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'
QR()C~RE.'i.'i in physics during the last 20 to 30 years has been characterized

by the remarkable ad~ance in our knowledge of electrons, ions, atoms
and molecules, as individuals. A summary of this knowledge, in so far as
it will aid in the understanding of electric discharges in ~ acuum and in gases,
has been. given in Part I, under the title of a "Survey of Fundamental Proc-
esses. "

V e now wish to consider how these processes, characteristic for the most

part of individual electrons, ions, or atoms, cooperate to determine the

phenomena of electric discharges. V e shall have to deal primarily with the
collective behnrlior of these charged and uncharged particles. This field of study
in recent years has not received attention comparable to that devoted to the
individual particle. The time seems now ripe to apply all this new knov, ledge
in a systematic manner to a study of discharges.
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Fig. 34. Typical glo~v discharge in a gas at about 1 mm pressure.

I.c&ng prior to the beginning of the present century, certain types of elec-
tric discharge had been ~ ery extensively investigated. The typical phenomena
that had been most frequently obser~ ed were those produced when a current
was passed betweer3 two disk-shaped electrodes placed at some distance apart
along the a~is of a tube containing gas at a given pressure. The general ef-
fects of altering the pressure or the distance between the electrodes were well

known.
Fig. 34 illustrates a typical discharge of this kind. C'lose to the surface of

the cathode a glow, called the cathode glow, is observed. Beyond this is the
cathode or Crookes' dark space. Then comes the negative glow which is
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usually of considerable intensity. Passing in the direction toward the anode,
the intensity of this glow gradually decreases and becomes a second dark
space, called the Faraday dark space, this usually being several times wider
than the cathode dark space. Then comes the positive column which begins
sharply at a definite position called the "head of the positive column. " This
surface of demarkation is convex on the side toward the cathode. In most
cases the positive column is of uniform intensity all the way to the anode.
Sometimes, however, it is broken up into striations, which appear to consist
of alternations of Faraday dark spaces and short sections of positive column.
Close to the anode, especially if this is of small size, there may be an anode
glow.

Typical phenomena such as those illustrated in Fig. 34 are usually ob-
served most readily at gas pressures in the neighborhood of one millimeter of
mercury. At any given pressure the positions of the negative glow, the Fara-
day dark space, and the head of the positive column are fixed with reference
to the cathode. Thus, for example, if the anode is moved, these positions do
not change, whereas, if the cathode is moved, these boundaries move with it.
As the distance between anode and cathode decreases, the anode may reach
the head of the positive column so that the positive column disappears. In a
similar way, the anode can be moved through the Faraday dark space and
even into the cathode dark space. If the pressure is lowered, these distances
from the cathode all increase approximately inversely proportional to the
pressure. Thus, with fixed distances between the electrodes, on lowering the
pressure, the cathode dark space expands until it reaches the anode. The
discharge then becomes one of a type studied particularly by Sir William
Crookes. It was the study of such Crookes' tubes by Roentgen in j.895 that
led to the discovery of x-rays.

At high pressures, the cathode dark space and Faraday dark space move
so close to the cathode that they become practically invisible and the whole
tube is thus filled with the positive column. Gradually, with increasing pres-
sure, the positive column detaches itself from the walls of the tube and be-
comes arc-like in character.

Discharges of the kind that we have just studied are usually referred to as
glom discharges. Many other types of discharge have been observed, for
example, spark discharges, arcs between carbon or metallic electrodes at
atmospheric pressure, corona discharges and the low current discharges ob-
served when gases are rendered conducting by x-rays or radio-active materials.

Instead of trying to explain all these apparently complicated phenomena
of electric discharges in gases, we plan to approach these problems through a
consideration of the simplest types of phenomena involved in these dis-
charges. We propose to postulate the existence of certain simple conditions
and draw conclusions regarding the types of phenomena that should result.
In other words, we shall construct "models" of simplified types of discharge
that might conceivably exist and later shall attempt to explain the more com-
plicated phenomena commonly observed in gaseous discharges in terms of the
elementary phenomena with which we have then become familiar.
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For example, we propose to deal first with electric discharges in very high
vacuum where the current is carried by particles of one sign only (unipolar
discharges) and where the carriers of the electric current pass across the
vacuous space from one electrode (emitter) to another electrode (collector)
without suffering loss of energy or change in momentum by collisions with
gas molecules. We shall therefore not need to consider the generation of ions
and electrons by collisions with gas molecules, nor the recombination of ions
and electrons.

In analyzing these high vacuum discharges, we shall first deal with current
densities so low that the number of charged particles present at any time in

the space between the electrodes is so small that the electric field produced by
them is negligible, and the potential distribution is practically the same as if
no space charges were present, involving only a solution of Laplace's equa-
tion. With higher current densities, the number of charged particles which
carry the current becomes so great that the field produced by them can no
longer be ignored and the potential distribution is then to be determined by
a solution of Poisson's equation. We shall see that currents that flow under
such conditions depend essentially on the presence of space charge and the
various "space-charge-equations" that we shall obtain will prove to be of
fundamental importance in the understanding of discharges of many types.

After dealing with the phenomena in high vacuum, we shall then proceed
to a consideration of the fundamental phenomena occurring in the presence
of very low pressures of gas, pressures sufhcient to cause the generation of
ions and electrons in space, but yet so low that the motions of the resulting
carriers are not appreciably interfered with by the presence of gas. Ke shall
see that under these conditions the electrons and ions which are generated in
the space by electron impacts recombine on the walls of the tube and at the
electrodes (but not in the space).

Further consideration of the effects produced by the generation of ions
and electrons in space will show that the potential distribution becomes such
that a potent'ial maximum develops in which low speed electrons are trapped.
The accumulation of the trapped electrons causes a region to appear in which
the space charge of the ions is neutralized by the electrons. We have named
this part of the discharge the p/asma. Near the electrodes and near the walls
there are still regions where there are large space charges and where the condi-
tions are still essentially those of a unipolar discharge in high vacuum. These
regions of large space charge and intense electric fields are called the sheaths.
They usually surround the electrodes and cover the glass walls. '6'e shall then
study in considerable detail the properties of the plasma and of the sheaths.

At still higher pressures, collisions of the electrons and ions with gas mole-
eules profoundly modify their movements so that alterations are needed in
the space charge equations and in the equations which determine the distri-
bution of potential within the plasma. Recombination of ions and electrons
may then also occur in the body of the gas and lead to important changes in
the conditions.

In experimental studies of gaseous discharges at low pressures, it is im-
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portant to make measurements of the concentrations of electrons and ions
and of their velocity distribution, etc. For this purpose various types of
collectors can be used and considerable space will be devoted to the theory of
such collectors and to the ways in which they can be used in the studies of
gaseous discharges.

After these investigations of the fundamental phenomena, we shall then
be in a position to study their applications in explaining the ordinary types of
electric discharge. For example, we shall attempt to explain the properties of
the positive column, the Faraday dark space, the cathode glow, and the
cathode dark space, and various phenomena near the anode. Some of the
concepts developed may be of use in understanding other types of discharge,
such as corona discharges, high pressure arcs and low current discharges at
high pressures, but we shall not attempt to give any systematic treatment of
these applications.

CHAPTER II. YHK ELECTROSTATIC FIELDS DIIK TO

ELECTRODES AND TO UNIFORM SPACE CHARGES

The electric discharges of most interest to us are usually those taking
place in vessels of glass or metal which contain two or more metallic electrodes
maintained at definite potentials or between which definite currents are
passed. The phenomena of the discharge by which the How of current is deter-
mined usually depend on the distribution of potential in the space between the
electrodes and at or near the glass walls. With practically all discharges in
which currents as large as a few milliamperes pass, the distribution of poten-
tial is essentially dependent on the space charges of the moving ions and elec-
trons. However, when the currents are made sufficiently small, the effects of
the space charges become negligible compared to the effects of the charges on
the electrodes, and then Laplace's equation can at least theoretically be used
to calculate the potential distribution. In any case, before considering the
more complicated problem of the effect of space charge on the potential
distribution, we should clearly understand the simpler problem of the electro-
static field produced by the charges on the electrodes and on the tube walls.

Therefore in the following pages we shall consider solutions of Laplace's
and Poisson's equations for electrodes of various shapes, particularly of those
types that are met with in the experimental apparatus used to study electric
discharges and in the practical devices which utilize such discharges.

It will be shown also that these solutions are applicable to problems of the
diffusion of ions, electrons, or atoms, or to the similar problems of heat
conduction (diRusion of hot molecules).

If the potentials or the potential gradients over the surfaces of all elec-
trodes and over the walls of the containing vessel are known, together with
the distribution of space charge, the potential distribution is theoretically
determined by Poisson's equation. If space charges are absent, the second
member of the equation becomes zero and the solution is then given by La-
place's equation.
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Forms of Poisson's equation.

For the various coordinate systems in most common use, Poisson's equa-
tion takes the following forms, V being the potential at any point and p the
space charge density (e.s. units cm e).

Rectangular coordinates (x, y, s)

O'V O'U O'V
dV = + + = —4~p.

Bx' 8y' 8s'
(134)

Cylindrical Coordinates, i.e., polar coordinates in the x, y, plane, together
with the unmodified s ordinate (x = r cos 8, y = r sin 8).

