 6J= 0, + 1. The relations
are like those in the mixed case of a 'II(case a) P Z(case b) transition (section
J2), except that the number of branches is doubled because of the existence
of A-type doubling in both initial and final states. The twelve case b main
branches (cf. Fig. 26, full lines) are strong in SiH as in CH, but the eight
case b satellite branches (cf. Fig. 26, dashed lines), which are only very frag-
mentarily detected in CH, and the four branches R~dI„E~,~g, PI~.„and
EI,~~, which are forbidden in case b and not found in CH, are also present. '"

4b 'II 'II bands The N. O P bands are an example of a 'II 'II transition with
case e conditions for low J values, but, especially rapidly for the upper 'II
level, a change toward case b for higher J values. '" This shows itself mainly
in the forms of the branches. In the intensity relations there is no important
change with J, since both initial and Anal states are intermediate between
cases a and b, corresponding fairly well to the true "intermediate case" of
section J1. The corresponding '-II, 'II bands of O2+, on the other hand, ac-
cording to preliminary results of Mr. D. S. Stevens in this laboratory, are
probably an example of the "mixed case" of section J1, with a case b upper
'II and a case u lower 'II level. They show intensity relations quite different
from those in the NO P bands.

4c. rrip/et bands. In 'II, 'Z and 'Z, 'II bands relations analogous to those
in 'Il, 'Z and 'Z, 'Il bands are expected. In the "mixed case" of 'II(case a), 'Z
bands, for example, nine P, nine Q, and nine R branches are expected, three
of each for each of the three sub-bands 'IIo, 'Z, 'III, 'Z, and 'II2, 'Z. Of these
twenty-seven branches, eight would disappear if A~O in the 'II state, ten
would become weak satellite branches, while nine strong main branches would
remain. The nature of the various branches is indicated in I ig. 31. The NH
bands near X3400 and the analogous PH bands'"' are examples of 'II, 'Z
transitions with an (inverted) 'lI state which is near case a for low J values
but, rather rapidly in NH, goes over to case b with increasing J.

'" C. X'. Jackson, Proc. Roy. Soc. 126A, 373 (1930). Although Jackson concluded that
the 'll state is inverted, it has been possible to show that it is regular (R. S. Mulliken, forth-
coming Phys. Rev. ).'" Presumably all these are present, although only R2d&. , R2,&d (case b forbidden), Q2Ie

and Q2id (case b satellites) were identified.'" I'. A. Jenkins, H. A. Barton, and R. S. Mulliken, Phys. Rev. 30, 150—188 (1927).
'o" R. W. B. Pearse, Proc. Roy. Soc. 129A, 328 (1930).



The Swan bands of C~ and the second positive bands of N2 are well-known
examples of 'll, 'll bands. '" The relations in these bands are probably like
those in Fig. 34b. The N2 bands are perhaps nearly case a even for fairly
large J values, but the Swan bands, while showing case a characteristics for
low Jvalues, rapidly approach case 6 with increasing J. In both the Swan and
the N2 bands, the relation A' A" appears to hold, so that the transition
from case c to case b proceeds for initial and 6nal states at about the same
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Fig. 31. Schematic diagram {not to scale) showing relations of possible band-lines to energy
levels in a 'II~'Z band. Only the levels corresponding (in case b) to a single E value are shown
for the 'II state, and only one line of each possible branch is shown.

If the three 'II levels Ti(9), T&(8), and T2(7) are close together (case b), only the nine main
branches (AE=O, +1,AJ=AE), shown by full lines, are strong. The ten satellite branches
(DE=0, +1,AJ=O, +1, but AJ/AE) are very weak (except for very small J values) espe-
cially in the case of those where AJ and hE diKer by two units. The remaining eight
branches {6J=0, + 1, but AE = + 2, +3) are practically absent, especially those with AE = + 3,
vanishing altogether if 2 —+0 in the 'II state. If the three 'II levels are very widely separated
{case a), all the branches should be present in considerable intensity. In all cases, the intensity
relation Q;&R; &P; is to be expected, where the subscript i indicates that branches of similar
type should be compared.

