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Y A collision will be understood the interaction of two or more of the
entities with which atomic physics is concerned under such conditions

that before and after the collision they are widely separated in space but dur-
ing the collision they are close together. The entities which may take part
in collisions include electrons, protons, photons, atoms and molecules. If
photons were to be considered the report would also need to treat of the en-
tire problem of the interaction of radiation and matter. This is too much and
so it is arbitrarily excluded. Certain other topics such as the Ramsauer effect,
the collisions of two atoms and the polarization of the light emitted by atoms
excited by an incident unidirectional electron beam are also left out of con-
sideration. The report is thus intended simply to serve as an introduction to
the simpler problems and to the method by which the more complicated prob-
lems are attacked.

)1. THE LAws 0F QUANTUM MEcHANIcs

The general principles of the theory are now available in a number of
accounts. Of the elementary grade may be mentioned the articles of Kemble
and of Kemble and Hill' in this journal, and the books of Condon and Morse, '
Sommerfeld, ' Frenkel, ' dearoglie, ' all of which cover approximately the same
ground. More advanced are the books of Born and Jordan, ' Weyl' and
Dirac. ' This last presents a general formulation of the theory in a form most
suitable for our purposes so that reference to it will be the main source for
fundamental ideas.

~ Kemble and Hill, Rev. Mod. Phys. 1, 157 (1929}and 2, 1 (1930}.
' Condon and Morse, Quantum Mechanics, New York, McGraw-Hill, 1929.
' Sommerfeld, Wave Mechanics, New York, E. P. Dutton, 1930.

Frenkel, Einfuhrung in die Wellenmechanik, Berlin, J. Springer, 1929.
de Broglie, Introduction 0, l'etude de la mdcanique ondulatoire, Paris, Hermann et Cie, 1930.

' Born and Jordan, Elementare Quantenmechanik, Berlin, J.Springer, 1930.
Weyl, Gruppentheorie und Quantenmechanik, Leipzig, S. Hirzel, 1928.

s Dirac, Quantum Mechanics. Oxford University Press, 1930.



Although duplicating Dirac, it is perhaps worthwhile to preface the treat-
ment of collision problems with a condensed statement of the fundamental
ideas. Page references to Dirae follow the essential statements.

In the next few pages the principles of the theory will be set down in
terms of the properties of certain abstract symbols, this corresponding to the
purely symbolic treatment of vector analysis which is independent of any co-
ordinate system. There follows the translation of the same ideas into a nota-
tion which makes reference explicitly to coordinate systems but where, of
course, all the results must remain invariant under all the allowed changes
of coordinate system. The latter method, of course, is more analogous to
the spirit of tensor analysis as used in relativity theory while the former is
the analogue of the treatment of vectors by Gibbs,

The state (p. 7) of a system is described by a quantity called P (not to be
confused with Schrodinger s f-function) which is analogous to a vector in a
space of many (perhaps an infinite number) of dimensions (p. 18).

In any given coordinate system the components of f may be complex
numbers. Associated with each P will be a P whose components in any co-
ordinate system are the conjugate complex numbers to the components of f
in that same coordinate system.

One can add two different f's to get another P. Similarly one can add two
p's to get a P. But there is no place in the algebra for addition of a p and a P.

A given state is thus described by a P and the associated P. The symbol PP
is dehned as the analogue of the scalar product of two vectors in vector analysis
and is therefore an ordinary number (p. 21). One never multiplies two P's nor
two p's nor a p and a p in the order pp, but always in the order gp. If p„, lf „,
refer to one state and P„f„refer to another, then the ordinary number P„f,is
the conjugate complex number to $,p, and moreover p„lf „is real and positive.

In observing a system experimentally we build an apparatus on a macro-
scopic scale which acts on and is acted upon by the system by a certain set of
operations, and a scale or pointer reading results. The essential feature of
classical physics has been that we have expected to be able to formulate the
laws of physics in terms of functional relations between the pointer-readings
given by one set of observing apparatus and those given by the pointer-read-
ings of another set, or of other sets. All of physics and exact natural science
has proceeded along such lines hitherto. Quantum mechanics does not do
this. This departure from the ordinary way in which mathematics is em-
ployed in natural science is so fundamental that it is at 6rst hard to grasp.
But once grasped the formalism of the theory is easily understood.

Any set of experimental apparatus and operations is therefore not going
to appear in the theory simply as the source of certain pointer-readings which
bear a direct functional relationship with other sets of pointer-readings. In-
stead it appears as a quantity of a more complicated sort about to be de-
scribed. Thus we are dealing not merely with a new set of laws of nature but
with an entirely new mathematical canvas on which to represent these laws.
In this respect the quantum mechanics is a much more far-reaching advance
than was the theory of relativity.
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There are two parts to the study of the theory. One is the weaving of the
new canvas of purely mathematical relations on which the picture of nature
is to be painted. The other is the painting of the picture.

Any given set of experimental operations leading to numerical results of
observation of the system, i.e. pointer-readings, will be called an observable
(p. 25). In the mathematical framework an observable is considered as a
quantity which acts on a P and converts it into another P. It is analogous to
a tensor of the second rank or to the linear vector function of Gibbs (p. 26).
Because of experimental di%culties we are not always able to observe the ob-
servables directly as pointer-readings and much of importance remains to be
said on the side of the relation of observing apparatus to the observed system.
But we pass over that. Thus most actual observations in atomic physics are
quite indirect. Nevertheless we speak of ordinary classical concepts as ob-
servables, e.g. the position of an electron.

An observable in the mathematical theory is a rule for acting on any f
and converting it into another P. If n denotes the observable, one has nP as
another P and the n's are assumed to be linear so that n(Pi+$2) =nfi+nPa.
Similarly an observable acting on a p is written fIbo. and the result is another @.
The sum of two observables, ai and nn, is defined by (izi+n2)f=rzoP+naP,
where lt is arbitrary. The product of two observables is defined by (rrzni)p
=nm(nig) and so in general n.ni/n&n2 O.ne requires the assumption
P(af) = (itn)P and hence such an expression can be written gnat.

We now make the important physical postulate (p. 30) that a state P for
which of =a/, where a is an ordinary number, is characterized by n having
precisely the numerical value a. For a given state iti, f the quantity QoiP is
defined to be the average value of 0. in that state if the auxiliary condition,
$$=1, is satisfied. This is an important notion: that there exist states in
which an observable does not have a precise value but instead may have
various values weighted with different probabilities so that many observa-
tions of 0'. made on the same state will yield diferent values, leading to an
average ix characteristic of the state. itin/ cannot be regarded as the value of
n associated with that state because then if $n&f is the ~alue of ni and gn2$
that of a2, we ought to have (/ning)(Pn~P) equal to P(nina)f But this is not
the case, and this agrees with the ordinary behavior of averages where the
average of the product of two quantities is not in general equal to the product
of the averages (p. 32).

The conjugate complex of e, written n, is defined by its satisfying the
equation

(I &)

where the two states r and s are arbitrary (p. 28).
An observable in general is not capable of assuming all values preczseEy,

The values which it can take on are the ones for which the equation in P,

(~ 2)

where n' is an ordinary number, has solutions (p. 35). These are the allowed



E. U. CORDON

values of 0. and may form a discrete set of numbers or a continuous set. Of
course Pnf can have any value between the least n' and the greatest. Weyl
calls a state P satisfying this equation a pure state (reine Fall) for this ob-
servable. Dirac calls the allowed values eigenvalues and the P's which satisfy
this equation eigen-f's of n and speaks of a given eigen-If belonging to an n'
if it satisfies this equation with that particular n . The eigen-If belonging to
n' will be denoted by P(n'). Similarly one has the eigen-Q associated with n'
satisfying the equation

I

and denoted by g(n') when desired.
Theorem:

d (a')II (a") = 0, if a' W a",
i.e. the eigenstates are orthogonal.

Proof:
4(a')W(n") = a"d (a')4(a")

= a'd (a')4(a")

(1.3)

(Since II is an eigen-P)

(Since Q is an eigen-Q)

Therefore: (n' —n")P(n'g (a")=0, hence the theorem (p. 36).
Assume that any P can be expanded in terms of the eigen-P's of any ob-

servable. This amounts to assuming the whole of a kind of generalized
Sturm-Liouville theory at one step; hence mathematicians will recognize
that much needs to be filled in here by studying exactly what class of P's can
be so expanded (p. 38). One may write the expansion coefFicient of f(a') as
0.' i.e.

0 = Z4(a')(a'I) (1.4)
a'

where the space to the right of
~

can be used to put indices to distinguish the
expansion coefFicients of different f's with respect to the eigen-It 's of n (p. 73).
(n' ~) is a function of n' which need be defined only for all the allowed values
of n. From the orthogonality property of the eigen-P's just as with Fourier
series, multiplying (1.4) by g(n'),

(a'l ) = d(a')tt'

provided P(a')P(n') =1. Similarly an arbitrary P can be expanded,

Q(/ a')d(a'), with (J n') = yP(n').

(1 ~)

The set of eigenstates can be thought of as a set of unit orthogonal vectors
in which case (n' ~) becomes the components of Ii on the coordinate system
formed by them, found by taking the scalar product of P with the appropriate
eigenstate. 9

In the preceding, and in what foiiows, where the symboi + ' is used, it is tacitly supposed
that all the allowed values of u' form a discrete set. In many important cases the allowed
values form a set that is wholly continuous or consists of discrete and continuous portions. In
these cases generalizations of the above treatment are required which are analogous to Kemble
I, p. 188. It is convenient to write the formulas as if only discrete values were involved with the
understanding that the appropriate change has to be made where continuous sets present
themselves. (Compare Dirac $25, p. 70).
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Consider $m/i when Q, f are so expanded, in terms of eigenstates of a. One
has

by the orthogonality property for the eigenstates. Here one has the average
of n expressed as a sum of the allowed values of n, multiplied by weighting
factors. Hence the interpretation of ( In') (n' I) as the probability that n have
the value &x' in the state $, P (p. 82). Since one has ( In') = (a' ~) these proba-
bilities are necessarily real and positive as they should be.

In case nP =Pn, states may exist, P(n', &8'), which are simultaneous eigen-
states of both n and &8, so that

and similarly for the associated &t&'s (p. 44). To describe a system one may
choose any set of commuting observables such that there is no other observ-
able that is not a function" of them which commutes with all of them. Such
a set is said to be complete (p. 47). It is convenient to denote all the members
of a complete set by e for short, meaning thereby the ensemble ni, n2, * ~

Consider now an observable P which does not commute with all the mem-
bers of the set n. Then generally an eigenstate of P will not be one of the set
n Sup.pose/(&8') belongs to P'. One can expand/(&8') in terms of the f(n')
and get

Similarly)
(1.7)

Since the state belonging to P' is one in which P has precisely the value P' we
have the result that

isthe probability that the observables O.i O.„have the values O,j' . o,„'
when P is known to have precisely the value P' (p. 83).

Perhaps it will help the reader who is already familiar with Schrodinger's
work to be told that a solution of Schrodinger's equation, as P&r(x, y, s), in the
Schrodinger notation, is a special case of this result where the positions x, y, s
are the observables symbolized here by n and the total energy W is to be
identihed with P.

A function of an observable n need be defined only for the allowed values of cx since no
other values of a have any significance in the theory (p. 39}.y is said to be a function of n if its
value is specified for each allowed value of a. As to functions of several observables, these are
only defined when the several observables appearing as arguments commute with each other,
and are then defined similarly (p. 46}.
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Consider the action of P on an eigenstate of the n's. g (n') will be another

f and so can be expanded in terms of the eigenstates of the n's. For this we
adopt the notation

W'(n') = Z4(n")(n"
I Pl n')

a"
(1 . 9)

The quantity P is thus described by the double array of coefficients (n" IP ln')
obtained when 0;" and o.' range independently over all the allowed values of
the n's. This array of coefficients is called the matrix of P in the n scheme (p.
58 and p. 74).