8 8V 1 O'V O'V
bV = ——r + — + = —4~p.

r 8 r gr r' 802 Bs'
(135)

Spherica/ polar coordinates. r is radius vector from the origin, P the azi-
muth or longitude, i.e. , the angle between the meridian plane and the x, s
plane, 0 the zenith distance or colatitude, i.e., the angle between r and the z

axis. Thus x = r sin 8 cos P; y = r sin 8 sin P; s = r cos 8.

(136)

Methods of calculating the fields

Although theoretically any one of these equations, together with the
appropriate boundary conditions, is sufFicient to determine the complete
potential distribution, actually no methods are known for the general solu-
tion of these equations. However, if through some symmetry requirement
or other imposed condition, one of the three independent variables can be
eliminated, a general solution may be obtained, although often with great
difFiculty.

For practical reasons, therefore, in considering electrostatic fields we must
restrict ourselves to simplified cases which adapt themselves to mathematical
solution. The simplest of all are those in which only one coordinate r, is
involved, for example, the field distribution between parallel planes, or con-
centric cylinders, or spheres. In such cases, the three forms of Poisson's equa-
tion given above, Eqs. (134), (135) and (136) become

d'V a dV
AV = — + — = —4vrp

dr
(137)

where x is a parameter that is 0 for parallel planes, 1 for axial symmetry
(cylinders), or 2 for spherical symmetry.

When the charges at the boundaries and the space charge distribution are
known, instead of using Poisson's equation, it is also possible to calculate the
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potential distribution by summation of the potentials due to the separate
elements of the charge. For example, any charge, e, produces at a distance, r,
the potential e/r, so that at every point in space the potential V is

V = Jtd%. (138)

This result is deducible from Coulomb's inverse square law for electric charges
and is also derivable from Poisson's equation.

An alternative method of calculating field strengths and potential distribu-
tions, which is often convenient in simple problems, is that involving the
conception of Faraday tubes or lines of force. A unit electric field is one in
which the Aux of force may be represented by one line of force per unit area.
Thus, on a point charge, e, 4xe lines of force must terminate. In cases for
which, owing to symmetry requirements, we know something of the distribu-
tion of the lines of force, it is often easy to determine the field distribution and
then to obtain the potential as the integral of the field Balong the line of force

V = )t Edx. (139)

When space charges are absent, it may readily be seen by Poisson's equa-
tion (134), that there can never be an absolute maximum or minimum in
space. Such a maximum can only occur in a region containing a positive space
charge; that is, an excess of positive electricity, while a minimum of potential
requires the presence of a negative space charge.

Since 4xe lines of force emanate from each charge, e, the electric field, Eo,
close to any conducting surface is given by

~0 = —4~0

where o is the charge per unit area.

(140)

Capacitance.
In the case of two electrodes, one of which completely surrounds the other

so that all the lines of force emanating from the second pass to the first, the
total charge on the inner surface of the outer electrode is the same as the
total charge on the inner electrode. Thus, if C is the capacitance between the
electrodes, and if V is the difference of potential between them, the charge
on each electrode will be CV, and thus,

C = —
I OdA

VV
(141)

where dA. is an element of the surface of either electrode and the integration
is carried over the total surface of that electrode. In those frequent cases for
which, because of symmetry, 0 is known to be uniform over the surface of the
electrode, we find, by combining Eqs. (140) and (141) that the electric field
at the surface of either electrode is given by



IRVING LANGj/IUIR AND K. T. COj/IPTON

&o = 4ncV/&o (142)

where A p is the total surface area of that electrode.
In these equations C is in electrostatic units and is thus measured in centi-

meters. To convert these capacitances to micro-microfarads, they need only
to be multiplied by 1.11.

Mechanical force.
Every surface on which lines of force terminate is acted on by a mechanical

force which may be expressed as a negative pressure acting on the surface.
The magnitude of the pressure is readily found to be

p = —2xp' = —Ep'/8x (143)

or, if the electric field, Ep, is expressed in volts per centimeter instead of elec-
trostatic units, the pressure is

P = 4.42 X 10 Ep' baryes,

the barye being the c.g.s. unit of pressure, (one dyne cm ') which is almost
exactly 10 ' atmosphere. A pressure corresponding to one millimeter of
mercury is therefore reached when the electric field is 55,000 volts per centi-
meter.

Fields between planes, cylinders or spheres.

For parallel Planes we find readily

E = Vi/a

V = Ugx/a

p. = Vg/4+a
(145)

where Vl. is the potential diAerence between the two planes which are sepa-
rated by the distance a, and V is the potential at an intermediate point x.
The capacitance in centimeters per unit area is thus 1/4pra.

For the case of coaxial cyLinders,

Vg 1
E = ——

r log (r,/rp)

log (r/«)
V=Vg

log (rq/rp)

2ep

—2ep log (r/rp) (146)

where rl is the radius of the outer cylinder and rp is the radius of the inner cyl-
inder, V& is the potential of the outer cylinder, that of the inner one being taken
as zero, and ep is the electric charge Per unit length on the inner cylinder (i.e. ,

2prrpeo). The capacitance per unit length is thus equal to 1/[2 log (r,/rp) ].
For concentric spheres we have,

V~rpri

fl —rp

ep

r2
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ri r —rp 1 1
V=V(— = ep

r r] rp rp
(147)

rprl

rs —fp

where r p and r~ are the radii of the inner and outer spheres, V~ is the potential
of the outer sphere, that of the inner being taken as zero, ep is the total electric
charge on the inner sphere (i.e. , 47rr02o o), and C is the capacitance between
the spheres.

Relation of diffusion and heat conduction to potential distribution.

Poisson's equation is applicable also to problems of diffusion and of the
conduction of heat in all cases in which steady conditions exist; that is, where
the concentration of the diffusing substance, or where the temperature in a
heat conduction problem, does not vary with time. Most treatises on diffu-
sion and heat conduction deal mainly with the transient phenomena preced-
ing the reaching of the steady state and these treatments are therefore of
comparatively little interest to us in connection with gaseous discharges.

Diffusion of ions or electrons, or the ambipolar diffusion of both electrons
and ions, "~ and the diffusion of metastable atoms are important phenomena
in studies of gaseous discharges. Fortunately, the solutions of the cases of
most interest to us are directly derivable from the corresponding solutions for
the electrostatic fields. The diffusion coefticient, D, is defined by

(148)

where n is the number of diffusing particles per unit volume at any point x,
and q, is the number of particles per unit area per second that diffuse across a
plane perpendicular to the x axis. The diffusion coefficient has the dimensions
cm'sec '. The methods of calculating the diffusion coeScients for electrons,
ions, or atoms are given on pages 215 to 217 of Part I.

The coe%cient of heat conduction, X, may be defined by

h, = EdT/dx (149)

where T is the temperature and A, is the energy flow per unit area per second
across a plane perpendicular to the x axis. The heat conductivity, X, may be
expressed in c.g.s. units, in which case it is measured in ergs sec ' deg ' cm ',
or it may be measured in watts deg '. cm ', or in calories sec 'deg 'cm '.
These are readily converted into one another if it is kept in mind that one
watt = 10~ ergs sec ' and one calorie is 4.19 watt sec.

If the diffusing substance or the heat passes directly through the space
from one electrode to another and does not disappear or is not generated
within the space, that is, if there are no sources or sinks within the space, then
Laplace's equations (134), (135), (136) with p = 0 apply if we merely replace

%.Schottky and J.v. Issendorff, Zeits. f. Physik 31, 180 (1925).
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V by n in the case of the diR'usion problem or by T in the heat conduction
problem.

In case the diffusing substance is formed or disappears in the space be-
tween the electrodes, we may let S represent the number of molecules* gener-
ated per unit volume per second at any point x, y, s'. In case the substance dis-
appears, S has a negative value. Poisson's equation then takes the form

An = —5/D (150)

where An, in any of the systems of coordinates that we have used, may be
obtained from equations (134), (135) and (136) by merely substituting n for
V.

In a similar way, in problems of heat conduction, Poisson's equation be-
comes

hT = —H/E (151)

where H is the rate of generation of heat per unit volume per second, expressed
in terms of the same energy units as the heat conduction, X.

I3oundory conditions. The diffusion problems of most interest to us are
those in which the diffusing substance originates at one electrode or through-
out a volume of the gas and diHuses to, and is destroyed by, the other elec-
trodes with which it comes in contact, or by the walls of the vessel. For exam-
ple, electrons may be given o8 by one electrode and taken up by another, or
they may be produced by ionization within the gas and disuse to the walls.
Therefore, the boundary conditions usually require that n shall be zero on all
bounding surfaces except those at which the particles originate. The bound-
ary conditions in problems of heat conduction are usually ascertained with-
out difficulty.

In the heat conduction problems we are usually concerned with the tem-
perature distribution which is entirely analogous to the potential distribution
in the electrostatic probl|:m and thus overs no difficulty.