"5 Cf. R. S. Mulliken, Phys. Rev. 29, 644 (1927) and 33, 509 (1929).'" In 'lI{case a), 'II(case a) one expects three strong P, three strong R, two weak Q
branches (all with A-type doubling), and no others (cf. Eqs. 54—5). For 'II(case b), 'II{case b),
one expects three main P and three main R branches, three weak Q main branches, and ten
very weak satellite branches (cf. Eqs. 72), all with A.-type doubling. Eight more branches
fulfilling AJ=O, +1 but violating DE=0, +1, all with A.-type doubling, are to be expected in
"mixed" coupling cases. But these and the satellite branches are to be expected only in negli-
gible intensity in "intermediate cases" as here.
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rate, and we have probably a good example of the "intermediate case" whose
intensity relations have been discussed in section J1. As a result, there are
are always only six strong branches, three I' and three R, each with A-type
doubling (cf. Fig. 34b).'"

5. A.-type doubling in intermediate cases between a and b. In multiplet
states with A )0, we have in case b (cf. section I7) A-type doublet widths
which are independent of the orientation of S with respect to X, i.e. the doub-
let widths are the same for all J values associated with a single E value. In
case a, however (cf. section G3), the A-type doublet widths are very dilferent
for different multiplet components. In intermediate cases, intermediate rela-
tions are obviously to be expected, and are found experimentally.

In 'II levels some interesting relations have been observed. According to
to the theory as developed by Van Vleck, the A-type doublets in 'III; levels,
which are very narrow in case a, should steadily widen in going toward case
b. In the 'II~ levels the doublet widths, which are very large in case a with
large ~A ~, should become smaller and Pass through zero before case b is reached,
so that the c and d levels reverse their energy order in going from case a to
case b (cf. Fig. 16 of Part IIb). Experimentally we cannot well verify this
prediction by altering A in a molecule, but we can expect to do so by studying
the variation of the A-type doublet widths with J for electron states which
approximate case a for small J values and case b for large J values, The pre-
dicted behavior is verified in three examples of this sort, namely in the in-
verted'II of OH (2/8 = —7.5) and in the regular'II states of SiH (2/8= +20)
and of CaH (2/8=+19)."'"- In the 'll, levels the A-type doublet widths
first increase with J, but soon get smaller again, pass through zero, and
again increase, while in the II&, levels the separations increase from the be-
ginning.

K. BANDs oF MoLEcULEs CoMPosED oF Two ATQMs oF THE SAME ELEMENT

1. Even and odd electron states. Molecules composed of two atoms both
of the same element have a greater symmetry than other diatomic molecules,
and this gives rise to characteristic new features in spectroscopic behavior.
Before discussing the bands of such molecules, it is necessary to consider
some properties of their energy levels.

In rnolecules with two equal atoms, every electronic state has the property
of being either "even" or "odd. " Ke shall designate even and odd states
respectively by means of the subscripts g and u (German gerade and ungerade)
These subscripts need not, however, be added unless the odd or even property
is of importance for the discussion in hand. Examples: ' Z+„'2 „, ' ~+„,
'II„'II„, 'II, . In multiplet states, the even or odd character is the same for
all components of a given multiplet. A case a 'II, state, for example, comprises
a 'II„., and a 'III;, sub-level.

The meaning of "odd" and "even" electronic states can be understood
only in terms of the quantum mechanics. The words odd and even really de-
scribe a property of the wave-function iP, i of the molecule with nuclei assumed
held fixed (cf. Part II, pp. 84—5). (ip, i is the "electronic factor" of the com-
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piete wave-function P of the molecule. ) Let the line joining the nuclei be
taken as the s axis and the mid-point of this line as the origin. Which direc-
tion along the s axis is called positive does not matter. Then P, ~ is a function
of x, y and s such that in symmetrical molecules ~P, ~

~

always has exactly the
same value for any point (+x, +y, +s) as for the corresponding point ( —x,
—y, —s). But f, & may either be the same (these are the even electronic states)
or may change sign (odd states) when one exchanges (+x, +y, +s) for ( —x,
—y, —s)

These properties hold strictly only for a molecule composed of two iden-
tical atoms, such as H..or (CP')2. But they also hold for all practical purposes
for a molecule composed of any two atoms of the same element, e.g. , Cp'Cl",
since the symmetry of the electric forces in the molecule, and of P, t, , are not
appreciably disturbed. when one isotope is substituted for another. '" Even
in molecules composed of two atoms of two different elements nearly alike in
atomic number, e.g. , CN or better T1Pb, f, t should be more or less approxi-
mately odd or even.