If P is arbitrary it is given by (n"
l ) in the n scheme. Then g is

P& = ZP4(n')(n'I) = Z4(n")(n"
I

P n')(n'I)
a' a'a"

and therefore the component of PP relative to the n" eigenstate in the n
scheme is

4(n")N = Z(n"
I P n')(n'I),

a'
(1.10)

by the orthogonality property.
In the n scheme the matrix of any one of the n's is especially simple:

n,p(n') =n&'1I (n"') and therefore (n" ln, ln') =ni "8„",where 0 ~ ~ =0 if
n" 4n' and equals 1 if n" =n', and the n's have discrete values. This needs
some special consideration for the case in which the allowed o, values form a
continuous set, but that will not be given here.

Suppose now P stands for another set of commuting observables. An
arbitrary P will be given by

O' = Z4(n')(n'I ).

One has further that

N(n') = Z4(P')(P'I n').

Hence

So

~ = Z~(P )(P I
- )(- I ) = Z~(P')(P'I ).

Plas

(P'I) = Z(P'I-')(- I), (1 11)

which gives the relation between the components of a P in two diferent coor-
dinate systems.

Similarly one has, if y is another observable,

v4(n") = Zf(~')(P'I v P")(P"In")
Pl// I

4(P') = Z4(n')(n'I P'),
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so

But

74( ") = Z 4( ')( 'I tl')(&'I v I
&")(&"

I
").

al PIP 1 I

~4(~") = Z4(~')(a'I el ~"),
a'

so by the orthogonality property

( 'l~l ") = 2( 'lo')(~'lvl~")(o"
I

"), (1.12)

which gives the rule for changing a matrix from one coordinate system, or
scheme, to another.

The transformation functions (o.' IP') satisfy certain identities since

(~'I ) = Z(~'I &')(&'I ) = Z(~'I &')(&'I a")(~"
I )

Plal f

Hence, comparing coefficients, one must have

and similarly
(1.13)

This completes the statement of the formal rules.
This is the mathematical pattern in terms of which we seek to formulate

the laws of atomic physics. The remainder of the theory consists in the rec-
ognition of the properties of the operators which are to represent various ob-
servables. To a particular mode of observation with certain apparatus is to be
associated a certain operator. The laws of nature are not, as before, the func-
tional relations between the numerical values given by certain experiments,
but relations between the operators that stand for various modes of observa-
tion. The recognition of what operator is to be associated with each set of
experimental operations has been carried out thus far partly by appeal to the
correspondence principle (as with coordinate position and conjugate momen-
tum) and partly by appeal to experiment (as with electron spin). Of course
the correspondence principle itself' is a broad generalization from experiment
so the known relations between operators for physical quantities all spring
from experiment. Essentially the laws are as follows (Dirac, Chap. VI):

The quantities q~ q which are analogous to Cartesian coordinates of
particles are capable of taking on all values from —~ to +~. The quantities
p&

. . p„which are ana1ogous to the Cartesian components of momentum
similarly take all values from —~ to +~.

The quantities g and p satisfy the following quantum-theoretic laws of
nature,

pygmy
—

gggt = 0

O'P2 —P~P' = 0

p;1; —V;P; = (h/2s. i)5„;.

(1.14)
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Analogous to the total energy of the system is a Hamiltonian function H
which is represented by the same functional form of the P's and g's as on the
classical theory for the analogous classical dynamical system. The importance
of II on the classical theory lay in the fact that through Hamilton's equations
of motion it determined the time variation of the state. That continues to be
its importance here, the dependence of the state P on the time being given by

h Bg—= HP.
2x's 83

(1.15)

The eigenstates for the Hamiltonian are stationary states in the sense
that the probability that any quantity ~ have a value a' is independent of the
time. One has for the eigenstate belonging to II',

HP = H'f,

and therefore the time dependence of such a P is,

P (HI) P (HI)s 2~iH&llh—

Similarly
y (HI) —y (H~)&+2riz'1th

The average value of 0. is independent of the time in such a state. " The
proof is as follows:

P (H ~) (qfp ((HI) —g (H I)s+2 r iH ' I IA~/ (H &) g
—2 r iP ' l / h

so that

A(H')W((H') = 4o(H')~40(H'),

the time dependence having just cancelled out.
The place of Schrodinger's equation in this scheme (pp. 103, 104) is that it

is a special case of the equation en( =a/. Suppose we are dealing with a system
which is specified by Cartesian coordinates and momenta g~p~ g„p„.
Then the coordinates g~ g„ form a complete set of commuting observ-
ables whose allowed values are all values from —~ to + &e. Let P(g') be the
eigen-P belonging to the set of values q~' g„'. Then an eigen-P for the
total energy can be written, as usual,

0(H') = Zf(q')(q'I H').

The equation Hjk =FI'f can then be written

HP(H') = QHf(q')(q'
I
H')

= ZI14")(v"
I HI v')(v'I H')

= ZHV(v")(v"
I

H')

Hence, by the orthogonality property of the f(q'),
" If a ~loes not involve the time explicitly.
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Q(if"
~

H
~

q')(q'
~

H') = H'(q"
(
H').

Schrodinger's great discovery consisted in the observation that the operation
on (q' ~H') which is represented by the left-hand side of the equation could be
replaced by a differential operator, so that this equation became a diA'erential
equation for (q ~H').

The differential operator for H is to be found" by replacing each p by the
corresponding (Ii/2xi)(8/Bg) in the classical expression for H(p, g). The
equation for (q ~H') is then the partial differential equation,

h 8
II —

& q q IJ' = H'q H'.
2Ãz

(1.16)

Hence the fir(g) of Schrodinger is to be identified with the (g tH') of the pre-
sent notation, where 8'=II' and is an allowed energy level.

In fact, more generally, any quantity, such as angular momentum, which
classically is expressed as a function of the q's and p's may be made into an
operator for the g-scheme by writing (II/2n. i) (8/Bg) for the corresponding p.

$2. ONE DIMENSIONAL COLLISIONS

The best way to become familiar with the workings of the theory is by
consideration of simple one-dimensional problems in which a particle moves
under the influence of a potential energy function V(x) so that the classical
Hamiltonian is

EI = —p'+ V(x).
2p,

(Ii = mass).

It is of importance to know the behavior of the function (x ~H') which in
Schrodinger's notation is the P(x) belonging to the energy level H'.

In order to speak of a particle colliding with a force-field it is necessary to
suppose that the forces become negligible at large distances from the origin.
Hence, since the zero of V is arbitrary we suppose that V~O as x—& —~ and
V—+ Vo as x~+ co and for definiteness suppose Vo &0.

The Schrodinger equation for (x IH') is then

This has to be solved with the understanding that (x ~H') remains finite.
(More accurately, so that J '(H' ~x)(x ~H')dx is finite if(b —a) is finite and
such that f,'(H' ~x)(x lH')dx/(b —a) is finite as b +~ and -a—+ —oti). By
easy studies of this ordinary differential equation one can establish the
following:

(a) H' not less than V;, where V;, is the absolute minimum of V(x).
(b) If V I (0 then the allowed H' in the range V; (H'(0 form a dis-

'2 Compare Kemble I, Sec 4, "The Energy Operators. "
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crete set, and for these f (H'~x)(x~H')dx is finite and can therefore be
set equal to unity by a proper normalization of (x ~H'). Also (x ~H') is real so
that

(H ~*) =(*~a).
(c) The allowed H' in the range 0(H'(Vo form a continuous set, i.e. all

values are allowed. The (x ~H') is real and

(H
~
x)(x

~

H )dx
b —a4,

tends to a finite limit (not zero) for b fixed and a—+ —"and tends to zero for a
fixed and b—&+~.

(d) For H') Vo all values are allowed and associated with each H'are two
different (x ~H') which will be denoted by (x ~H', 1) and (x ~H', 2). Since an
arbitrary linear combination ci(x~H', 1)+c&(x ~H', 2) is a solution of the
Schrodinger equation one sees that (x ~H') is here to a certain extent in-
determinate. For either solution one has

1
(HI

~
x)(x~ H')dx

equal to a finite limit for either b~+ or a—+ —~ or both.
The states of class (b) correspond to the classical periodic vibratory mo-

tion inside the range of values of x in which H —V(x) )0. In this range
(x~H') is an oscillatory function and in the range where H' —V(x)(0, it
sinks asymptotically and without oscillations to zero roughly at the same
rate as an exponential function. Since the particle has a negligible probability
of being at infinity for these states they are not of interest for collision prob-
lems.

The states of class (c) correspond to the classical aperiodic motion in

which a particle comes from x = —00 with kinetic energy H', goes as far as
the least value of x for which H' V(x) =0 and—returns to x= —~ with
kinetic energy H'. For them (x ~H') is an oscillatory function in the range
from —~ to the least value of x for which H' —V(x) =0. For x greater than
the greatest value of x for which H' V(x) =0, the —function sinks asymptoti-
cally to zero, roughly like an exponential function. A detailed consideration
of its behavior between the least and greatest values of x for which H' V(x)—
=0 reveals some striking and important phenomena in which quantum me-

chanics gives very different results from classical mechanics. The particle has
some chance of penetrating to positions where, classica11y speaking, its po-
tential energy alone is greater than its total energy.

The states of class (d) correspond to classical aperiodic motions, which
classically are of quite different nature according as H') V, or & V~
where V~" is the absolute maximum of V(x). In the former case one type of
classical motion is that in which the particle comes from x = —00 with kinetic
energy H' and goes, without ever changing its direction to @=+00 with
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kinetic energy II —Vo. The other type would be a similar motion ca,rried out
in the reverse direction, Similarly for II & t/"max one classical motion is ap-
proach from x = —~ to the least value of x for which H' V(x—) =0 and re-
turn to x = —~ . The other is approach from x = +~ to the greatest value of
x for which H' —V(x) =0 and return to x=+~. We shall see that in quan-
tum mechanics the sign of (II' —V... ) does not play the role of a sharp divid-
ing line between two distinct classes of motions.

To remove the arbitrariness about the two (x ~!H') in class (d) we will sup-
pose that (x ~H', 1) has been so chosen that it has the asymptotic form

(x I
H' 1) ~ q'aoz

27r
ko ———[2p(H' —Vo) ]'"

h

and similarly (x!,H', 2) will be taken ,so that

(x~ H', 2) —+ e
—"* as x~ —ao.

2'
k = —(2yH')'".

h

We shall see that this choice of (x!H', 1) and (x ~H', 2) is a canonica. l one, the
former corresponding to a state of affairs in which particles in the neighbor-
hood of x=+cc are certainly moving from left to right, the second cor-
responding to a state in which the particle when in the neighborhood of
x = — is certainly moving from right to left.

In accordance with that consequence of quantum mechanics known as
Heisenberg's uncertainty principle" we cannot speak of a precise value of the
momentum of a particle at a precisely given position (because p and x do
not commute). But we can ask about the value of the momentum when the
particle is at x = + Oo because this virtually amounts to no restriction on the
position of the particle. This point is akin to an approximation that is always
made in optics which needs for its correction the theory of the resolving power
of optical instruments. A light wave is strictly monochromatic only if it is of
in6nite extent both in the wave-front and perpendicular to it—and yet we
admit only a small portion of the wave into the narrow slit of a spectroscope
and continue to talk of it as essentially monochromatic! Since (x ~!H', 1) be-
comes for large x asymptotically the same as the wave function of a free
particle of precisely known momentum, (kko/2x), it is safe to interpret this
as a state of the system in which the particle's momentum certainly has the
value +(kko/2x) when at x=+~. Similarly (x ~H', 2) represents a state
in which the particle's momentum certainly has the value —(kk/2s) or
—(2pH') & when at x= —~.