In the diffusion problems that we meet in gaseous discharges, we usually
wish to know the rate of How of the diffusing substance to the walls or to some
electrode. In other words, we wish to determine the quantity q, as given by
Eq. (148), so that we are concerned with the concentration gradients at the
surfaces of the electrodes rather than the concentration distribution within
the space. We may write Eq. (141) in the following form,

dC/da = /V, (152)

where dC/dA represents the capacitance contribution per unit area over the
surface of either one of the two electrodes, U~ being the potential difference
between the electrodes. If we have solved the problem of the potential distri-
bution between the two electrodes with the boundary conditions V=0 at one
electrode and V~ at the other, then we have also solved the corresponding

* In such cases as these (as in Part I, footnote on page 12S) we shall use molecule to include
atoms, ions, or even electrons.
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problem for diffusion from one of these electrodes to the other, the concentra-
tion being 0 at the first electrode and nj at the other. Thus, at every point
in space,

dV 1 de

VI dX QI dS
(153)

By combining the equations (148), (153), (140) and (152), we obtain

qg ——4sDegdC/dA = 4vrDngo/Vg (154)

where go is the rate of arrival (molecules sec—'cm ') of the diffusing sub-
stance at the electrode 0 when the concentration over the surface of the elec-
trode 1 is n~. If we let Qo be the total amount of the diffusing substance which

reaches the whole surface of electrode 0 (molecules sec '), then we have,

Qo = 4n-Dn, C (155)

where C is the total capacitance between electrodes 0 and 1. This solution is

strictly applicable only in cases in which the analogous electric problem is one
where all the lines of force which emanate from one electrode pass to the other.
Since, however, the walls of the vessel and usually all electrodes, except one,
destroy the diffusing substance, we may consider that all of these electrodes
and the walls are at zero potential in the electric problem and therefore con-

stitute a single electrode.
The most important heat conduction problems that we may wish to con-

sider in gaseous discharges are those in which the heat is generated in the body
of the gas so that we need to apply Poisson's equation. In such cases we must

also know the heat conductivity, E. If the heat is carried by the gas itself,
we can determine the heat conductivity readily enough from available pub-
lished data. We may wish, however, to calculate the heat that is conducted

by the electrons within the gas. In such cases we may calculate E by consid-

ering that heat conduction involves essentially a diffusion of hot molecules

among colder molecules. We have for the coefficient of self diffusion in a gas"'

(156)

Jeans shows that the viscosity of a gas is given by

so that

g =
~Asap (157)

(158)

where p, the density of the gas, is equal to nm, nz being the mass of the mo1e-

cule. Jeans also shows (page 318) that the heat conductivity of a monatomic

gas is given by

E = 2.SIC, (159)

~'8 Jean's Dynamical Theory of Gases, Second Edition, Cambridge 1916.p. 326. Eq. (98)
on page 215, Part I, also gives this if X1 =) ~ and c1 =c~.
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where C„which is the specific heat of a gas at constant volume per unit mass,
is equal to 3k/2m, k being the Boltzmann constant. For a diatomic gas, the
coefficient in Eq. (159) should be 1.9 instead of 2.5, and the specific heat is
then Sk/2m. We thus find for a monatomic gas,

E = 3.75kon (160)

and in the case of a diatomic gas, the coefficient should be changed to 4.75.
Although we have derived this result by a consideration of the viscosity,

and no particular meaning attaches to this conception for electrons in an inert
gas, the final equation that we have obtained is applicable for gas mixtures, or
even for the heat conduction by a small number of electrons among a large
number of gas molecules. In this case D is the diffusion coefficient of the elec-
trons through the gas and n is the number of electrons per unit volume in the
gas, and X corresponds to the heat carried by the electrons. We see that this
conclusion is justified if we consider that we are dealing essentially with a
problem of the diffusion of rapidly moving electrons among slower electrons.

Diffusion and heat conduction problems can only be solved in the fore-
going manner if the mean free path X of the molecules is small compared to
the distances between the electrodes. When the pressure is so low that ),
although less than the dimensions of the apparatus, is comparable with them,
Poisson s equation may be applied to diffusion or conduction in all the por-
tions of the space within the device which lie at distances greater than ) from
the walls or electrodes. Within a layer of thickness ) from the boundaries the
conditions of free molecular How obtain according to which the transfer of
molecules across any boundary is given in terms of the average velocity, v, by

uz
q= ~n)v= nq

2xm
(161)

where n& is the number of molecules. cm ' at a distance X from the boundary.
As a result of this effect there is at any boundary a discontinuity in concentra-
tion or temperature of magnitude approximately equal to the normal gradient
multiplied by X.

Even if ) is very small compared with the dimensions of the apparatus,
this discontinuity may be important when we deal with diffusion or conduc-
tion from wires or filaments so fine that their diameter is less than X. A very
full discussion of this effect and of the methods of calculating the concentra-
tion drop and the temperature drop in such cases as these was given by Lang-
muir"' in his studies of the dissociation of hydrogen into atoms by hot fila-
ments.

Two-dimensional cases.
Cylinders 0nd veires. In experimental investigations of electron discharges

or gaseous discharges, filaments are usually used as sources of electrons.
Where quantitative knowledge of the electric field distribution is peeded, it is

"' I.Langmuir, Jr. Amer. Chem. Soc. 3V, p. 419 to 428 (1915).
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desirable to use a straight filament at the axis of a cylindrical anode. Other
electrodes are then preferably made in the form of one or more straight fila-
ments parallel to the axis of the cylinder. The electrostatic field distribution
is readily calculated in all such cases.

Field between parallel mi res. Let us consider an infinitely long straight line
on which there is a charge, e&, per unit length. According to Eq. (146), the
potential at any point at a distance r& from this line is

V = —2e& log r&+ const. (162)

If this wire were alone in space, the total energy per unit length would be
infinite. However, if there is another parallel infinite wire having charge
—e& per unit length (or any set of such wires having the total charge —e| per
unit length) the energy and the potentials become finite. We must restrict
ourselves therefore to cases where the total charge per unit length for all the
conductors is zero.

The potential at any point I' due to two parallel lines having the charges
e, and —

e& respectively is thus 2e& log (r2/r, )+const. , where r& and r2 are the
distances from I' to each of the two lines.

If we consider two fine wires of radius a& and a2 respectively, these radii
being small compared to the distance 2d between the wires, and if V~ and V~

are the potentials of the wires, we may derive an expression for V& by putting
r2= 2d and rj =a~, and a similar expression for V2, and can thus eliminate the
constant, getting

Vg —Vg ——2e, log (4d'/a, a,) (163)

from which by Eq. (141) the capacitance per unit length between the wires
Ci is

C, = 1/[2 log (4d'/alas) ].
The potential at any point P is then given by

V —Vg log (2r)d/r2a, )

V, —Vg log (4d'/aga2)

(164)

(165)

and the radial electric field intensities at the surfaces of the wires, in agree-
ment with Eq. (146), are —2e&/a, and +2e|/a2 respectively.

Electric images of wires near plane electrodes From co.nsiderations of sym-
metry and also by Eq. (165), it is evident when a, = aq and V& ———V& that the
potential is 0 everywhere over a plane that lies mid-way between the two
wires and is perpendicular to the plane that includes the wires. Thus if this
0-potential plane is replaced by a conducting surface at the distance d from
the wire 1, the potential distribution is still given by Eq. (165), and the charge
ei on the wire remains unchanged. The capacitance between the wire and the
plane is then

C, = 1/ [2 log (2d/a, ) ] . (166)
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The problem of calculating the potential distribution between a small wire
having a charge e~ per unit length, and a parallel conducting plane at a dis-
tance d from the wire, is thus solved by replacing the plane by a second line
having a charge —e& per unit length at a distance 2d, which may be said to
represent the electric image of the wire in the plane.

Radkal and transverse fields in two dhrnensi-onal problems In .the problem
we have just considered, the electric field close to the small wire is almost
wholly radial and its magnitude is given by Eq. (146). However, strictly
speaking, there is also a transverse field of magnitude Ez resulting from the
action of the charge —e~ of the electric image which is at a distance 2d and
thus by Eq. (146) the magnitude of the transverse field is,

Er = eg/d. (167)

In other two-dimensional problems where there is more than one wire,
the transverse field close to one wire can be calculated by summing the po-
tentials due to charges on all the other wires (and their images, if need be),
then finding the potential gradient of this combined potential field.

In problems involving the collection or emission of electrons from fila-

ments, it is often important to know the potential distribution close to the
surface of a wire, for this may determine whether electrons can escape from
or be received by the wire. In such cases we cannot neglect the eHect of the
transverse field.

If we have an uncharged wire of radius a in a transverse field of magnitude
E, the potential distribution around the wire is

V = E,r(1 —am/r~) cos 8 = E,x(1 —a~/r )2 (168)

where V is the potential at any point (r, 0) expressed in polar coordinates, the
potential on the surface of the wire being 0. This result may readily be proved
by substitution into Eq. (135).

An uncharged wire thus produces only a local disturbance in the potential
distribution resulting from the more distant electrodes. The potential of the
wire itself is, in fact, the same as the "space potential" which we may define
as that which would exist, after the removal of the wire, along the line which
had been occupied by the axis of the wire.