If the two nuclei of a (rotationless) symmetrical molecule could be pushed
together until they were united, the even and odd states of the molecule
would respectively become even and odd states of the atom. Even and odd
states of an atom are those for which the sum Z~, of the l, values of the in-
dividual electrons is even or odd respectively. In atoms, there is a selection
rule that even states can combine spectroscopically only with odd states and vice
versa. A corresponding rule holds for the even and odd states of symmetrical
molecules. This rule applies to molecules like Cl"Cl" as well as to those like
(Cl")z. In molecules like CN or T1Pb, transitions between n arly-even and
nearly-odd states should on the whole be much stronger than those between
two states of like approximate symmetry.

2. Rotational levels symmetrical and antzsymmetrical in t1ze nuclei. In mole-
cules composed of two identical atoms, i.e. , of two atoms with nuclei of the
same charge and mass and in the same quantum state (komonuclear diatomic
molecules), every rotational level, or more accurately, its complete wave-
function f, has the property of being "symmetrical" or "antisymmetrical" in
the nuclei. In the following we shall find it convenient to resolve P into

f.& has already been mentioned, P„„corresponds to
the rotation of the molecule, P„„depends on the internal angular momenta of

"' This symmetry of P,& is also usually not appreciably disturbed even when the nuclei
are no longer regarded as fixed, and even if the motions of the two nuclei are unsymmetrical
with respect to the geometrical center of the system. For the distribution of the electrons around
the tv o nuclei, hence p, &, may usually be expected to adjust itself continuously and almost
instantaneously to the varying positions of the nuclei. (For highly excited electron states,
however, this is no longer possible. )

A consequence of this adjustment is that molecules like Cl" Cl", just as much as those like
(C13')2, should maintain a zero dipole moment even when they vibrate, and so should have no
vibration-rotation bands.'"Strictly, this resolution into factors is possible only for an assumed molecular model
somewhat different from the real molecule, but for our purposes the results are the same as if
a rigorous division were possible (cf. Ref. 110).
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the nuclei of the two atoms. whether any given level is symmetrical (Sy) or
antisymmetrical (An) depends jointly on three elements, (1) the g or u char-
acter of P, ~, (2) the + or —character (cf. section C1) of the rotational level,
and (3) the symmetrical (s) or antisymmetrical (a) character of the factor

If element (3) is s then the complete P is Sy if elements (1) and (2)
are g, + or u, —,but An if they are g, —or u, +. If element (3) is a the re-
sults are reversed. "' In symbols,

(g)(+)(s) = (u)( )(s) = (g)( )(a) = (u)(+)(a) = Sy'
(gg)

(g)(+)(s) = (u)( —)(~) = (g)( —)(s) = (u)(+)(s) = An

[Some authors apply "symmetrical" and "antisymmetrical" (which when
so used here, will bedenoted Sand A) toP, ~P, :g+=u —=S;g—=u+=A. ]

It is now recognized that the nuclei of atoms possess quantized angular
momenta. Their values are indicated by a quantum number I, where I*h/2sr
is the angular momentum. I appears to have half-integral or integral values
according as the number of protons in the atomic nucleus is odd or even,
regardless of the number of electrons. "' Often I=0, and in this case P„„ is

necessarily s, since it is unaffected by exchanging the nuclei. KVhen I&0, the
function P„„,which of course applies to the two nuclei regarded as one sys-
tem, takes a variety of forms. These may be taken to correspond to the differ-
ent possible orientations which the I*vectors of the two nuclei can assume in

an external magnetic field. A majority of the so-defined forms is always s and
a minority a. The numbers of s and of a forms for each of several values of I
are given irl Table VI "0

TABLE VI. Alternating intensity factors for homonuclear molecules.

12
10
6

2
15
10

22
21
15

3
28
21

32
36
28

4
45
36

4.1

55
45

The band spectra of homonuclear molecules show features which are
simply explained by the assumption that, for any given molecular species,
only those rotational levels are capable of physical existence whose complete

'" The symbols Sy and s really refer to the same property. Similarly with An and a.
Slightly different symbols are, however, used here for the two cases of the complete P and of
p„„, for the sake of increased clarity in the discussion.

"0 For further details, cf. R. S. Mulliken, Trans. Far. Soc. 25, Part 11, pp. 634—45 (1929).
In this article, the existence of Z in addition to Z+ states was unfortunately not recognized,
so that the discussion needs in some places to be corrected.