"Heisenberg's book, The Physical Principles of the Quantum Theory, published in July,
1930by the University of Chicago Press gives a full account of this.
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Another property of (x ~H') of which we now make use is that the asymp-
totic expansion of (x ~H', 1) as x-+ —~ is of the form

(x~ H', 1) ~A(EV)e''*+ B(EP)e '"*

which means that (x ~H', 1) represents a state in which particles are coming
from x = —~ with momentum, + (kk/2x), in numbers proportional to
A(H')A(H') and are going to x= —~ in numbers proportional to B(H')
B(H') with momentum —(kk/2m. ). Therefore we shall interpret (x ~H', 1)
as a state of motion in which A(H')A(H')(kk/2x) particles come from x
= —~ in unit time, and of these kk,/2x in unit time get through to x = +Do
and B(H')B(H') (kk/2x) are reflected or scattered back to x = —~ . What will

happen to any particlar particle cannot be stated. Evidently for this view to
be tenable one must have the sum of the numbers transmitted and scattered
back equal to the number coming from x = —~. That this is true quite gener-
ally may be readily proven as follows.

We write down the Schrodinger equation for (x ~H') and for (H' ~x), its
complex conjugate; multiply the former by (H' ~x) and the latter by (x ~H'),
substract and integrate with regard to x. The result is

(x~ EV) (EV
~

x) ——(II'
~

x)—(x
~

II') = constant.
4$ dg

Evaluating this expression for x~+~ and for x—+ —~ and equating the
results we have the theorem of the conservation of the number of particles.
(Compare Weyl, p. 63.)

Ke can thus define the probability of transmission as

tr. = ko/kA(H')A(H'),

and of reflection as

ref. = B(II')B(Ef')/A(II')A(H'),

where
tr. + ref. = 1,

as it should. The interpretation of (x ~H', 2) is exactly analogous, this rep-
resenting a state of motion in which a particle coming from x = +~ has a
chance of being rejected back and a chance of being transmitted to x = —~.

The interpretation of states of class (c) is now quite evident. Asymptoti-
cally for x-++ ~ one has (x ~H')~0 so that no particles move off to x=+ ~.
For x~ —~, (x ~H') is asymptotically real and oscillatory so that the inten-
sity of the incident and rejected beams are equal, as they should be.

The essential thing in the study of problems of the type of class (d) is to be
able to compute A(H'), for from it the transmission and reflection proba-
bilities can be obtained at once. This calls for a solution of Schrodinger's
equation for the problem in question. As stated before, classically we have
tr. (H') =0 for H'( V and tr. (H') =1, for H') V „. This is replaced in
quantum mechanics by a gradually changing function with the properties:
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tr. (H')~0for H'( & V and tr. (H')-+1 for H'&& V . Instead of proving
this in general, the main features of the theory will now be illustrated by
working out a few cases where V(x) has a mathematically tractable form.

Such cases are afforded by supposing V(x) to be constant except for a finite
number of finite discontinuities. For our Case I suppose V(x) = 0, for x (0
and V(x) = V„ for x&0. In this type of problem it is assumed that (x tH') and
(d/dx)(x ~Ei ) are continuous at the discontinuities in V(x). These assump-
tions were first made by Faxen and Holtsmark. " Of course, it is to be under-
stood that no problems of real physical interest will show mathematical dis-
continuities in V(x) and so boundary conditions are not needed for real prob-
lems. But if V(x) changes by a considerable amount in a space smail com-
pared to a de Broglie wave-length, 2ir/k, we expect that the solution for such
a case can be found by treating the change as an actual discontinuity with
appropriately chosen boundary conditions. Faxen and Holtsmark's paper
purports to show that these are the appropriate conditions in this sense. On
this point see also H. A. Wilson, Phys. Rev. 35, 948 (1930), Eckart, Phys.
Rev. 35, 1298 (1930) and Wilson, Phys. Rev. 35, 1586 (1930).

For 0&IT'& t/0 one has,

x&0 (xi H') = e-"* 2x
ko ——[2ii(VO —H') ]'i',

h

x%0
2g

(x i
H') = Ae"*+ As-"* k = —(2pH')'"

h

where, in order to have the required continuities:

Re(A) = —,', Im(A) = k,/2k,

where Re(A) and Im(A) mean real and imaginary parts of A.
Hence there is some probability of being at places where x &0, which is

impossible on classical mechanics. The total probability of x being between
0 and + 00 is proportional to

Jt e '"~*dx = 1/2ko.
0

The probability of being in unit length at x(0 is proportional to

1 1
llm —' (H'~ x)(x~ H')dx = —[1+ (ko/k)'].

Q~00 g 2

The ratio of these two quantities gives a kind of mean depth of penetration of
the particle into the non-classical region. It is

1/kii[1 + (ko/k)'].

It varies from 0 at H' =0, to 00 as II'~ Vo.
For II'= Vo the same treatment holds, if we write F0=0. For x&0,
'4 Faxen and Holtsmark, Zeits. f. Physik 45, 311 (1927).
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(x ~H') =1 and for x &0, (x ~H') =cos kx. This is a peculiar transition case
since the Row at x &0 vanishes with ko but nevertheless the penetration is
in Finite.

For H' & Vo, we have

2'
x & 0 (x~ H', 1) = e'Po* kp = —[2p(H' —Vp)]'IP

h

x & 0 (x~ H', 1) = Ae+"*+ Be "*, k as before,

where, to satisfy the continuity requirements,

A = —,'(1 + kp/k), B = -', (1 —kp/k).

Hence the transmission and reHection probabilities are,

4kp/k (1 —kp/k)'
ref. =

(1 + kp/k)' (1 + kp/k)'

l00
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Fig. i. Probability of reflection at a sudden drop in the potential energy.

Since tr. +ref. = 1, it is sufficient to consider the dependence of tr. on II'. At
H'= Vp, tr. =0, since kp=0. AtH=4Vp/. 3, kp/k =p and tr. =8/9 so we see
that the rise of tr. to the value unity is rapid when (H' Vp) becomes an-
appreciable fraction of Vp. By considering (x ~H, 2) in the analogous way we
may see that the probability of transmission in the right- to-lef t motion is
zero for H' = Vo but rapidly rises to unity for II' & Vo. In Figure j. is plotted
the logarithm ofref. against (H' —Vp)/Vp for this case. One can see that the
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particle approaches rapidly to its classical behavior as H' becomes appreci-
ably larger than Vo.

Case II will be defined by V(x) =0, for x(0, V(x) = V& for 0 &x(a and
V(x) = Ve for a(x where V&) V0. For H'( Ve we get certain re8ection as in
Case I but with a somewhat more complicated calculation of the mean depth
of penetration. The result, it can easily be foreseen, will be a somewhat
greater mean depth for a given VI than if Vo were equal to VI. We pass to
(x~H', 1) for V, &H'&V, . We have

(x~ H', 1) = e'"o* ko as before,

2'
0 ( x ( a (x) H', 1) = Ae"~*+ Be "~* kq ———[2p(Vq —H')]'~'

h

(x
~

H', 1) = Ce''*+ De f '*, k as before,

where the 2, 8, C and D are determined by the continuity requirements at
x =0 and x =a. The results are,

,'e ''-(1-+ ike/kg)e"'

B = —',e'~'( 1 —ike/k, )e"o'

C = —e'~~eo'[(1 —ikg/k)(1 + ike/kg)e ~" + (1 + ikg/k)(1 —i ke/kg)e+~"]

D = 4e'~" [(1 + ik~/k)(l + ike/k, )e "~' + (1 —zk~/k)(1 —ike/k, )e+~~'],

the details being left to the reader. Hence the transmission coefficient is

tr. = ke/kCC = (8ke/k) [1+ 4ko/k + ke'/k' —ke'/kg' —k$'/k'

+ (1 + ke'/kP + kP/k'+ ke2/k') cosh 2k)a})

which is a somewhat complicated function of H'. If 2kIa& &1 the second
term dominates the denominator and the transmission coefficient is small, of
the order t, "I'. Hence for a potential wall of finite height and finite thick-
ness there is always some chance of penetration and escape to x = +~, con-
trary to classical mechanics. For H') Vq, (x ~H', 1) is of the same form except
in the middle portion, where it is

27r
0 ( x ( a (x~ H', 1) = 4e'"~*+ B. e '"~* k) = —[2p(H' —Vg)]'"

h

This amounts merely to a substitution of ik& for k& in the preceding expres-
sions. Hence the transmission coeiticient now is

k()' kI' ko' -1
tr. = 8(k,ik)[l + 4—+ y y + r + c 2k,

k k' kI' k' kI' k' k'

One observes that as II'~~ the transmission probability tends to certainty
but not monotonically because of the oscillations of the cosine term. This term
is a maximum for 2k~a = 2nm where n is an integer, that is, when an integral
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„~~her of 1 al( de Broglie wave-lengths is contained in a (the wave-leng'th
corresponding to the classical momentum in the range 0 to a is meant). Be-
cause the other terms vary with II', the transmission minima or maxima will
not come precisely at these values but only approximately so.

The behavior of tr. as a function of H'/V~ is shown in Figure 2 where
curves for three proportions of the wall are shown, for the case Vo =0. The15

curves are labelled by the value of the ratio, b'//2//a'V~, which expresses com-
pe eyletely the characteristics of the wall for this problem, being the ratio of the
energy of a particle of de Broglie wave-length a to Ul.

Hj'Yj

Fig. 2. Probability of transmission at a potential wall of height l~l. (8 is the energy of a
particle of de Broglie wave-length equal to the thickness of the wall. )

Case III will be defined by

1"(x) = 0

= Vg

= Vg

= V(l

x&0
0& x&a
a&x&b
b&x

whereit is supposed that V~&0, V2& V~, and Vo) & V~. If Vo&) V~ thepen-
etration of the particles into b&x may be neglected for II'« Vo and
(x [H') set equal to zero at x = b for this case. We shall consider in detail only
the case for which V2&II'& Vl as the other ranges of II' will present phe-

Inomena not diA'ering essentially from the preceding cases. Since (x ~H ) =0
at x=b one can write

a ( x ( b (x
~

H') = sin kg(x —b)
2x

b 2
———

[2 p(H' —Vp) j '"
h

0&x&a
x&0

= Ae'~ + Be ~& k~ as before

= Ce'~ +De '~ k asbefore.

A. , 8, C, and D are determined by the continuity requirements as before, and
D = C. It is here somewhat more convenient to write

'~ Kindly prepared for this report by Professor J.E. Mack.



QUANTUM' MECIIAXICS OF COLLISION PROCESSES

x ( 0 (x
~

H') = E sin k(x —8) .