If, however, there is a charge, e~, (per unit length) on the wire, the poten-
tial of the wire will be raised above the space potential by an amount

V, = /Ceg (169)

where CI is the capacitance per unit length of the wire with respect to all the
other electrodes connected together. According to Eqs. (146) there will then
be around the wire a radial fiel, —2e~/r, whose potential is —2e~ log (r/a).
Thus the potential distribution around the wire is

V = V, [1 —2C~ log (r/a) ] + E r(1 —a'/r') cos 8

the potential being referred to the space potential at r =0.
(170)
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If V, is made sufticiently great, either positive or negative, there will be a
"saddle" in the potential distribution about the wire; that is, at a certain
distance r~ from the wire there wi11 be a line parallel to the wire along which
dV/dr=0 and dV/rd8=0. Along this radius and its extension there is a
minimum in the potential if V, is positive, although along a line perpendic-
ular to the radius (tangentially) the potential will be a maximum. The con-
dition for the occurrence of the saddle is

I
v

I
&

I
«/c

I

The distance r~ may be found from

—',(X+ X ') = C,V,/Ea
where

The potential V~ at the saddle is determined by

(V~ —V,)//Ea = (X —X ') —(X + X ') log X.

(171)

(172)

(173)

(174)

Choosing a coordinate system in which the axis of the wire is the Z-axis
and the X-axis is in the direction of the transverse field, then the values of
O'V/8 xand O'V/By' at the saddle are given by

0~V O'V E 1 —)'
Bx2 Gym c ) 3

(175)

In the case of a heated electron-emitting filament when V, is positive and
greater than Ea/C&, the number of electrons that can escape depends on the
number that can get through the saddle (or pass) and thus is determined by
the potential distribution in the neighborhood of the saddle, as given by
Eq. (175). We shall have occasion to use these equations in a consideration
of the theory of heated sounding electrodes.

TA gyp Q IX. Characteristics of the Potential saddle near a char ged wherein a transverse dectric field.
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Table X1X, based upon Eqs. (172), (174) and (175) may be used to cal-
culate V., Vsr and B'V/By' in terms of the parameter )i, and may therefore
be used to find r nq, V.si and B' V/By' when V, is given.

Electric images of wires in cylindrical electrodes T.he electric field set up
inside of a conducting cylinder of radius a by a charged wire parallel to the
axis but at a distance al from it, is the same as that produced in the absence
of the cylindrical electrode by two wires having charges el and e2 respectively,
placed at distances al and a2 from the axis, where

Q1Q2 = 82 (176)

(177)

Thus, in calculating the potential distributions, the cylinder can be re-
placed by the "image" of the wire in the cylinder. * The charges of the wire
and of its image are equal but oppc, site in sign, since in this two-dimensional
case all the lines of force reaching the image must have originated on the wire
and have passed through the cylindrical surface. **

Cases involving several electrodes. The potential at any point can be deter-
mined in accord with Eq. (138) by summation of the potentials due to the
separate electrodes so that, in general, with a system of n conductors, the
potentials of the conductors are

Vl Pll&1 + P12e2 + ' + Pl

V2 p2181 + p22e2 + ' ' + p2n8rt
(178)

where el, e2, etc. , are the charges on the conductors and pll, p12 py, l; are
constants called potential coeff'tcients These n. equations can be solved for the
e's giving

81 = CllV1 + C12V2 + ' ' ' + Cl„V

82 = C21V1 + C22t 2 + ' ' ' + C2nU~
(179)

The coef6cients cll, c22 . . c~~ are the capaci trances of the conductors, each
being the charge of any given conductor when it is at unit potential, all the
other conductors being at zero potential. The quantities c», where h/k, are
theinduction coeff'tcients or partial capacitance coefltcients Each rep. resents the
charge induced on any given conductor H by bringing another conductor X
to unit potential, while H and all the other conductors are maintained at
zero potential. These induction coefficients c~k are all negative while the
capacitances cj,l, are positive.

* Except in the case of plane surfaces, electric images are not identical in position or shape
with optical images.

**The image of a point charge in a sphere is located at a point which is also given by Eq.
(&&6), ai and a2 being the distances of the point and its image from the center of the sphere. In
this case however

~1(~12j+) ~1(%/~il) '
The charge on the image must be greater than —ei because a certain fraction, (a2 —a) ja, of the
lines of force which start from the image reach out to infinity instead of passing through the
spherical surface
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Gauss has proved the following "reciprocity theorem. " Let el, e2, - e„
be the charges on the conductors when their potentials are Vl, V2, * V„,
and let el', e2', e„'be the charges when the potentials are changed to U',
V2', V„',then the relation holds

Qehl' h gt k Vh ~ (180)

By means of this theorem it can be shown in general that

(181)

In high vacuum electron tubes the glass walls of the tube generally take
up electrons until they acquire the same potential as the cathode. In gas dis-
charge tubes the walls are commonly at some definite potential intermediate
between those of the anode and cathode. Very frequently one of the elec-
trodes nearly completely surrounds all the others. Thus, in all these cases,
we are concerned not with the capacitances between the electrodes and
ground, but only with those between the electrodes. That is, in applying Eq.
(179), we may usually limit ourselves to a consideration of the interior of
closed systems. Thus no matter what the potentials of the individual elec-
trodes may be, the total charge on all of them is zero:

el+e2 . +e„=0, (182)

the charge on any electrode or envelope that surrounds all the others being
taken as that on its inner surface only. If all the electrodes are now brought
to the same potential V', it follows from Gauss' theorem that the charge on
each electrode (e') must be zero, and thus by Eq. (179)

Cll + C12 + ' ' ' + Cln

CAI + CA2 + ' ' ' + CAn

(183)

The capacitance cAA of any electrode is the sum of all the induction coeffi-
cients c» applying to that electrode with their signs reversed, so that the term
partial capacitance coefficient is justified.

When Eq. (182) is satisfied, we see also, from Eqs. (183) and (179), that
the charge on any electrode is only dependent on the difference of potential
between this electrode and the others so that then, if we use V21 as an abbre-
viation for V& —V&, etc. , Eq. (179) may then be written,

el C12U21 + C13U31 + ' ' + CInVnl

e2 —C2IUI2 + C23~ 32 + ' ' + C2nUn2

etc.

(184)

and the capacitances cll cAA are eliminated.
These equations are applicable to the calculations of the amplification

constants of electron tubes such as the audion. The escape of electrons from
the filamentary cathode depends on the presence of an accelerating field at
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its surface, and thus by Eq. (140) requires that the surface be negatively
charged. Consider a triode so constructed that the charge ei on the cathode
is uniformly distributed over the cathode surface. By Eq. (184), if the po-
tential of the cathode is taken as zero, the charge e& on the cathode is

el ~12~2 + ~13~3 (185)

where the subscripts 2 and 3 apply to the grid and plate respectively. The
condition that electrons shall Row from the cathode is thus that

Vg 0 VgC1g/Clg ~

Bey Bey
p

8V2 8V3 Ci3

C12

The amplification constant p, may be defined as

(186)

(187)

The field at the cathode surface is affected, by changes of the grid paten-
tial, y times as much as by a similar change in plate potential.

The induction coefFicients are useful not only in calculating amplification
constants, but the charges on the electrodes are found by equations like Eq.
(185), and in this way, by Eq. (138), the potential distribution throughout the
space may be determined.

Grid betueen parallel planes. Maxwell'" has developed the theory of the
screening effect of a grid 2 consisting of parallel wires, each of radius b, placed
between two infinite plane electrodes 1 and 3 at distances x~ and x3 from the
grid. His results are readily put in the form

4«lxlp n Vgl x3 V31

4xagxgP ' = —x1 'V1g —n 'Vga
(188)

where ~i and 03 are the surface charge densities on the planes 1 and 3, and

a = (s/2x) log (s/2xb)

p'=x '+n'+x
(189)

(190)

s being the distance between the axes of adjacent grid wires. In this deriva-
tion it was assumed that the diameter of the grid wires, (2b), is less than 1/4
of the distance, (s), between them, and that s is small compared to x1 and xg.

The equations may be applied to parallel plane electrodes of finite area
A, if the dimensions of these surfaces are large compared to the distance
x&+x3 between them, so that the "edge corrections" are negligible. Compari-
son of Eqs. (188) with (179), remembering that e =oA, shows that the induc-
tion coef6cients are

c13 ———A p/4xx1a

c13 AP/4' x1x3

cgg = —A p/4xaxg.

(191)

'" Maxwell, Electricity and Magnetism, 1904 Edition Vol. 1, page 312.
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The amplihcation constant p, is

P C12/C13 X3/12 (192)

and is thus independent of the distance between grid and cathode.
For many purposes it is convenient to consider the grid and plate (plane

3) to be replaced by a plane electrode placed at such a position and having
such a potential, V„that its effect on the field near the cathode (plane 1) is
equivalent to that of the grid and plate. '" Let 6 be the distance from the grid
plane to the plane of this imaginary electrode which may be assumed to lie
between the grid and plate. The surface charge, ai, thus induced on the
cathode is given by

so that by Eq. (188)

42ro 1 = —V, l/(2:1 + 6) (193)

P '1'.1 = (1+»1 ')(~ '&21+ *3 '1'3l) (194)

whence by Eqs. (190) and (192)

pal (l 31+ P1 21)(1 +»1 ')(1 + u + *32'1 ') (195)

If, with Schottky, we choose 6 =0, that is, make the imaginary surface co-
incide with the grid, the effective potential is

+el (y31 + Pf 21) (1 + 13 + 2'32'1 ) (196)

and thus, even if the grid and plate potentials are the same, the effective
potential is different from either.