"' If a nucleus of atomic number Z contains P protons and E electrons, then Z=P —E.
Usually E is even, and P and Z are both odd or even together. In all such cases known, I is
half integral or integral according as Z {and P) are odd or even. But in the N" nucleus, where
P =14, 8=7, it is found that I=1 {cf.Table VII). Also in the Cd isotopes (Z=even), some
{presumably those with even P and E) appear to have I=0, others (presumably those with odd
P and E) to have I=@. {Cf.review by Pauling and Goudsmit, Structure of Line Spectra, p.
222; but also C. L. Albright, Phys. Rev. 36, 847 (1930), who casts doubt on the interpretation
of the Cd hyperfine structures which leads to the two values I=0 and q). These facts are most
simply explained by assuming that the proton spins (presumably all with i =-,), but not the
electron spins, contribute to I. Orbital angular momenta may also be present in the nucleus,
but probably affect I only by integral amounts.
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p is Sy, if the number of protons in each nucleus is even, or whose complete

P is AN, if the number of protons in each nucleus is odd. "' This exclusion of
half the conceivable states is analogous to the Pauli exclusion principle for
electrons.

When I=0, the requirement just stated excludes half the rotational levels
of every electronic state completely from physical existence. For when I=0,
P„„can take on only one (an s) form. Hence for an even electronic state, as-
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Fig. 32. Rotational levels and lowest-quantum-number transitions for several kinds of
singlet states of a homonuclear molecule (cf. Fig. 17). All four of the possible types of 'Z states
are shown, as well as all of the possible types of combinations of these (except that additional
types can be obtained by exchanging the upper and lower electron levels in each case) with one
another and with the two possible types of 'II states. The possible combinations 'II„'II and
'II, ~II, are not shown.

"Strong" levels and strong band lines are indicated by heavy horizontal and vertical lines
in the diagram, "weak" levels and lines (missing if I=0) are shown by light lines in the figure.
The indicated strong and weak levels and lines are correct on the assumption that the complete
f is Sy, If, however, the complete g should be An, the interpretations of the heavy and light
lines, and the designations a and s, in the diagram should be reversed. In any case, the strong
levels are s and the weak levels a.

'" It was at first supposed on theoretical grounds that only the Sy or the An levels would
be found capable of existence according as the total number of particles (protons and electrons)
in the nucleus is even or odd (cf. R, S. Mulliken, l. c., Ref. 110). But Rasetti's work on the Ra-
man spectrum of N2 (cf. Zeits. f. Physik 51, 598, 1930), where each nucleus contains 14 protons
and 7 electrons, shows that only the Sy levels are present. This is presumably because there is
an even number of protons and in spite of the fact that the total number of particles in each
nucleus is odd.
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suming that the complete f has to be Sy,"' only Positive rotational levels are
allowed (g, +, s = Sy), for an odd electron state only negative levels (u, —,s
=Sy). Figs. 32 and 34 show, for various types of electronic states, which rota-
tional levels should be present (heavy lines) and which absent (light lines).

The bands of a homonuclear molecule with I= 0 are in structure and inten-
sity relations exactly like those for the same kind of electron transition in an
ordinary molecule, except that every other line is missing ("alternate missing

Cj +1 +a+&+4
K's2 io

0 i

~u, ~g«

Xq Or 1Iq,

fg ig

g

Fig. 33. Schematic diagrams of some band types for homonuclear molecules (cf. Fig. 18
for heteronuclear molecules). 8'=B" is assumed. In the case of 'g, 'g transitions, li ibl

.&-type doubling is assumed for the '3 levels, and for the 'll levels it is assumed that th d

otational levels are abo~e the c levels as in Fig. 32. Intensity relations in the bands are ot
indicated, except that "strong" lines are shown by heavy lines, "weak" lines (missing if I=o)
by light lines. This relation is true on the assumption that the complete & is Sy; if it ho ld b
Ae, the interpretations of the heavy and light lines must be reversed. The other intensity rel-
tions if shown would be like those in Fig. 18.

lines" ). Why this is true will be oh~ious from a study of the examples in Figs.
32 and 34a, and a comparison with those of Figs. 17 and 24. Which lines are
present and which missing depends on the even or odd characters of the two
electron levels involved, in a way which can be seen from Figs. 32 and 34. It
will be seen that the number of distinct types or patterns of bands is greater
than in ordinary molecules. The various possible types of 'Z 'Z 'll 'Z, and
'5, 'II bands for a homonuclear molecule are shown in Fig. 33.