One 6nds for E,
L" = (1 y k '/k')(A' y 8') + 2(1 —k '/k')AB

where

59

1 k2
A = ——cos k2(b —a) —sin k2(b —a) e

—'~,
2

1 k28 = ———cos k2(b —a) —sin km(b —a) e+'~'.
2 kg

The probability of being in the range a (x (b is j,' sin' k2(x b)dx w—hich is
of the order of —,(b —a). The probability of being in unit length of the range
x &0 is —,'E'. Ordinarily, if kju&&1, then 8' is a very large numb r b.cause of
the quantity 8' in the formula for Z' which makes E' of the order of e"I' if
the bracket in the formula for 8 is of the order of unity. For such energy
levels one has the result that particles coming from x= —~ are reflected
without appreciable penetration into the region a &x &b which might have
been expected by analogy with Case I. The important new result is that for
values of II' such that

(k,/k, ) cos k, (b —a) + sm k2(b —a)

is of the order of e '~&, then E' is very small, of the order e "1,so that the
probability of being in unit length in x &0 is almost vanishingly small com-

pared with that in the region c &x &b. This means that, on the average, par-
ticles coming from x = —~ with such energies will not only penetrate into the
region a &x & b but wi11 remain there a long time before going out to x = —~ .
It does not mean, of course, that every particle coming from x= —~ will

penetrate into a&x&b. Some may be reflected in the region 0&x&a; if
there are such then the mean stay in c &x & b of those that do penetrate must
be correspondingly longer. There is no way of telling by means of the (x ~H')
function for a single energy IeveP' how many penetrate into a (x (b and hence
what the mean duration in this region is for those which penetrate. But we
can set a lower limit on the mean duration. In a length (b —a), where x (0
any one particle spends the time 2(b a)/(2H /p) & si—nce it traverses the dis-
tance twice, once going in and once coming out, with almost precisely the
classical velocity. The time spent inside must bear the ratio to the time spent
outside given by the relative values of (H' jx)(x ~H'), which is Z', hence the
mean time spent inside by those that penetrate must be

2(b —a)T— g2
(2I1'/IJ) "'

if each particle penetrates, and longer if some do not.

"For elucidation of this point, see $6 of this report.
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These three cases wi11 suffice to illustrate some of the striking character-
istics of the theory. Naturally results, semi-quantitatively the same, hoM for
V(x) a continuous function of x of the same general shape as those considered
here. '~ In particular, Case III illustrates the quantum theory of radioactive
disintegration by alpha-particle emission in the form due to Gurney and Con-
don. '" The theory was developed independently by Gamow" along some-
what different lines.

APProximation Methods

It is now clear how we have to interpret a rigorous solution for (x ~H') if
one has been found for the particular potential energy curve V(x) describing
the problem. We next consider what approximate methods are available for
Finding (x~H') when the rigorous solution cannot be obtained. Born has
developed a method of successive approximations for this problem. For con-
venience let u(x) stand for (x ~H', 1) and suppose V(x)~0 as x~+ ~. We
write

u(x) = e'"*+ u, (kx) + u, (kx) +
where u&, u2, vanish for x—&+ co and are determined by the equations:

u,"+ ui ——Ve'&/EE'
~ ~ ~ ~ ~ ~

u„"+ u„= Vu„ i/H'. (j = kx).

These simple equations can be solved with the condition, u„(~)=0, the
result being,

u„($) = —
~ u„,(g) V —sin (q —&)dqH'J,

For x—+ —~ this gives,

f% QO

u„(f) = (i/2II') e'& u„ i(rl) V(g/k) e&dqF-

u„,(g) U(g/k) e'&de

which becomes

u. ($) = (i/2H')e'& jt u„(qe)Vr(q/k)e '&dg

oo

—(i/2H') e '&
)t u i(g) V(-g/k) e'~dg

so that asymptotically each u„($) behaves like a sum of constant coefficients
into e'& and e '&. Hence the sum of them behaves this way, hence the possi-

'~ An interesting example in treated by Eckart, Phys. Rev. 35, 1303 (1930)."Gurney and Condon, Phys. Rev. 33, 127 (1929).
I~ Gamow, Zeits. f. Physik 51, 204 {1928).
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bility of making an interpretation of incident and reflected streams of parti-
cles as in the preceding paragraphs.

Born's" published convergence proof for the method is erroneous. Keyl
has given a proof of convergence in his book" which imposes the restriction

q+" V(x)
]e'

~

which for a given V(x) can always be satisfied if H' is taken large enough. One
can easily see that this restriction greatly narrows the range of important
physical questions to which the method is applicable. It is therefore desirable
to find a better form of the successive approximations method. Thus in Case
II, if Vp=o, we have

r +" V(x)
k t dx = kaV, /II' = (kiaVi/II')(k/ki)

EE'

so that Born's method would not converge in the case where H'& V~ and
Xia) &1, since kjki 1, if Weyl's restriction is necessary.

In any approximation method one starts from a problem whose solution is
rigorously known, and it is desirable to have this starting problem correspond
as closely as possible to the one whose solution is sought. In Born's method
the starting point problem is that of the absolutely free particle. Instead let
us suppose V(x) = Vo(x)+ V, (x) where Vo(x) is the potential energy function
of a problem whose rigorous solution is known and which is so chosen that
Vi(x) is small compared to V, (x) everywhere. The equation for (x ~H') can
be written

d 8
+ 11 —Uo($)]« = f/i(k)«

d(2

Sm'p, H'
k' = r o ——kx, Uo($) = V (x)/oII', Ui($) = Vi(x)/EV,

h'

and «($) is (x ~H'). Let «($) be in particular (x ~H', 1) and suppose that «.($)
is (x ~II, 1) for the potential energy function Vo(x) while «o($) is any linearly
independent solution of the Schrodinger equation for «, ($).

For «($) we write

«(3) = «.R) + «i(f) + «o(8 +
where the sum of all terms after the first must vanish for $~+oo. These
terms will be determined as solutions of the equations,

d Qy + (1 —fIo(k))«i = fIi(k)«. (k)
dg2

d Q„—-+ (1 —I'o(&))«. = U~($)«.-i
dg2

0 Born, Zeits. f. Physik 38, 803 (j.926).
g' Acyl, Gruppentheorie und Quantenrnechanik, p. 61.
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the solutions are found to be,

where,

&(6 m) = [I(a)&. bl) —&.(6)&I(n)]ID(9)

From this it is evident that u($) satis6es the integral equation

~(k) = " &(5, n)~~(n)N(v)dn

This is a Volterra equation and the method of solving it here given is a
standard one.

Dirac" has treated one-dimensional collisions by an approximate method,
which is equivalent to the first order of Born's successive approximations,
using the momentum representative of the states instead of the coordinate
representative which characterizes the preceding treatment. The calculations
are considerably complicated by the fact that the momentum representatives,
(p ~), are discontinuous and involve the 8-function.

$3. SPECIAL ONE-DIMENSIONAL CALCULATIONS

Detailed evaluation of reHection and transmission coefFicients for various
one-dimensional potential energy walls have their chief application in the
theory of thermionic emission of m etals worked out by Nordheim and Fowler.
According to the present ideas in the electron theory of metals, the free elec-
trons behave like a gas at such a high density that the Fermi equation of
state must be applied in discussing its properties. " At the boundary between
metal and free space the potential energy of an electron increases by some 20
volts, as experiments on the diffraction of de Broglie waves show. (Appendix).
Of those electrons which attain a velocity component normal to the surface
whose energy equivalent is in excess of this amount only a certain fraction
will actually escape because of the existence of a reHection coefficient at the
wa11, as was discussed in Sec. 2.

Nordheim and Fowler have shown that if I is the saturated electronic
thermionic current then A in the formula

I = AT'e "'k

"Dirac, Zeits. f. Physik 44, 585 {1927).
~ Compare Darrow, Phys. Rev. Suppl. 1, 115 and 123 {1929).
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(T=absolute temperature, k=Boltzmann constant, x=work function) is
given by

2xmek'
A = gD.

h'

Here g=2 and is (he weight factor brought in by the two spin orientations
for each ordinary phase-space cell and D is a mean of the transmission coeffi-
cient for the surface potential energy function weighted according to the
distribution of normal components of electronic translational energy. There-
fore thermionic emission depends on the mean value of the transmission
coefficient and hence on the form of the potencial energy law in the neighbor-
hood of the metal surface. This has given rise to the calculation of D for a
number of special assumptions concerning the potential energy V(x), where x
is a coordinate running from metal to vacuum, normal to the metal-vacuum
interface.

Nordheim" 6rst worked out the case which is called Case II of Sec. 2 but
made an algebraic error which was corrected by Fowler. " But Fowler's Fig. 2
is quite wrong in that it fails to show the interference eRects in the trans-
mission coekcient for the energies greater than the potential energy maxi-
mum. The correct form is that given by Fig. 2 of this report.

Nordheim" has also made the calculation for the case in which the square
wall of our Case I, Sec. 2 is rounded oG by the Schottky image force, to give a
better approximation to actual conditions. He uses

V(x) = C —e'/4x, x ) xo

x&xp

where xo is given by e/4xo = C. Naturally this makes the transmission coeffi-
cient a rather complicated function of the energy, W (called H' in Sec. 2).
The important eRect of rounding oR the sharp discontinuity in V is that now
the transmission coefFicient does not tend to zero as W'—+C, but takes on a
limiting value 0.927 in case the particles are electrons and C=12 electron
volts. Therefore the non-classical reQection when W& C is almost inappreci-
able. Therefore the mean value D is close to unity so that with the weighting
factor, g=2, the thermionic constant 2 comes out to be 120 amp. /cm. '
Empirically A has a value nearer half of this.

The theory of A has had its ups and downs! The theoretical expression,
omitting gD, is due to Bushman and agrees with experimental values. The
electron spin makes g =2 instead of assigning unit weight to each phase cell as
implied in Bushman's derivation, but at 6rst Fowler and Nordheim thought
D $ so that the agreement of theory and experiment remained unimpaired.
But now Nordheim's analysis shows that D 1 so theory gives a value about

~ Nordheim, Zeits. f. Physik 46, 833 (1928).
'~ Fowler, Proc. Roy. Soc. A122, 39 (j.929).
~ Nordheim, Proc. Roy. Soc. A121, 626 (1928).
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twice too large. Fowler" has recently discussed several possible ways of
removing this difficulty.

Georgeson" has worked out the transmission coefficient for the case in
which the potential energy function is of the form given in Fig. 3. He finds
for tr. for TV&8

I

I

l
I

gf I

I

I
I
I

I

IC
I

I

Fig. 3. Form of the potential energy function used by Georgeson.

41K'"(W —8) '"
tr. =

I (W 21) 1/2 + II/1/2
I

2 (jIQ/0)

in which F= (8—C)/I, a =4k( W —C)"', X = (2k/3F) I (W—C)'"—(W 8)"'I—
and k' =8m'p/k', where /a is the mass of the particle.

For W'&8 but not very near to C, he finds

tr. =

in which

4(2I W)1/2W1/2g —2Q

P2 FIV»2

2k
Q = (8 —W)'".

3I'

J/ 18+ = + +
k(21 I.I, ) 1/2 3k2(jg II/) 2 31/2 k(21 W)

Georgeson also works out special forms valid when 8' C and 8' B. He
gives three figures showing the transmission coefficient as a function of j/I/'

for various values of 8, C and l. These are probably only meant to show the

e ' v'e~

Fig. 4. Transmission probabilities for the potential barrier of Fig. 3.

general trend since they do not show the interference effects for 8'&8 which
are implied by the sine term in the denominator. One of Georgeson's figures
is reproduced in our Fig. 4.