It seems more useful to locate the effective plane in such a way that 5 is
independent of V» and V» and yet gives V.= V» when V»= V». We then
find

6 = 2:3(1+P) '

&sl = (1'31+ WP'21) (1 + W)
'

(197)

(198)

Cylindrical grids. Abraham'7' has calculated the induction coefficients
between the cathode, grid and plate for the case that the grid consists of n

parallel wires symmetrically placed (at the corners of a regular polygon)
about the cathode which coincides with the axis of the cylindrical "plate"
or anode. It is assumed that the length L of the structure is large compared to
the radius of the cylinder (so that end-corrections are negligible).

Let a&, a&, and a3 be the radii of the cathode, of the grid cylinder, and of
the anode cylinder respectively. Let b be the radius of the wires forming the
grid. Then the induction coefficients are

'7' W'. Schottky, Archiv. f. Electrotechnik 8, 1—31, {1919). Schottky introduced {p. 22)
the concept of effective grid potential, but considered practically only cases for which the plane
of the effective electrode coincides with that of the grid, i.e., b, =0.

'~' Max Abraham, Archiv. f. Elektrotechnik 8, 42—4S {1919).
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c,2
———LX ' log (a,/a2)

C~3 = —I.X 'y

c23 = —LX ' log (a2/ag)

y = n ' log (a2/nb)

l = 2y [log (a,/ai) + y log (a,/a, ) j

(199)

(200)

(201)

p being the amplification constant:

n log (ag/ag)

log (a,/nb)
(202)

In the derivation of these equations it was assumed that (a./a3)", (a~/a2)",
and (nb/a2)' are small compared to unity.

Following the method used in deriving Eq. (195), we may, for many pur-
poses, replace the grid and anode by a single cylindrical electrode of radius c,
and potential V, which produces the same field at the cathode. By Eq. (146)

V, g
———2(eg/L) log (a,/a, ) (203)

and then from Eqs. (199) and (184)

U« ——2yX '(V~, + pV2i) log (a,/a, ).
If now, as in the case of the plane grid, we chose a, so that U, I is the same

as the grid potential when the grid and anode potentials are equal, then Eq.
(198) gives the effective potential V,~, and a, is given by

log (a,/a, ) = (1 + p)
—' log (a3/a, ) (205)

which reduces to Eq. (197) if a3 —a2 is small compared to ap.

Single grid mirein cylinder. In many experiments with pure electron dis-

charges as well as in gaseous discharges, it is desirable, within a tube contain-
ing a cylindrical anode of radius a3 and a coaxial cathode of radius aI, to use,
within the anode, a third electrode in the form of a single straight filament
parallel to the axis of the anode. This electrode may be used as a collector
or emitter of electrons or ions. Let a~ be the distance of this electrode from
the axis and let b be its radius. This may be regarded as a special case of the
problem of the cylindrical grid in which n=1. However, since a./a3 is not
negligible compared to unity, the foregoing treatment is only approximate,
whereas the method of images gives a practically rigorous solution if the
radii a~ and b are small compared to c3.

The potential distribution within the cylindrical anode is that due to the
combined effect of charge e&/L per unit length at the axis, of a line charge e2/L
at a distance a2 from the axis, and of a line charge e2/L at the distance-
aa'/ag from the axis in the same plane as the other two line charges. * These
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charges ei and e& are readily found by Eqs. (184) as soon as we know the
induction coefficients @~2, c13, and c23.

The solution of this problem shows that instead of the value of y given by
Eq. (200), we must now use

y = log [aib '(1 —a, 'a3 -')].-
In terms of this new y the amplification constant p, becomes

p = y-' log (a,/a, )

(206)

(207)

and c&i, c&~, @23 and X are given as before by Eqs. (199) and (201).
SLct grid and anode. Kingdon and Langmuir'" have found that the de-

activation by positive ion bombardment of sensitized cathodes in traces of
alkali vapors can be avoided by the special electrode arrangement shown in

cross-sections in Fig. 35. The filament at the axis is represented by the point
at the center of the figure. The grid consists of the four radial slats g, con-

Fig. 35. Cross-sections of electrode arrangements showing anode and grid in slats.

nected together. Interleaved with these, and spaced further from the fila-
ment, are the four radial anode slats a. In practice the anode slats for con-
venience are mounted on the inside of a cylinder as in Fig. 35(b).

H. M. Mott-Smith and L, Tonks, '" assuming the slats are semi-infinite
planes, have calculated the induction coefficient c» and cia (1, 2 and 3 refer to
cathode, grid and anode respectively)

ci2 = Ip/2(1 + p) log (r,/ri)
cia ——I/2(1 + ii) log (r,/r, )

(208)

where I. is the length; p is the amplification constant (c»/cia); r, is the radius
of the cathode filament and r, is the effective radius" of the grid-anode
structure, i.e., that of a cylinder which would give the same field at the cath-
ode as the actual electrodes, if these were brought to the same potential. The
values of p and r, are

(209)

(210)

»8 K. H. Kingdon and I. Langmuir, U. S. Patent No. 1,648,312 Nov. 8, 1927.
'2' Unpublished work in General Electric Research Laboratory.
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where n is the number of grid (or anode) slats, i.e. , 4 in the case illustrated
in Fig. 35; r2 and r3 are the distances of the inner edges of grid and anode slats
from the axis, and

P = t'3 t'2. (211)

Experimental determinations of p, and the anode impedance (derivable
from cia and cia) for actual tubes constructed as shown in Fig. 35 have given
values in good agreement with these equations.

Electrode at one end of a long conducting tube. '"
A two-electrode problem, sometimes of importance in the study of electric

discharges in gases, is that of the potential distribution between the inner
surface of a long conducting cylinder and a disk-shaped electrode within the
cylinder near one end. Assuming axial symmetry, Laplace's equation (135)
may be applied. By substitution of

V = ~(r) G(z) (212)

in this equation, two equations are obtained from which U and 6 are found.
Thus a particular solution of the problem is

V = VOJO (2.405r/a) exp (—2.405z/a) (213)

where a is the radius of the tube and V is the potential at any point at a dis-
tanct. r from the axis of the tube and at a distance z measured along the axis,
the potential of the cylinder having been taken as zero. V& is the potential
at the point r =0, z = 0, and Jo(u) is the zeroth order Bessel function of u. The
coefficient 2.405 is the first root of the equation Jo(u) =0. Since Jo(0) = 1, we
see that the potential falls to one e'" value for each increment of distance hz
along the tube where hz=0.4156 a, or the potential falls to 1/10'" value for
each increment of 0.96 a.

Eq. (213) is a particular solution which is applicable only when the dis-
tance from the disk electrode is large compared to c, the tube radius, and is
then independent of the size or shape of this electrode.

This equation is applicable also to the diffusion of any substance along a
tube whose walls absorb the diffusing substance. The number of molecules
which disuse per second across any given cross-section is

3.2619 Dwoa exp (—2.405z/a) (214)

where no is the number of molecules per cm' at the point r = 0, z =0. The rate
of dilfusion to the cylindrical surface (molecules cm —'sec ') is

1.2485 (Dido/a) exp (—2.405 z/a) (215)

Two others solutions of electrostatic problems have already been given in
Part I. On page 151 an equation was given for the potential distribution near
a checker-board surface having alternate squares at potentials 0 and Vo. On

~~i' K. Schottky and J. v. IssendorfF, Zeits. f. Physik 31, 163—201 (1925) have treated this
case (on p. 180) as a diffusion prob1em.



ELECTRICAL DISCHARGES IN GASES 213

page 168 the potential distributions near conducting solids bounded by di-

hedral angles and near ridge-like elevations on planes, were considered.
Kunz and Bayley'" have given the solutions for the field produced by a

wire placed between parallel planes or located in a tube of rectangular section.

Effect of uniform space charge on potential distribution.

Although in gaseous discharges the space charge when present is ordinarily
not uniform, it will help in forming a conception of the important role of space
charge to consider the cases of parallel planes, or coaxial cylinders, or spheres
between which there is a uniform space charge, p.

Two successive integrations of Eq. (137), considering p to be constant,
give

V = Ar'-'(1 —g)
—' —2spr' (1 + z) '+ C (216)

where A and C are the integration constants. For the cylindrical case (~ = 1)
this is indeterminate, but direct integration of Eq. (137) gives,

V = A log r —mpr'+ C. (217)

In each of these equations the first term may be regarded as the contribu-
tion of the charges on the electrodes and the 2nd term that of the space
charge. If there is no internal electrode within the cylinder or sphere, or if,
in the case of planes, they are at the same potential, the constants A and C
become zero and the general solution for all three cases is

V = —2spr' (1 + z) (218)

the distances being measured from the center of symmetry and the potential
being taken as zero at this center. Placing p=ne and inserting the value e

=4./7&10 "e.s.u. =1.43X10 volt cm, we find, if r is in cm,

V = + 8.99 && 10—"Nr'(1 + ~)
—' volts (219)

the —sign being taken for positive ion, and the + sign for electron, space
charges, n being the equivalent number of electron charges per cm'.