EVhen I)0, P„, has some s forms and some a forms. Hence all the rota-
tional levels of the molecule are possible, as in an ordinary heteronuclear mole-
cule. Suppose for example that the complete P has to be Sy. (This is true"'

'" It is probable that I=0 occurs only when the number of protons is even {cf.Ref. 111),
and it is also probable that the complete p must always be Sy when the number of protons is
even (cf. Ref. 112).
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Fig. 34a. Lowest rotational levels and band lines for a 'Z+, ~Z+, transition of a homonu-
clear molecule as an example of alternating intensities in case b. Strong levels and lines are

IIshown by heavy lines, weak ones by light lines. The complete P is assumed Sy. B'=B' is

assumed. Cf. Fig. 24 for designations of hand lines and relative intensities of lines (aside from
the alternation ratio factor).

Fig. 34b. This figure shows a few rotational levels of a 'Il, and a 'll state of a homonu-
clear molecule, with strong and weak levels (heavy and light horizontal lines} drawn on the
assumption that the complete P is Sy. The relative widths of the A-type doublets correspond, for
both 'll electron levels, toineerted 'll (cf. last paragraph of this caption), and to coupling inter-
mediate between case a and case b. B'=B" is assumed. The A-type doublet widths are all

exaggerated.
In case a (cf. Fig. 22) and with inverted 'll, the A-type doublets would have practically

zero width for the Tl levels (J=E+1),a moderate width proportional to J(J+1) for the T2

levels (J=E), and a constant width for the T31evels (J=E —1). In case b the rotational levels
would all have A-type doublets of moderate width proportional to E(%+1), the same for Tl,
T2, and T3 (cf. section J7). From analogy to the 'll case (cf. Fig. 16 of Part IIb) it seems
possible that the order of the levels c and d reverses, for one or more of the sets of terms T l, T2,
and T3, (most probably in the series T3, which becomes 'IIO), in the transition from case b to
case a. If such a reversal occurs, the order and spacings of A-type doublet levels would generally
differ in intermediate cases from those shown in Fig. 34b. Unfortunately neither theory nor
experimental data are yet available to show whether such a reversal really occurs.

The figure shows the arrangements and A-type doubling of two lines of each of the main R
branches (Rl, R2, and R~) corresponding to transitions between the two 'lI states. Expected
very weak satellite branches (cf. Ref. 106) are not shown. The horizontal v scale is greatly
exaggerated compared with the vertical scale, except for the A-type doublets. In the band-
lines of any series, alternately the left-hand and the right-hand component is weak (or missing
if I=0}. If the 4-type doublets are imperfectly resolved, or if 1=0, the members of any branch
thus appear displaced alternately toward the left and toward the right from positions which
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would give a smooth series. For case a inverted 'lI states, the RI lines, however, would appear
single and undisplaced, because of the vanishing A.-type doublet widths in the TI( II&) levels.
Fig. 34b is fairly typical for a 3II, 3II transition, but a great many variations are possible in
respect to quantitative relations, including sign as well as magnitude of A-type doubling.

Everything in Fig. 34b would be just the same for regular 'II levels except that the A.-type
doublet widths would probably be constant in case a for the T1 levels, which go to 'IIo in regular
case a, and least for the Ts levels, which go to 'IIq. [Bnt cf. second paragraph of the caption of
Fig. 345.I

if the number of protons in the nucleus is even. ) Let us consider for defi-
niteness a '2+, electron state. For X= 0, 2, 4, we have positive rotational
levels, for %=1, 3, 5, . we have negative levels (cf. section C2). For the
positive levels, since the electron state is g, we can fulfil the condition that the
complete lb shall be Sy by using any of the p„ forms which are s, since g, +, s
=Sy. For the negative levels we can also fulfil it, but this time by using any
of the lb„ forms which are a, since g, —,a=5y. Each rotational level can
in general be realized in several ways, corresponding to different s or a forms
of the function f„„,but this does not result in any (measurable) splitting up
or displacement of the energy level.