~~ Fowler, Proc. Roy. Soc. A122, 36 (1929).
Georgeson, Proc. Camb. Phil. Soc. 25, 175 (1929).
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Eckart" has published an interesting special case in which the penetra-
tion of electrons through a potential barrier that is without discontinuities in

value or slope is worked out.

f4. THREE-DIMENSIONAL COLLISIONS

'IA'e shall suppose that a particle of mass p free to move in three dimensions
is acted on by a field of potential energy V(x, y, z), which becomes rapidly
equal to zero as r = (x'+y'+z') &—&~. We have to study the possible station-
ary states of the motion for positive values of II' through the representative
(x, y, z ~H ) which for simplicity will be written u(x, y, z). The essential
difference between the three-dimensional and the one-dimensional case is
that we now have an ~' set of stationary states associated with each II' in-
stead of two as in the one-dimensional problem. This is because there is now
an ~' continuum of directions of motion possible when far from the origin,
instead of just two as in the one-dimensional case. It is imperative therefore
that we have some means of classifying this wealth of solutions and that we
have some knowledge of their properties.

This is best done in analogy with the one-dimensional problems by making
a preliminary study of the (x, y, z ~H ) for a free particle in three dimensions.
Then V = 0 everywhere and the equation for (r ~H') is

Sm'pH'

of which a canonical form of solution is

where k is any vector whose magnitude is k; hence this form implies an ~'
family of solutions. Since H'= (k'/8x'p)k' it is best to use the vector k to
label the canonical form, i.e. ,

(r k) = e'A"

This function is that of an infinitely extended plane wave and corresponds,
according to Sec. 1, to a precisely given value of the linear momentum vector.
The operator for the linear momentum, p, is (k/27ri)grad and this operator
applied to (r ~k) gives (kk/2x)(r ~k); hence (r ~k) is the representative of a state
in which ~ has precisely the value kk/2x.

Since we are going to be concerned with the scattering of particles by a
localized field of force it will also be of interest to learn the representatives of
states in which the angular momentum about some fixed origin has a precise
value. A set of solutions appropriate for answering this question is obtained
by solving the Schrodinger equation in polar coordinates. The equation is
known to have solutions of the type,

"Eckart, Phys. Rev. 35, 1303 {1930).



Here the factors O~ and 4 are the normalized factors of a surface harmonic

2l+ 1 (I lrwl)l 'le d~"~

oi-(e) = sin~ ~ 8 Pi(cos 8),
(I pl ~l)t d(c»e)~-~

C„(y) = e'. e/(2~)'~'

and Ri(&) is a solution of the equation

(
d' l(l + 1)+ Ri(g) = 0, (P = kr)
d(2 $2

which vanishes at the origin. Functions which satisfy this equation arise in
many problems of physics and many notations have been used for them
(Watson, Bessel Functions, p. 55). We shall be interested in the general
solution of this equation. It is of the form

y = cie'&fi( i$) +—c2e '&fi(+ i&)

where fi(i$) is defined by the terminating series

(I+ «)!

„=e r!(I —r)!(2i&)"

If the solution is to be finite at the origin one must have c2 = (—1)'+'ci. We
shall define R&(&) by the equation

Ri(k) = e"f( if) —(—1)'e "f(+ ~k)

With this definition one has the relation

A(5) = (+ &) '+'(2&f)'"~i+u~(k)

where Ji+&(g) is the usual Bessel function of half an odd integer.
Since the operator for the component of angular momentum along the

pole of a spherical polar coordinate system is (k/27ri)(8/8$), one sees that in
(r~k, I, ni) we have a pure state for this component and that ni labels the pre-
cise value of it in Bohr units (k/2ir). Similarly the operator for the squared
resultant angular momentum is

1 8 8 1 82
— —sin 8—+

2m sin g gg gg sin'0 BP'

so that it can be seen that (r ~k, I, rie) refers to a pure state for squared result-
ant angular momentum, the precise value being E(I+1)(k/2ir)'. The inter-
pretation of k, as proportional to resultant linear momentum, we already
know.

To find the distribution of angular momentum in the infinite unidirec-
tional beam we must expand (r (fc) in terms of the (r ~k, I, m). Suppose the
pole of the polar coordinates has the direction of k, then k s=kr cos 8 and
the expansion desired is a we11-known one,
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e'" 'e = (2&r/kr)'&s g(l + —)f&J&~&~2(kr)P&(cos &&)

0

or in our notation,

The absence of terms for m /0 shows that the component of angular momen-
tum in the direction of the beam is certainly zero, which corresponds with
classical mechanics.

I.et us now consider the scattering of particles by a spherically symmetric
field of' force. First we study the solutions of the equation for the motion of
the particles,

87r'p,
Au+ (O' —V(r))e = 0.

h2

Since V is spherically symmetric this will have solutions of the form

where the angle factors are the same as for the free particle but R&(P) is a new
function whose properties we need to study. It satisfies the equation

in which U($) = V($/k)/H'. The boundary conditions on R&($) are:

R&(0) = 0, and R&(~), finite.

It will now be supposed that for /~0&&, we have U($) & &I(I+1)/P.
We observe that the equation for R&(() is of the same form as that of a

one-dimensional problem in which U($) is infinite for ( &0, if $ is regarded as a
coordinate which can range from — to +~. Hence by the arguments used
in Sec. 2, there will be one solution associated with each positive value of H,
which will be essentially real and which asymptotically will have the form,

R&($) -+A&[e'&& 7&& —(—1)&e '&r»&],

Hc re A is in general a complex number to be determined by normalization or
other requirements and y~ is a phase which is fully determined by the fact
that R&($) is the particular solution that vanishes for (=0.

For a given JI' there is thus the same wealth of solutions for the particle
in the force field as for the free particle, namely (2l+1) corresponding to the
di6erent values of ns associated with each l, with I taking on all integral values
from 0 to ~. To find the scattering we proceed to build up a superposition of
these fundamental solutions which will represent an incident plane wave plus
outgoing waves only, at points far from the origin. To do this we have to
choose the coeKcients A & in such a way that



Ai[e"& &i' —(—1)'e '&& &i'] = [2ir(l + -'))'"(—i) [e'& —( —1)'e '&] + Bie'&.

The first term on the right is that needed to make up a plane wave, as shown
by the expansion of (r ~Ir) in terms of (r ~k, I, m), while the second corresponds
to outgoing waves. Hence, equating coefficients of e'& and e '&, we find

A& ———i[2s(I + -')]'ne '&~

Bi = —2 [2s.(l + -') ]'"e '&. sin yi.

The solution with these values of A ~ and m = 0 is then

ii = Q(2~) '"~i(~ (i)k/5) Oi(~)
L=O

Hence at very large distances from the origin one has a unit intensity per
unit volume of particles moving in the positive s-direction, and particles
moving outward away from the origin. The number of outward moving
particles in the volume element r'sinMrdN@ is proportional to

j.
drd~( QB,O,)( QB,O,).

2x k'

Hence the number crossing the surface element bounded by the differential of
solid angle dec in unit time is

1
s ( QB,O,)( QBiOi)d~

2m-k'

where v = (2II'/p) &.

The number of incident particles per unit normal cross-section area of
beam per unit time is simply v. The ratio of the number going out in unit
time in solid angle dko to this is therefore a quantity of the dimensions of an
area and is the cross-section of the incident beam needed to contribute the
number of particles scattered off in the solid angle den. One speaks therefore
of the scattering power of the field of force in terms of this effective cross.
section of the force field for producing the scattering in question. The
coefficient 1/2irk' can be written M/Sz' where X is the de Broglie wave-length
for the particle being scattered. The cross-section for scattering into the
element of solid angle de is thus,

The total cross-section for scattering in all directions is
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p2x g2
a =

~

aiidkdy = QB&B&
0 0 4x'

g

because of the orthogonality of the 0& for different /. Recalling the dehnition
of BI, this can be written

X~

n = —Q(2l + 1) sin' yi.

In the corresponding classical motion particles of momentum p whose line of
motion at infinite distance passes at distance d from the origin would have
angular momentum pd. The area of the beam in which the particles have
angular momentum between l and (1+1) Bohr units is therefore o. i ——(2l+1)
) '/4ir where ) = Ii/p. The scattering formula can thus be written

to bring out the fact that each term in the summation is of the order of mag-
nitude of a corresponding classical term.

For a particle of energy t/t/'and mass M the value of 0.& in terms of the area,
ma' of the first Bohr orbit in hydrogen, is given by

a, /ma' = (2l + 1)(R/W)(p/M)

in which R is the ionization energy of atomic hydrogen and p, is the mass of
the electron.

The preceding calculation shows that the scattering arises essentially
from the fact that the phases of the asymptotic solution in the force field are
not the same as in the case when no forces act. The scattering power is thus
referred back completely to the shift in phase of the wave function of the
particle in the force 6eld relative to that of the free particle. The converg-
ence of the series for 0. is insured if sing& —&0 sufficiently rapidly as l—+co. For
large l the term f/(() becomes negligible relative to l(l+1)/P in the equation
for Ri(() which tends to bring this aboui, but the exact criteria for the con-
vergence are not known.

The foregoing rigorous theory calls for an exact solution for R&($) or at
least an exact calculation of the phase shifts, y~, relative to the free particle
solutions. There are not very many functions V(r) for which such an exact
solution is possible. The Coulomb law, V(r) r ", requires special treatment
(Sec. 5) since it falis off less rapidly than the l(l+1)/P term due to centrifugal
force, whereas the preceding developments imply the opposite behavior. As
in the one-dimensional case, various features of the theory can be i11ustrated
by supposing V(r) to consist of a finite number of constant portions connected
by finite discontinuities. The calculations follow the pattern of the one-
dimensional calculations with Bessel functions appearing in the former role
of the exponential and trigonometric functions. This makes them consider-
ably less susceptible to numerical treatment because the necessary tables of
Bessel functions are not available.
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Successive approximations method.

The method of successive approximations was extended to the three-
dimensional case by Born in his original paper. One seeks a particular solu-
tion of

Sm'p,
Au + (II—' —V)u = 0

h'

which at large distances from the origin consists of a plane wave and out-
going scattered waves. Writing O'=Bir2pH'/k' one can write $=kx, il=ky,
f =ks and LT($, il, l') = V/H' so the equation is

Ae + (1 —U(i:,qg))m = 0

where now f, i7, l are the independent variables in the Laplacian. We may
write,

u —Qo + Qy + Q2 +
and 6nd Qo, u~ etc. from the equations,

DQO+ up = 0

Dug + Qy = QpU

DNn + Qn Qn-1U ~

We may take uo to be the incident plane wave, e'&, and seek the particular
solutions for Qj, u&, which represent outgoing waves only. Such a solution
of the equation for u„may be found, by an application of Green's theorem,
to be

where ti=$i+ijl+ /fr and similarly for ti' and the integration extends over all
space. Thus each u„may be found, in particular u& being,

Asymptotically for large p one has ~p
—y'~ =p —p'cose' where e' is the

angle between y and y', so that

e'p r
u„($, v, f) = ———

l g„,($', 's', f') U(f, ii', f')g
4x p

which is an outgoing wave, whose amplitude is a function of the direction of
y, which may be specified as usual by polar angles, 0, P, the s-axis being the
pole for which 8=0.
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Hence, if the series converges, we have

n = e'r+ A(8, p)e'&/p for p ~ ao,

where

A (8, g) is thus theoretically known although the calculation of A accurately
is not feasible. The interpretation is as before: the number of outward mov-
ing particles in a volume element a t distance r in solid angle Cko is proportional
to

eke = —AAcko

where 'A is the de Broglie wave-length. This is the effective area for scattering
particles in the particular solid angle dm. The total area for scattering in a11

directions can then be obtained by integrating over all directions.
It may be remarked that the particular solution here found satisfies the

integral equation

so the question of convergence of the successive approximations process may
be referred back to the theory of such an integral equation. It is remarkable
that simply the first term in the series for A(8, P) can give a fair approxima-
tion to the solution in many instances.