Kith n=10' electrons per cm' corresponding to an average distance of
0.01 mm between electrons, we thus see that V=900 r' volts, while with
electrons 0.1 mm apart (n=10'), V=0.9 r'. Large potential gradients can
thus result from relatively low concentrations of electrons or ions.

Khen there are two or more electrodes at diferent potentials, a potential
maximum or minimum in space occurs only when the magnitude of the space
charge exceeds a definite value. For example, consider two parallel plane
electrodes at a distance a apart and let V be the difference of potential. If
p =0 there is a linear potential distribution between the planes, but as p in-

creases (positive space charge), the potential distribution becomes parabolic
in accordance with Eq. (216), and at a certain value of p, the potential gra-
dient at the more positive electrode (anode) becomes zero. A further increase

'27' J. Kunz and P. L. Bayley, Phys. Rev. 17, 147 (1921).
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in p produces a potential maximum near the anode. Measuring distances and
potentials from the potential maximum, the distribution is given by Eq.
(218) with x=0. Thus the condition for the occurrence of a maximum is

p & V./2s. a'.
Ke shall see in Chapter VI that the presence of a potential maximum or

minimum in the space between the electrodes often produces profound modi-

fications in the character of a gaseous discharge, since low velocity electrons
(or positive ions) become trapped within the region of potential maximum

(or minimum) and their accumulation nearly destroys the space charge within
this region.

For the cases of cylinders and spheres, the conditions for the occurrence
of a potential maximum or minimum near the internal electrode are also
obtainable directly from Eqs. (218) or (219). For example, consider a cylinder
of radius a, and at zero potential, containing a uniform distribution of n

singly charged positive ions per cm . At the cylinder axis the potential U is a
maximum and is obtained from Eq. (219) by taking the + sign and placing
r =0 and z = 1. If now we introduce at the cylinder axis a small wire and make
its potential U, which is the "space potential" at this point, it will produce
practically no change in the potential distribution: the potential gradient at
the surface of the wire is zero and by Eq. (140) the wire is uncharged. If tl:e
potential of the wire is made less than the space potential, a potential maxi-
mum develops, but with a potential above U„the maximum in space dis-
appears. Thus Eq. (219) shows that when a cylindrical anode having a radius
of 1 cm contains 10' electrons per cm' and an axial cathode filament, there
will be a potential minimum close to the cathode surface, if the potential
difference between the cathode and anode is less than 45 volts.

This method cannot be used to determine the conditions for the occurrence
of a potential maximum or minimum near the surface of the outer cylinder.
The constants A and C in Eq. (217), however, may be so determined as to
make V and d V/dr both zero at a particular value of r, say r, . The equation
then becomes

V = 2spro'[Iog, (rjro) + —,'(1 —r'jrp )]. (220)

If the voltage Uis known for some particular value of r, say at the anode,
then this equation with these values of U and r can be solved for p and the
value po thus obtained gives the space charge which, if exceeded, gives a
potential minimum at the cathode of radius r o.

This method may be used either when the potential minimum is near the
outer or near the inner cylinder.

CHAPTER III. THK FLOW OF CURRENT IX HIGH VACUUM
WHEN SPACE CHARGE IS NEGLIGIBLE

The simplest types of electric discharges are those occurring in such high
vacuum that the motions of the charged particles, electrons or ions, which
carry the current are not modified by collisions between these carriers and
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gas molecules. When the current is carried wholly by electrons, the discharge
is usually referred to as a pure electron discharge. No electrons or ions are
generated in the vacuous space and the carriers move from one electrode,
which we may call the emitter, to another electrode, called the collector,
solely under the inHuence of the electric field in the space.

In a unipolar discharge of this type, let n be the number of charged par-
ticles per unit volume and let e be the charge on each particle. If v is the
average drift velocity of these particles at any point in space parallel to the X
axis, then the drift current density I.is given by

Ig = ne'v~. (221)

A similar equation may be written for the components of velocity and current
density parallel to each of the other axes Y and Z. Thus the drift velocity
vd and the drift current density Id, are vectors whose components are v, v„,
v„I, I„andI,. In general the direction of the drift velocity at any point
does not necessarily coincide with the direction of the electric field at that
point. If the lines of force that originate at the emitter and pass to the collec-
tor are curved, the electrons can obviously not follow such curved paths for
the curvature would result in a centrifugal force in a direction perpendicular
to the path. Thus, to hold the electron in a path coinciding with the lines of
force would require a held component perpendicular to the lines of force, but
this is incompatible with the definition of lines of force.

If the electrons escape from the surface of the emitter without initial
velocities, then the kinetic energy of an electron when it reaches any given
point in space is equal to Ve, where V is the potential of that point with re-
spect to the emitter. Thus we have,

-'mv' = Ue. (222)

Although the velocities with which the electrons are emitted are so low
that we are often justified in neglecting them, there are many cases where we
must take these velocities into account. In general, the particles emitted
have an initial velocity distribution corresponding to Maxwell's distribution
law. * At any point in space, therefore, the kinetic energy of an electron is
equal to Ve plus the kinetic energy with which that electron was emitted.

It is important to recognize that the velocity, v, which enters Eq. (222) is
a scalar quantity as distinguished from the vector velocity s& in Eq. (221).
However, when the lines of force connecting the emitter and collector are
straight, the distinction between v~ and v loses its significance and for these
cases, characterized by special kinds of symmetry, the mathematical treat-
ment is very greatly simplified.

The equations that we shall derive for unipolar discharges in high vacuum
will naturally be applicable both to the pure electron discharge, where elec-
trons are emitted from the emitter, and to the pure positive ion discharge,
where the current is carried wholly by the positive ions originating at the

~ Part I, page 204.
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emitter. Such positive ion discharges may be obtained** by using a Kunsman
emitter, or by using, for example, a tungsten filament in presence of a very
low pressure of an alkali metal, whose pressure may be so low that the num-

ber of ions generated in space is negligible.
Ke shall also have occasion to discuss bipolar discharges in which elec-

trons are emitted from one electrode and positive ions are emitted from the
other electrode. The theory of such bipolar discharges will prove to be useful
in subsequent studies of gas discharges.

The simplest type of high vacuum discharge is that in which the vacuous
space is bounded wholly by the two electrodes, emitter and collector, so that
all the 1ines of force that originate at the emitter terminate on the collector.
In a great number of electric discharges, however, the space is bounded also
by glass walls or by metallic surfaces of a third electrode. The potential dis-
tribution over an insulating surface, such as that of glass, may thus play an
important part in determining the potential distribution in space. In most
unipolar discharges, at least as a first approximation, we may consider that
an insulating surface receives electrons or ions from the emitter until it be-
comes charged to the same potential as the emitter. Thus, with the convention
we have used of taking the potential of the emitter to be zero, we may assume
insulated surfaces also to have zero potential. We shall find, however, some
cases, both in high vacuum and in the presence of gas, where the potential
distribution on glass surfaces becomes an important factor in determining the
character of the discharge.

According to Eq. (221), current cannot How without necessitating the
presence of a definite space charge. If, however, the current density is so low
that the total charge in the space is very small compared to the charges on
the electrodes and on the glass walls, the potential distribution will be deter-
mined wholly by Laplace's equation, in accord with the principles discussed
in Chapter II. If the potential distribution is such that the electric field at the
surface of the emitter accelerates the emitted particles, i.e. , if there is an ac-
celerating field, it will often happen that every particle which is emitted
passes to the collector so that the current will then be independent of the po-
tential distribution and will be equal to the satlration clrrent characteristic
of the emitter as determined by its temperature. However, in other cases,
some of the electrons which escape from the emitter describe orbits in space
and return to the emitter. We shall return later to a consideration of the con-
ditions under which this occurs.

If the potential distribution within the device is such that there is a re-
tarding field at the surface of the emitter, electrons can only pass to the collec-
tor if they possess sufficient initial kinetic energy to enable them to move
against the retarding field. Thus, if a particle is emitted with a velocity, v,

it cannot move against the retarding field into a region which has a retarding
voltage (with respect to the emitter) greater than V where V is given by
Eq. (222). However, it must be kept in mind that all particles having this

**See Part I, page 140.



ELECTRICAL DISCHARGES IN GASES 217

velocity, v, are not necessarily able to travel into a region corresponding to a
potential difference less than V. This is readily seen if we remember that the
electron ceases to move against a retarding field as soon as its velocity com-

ponent in the direction of the field has fallen to zero, even if it has a large
transverse velocity.

With increasing current density I, the total charge in the space must
finally become comparable with the charge on the electrodes and on the glass
walls. Many of the lines of force originating at the emitter then terminate on
the charges in space. The potential distribution can thus no longer be deter-
mined by Laplace's equation, but requires Poisson's equation. Because of
this space charge, it now becomes possible (see Chapter II, page 214) that an
absolute minimum (in the case of positive ions, a maximum) in space may
occur. The accelerating field at the surface of an emitter may thus fall to
zero and it is even possible that close to the surface of an emitter there is a
retarding field, although at a greater distance there is an accelerating field
with a surface of minimum potential lying between these two regions.

Such a region of retarding field close to the emitter thus constitutes a po-
tential barrier across which only electrons having suKciently large normal
velocity components are able to pass. The total current that Bows from emit-
ter to collector is thus less than the saturation current and it is then said that
the current is limited by space charge. In Chapter IV we shall consider in
detail this limitation of current for electrodes of several diRerent shapes.