The statistical weights of the levels are, however, affected. The statistical
weight of any level is in fact proportional to the number of diferent forms of
lb„„, as given in Table UI, with which it may be realized, and at the same time
of course to (2J+I) as in ordinary heteronuclear molecules. Any series of
rotational levels may be divided into two classes, differing in statistical
weight, "strong" levels and "meek" levels. The strong levels are those for
which lb„ is s, the weak levels are those for which it is a, since the number of s
forms of P„ is greater than the number of a forms, for every value of I. In
every series of levels, the levels are alternately strong and weak. For in-
stance in the example mentioned above of a 'Z+, state of a molecule whose
complete P has to be Sy, the levels X=O, 2, 4, which make use of the s
forms of f„„are strong levels, while %=1, 3, 5, having a forms of lb„,
are weak levels.

The bands of homonuclear molecules with I)0 show lines which are alter-
nately strong and weak in each series ("alternating intensities"). Figs. 32—34
apply just as well to the cases I&0 as to I=O if the heavy horizontal and
vertical lines in the figure are interpreted as representing the strong energy
levels and band lines, and the light lines as representing the weak levels and
lines. The relations for I=0 really represent only an extreme case of those
which exist for I&0.

Mention of some examples of actual bands corresponding to Figs. 32—34
may be of interest. Many of the types of Fig. 32, and some others, as well as
corresponding case b' triplet bands, are found with alternate missing lines
(I=O) in the Her bands. The Swan bands of Cs (cf. also section J4) are simi-
lar to the 'll, 'll hands of Fig. 34b, with alternate lines missing (I=0).'" C,
also has corresponding 'II, 'Il bands. The second positive N2 bands are also
'II, 'II bands similar to those of Fig. 34b, but nearer case a and also differing
from Fig. 34b in that the 'II levels are regular, so that the + (and I' s) lines
appear single (cf. next to last sentence in caption of Fig. 34b).'" The Rr,
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R2, I'q, and I'q lines show alternating intensities (I= 1). The N2 bands are
'Z+„, 'v+, bands with 'alternating intensities (I= 1), and correspond exactly
to Fig. 34a, except in quantitative details. Many other examples could be
cited.

3. Alternating intensities and the determination of nuclear angular momenta
The "alternation-ratio" AR in bands of homonuclear molecules may be de-
fined as the ratio of the intensity of the strong lines to that of the weak lines
under normal conditions, after due allowance has been made for the normal
variation with J of the i and R factors of Eqs. (53). This ratio is approx&-
mately equal to the ratio of the intensity of any typical strong line to the
average of the intensities of its two neighboring weak lines (one on either
side). Theoretically this ratio is given by the ratio of the numbers of s and a
states in Table VI. Thus for I=O, AR= ~, for I=-', AR=3, for I=1,
AR=2, and so on; for I= ~, AR=1. In general, AR=(I+1)/I. Experi-
mental measurements of this ratio from band spectra are important in that
they give a means of determining I. They are, however, experimentally dif-
ficult, especially for the larger I values, where AR approaches 1. An inde-
pendent method of determining I values exists in the analysis of hyperfine
structures in line spectra. A list of I values determined from band spectra
is given in Table VII. The table also gives the symmetry character (Sy or
An) of the complete P for several molecules. '"

4. Selection rules in homonuclear molecules, for radiation and for collisions
In homonuclear molecules, as we have seen, there is a selection rule g~~u for
electronic states in addition to the rule +~~—which holds for the rotational
levels of all molecules. Probably these rules are strict only for the dipole radia-
tion of a molecule, but do not apply to its (very much weaker) quadrupole
radiation. '" The rule Sy~~Sy, or An~~An, however, is absolutely strict. '"

From the three selection rules +~~ —,g~u, and Sy+~Sy (or An ~An), there
follows a fourth, nearly but not absolutely strict, selection rule concerning
P„,„, namely that only s~~s, and a+~a, transitions are possible (cf. Figs. 32
and 34). This rule also appears to have independent validity. In fact, a
broader rule can be given, namely that transitions very rarely occur, either
spectroscopically or in collisions, in which the orientations (relative and ab-
solute) of the angular momentum vectors of the two nuclei change. The rea-
son for this rule is that the interactions (exclusively magnetic)of the two nu-

clear angular momenta with each other, or with the electrons, and with other
molecules, are usually excessively small. Hence the nuclear angular momen-
tum vectors are practically independent of one another and are also practi-
cally unaffected by what happens to the rest of the molecule, so long as it
remains a molecule. The peculiar behavior of H2 at low temperature, in which
the level K=1 of the normal state, an s level, fails to revert to X=O, an a