As in the one-dimensional case there are many interesting physical cases
for which the method probably does not converge. It would be possible to
modify it by basing the approximations on known rigorous solutions for a
Ve(r) approximating to the actual V(r) as was done in detail for one dimen-
sion but the method has not been hitherto used in the literature. %hen
applicable, the successive approximations method does not require V(x, y, s)
to be spherically symmetrical.

Fi rst aPProximation: Centrat force

The f'ormulas for the Born successive approximation method appear to be
so different from those of the preceding rigorous theory that it is instructive
to show' the connection of Born"s first approximation with the formula of page
69, where the scattering is reIated to the phase-shifts in the radial factor of
(r lH') relative to the corresponding representative for the free particle. We
assume U($', g', l') is a function of p' alone. For large p one has asymptoti-
cally

l y
—y'

l
=p —p' cos co where cv is the angle between o and y'. lf 8, P and

O', P' give the directions of y and y' then

cos &u
—cos 8 cos 8' + sin 8 sin e' cos (4 —4')
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For ui(), il, f) we have therefore,

e'~ f'"
U(p') p"dp' f, s'«' —~'"'"& sin 8'd8'dP'.

The integral over the unit 0'@' sphere may be evaluated by making use
of the developments,

e'r' = (s/2)"' P(+ i)'(2l' + 1)p' '"JI +i~2(p')PI (cos 8')
l'=0

e 'p'"'" = (s/2)'" g( —i)'(2f + 1)p' "'JI+i(2(p')PI(cosa&).
l=0

Multiplying these two together term by term and integrating, all terms
vanish in which two Legendre polynomials of differing l appear. For those
of equal f, a well-known result (e.g. MacRobert, Spherical Harmonics, p. 137)
gives,

4~
J~ Jf PI(cos co)Pi(cos 8') sin 8'd8'd@' = —PI(cos 8)

2l + 1

so the expression for ui(f, rI, f) for large p is

xe'p OQ

u(i(p iI) f ) Q(2l + 1)Pi(cos 8)
~

U(p') J'I+i~2(p')p'dp'.
2P l=-0 a) 0

so that the amplitude A(8, P) which determines the distribution in angle of
the scattering is the coefficient of e'P/p in this equation. The first order scat-
tering area, for all directions, is obtained by integrating AA over all directions
giving a result which may be written, in order to bring out the correspondence
with the rigorous theory,

00 OQ 2 2

Z« fJ(p) (~/p)'" JI+»2(p)
l=0 0

where al is the cross-section for classical angular momentum between 3 and
(+1 Bohr units as before. One sees therefore that the Born first approxima-
tion amounts to a particular approximation to the phase shifts yl which occur
in the rigorous theory.

The theory for central force fields as developed here is due to Faxen and
Holtsmark (Zeits. f. Physik. 4S, 307 (1927) ). This comparison of the first
approximation of Born's method with the exact theory has not been pub-
lished before although Mott (Proc. Camb. Phil. Soc. 25, 304 (1928) ) has ap-
proached the problem in a similar manner.

$5. SCATTERING IN A COULOMB FIELD

The scattering of a beam of particles moving in the field of a Coulombian
force center is one of the problems which can be treated rigorously by quan-
tum mechanics. When an attempt is made to apply Born's successive ap-
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proximations method (Sec. 4) to this problem a divergent integral presents
itself. KentzeP' first avoided this difhculty by supposing the potential energy
to vary as e ""/r instead of 1/r Thi. s made the integrals converge even when
k was set equal to zero after the calculation! The result was a formula for the
total intensity and angular distribution of scattered particles agreeing with
that of Rutherford which was based on classical dynamics. But Kentzel's
calculation is an approximate one, Later oppenheimer" also treated the
problem by Born's method.

Mott" and Gordon" gave the first rigorous proofs that the exact quantum
mechanical solution is exactly in accord with the classical Rutherford form-
ula. Later Temple" provided a much simpler proof of the same fact.

The mathematical methods employed are rather advanced in any case so
the details will not be considered here. The aim, as in Sec. 4, is to find a par-
ticular solution of Schrodinger's equation which corresponds to incident par-
ticles in a plane wave and outgoing particles only. The feature of this prob-
lem of special interest is that one cannot find a solution which behaves asymp-
totically like a plane wave. This is connected with the fact that the Coulomb
field falls oR so slowly as the distance increases.

Classically we consider the scattering of a stream of particles all of which
are moving with velocity v parallel to the axis of x when at large distances
from the force center. The trajectory of each particle is a hyperbola and those
of all the particles form a family of hyperbolas. By the general laws of corre-
spondence between classical and quantum mechanics the wave fronts of the
Schrodinger wave function should approximate to the surfaces orthogonal to
this family of trajectories. Although each hyperbola has an asymptote paral-
lel to the x-axis, the orthogonal surfaces nevertheless are not plane, but in-
stead become the surfaces given by

ZZ e
x — log (r —x) = const.

fS'V

where Z'e is the charge on the particles being scattered and m their mass
while Ze is the charge on the force center. (Mott's Eq. (16), p. 546, reference
32, should have «', not «.) Therefore we must find a particular solution of the
wave equation which consists asymptotically of waves having a wave front
of this form plus outgoing waves only. Mott finds such a solution, its asymp-
totic expansion being

1
&ijg—plog(r —x)] + g. ei(r+plog(r —z)+c«]

r

in which the unit of length is so chosen that 2xp/8 = 1 and where, in the ordin-
ary units of length,

"Wentzel, Zeits. f. Physik 40, 590 (1927).
3' Oppenheimer, Zeits. f. Physik 43, 413 (1927).
'~ Mott, Proc. Roy. Soc. A118, 542 (1928).
~' Gordon, Zeits, f. Physik 48, 180 (1928).
3' Temple, Proc. Roy. Soc. A121, 673 (1928).
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ZZ'e' 0
cosec' —.

2me' 2

0. is a phase shift which is without eBect on the intensity of the scattered par-
ticles. The intensity of scattered particles per unit incident intensity is then
R'des where der is the differential of solid angle betw'een 8 and 8+d8 so this
gives the Rutherford formula exactly for all velocities of the incident particles
and all angles of scattering.

Temple's contribution consists in the observation that this result may be
obtained more simply if paraboloidal coordinates are used, as in the Stark
eA'ect of atomic hydrogen, instead of spherical polar coordinates.

f6. NQN-sTATIQNARY STATES. WAvE-PAcKET METHoDS

Thus far we have only worked with stationary states, i.e. states in which
the total energy of the system has a precise value. Such states are stationary
in the sense that the probabilities for them do not vary with time. The equa-
tions of motion for t/ and tft are

It 8$ h 8&—= SIP and + —= PH.
2xi Bt 2mi Bt

If t/t is an eigen-P of H so that Ht/t=H P, then the variation of P with time
is given by

ll, s osis'tlo—

Similarly,

y e+2~iH't/h

which means that each component of P and P varies according to these equa-
tions in any representation. Hence the product of any component of P with
the corresponding component of t/t, such as (H' ~n')(n' ~H'), which gives the
probability that 0. have the value n' when H is known to have the value H',
is independent of the time. All probabilities are therefore independent of time
in the eigenstates of total energy,

Because of this fact we cannot follow the course of events in any situation
by confining ourselves to states in which energy has a precise value. In this
section, we shall consider therefore the way in which the course of events may
be followed in a collision by employing non-stationary states. Any non-sta-
tionary state and its time variation are conveniently studied in terms of its
H representative, (H' ~)t, at a particular time, t Because of t. he fundamental
equation of motion the different components, (H' ~), change at different rates
and thus the resultant t/t changes in time We have.

h 0$ ' k B(H i)
. —+ H4 = +go(H') . + &'(&'~ )

2xi Bt II' 2m'i Bt

Hence by the orthogonality property of the fo(H') each bracketed coefficient
must vanish. Therefore,
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PP I ). —(If)
I ) s 2-z-(()

(I ~), (I ff ) +2 uvi())

Hence P at any time is given, in terms of the coordinate system formed by
the eigen-f's of energy at the initial time, by the relation,

Qf (+ )(ff
I ) s 2via'—i/h

Thus although the magnitudes of the various components of P do not change
in this representation, their phases relative to each other do change, which is
sufhcient to make the probabilities vary with the time for dynamical quanti-
ties that do not commute with H.

In any other representation the time variation is more complicated. If at
1 =0 the state is described by (n' I)0, then the initial value of (H' I) is, from
equation (1.11),

and at time I, we have

tel t

Hence

Ke observe that the quantity in the bracket is simply the matrix component,
in the Ot-scheme, of the operator, e "'~'~', which contains the time parametri-
cally. The variation of the state with the time is thus given by a linear opera-
tion performed on the initial representatives.

Some simple illustrations of the variation of the state in time have been
worked out by Kennard and by Darwin. " They have considered the varia-
tion in time of (r () for a particle in various simple fields of force, such as no
forces, constant field, charge in uniform magnetic field, etc. They show that
if initially (r I)() represents a particle in the neighborhood of the position
whose vector is a, then the place of maximum probability will move quite
closely according to classical laws. Generally speaking, the uncertainty in
position of the particle increases with the time in accordance with the fact
that a finite initial uncertainty in position implies an uncertainty in initial
momentum and so the analogue is to a family of classical motions rather than
to a particular one. Usually in classical mechanics the positions of particles
tracing out such a family of motions become farther and farther apart. In
exceptional cases, as in that of the harmonic oscillator, this does not happen.

Such calculations with non-stationary states are often described as wave-
packet methods. This is connected with the fact that the representatives,

~~ Kennard, Zeits. f. Pbysik 44, 326 (1927); Darwin, Proc. Roy. Soc. 117'A, 25S (1927).
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(r ~H'), occurring in the formula for (r ~)& in terms of (r ~)0 are the solutions
of Schrodinger's "wave" equation, and the summation over H' involved is
analogous to a superposition of various wave patterns to give a moving group
of waves. This fact is a great help in actually working with the theory be-
cause it gives a quantum mechanical meaning to much of the classical diffrac-
tion and interference theory. " The first wave packet problem to be worked
out was that of the harmonic oscillator, due to Schrodinger, 37 who showed
that by superposing the f(H') for various energy levels of the harmonic oscil-
lator, the amplitudes and phases being properly chosen, a wave packet could
be obtained in which the place of maximum probability density oscillated
back and forth with a simple harmonic motion having the classical frequency.
Debye" has attempted a general treatment of the motion of a wave packet
representing a particle whose position is fairly accurately known in a general
one-dimensional force field. Other investigations in this direction are those
of Ehrenfest and of Ruark. "These studies are all based on the use of approxi-
mate solutions of Schrodinger's equation for (r ~H') and content themselves
with showing the approximate validity of the Newtonian laws of motion for
the place of maximum probability density. It would be of interest to pursue
the matter further, for example, to construct a wave packet enabling one to
watch the probabilities while a particle is in the act of slipping through a
potential wall where it wouldn't be allowed by classical mechanics.

Ke shall not present the details of any of the wave packet calculations as
they have not played a great role in collision theory thus far. The main object
in mentioning them is simply to indicate the nature of the calculations to be
done if one cares to follow the course of a collision in time.