Before treating this space charge problem, however, let us analyze more
carefully the Row of current with accelerating and retarding field when
space charge is insufficient to cause the appearance of a potential barrier.

Electron swarms as ideal gas.
The repulsion between electrons, varying inversely as the square of the dis-

tance, falls oR' so slowly with increasing distance that the force which acts on
any given electron in a swarm is due mainly to the more distant electrons, for
the number of such electrons, in successive spherical shells (of uniform thick-
ness), increases with the square of the distances. The e8ect of the distant
electrons can, however, be taken into account by calculating the potential
distribution by Poisson's equation, considering the space charge p as a con-
tinuous quantity, ignoring the fact that it is built up of discrete charges. The
forces due to electrons which lie within distances comparable to the average
separation of the electrons (approximately n '~, where n is the number of
electrons per cm') are, however, quite diferent from those that would result
from a continuous distribution of charge. These Auctuating forces may be
regarded as analogous to those that result from collisions between gas mole-
cules according to the kinetic theory. They tend to bring about a random dis-
tribution of electron velocities and establish a state of thermal equilibrium
among the electrons.

In 1918 and 19j9 there was an active discussion'" as to whether the ideal

'" M. v. Laue, Jahrb. d. Radioakt. u Elektronik, 15, 205, 257 (1918};Ann. d. Physik 58,
695 (1919};Phys. Zeits. 20, 202 (1919}.VV. Schottky, Phys. Zeits. 20, 49, 220 (1919).
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gas laws could be properly applied to an electron gas and whether the distri-
butions of velocities and concentrations were in accord with the Maxwell-
Boltzmann laws. It was found that the electron gas behaves like an ideal one
in a fleld of force if the mean kinetic energy (3/2)kT is large compared to
the potential energy of tmo electrons at the average distance n '". This
condition requires that

m«& X 10sT (223)

With electrons in thermal equilibrium at 1000', the gas laws are thus
applicable for all concentrations less than about 10"electrons. em '. We see
from Eq. (219) that such concentrations could exist only in regions of exceed-
ingly small dimensions and with enormous potential gradients, for example,
a layer 10 5 cm thick mould produce a field of 10 volts cm '.

Modern quantum theory* gives another reason why the classical kinetic
theory is not applicable to an electron gas of high concentration. From equa-
tions given in K. K. Darrow's article on Statistical Theories of Matter, Radia-
tion ond Electricity, "7 it can readily be shown that the velocity distribution
of electrons in equilibrium at a temperature T is accurately given by the
classical kinetic theory if

10mkT » h'e»~.

Inserting the numerical values of m, k and h, this condition becomes

T » 3.5 X 10-»~»3

(224)

(225)

With electron temperatures greater than 300'K, the classical theory is thus
applicable for all electron concentrations less than about 10"per cm'.

In determining whether electrons emitted by one electrode may reach
another, it is frequently necessary to calculate the orbits that the electrons
describe in space. With central force fields such as those between coaxial
cylinders or concentric spheres, these calculations are based on the principles
of the conservation of energy and of angular momentum Colli.sions between
electrons, or any appreciable interactions between neighboring electrons, will
make it impossible to apply these principles to individual electrons.

An estimate of the magnitude of these interactions can be made by con-
sidering the "free path" of an electron moving with velocity v among a
swarm of electrons of uniform concentration n, the velocities of these elec-
trons being considered negligible compared to v.

The deflections of the given electron from its normal orbit are of two kinds:
single large deflections due to close encounters, and the accumulated effects
of numerous small deflections due to fluctuations in the fields of the more dis-
tant electrons.

Single encounters.
Consider an electron A moving with a velocity v (corresponding to a fall

through potential V) in a path which, without deflection, would carry it to a
* See references 119, 120 on p. 163 of Part I.
"7 K. K. Darrow, Rev. of Modern Physics1, 90—155 (1929). Seeespeciallypages117 —8.
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minimum distance p from another electron 8, which is initially at rest. Then
a rigorous analysis of the movements of both electrons under the inverse
square law of force gives for the angular deflection 0 of electron A from its
original straight path resulting from the encounter,

where 0. is defined by

sin tt = (1+a')

a = UP/e = 7.00 X 10'VP

(226)

(227)

if Vis in volts and pin cm.
The free path ) ti may now be defined as the average distance that the

electron A can move through a swarm of electrons 8 before it suffers an angu-
lar deflection exceeding |t. We find

4 = 1/s'np' = U' (sin' e)/7rne' (1 —sin' 8) .

For small deflections, where sin' 8«1, this becomes

Xe = U'8'/7rne' =4-. 74 X 10'U'0'/n cm

(228)

(229)

if Vis in volts, Oin degrees, and ninelectrons. cm . As an example, we find
that 10 volt electrons would travel through an electron swarm containing 10"
electrons cm ' for an average distance of 19 cm before suffering a deflection
greater than 2' as a result of a single encounter.

Multiple small deflections.

The mean square angular deHection 0 of an electron, after moving a dis-
tance t through an electron swarm, is given'" by

8' = (2se'nt/U') log (a/ue)

or with 0 in degrees and n, V, t in the usual units:

8 = 3.116 X 10 '[(nt)"'/V] [log~o (n/a~)]'~'.

(230)

(231)

This is derived on the assumption that the electrons in the swarm are dis-
tributed with uniform probability throughout a cylinder of radius p, of which
the path of the moving electron A is the axis. The deflections produced by
electrons which lie within a certain small distance po of the path of A are
excluded since these produce large deflections which can be better considered
by the theory of single encounters. The values of o. and no are then found
from p and po by Eq. (227).

Because of the electric fields of the electrons in the swarm, these electrons
will be more uniformly distributed than if the probability of their occurrence
were uniform throughout space. This tendency towards a uniform distribu-
tion may be taken into account by assuming that there are no fluctuations in
density beyond a certain distance 'Ao, the Debye distance, given by Eq. (131)

'78 This is based upon an equation discussed by I. Langmuir and H. A. Jones, Phys. Rev.
31, p. 390—1 {1928),derived by the method of H. A. Wilson, Proc. Roy. Soc. A102, 9 (1923).
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of Part I. Thus the P used to calculate n in Eq. (231) by Eq. (227) may be
identified with X~. If the electrons in the swarm, instead of having velocities
of thermal agitation corresponding to a temperature T, have average energies
corresponding to V~ volts, we may put

(232)

In the example which we used to illustrate Eq. (229), we considered the
distance that electrons would travel before being deflected 2' by a single en-
counter. For such small angles Eq. (226) may be written

a = 57.3/0

8 now being expressed in degrees, and thus for an encounter which gives a 2'
deRection, 0.= 28.6.

For electrons of 10-volt velocity, Eq. (227) then gives P =4.1 X 10—' cm as
the "target radius" corresponding to an encounter that produces deHections
greater than 2'. These are the values of n and p that we have referred to as
0.'0 and po.

If the electrons in the swarm (n = 10") have velocities corresponding to
1000', the Debye distance Xz&, by Eq. (131),Part I, is 4.9X10 ' cm. Substit-
tuting this for p in Eq. (227) with V= 10 volts gives n = 34000.

Putting these in Eq. (231) we find that 8, the mean deflection produced in

a path t = 19 cm long, by the fluctuations in density of the more distant elec-
trons (p)4.1 X10 ') is 13.2'—about 6 times as much as the average deflec-
tion (2') produced by the nearer electrons (P (4.1 X 10 ").

If the electrons in the swarm have higher velocities, corresponding to say
10 volts, the value of P may be roughly estimated by Eq. (232) to be

P =5.3 X 10 ', which gives by Eq. (227) and Eq. (231) an average deflection of
17.6' instead of 13.2'.

Although with concentrations as high as 10", the orbits of electrons may
thus be considerably modified in a manner that cannot be taken into account
by assuming a continuous distribution of charge (Poisson's equation), it is

clear that with the lower concentrations ordinarily present in pure electron
discharges, * the orbit theory may be quite accurately applied.

Limitation of current by orbital motions of electrons.

In determining whether the current from one electrode to another will cor-
respond to the saturation current or to some lower value, we need to con-
sider the various types of orbits that are possible among the electrons in the
space between the electrodes.

Let us consider a portion of space in which there is a given potential dis-
tribution and which is bounded by two equipotential surfaces A and 8 having
respectively the potentials V& and V&. Let this space or 6eld contain elec-
trons in thermal equilibrium at the temperature T, so that the distribution
of velocities and concentrations is in accord with the Maxwell-Boltzmann

* A current of 10 ma per cm~ of 10-volt electrons corresponds to only n =6X 10'.
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laws. In order that there may be thermal equilibrium, it is necessary that
the bounding surfaces A and 8 shall have certain properties. They may, for
example, be perfect reflectors of electrons (either specular or diffuse reRec-
tion) in which case they must not emit electrons. Or they may absorb all
incident electrons, but must then act like electron-emitting metals at the
temperature T, the current density of the emission current being such that
the emission equals the absorption on each surface element. Ke will denote
the comp/ete Maxwell-Boltzmann distribution which then exists by the sym-
bol MBD.