'" In regard to quadrupole radiation in atomic spectra, cf. A. Rubincowicz, Zeits. f. Physik
53, 267 (1929);61, 338 (1930);65, 662 (1930);J. H. Bartlett, Jr. , Phys. Rev. 34, 1247 (1929);
R. Frerichs and J.S. Campbell, Phys. Rev. 36, 151 (1930);L. D. Huff and %.V. Houston, Phys.
Rev. 36, 842 (1930).'" Cf. %'. Heisenberg, Zeits. f. Physik 41, 261 (1927).
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level, even when statistical equilibrium demands it, illustrates this rule.
Another example is found in the "resonance spectrum" of the iodine molecule.
Here the molecule is First excited to a single rotational level of a deFinite vi-
brational state by absorption of monochromatic light. Under some conditions
the rotational quantum number J of the excited molecule is changed by col-
lisions before the molecule radiates. But in all cases J changes in such
collisions only by an even number of units, as is necessary if we are to have

TABLE UII. I values from band spectra.

p & Atomic ExPtl. alt. band from t Symm.I value I value

species ratio AR ", ' of psp. ) spectra

Evidence from spectrum of
diat. molecule for stated

symm. Of f
1 1 0 H' An Normal state '5+„ levels with

even X weak

2 4 2 He4

3 7 4 Li'

6 12 6 C"-

7 14 7

1.78

2.0(N +)

11
2

[Sy]

Lowest stable state 'Z+„
levels with even X missing

Normal state "2+„levels
with even X weak

Normal state ' +„ levels
with odd X weak

8 16 8 0"

9 19 10 F" at least
3, but
not ~

[A n]

Normal state 'Z „levels
with even E missing

11 23 12 Na23

16 32 16 S"
17 35 18 CPS

53 127 74 I'27

1.36

large
(prob.

at least
5 j2)

0

5j2

large

1?

Sy
An

Same as for 0"
Normal state '5+„ levels
with even K weak

[A n] No alternation detected

[A n] No alternation detected.

¹tesfor Table VII: E=atomic number; P =number of protons in nucleus (judging from
atomic weight); E =number of electrons in nucleus (E=P —N); cf. Ref. 111. For references in
regard to which levels are strong and which weak, and as to the experimental values of AR,
cf. references cited on p. 643 of Ref. 110; also, for Li, A. Harvey and F. A. Jenkins, Phys.
Rev. 35, 789 (1930); for N&, F. Rasetti, Zeits. f. Physik. 61, 598 (1930); for Cl&, A. Elliott,
Proc. Roy. Soc. 12', 638 (1930); Dissertation Utrecht, 1930; for S2, S. M. Naudd and
A. Christy, Phys. Rev. 1931. In regard to the I value of Li7 from the atomic spectrum,
cf. L. P. Granath, Phys. Rev. 36, 1018 {1930). The symmetry of the complete P given
in the next to the last column is based on experimental evidence given in the last column,
except when it is given in brackets. The evidence given in the last column is conclusive
only if the correctness of the states given ('Z+~ etc.) is assumed. In most cases this is
practically certain, although based on theoretical considerations. In He2, however, the odd
character of the lowest stable state ('Z} was first concluded from the absence of the even X
levels and the assumed Sy character of the complete f; it is, however now supported by inde-
pendent theoretical considerations, and so gives real evidence that P is Sy.



s+~s and a~~a (cf. Fig. 32), and in the resonance-collision bands alternate
lines are missing, although this is not the case in the ordinary absorption
bands. '"

5. Summary. If we compare the band spectra of (a) molecules composed
of atoms of two different elements, e.g. , HCP', (b) molecules composed of two
isotopic atoms of the same element, e.g. , CP'CP', (c) homonuclear molecules,
r.g. , (CP')2, we find the following likenesses and differences. Groups (a) and

(fi) show no alternating intensities, group (c) does. The electronic states of

groups (b) and (c) have the property of being either even or odd (g or u), and
spectroscopic combinations are limited to those between g and u states.
Group (a) electron levels lack the g, u property and the corresponding selec-
tion rule. As a result, the observed spectra of group (a) molecules tend to be
richer than those of similar molecules of group (b) or (c). For example, many
more CO than N2 band systems are known. Except for the differences men-

tioned, the bands of molecules composed of two atoms of the same element
are essentially the same as those of other diatomic molecules.

The writer is indebted to Dr. Andrew Christy for valuable help in connec-
tion with the figures.