The standard form (recommended by its analytical simplicity and not hav-

ing any connection with the appearance of the same function as an approxi-
mate representation of Bernoulli's theorem in classical probability theory) for
representing a situation in which the particle is known to be in the neighbor-
hood of the place whose position vector is a, with an uncertainty measured by
o, and with a mean momentum, ~o, is to take for (r ~), the expression,

(r
~
) = r '40 '" exp I

—(r —a)'/20' + 2s.i~0 r/h I

This is so normalized that the integral of ( ~r)(r ~) over all space is unity. This
is an expression which will be used in later sections. To start with such a
state at f = 0 and to trace its development as time goes on is the nearest thing
that one can do in quantum mechanics to the corresponding process of ending
the motion belonging to given initial conditions. One can, of course, use such
an initial state no matter what the Hamiltonian governing the particle. But
the subsequent change of (r ~)~ will depend on the Hamiltonian because of
the occurrence of the functions, (r ~H'), in the equation for the change of
(r ~) g with time.

g6 Compare e.g., Slater, Phys. Rev. 31, 895 (1928).
» Schrodinger, Naturwiss. 14, 664 {1926);Marko8, A. Zeits. f. Physik 42, 637 (1927).
'g Debye, Phys. Zeits. 28, 170 (1927)."Ehrenfest, Zeits. f. Physik 45, 455 {1927'):Ruark. Phys. Rev. 32, 1133(1928).
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The (p ~) representative of this same state is readily found to be

(~
~

) = s '"r '" exp I
—(~—po)'/2r'+ 2sia (p —po)/h}

where r =k/2vro'. This brings out clearly the fact that the mean momentum

for the state is po and that the product of the uncertainties in position and
momentum is equal to h/2s for this state.

APPENDIX

SCATTERING BY A CRYSTAL LATTICE
Bv P. M. MoRsE

When we consider the behavior of electrons inside a crystal, we encounter
a much more complex problem than any of the previous examples. InsKle the
crystal, atoms are arranged in a regular three dimensional geometric pattern.
An electron is never free from the influence of one or another atom, but is
continually battering its way through the lattice, disrupting some of the
bound atomic electrons, changing atomic energies, in turn being temporarily
held by an atom, and, again, absorbing some atomic energy. In order to dea1
with this complicated process we are forced to make several drastic simplifica-
tions.

In the first place the atoms are much heavier bodies than the wandering
electron, and are only slightly disturbed from their equilibrium position by
electronic impact; and so the nuclei will be considered as fixed at their equi-
librium points. But this simplification is not enough, for each atom is too
complicated a system in its interactions with the electrons for us to be able
to deal. with, and a whole lattice of atoms would be still more impossible to
handle.

In other words we first consider the behavior of a single electron in the
potential field caused by the fixed atoms; then consider the vibration of the
crystal atoms when undisturbed by electronic motions; and lastly we must
calculate the effect on these motions of the interaction between electron and
vibrating atoms and between electron and electron by approximate perturba-
tion methods. These interactions must be taken into account when we wish to
discuss the crystal's electrical conductivity, or its magnetic or mechanical
properties; but the interaction calculations are very involved, and in the scat-
tering of electrons from crystals they presumably introduce only slight cor-
rections, so we shall neglect them here.

The problem discussed in this section is therefore that of the behavior of
an electron traversing a fixed, three-dimensionally periodic potential field.
This has been attacked in a number of diferent ways, and a number of differ-
ent approximate forms of the function (x' ~II') have been used.

The simplest approximation is to consider the periodic potential variation
as being negligible. In this case the crystal is merely a uniform depression in
the potential, an amount h'Vo/gs'p less than the potential outside. If the
crystal is infinite in extent, the function (r'

~
W ) for an electron of kinetic

energy 6'W/Svr'p is e'~'~~, where the magnitude of ~ is (W)"~' and its direction
is in the direction of the electronic motion.



R M. j/IORSB

This rough approximation was used by Sommerfeld, Houston and others"
to explain many phenomena of metallic conduction, etc. However this ap-
proximation cannot deal with such experiments as those of Davisson and
Germer, 4' where electrons are shot from the outside at a crystal and are re-
flected from this surface. Since the electron stream can be represented as a
plane wave of wave-length inversely proportional to the electronic momen-
tum, we should expect strong reflection for certain wave-lengths, similar to
the Bragg beams for x-rays. Davisson and Germer obtain such strong reflec-
tions. Since the solution mentioned above neglects the atom-grating entirely
we cannot expect it to deal with such an experiment. To this order of ap-
proximation the crystal acts as a homogeneous medium of index of refraction
(1+V&/E)'", where h'E/Ss'y is the electron's kinetic energy outside the crys-
tal, ' and the reflection from such media has been discussed in an earlier sec-
tion.

Perhaps a better approximation can be obtained by approaching the prob-
lem from a diR'erent viewpoint. Instead of considering the electron as ap-
proximating a completely free electron, we can consider it as approximating
an atomic electron. ~ Since the electrons are under the influence of the nuclear
fields their behavior will be somewhat like that of an electron in an isolated
atom, and the lower the electronic energy, the better is this approximation.

In other words, the crystal can be considered as a large molecule composed
of simiIar atoms, and the electron behavior can be determined by methods
used in discussing electrons in molecules.

For instance in the case of an electron in a diatomic molecule of similar
atoms, "since the potential barrier between the two nuclei is 6nite, there is a
possibility that an electron originally about one nucleus can get through to
the other nucleus. Therefore in equilibrium conditions the function describ-
ing the electronic behavior will best be approximated by a linear combination
of the wave function about one nucleus, 4 ~, and that about the other, 42, i.e. ,

(x'
~

W') = aCg + bCg = 4.
The values of a and b are determined by the average energy change due to
the proximity of the two nuclei, by the usual methods of dealing with de-
generate systems. If the perturbing energy V is the change in potential
about one nucleus due to the proximity of the other, then the average energies
used are

)~ @1i C ld& +2 i ~12 Jt 4'li 4 2d& ~21

and the values of a and b are determined by the equations

"Pauli, Zeits. f. Physik 41, 81 (1927); Sommerfeld, Houston, Eckart, Zeits. f. Physik 47,
1 (1928};Houston, Zeits. f. Physik 48, 449 (1928)."Davisson and Germer, Proc. Nat. Acad. 14, 619 (1928)."Bethe, Naturmiss. 15, 787 (1927).

~ Heisenberg, Zeits. f. Physik 49, 619 (1928};Bloch, Zeits. f. Physik 52, 555 (1928); Sla-
ter, Phys. Rev. 35, 509 (1930).

~ Morse and Stueckelberg, Phys. Rev. 33, 932 (1929).
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(E1 —E)a + Eggb = 0

Eggs + (Eg —E)b = 0

where E is the difference between the atomic energy level and the correspond-
ing molecular level. The secular determinant determining 8 from these equa-
tions 18

2
(E E)

and so E=E&+E». In other words the proximity of the two similar nuclei
splits the single atomic level into two levels. The two wave functions corre-
sponding to the two levels are

4'1 = (@'1 + C»)/2'"; 0'2 ——(4» —42)/2'".

If now we build up a one-dimensional crystal by stringing E similar nuclei
in a line an equal distance d, apart, we 6nd that the original atomic energy
level is split up into N diferent levels, each level corresponding to one of the
linear combinations

(33 = 1, 2, , X)

where 4„ is the atomic wave function about the r'th nucleus.
If the perturbation between adjacent nuclei only be considered, then the

equations determining the c's will be the set

13n,r—1E12 + (E1 En)1gn, r + E12S r+1 n0 (r =1, 2, ~ ~ ~, S)
similarly to the simple case above. A solution of the secular determinant aris-
ing from these equations shows that

E„=E1 —2E12 cos grm/(N + 1).
If the ratio between the successive coefFicients is taken equal

33ng/13nl Sng/Sng ' ' ' 13n1r/On&-1 Xn ~

Then each set of equations above becomes

x„'+ 2 cos [gr33/(S + 1)] x„+ 1 = 0

and therefore

x„= exp + [grggg/(S + 1)]

QC„exp [grinr/(V + 1)] (for the plus sign).E'/2

The value of%'„near the r'th nucleus, i.e, , when x =rd„ if the origin be
placed at the first nucleus, will be nearly entirely due to the term with C„
since the 4"s become very small at distances from their nucleus greater than
d./2. This means that the function%'„can be quite closely approximated by
the function

exp [grgmx/(E + 1)d,] ~ U(x)
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where

Z(x) = gc', /X'"

and is a function periodic in x with period d .
If the crystal is very large, X is large, and the quantity n/2(%+1) can be

considered as having a continuous range of possible values between zero and
1/2, and if U be expanded into a Fourier series,

g' = exp[ik, n/x] Qf „exp [itnx]
l=—~

where n=2x/d„and where the value of k„ the variable corresponding to
n/2(%+1), determines the particular wave function chosen. It is seen also
that the original single atomic energy level is now spread into a continuous
band of allowed levels, which may or may not be separated from the band
corresponding to the next atomic level by a band of forbidden energies.

For small values of k, the energy varies linearly with the square of k., and
so k 0 is analogous to the p in the free electron function.

The discussion so far has been for but one dimension, but the generaliza-
tion to three dimensions is obvious, and for a simple cubic, orthorhombic or
tetragonal lattice the wave function is

4' = exp i(k,nx+ k„Py+ k,ys) B~ „exp i(lnx+ mPy+ nys).
g, m, n=—~)

This can be considered as a free electron, multiplied by a Fourier series repre-
senting the distortion due to the presence of the nuclei.

This approximation is somewhat better than the first mentioned one, and
Bloch4' has obtained fairly good results for conductivity with it. However it

is a good approximation only for the electrons with the lowest energies. For
higher energies the atomic wave functions used in the function U are not par-
ticularly good approximations to the actual wave function, for the distortion
due to the presence of the neighboring nuclei is relatively large.

Perhaps the best way to treat the problem is to attack it directly, by solv-
ing for the motion of an electron in the three-dimensionally periodic field of
the nuclei. 45 This should give results which wi11 approximate that of the free
electron for high energies, and that of the Bloch combination of atomic elec-
trons for low energies. And it should predict the results of Davisson and
Germer.

Any three dimensionally periodic potential function can be represented by
the Fourier series

h'
V = Q.A~, -,„exp[i(la+md+my) r]

@ Morse, Phys. Rcv. 35, $310 (1930).
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where the summation extends from minus to plus infinity for all three indices,
and where the A's are chosen so that V is everywhere real. r is the vector dis-
tance from some origin, and a, IIt and y are vectors parallel to each of the crys-
tal axes (four would be needed for the hexagonal system, but the generaliza-
tion is apparent), of lengths equal to 2zr divided by the respective lattice
spacings.

This potential function is inserted in the usual Schrodinger equation and
the function (r ~H') is to be found which is finite, single valued and continuous
over all space. The resulting equation is a generalized form of Hill's equa-
tion, "and solutions satisfying the boundary conditions can be found if the
series ZA E, , is absolutely convergent.

For a working example a cubic, tetragonal, or orthorhombic crystal will

be assumed, and the potential function will be simplified into the form

h2 I

pczzA ciizz + ppz 4 gimpy + g+2A cizpz

8x p m n

where cz, P and y are the scalar magnitudes of a, g and y; and, to make the
average energy equal to zero and V real, A. 0 =A, () =A, ,o

=0, and A, ~
——A.

etc. This form of potential function is not general enough to express every
sort of lattice, but the electronic behavior in such a field will be suKciently
illustrative.

The resulting Schrodinger equation,

hzl —[W+ a' PA, ic' *+P' gA„, i',""»+y' gA „8'"'z*)zz = 0

where zz is the function (x, y, s ~H') and where W is Szi'tz/Iz' times the elec-
tronic energy, can be broken up into three simple equations if zz = X(x) Y(y)
Z(z). These equations are

d2X —(1Vizz + Qn'Az ie"~z) Y = 0
dx

d2I' —(1Vb'+ QPzA„e'"»)Y = 0
dy2

d2Z
(1Ycz + g+2A cizzz)g —0

where (cz'+bz+cz) = 1. The resulting solution, zz, represents a stream of elec-
trons travelling with a velocity equal to (b'W/4zrzpz)'" in the direction given

by the direction cosines a, b and c.
Since these equations are similar, an investigation of one of them will in-

dicate the solutions to all three. The solution" of the first equation is

46%hittaker and Watson, A Course of Modern Analysis, Cambridge Univerity Press
(1915), Chapter 19. An approximate solution has been found by Peierls, Ann. d. Physik 4,
121 (1930). Bethe, Ann. d. Physik 87', 55 (1928}discussed the equation and obtained a number
of the properties of the solution.

4~ Van der Pol and M. J.O. Strutt, Phil. Mag. 5, 18 (1928).



where the 8's are determined by the equations

(r= —1012 )

and the constant k, is determined by the equation

sin' (irk, ) = 6(0) sin' (Ãa(W)'"jn)

where 6 (0) is the determinant

16 —kV' 16 —H/' 16 —H/' 16 —8"
—A, , i

4 —IV'

—A, ,2

—A

—IV'

1 —W
—A, , 2

—kV'

—A

—A, i

—A, , i

—kV'

—A, , 2

—A —A, ,3

—A —A, , 2

1 —8" 1 —8"
—A„i
—8"

—A, , i

where W' = Wa'/+'-.

This solution is finite everywhere in a crystal of infinite extent for all real
values of k, . A study4' of the behavior of k for values of the A's of the same
order of magnitude or less than lV shows that k is only complex for values of
a'W close to the set of values n'/4, n', 9u'/4, 4n', . . . . This indicates that
for any given electronic energy, there are certain values of c, b and c, i.e. , cer-
tain directions of electron motion inside the crystal, which are barred.

Notice that this form of wave function is of the Bloch form, and will equal
his solution for low energy values. For high energy values, unless the k's are
complex, only B,o is large, and the solution is that of the free electron.

If the crystal is not infinite in extent, but is bounded by surfaces, then
these directions will not be barred, for I can then be finite everywhere even
for complex values of the k's. However the real exponential term due to the
imaginary part of the k's will insure that the amplitude of u for these direc-
tions is negligible except near the surface of the crystal. This indicates that
for a beam of electrons of energy and direction such that a'W=/'n'/4,
k'W=m'P'/4, and c'W=n'7'/4 (1, m, e integers) the electron wave will be
damped out as it penetrates the crystal, and therefore such beams will be
strongly reflected from the crystal surface. The above relations between the
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energy and direction of strongly reAected beams and the grating constants are
those de6ning the analogues of Laue beams in x-rays.

The relation between asW/a' and k can be represented by the equation

a' 8'
= k,'+ f(k,)

where f only has values appreciably different from zero when k, is near na/2
The values of f(k,) are shown in Figs. 5 and 6 for two different forms of po-

- 0.05

0.5 1.5i.0 2.0
k„/x

Fig. s. values of f(k )/a~ for the potential function v= (h~/82l~p)(cos ax/2)

0.05

-0.05

1.5 2.00 0.5 i.o
a„/cc

Fig. 6. Values of f(k,)/a' for the potential function V=(h'/8x'x) [3 cos (ax)/4
—3 cos(2ax)/10+cue(3ax)/20]

tential function, for real values of k,. Note that the form of f when )'r, is
near n/2 is sensitive to changes in the form of V, and so if f is known, the
general form of V can be estimated.

Thus vie see immediately that some of the results of Davisson and Germer
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and others are predicted. Their experiments have shown that an electron
beam scatters from a crystal in a manner strikingly analogous to a beam of
x-rays of wave-length equal to the de Broglie "wave-length" of the electron
beam, if the crystal were considered to have an "index of refraction" equal to
[(E+UD)/E]"", where 2 is the energy of the electron beam and Vo is approxi-
matily equal to the work function of the metal. Ke have already shown that
electrons will be scattered from crystal surfaces in directions analogous to
Laue beams, and we shall proceed to show that an application of the theory
outlined above explains the other experimental results.

For simplicity, let the crystal surface be the plane, x =0, and let the space,
x negative, be held-free. Since the average potential inside the crystal has
been set equal to zero, and the average potential inside is less than that out-
side by the amount P, where @ can be called the work function of the crystal,
then the value of the constant potential in the space, x negative, will be Q.

The simplest case to consider is that of a beam of electrons falling nor-
mally on the surface: we wish to find the relative intensity of the beam re-
Aected back on the primary beam as a function of the energy of the primary
beam.

Since for the present we have ruled out electronic loss of energy by omit-
ting the interaction between the electron and the nuclear vibration, we cannot
deal with the electrons heterogeneously scattered with loss of energy: and
since we are not for the present interested in the homogeneous scattering to
the side, we can neglect the 7 and Z factors, and impose the boundary con-
ditions on the X factor alone.

Since the primary and reHected beams are in field-free space, use can be
made of the results of section 2, and the function X will be

Xo = Ce'&~)~' + De—'&~"

outside the crystal. E is Ss'p/h' times the electronic energy outside the crys-
tal. Therefore the electronic energy inside the crystal will be 8'=E+ Vo,
where Vo = Sx2pp/h', and so the electron beam inside the crystal will be repre-
sented by the function

ei ( Irg+r)a s
S &t'

At x=0 this must equal Xo in slope and magnitude. The 8's can be calcu-
lated for any assumed type of potential function, by the equations given pre-
viously, and so the two boundary conditions

C+D = QB, ,,
a(k, + r)B,„

C —D =
(g) 1/2

serve to determine C and D. The ratio J=DD/CC will then be the relative
intensity of the rejected beam. Analysis of the properties of the 8's indicates
that Jwill be unity for values of E which make k, complex. Figure (7) shows
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a simple form of potential function, and Figure (8) shows the values of J for
diR'erent values of E. Actually, since a number of electrons are scattered
heterogeneously in their passage through the crystal, the maximum values of
J vri11 not be unity, and since more electrons are so scattered at high energies
than at low, these peaks wi11 diminish in height far increasing Z. Approxi-
mately, the energy 8„for each peak is given by the equation

—Vp

Crystal
baundclrp

Vo =. 0.5

Fig. /. Assumed form of potential energy function.
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Fig. 8. Relative intensity of the regularly reflected beam as a function of the electronic
wave number. The incident beam is normal to the 111 surface of a nickel crystal. Lines marked
1st order, etc. , indicate positions of strong x-ray reflection for the same crystal.

which @could be the values found for simple Bragg vrave reinforcement if the
crystal has an index of refraction equal to [(Z+ Vo)/E]"'.

The exact value of E is given by the equation

N Of

E + Vp = — +a'G„

where G is a quantity, usually small compared to g4, whose value depends on
the surface conditions.



Thus the only information given by this exact treatment, additional to
that given by the simpler Bragg theory, is that the diHerence between the
energy values E„and the values ro'o. o/4 is not exactly Vo, but that this differ-
ence varies with change of surface conditions and with different e values. A
glance at the experimental curves" shows that they bear out these additional
refinements.

The case where the primary beam is in the x, y plane, and strikes the sur-
face at an incident angle 8 to the surface normal, corresponds to the usual
Bragg method of x-ray analysis. In this case only the Z factor of the e func-
tion can be neglected. The function inside the crystal wi11 be then

U; = ~8„e'f,~~+"'» ~B, „e'&~~+
I g oS

where k is a function of 8' cos p and k„of W sin P: that is, it represents an
electron stream of energy 8"=E+Vo travelling in the plane of incidence at
an angle Q to the surface normal.

To satisfy the boundary conditions, which require that at x =0 the ampli-
tude and normal gradient of the functions inside and outside the crystal be
the same, the function outside must be

Uo ——C exp [ i((E) 'io sin Oy + (E) '~' cos Hz) I

+ QD„exp [i[((E)'~o sin 8 + rP)y —(E —((E)'~' sin 8 + rP)')'~'z]]

where (E)'I' sin 8 =k „P. From the previous discussion we have seen that when
k„ is not near m/2, then

Pk„= (W)'~' sin P approximately

and since Pko=(E+Vo)"' sin 8, this shows that the index of refraction,
sin 8/sin P, is approximately equal to (E+ Vo)"I'/(E)"", except for values of E
and 8 such that k „is near one of the values m/2.

A more correct relationship between E, 8, Vo and P is obtained by means
of the equation for g(k), and is

((E)'~o sin e)(E+ Vo) sin'Q = E sin'8+ P'
P1/2

where g is only appreciably different from zero when (E)""sin 8 is near one of
the values mP/2.

The intensity of the regularly reflected beam can be found by equating
the terms of Uo and U;, and 8 Uo/Boo; and BU;/Bx which have the y part of
their exponential equal, at x =0. These equations reduce to

C+ Do = &, , o Q&...
n(k, + N)B, ,

C —Do=8, , o (E)"' cos e

Davisson and Germer, Proc. Nat. Acad. 14, 622 (1928).
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These equations are similar to those for the one dimensional case of normal
incidence, and therefore the values of E and 0 giving a strong regularly re-
flected beam are determined by the equation

n'cx'
(E„+Vo) cos'8„= + u'G„

where G„ is small and depends on the surface conditions. To relate this to |II,

use is made of the previous equation, and vre finally find that the values E„
and |I for a maximum regular reflection are given by

n'a' ((E)'I' sin 8)
E cos'8„= —t/'0+ G„+P'

P

The Bragg analysis, for an external wave-length equal to 2'/(E)"' would give
E„cos 0 = n2n'/4 for index of refraction unity, and E„cos~ 8„=(n'n'/4) —Vo

for index of refraction [(EjVo)/E]'".

i.0

0,5

0804 0.5

(~

0.7 0.5 0.9 ).0
Coo em

Fig. 9. Values of electronic wave number and angle of incidence of electrcn beam for
strong regularly reflected beam. The cystal is nickel, the surface the 111 plane. Broken lines
indicate positions of analogous x-ray reRection.

If 1/(E) '",which is proportional to the de Broglie wave-length of the elec-
tron beam, is plotted against cos 8 for maximum regular reflection, the Bragg
analysis would require straight lines aH going through the origin, 1/(E)"~' =0,
cos 8=0. The curves required by the exact analysis above differ from the
Bragg lines appreciably only when (E)'I' sin 8 is near mP/2, i.e. , when f is large.

A curve of values of 1/(E) „«' and cos 8 for maximum regularly reflected
beams is given in Figure 9. The x and y parts of the potential function are
taken to be simple sinusoidal variations, for simplicity. The dotted lines,
marked 1st order, 2nd order, etc. , are those given for index of refraction unity,
and the curvg lines give the correct relation. Note the "breaks" in the curves
whenever (E )""sin 8 equals rnP/2.



Of course the shape of the curves near the breaks will be diRerent for dif-
ferent forms of the potential function: but the breaks will always occur where
E„sin 8„=mP/2.

A glance at the experimental curve4' shows that such breaks are present,
the most marked one near (E„)'"sin 8„=2.96, and another near (E„)"'sin 8
=2.83. The value of P/2 for this face of nickel and for the azimuth used is
1.46, so that the breaks occur at the proper places for m = 2.

Thus the simple examples we have worked out show that the analysis is
not only capable of accounting for the general eRects of electron scattering
from crystal surfaces, but also of explaining the small peculiarities in the re-
sults. It appears probable thatwhen the shape of the l/(E )'", cos 8 curves
are better known near the breaks it will be possible to make an empirical esti-
mate of the form of the potential function inside a crystal.

"Davisson and Germer, Proc Nat. Acad. 14, 624 (1928).