In an MBD, the distribution of velocities of the electrons in any small
element of volume is isotropic, i.e. , the velocities are distributed with equal
probability in all directions. The number of electrons per unit volume having
speeds (regardless of direction) lying between v and v+dv is given by*

eF(s)ds = 47rm(rs/2xkT)"' s' exp (—fss'/2kT)ds (233)

and thus the relative numbers lying within given ranges of velocity are the
same at all points within the field. The average energy of the electrons within
any given volume is (3/2)kT. The average velocity is

(234)

Consider any imaginary plane cutting the field. A certain number of elec-
trons pass per second per unit area through any surface element of this plane
from one side to the other while an equal number pass in the opposite direc-
tion. Because of the isotropic velocity distribution, the current density at any
point corresponding to this electron How is independent of the orientation of
the imaginary plane which passes through this point. We may thus speak of
a random current density I which is given by

I = gnev. (235)

The factor 1/4 results from the fact that 1/2 of the electrons in any ele-
ment of volume are approaching the plane with an average velocity compon-
ent normal to this plane of (1/2)8. Combining Eq. (235) and (234) gives

I = rle(kT/2m')'I'. (236)

If at any point in the field there are n electrons per cm', the random electron
current density at this point is thus

I = 2.478 X 10 "nT'i" amperes. cm '. (237)

Because of the presence of the electric field, the concentration of elec-
trons cannot be uniform but varies in accord with the Boltzmann equation ~

e = eoexp (Ve/kT) (238)

where no is the concentration at a surface at which the potential is zero.

~ This is equivalent to Eq. (71) on p. 205, Part I.
~* See Eq. (77), page 206, Part I.
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By Eq. (238), rl must be uniform over any equipotential surface such as A

or B.
If there is a potential diAerence between A and B, however, the concentra-

tions of electrons at the two surfaces must differ and by Eq. (236) the ran-
dom current densities must difl'er in the same ratio, thus

Is = Ig exp (Vsse/kT) (239)

where V» is the potential of B with respect to A, and e, the charge of an
electron, is regarded as a positive quantity. Thus for positive ions —V»
should replace V». When the surfaces 2 and B absorb all incident electrons,
they must have electron emissions which are not only uniform over each sur-
face, but the emission current densities I& and I& must be such as to satisfy
Eq. (239). With any current densities which do not fulfill this condition, a
current must Row from one surface to the other so that the thermal equilibrium
and the MBD are destroyed.

All these equations which characterize the 3SIBD are valid no matter what
may be the mechanism by which the distribution is brought about. Elastic
collisions of electrons with each other or with gas molecules will not disturb
the MBD, but serve only as a "catalyst" to establish equilibrium conditions
more rapidly after any disturbance in equilibrium has been produced by other
means.

Let us now consider that the density of the electrons and of gas molecules
is so low that collisions, or interactions between individual electrons, may be
neglected. * The 3fBD may be brought about by interactions with the sur-
faces A or B or by temporarily introducing a catalyst into the field. The elec-
trons then describe free orbits in the given field. If the velocity and direction
of motion of an electron at one point of its orbit is given, the whole orbit is
thus fixed.

It is characteristic of an 3SIBD that it includes particles moving along
every possible orbit within the field. The totality of orbits may be divided
into 5 classes, viz: AA, AB, BA, BB and 0, the first letter designating the
surface where the orbit begins and the second that of the surface where it
ends. The group 0 consists of orbits which do not intersect either A or B.
Electrons in such orbits may be called trapped electrons because they can-
not reach either surface. The BA orbits are identical with the AB orbits ex-

cept that the sign of the velocity with which the electron passes any given
point is reversed.

The electrons that pass through any given surface may be classified ac-
cording to the orbits they describe. Let i~& and i&p be the electron currents
that flow respectively from the A and B surfaces into the field F and let zF&

and i~~ be the currents of electrons incident on these surfaces, all these cur-
rents being regarded as having positive values regardless of the actual direc-
tions of the electrons. Then we may place

* See Chapter IV for a further discussion of this restriction.
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bAF ZAB + SAA ~

ZBF = IBA + EB~,'

ZFA = ZBA + ZAA j

f,.= ..+ i..;
(240)

where the currentsi~~, i~~, i~~ andi~~ are those of electrons moving in orbits
of the AA, AB, BA and BB types. According to the principle of reversibil-
ity, "'when there is thermal equilibrium

4g = zBA.

Under these conditions it also follows that

ZAF $FA j ZBF = SFBt

(241)

(242)

and since these currents must be uniformly distributed over any equipotential
surface, we have

ig g = IgSg and igp = IggSg (243)

where 5~ and 5~are the areas of the surfaces A and B. Althoughiqp andiqF
are uniformly distributed over the surfaces, this will not in general be true
ofiAB, iAA andiBB Combi. ning Eq. (243) with Eq. (239), we have

zgp Sgg= —exp (UBAe/kT).
41F SA,

(244)

Let )~p be the fraction of the total current that leaves A which reaches B,
and ) ~g the corresponding fraction for the current from B to A. Then, by
Eqs. (240)

and

/ ~ / ~

XAB SAB/ SA F j XBA ZBA/ ZBF

(LAB) = 1 + ($AA/ZAB)

(~,)- = ~+(..t, )

(245)

(246)

By combining Eqs. (245) and (244), we find that

XAB —(SB/SA))lBA eXp (UBAe/kT) . (247)

It thus appears that if we can find means for calculating the relative num-
bers of e1ectrons that describe AA and AB orbits, i.e. , (iAA/iAB), for any given
potential di6erence V», then we can, from these equations, determine the
relative numbers of electrons that describe BB orbits.

So far we have considered only equilibrium conditions. By imposing two
restrictions on our problem, however, we may use the foregoing equations to
calculate the Row of current in certain cases where thermal equilibrium and
the complete 3IJ3D do not exist.

The first restriction that we impose is that the current densities shall be
so low that space charge is unimportant; that is, we assume that the potential
distribution which determines the shapes of the electron orbits can be ob-

'" I. Langmuir, tr. Amer. Chem. Soc. 38, 2221—2295 {1916).See particularly p. 2253 and
footnote on p. 2262.
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tained by a solution of Laplace's equation and thus is not changed when elec-
trons having certain types of orbits are removed from the field. In Chapter IV
we shall consider the modifications produced by space charge.

As a second restriction we assume that both A and 8 absorb all incident
electrons, in other words, they are non-reflecting surfaces. Then i~g and
isp in Eq. (240) represent the saturation currents from the surfaces A and 8
which we may now regard as two metallic electrodes.

Under these conditions, the currents i~~, i~~ and ~~~ are independent of
one another in the sense that the removal of one group does not directly alter
the others. For example, if, without changing its temperature, we change the
character of one surface, say 8, so that it no longer emits the current density
required by Eq. (239), we alter is+ and iss, but do not thereby change the
currents i~~ and i~~.

Reciprocal re1ations between emitter and collector.
Eq. (247) is obviously not directly applicable to a case where the thermal

equilibrium is destroyed by cooling one of the electrodes, but we may use it
to compare two cases, in one of which 8 is cooled, while in the other A is
cooled.

To begin with, let us assume that A and 8 are two electrodes at the
temperature T between which there is a difference of potential V~~ and that
their electron emissions are such that Eq. (239) is fulfilled, giving thermal
equilibrium. Then Eq. (247) is applicable.

Now let electrode B be cooled until it ceases to emit electrons so that
i~~ and i~~ become zero. This, however, does not change i~~ and i~~ and
therefore X~s, as given by Eq. (246), has the same value as when A and 8
were both at the temperature T.

Finally let us cool electrode A until it ceases to emit, but bring 8 again to
its original temperature T. By similar reasoning, we find that X» now has the
same value as when both A and 8 were at T.

Thus Eq. (247) is applicable to cases where equilibrium is destroyed by
cooling first one and then the other of two electrodes, if we interpret X~~ to
mean the fraction of electrons emitted from A which reach 8 when A is at
temperature T and )» the fraction emitted by 8 which reach A when 8 is at
temperature T. Since space charge is negligible, the values of )~~ and X~~
will be independent of I~ and I~, the emission current densities, and therefore
it is no longer necessary for the validity of Eq. (247) that these emissions shall
satisfy Eq. (239).

Equation (247) thus gives us a reciproca1 relation by which, for non-
reAecting electrodes of any shape having a given potential difference, we can
calculate the relative change in current produced by transferring the property
of electron emission from one electrode to the other. If, before this transfer,
the electrons flow in an accelerating field, after the transfer they flow in the
opposite direction against a retarding field.

Since the temperature T and the potential Vs~ occur in Eq. (247) only as
a ratio, it is evident that the reciprocal relation can be applied when the
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temperature T~ to which A is heated is diferent from the temperature T~ to
which 8 is heated, provided the potential di8'erences V~~ in the two cases are
changed in the ratio T~/Ts.

Satuiation currents in accelerating fields.
If the shapes of the electrodes and the potential distribution in the field are

such that orbits of the AA type are impossible, then it follows from Eq. (246)
that X»=1, so that every electron emitted by A passes to B. Evidently,
when 8 is the cold electrode, a necessary and sufhcient condition for the exist-
ence of a true saturation current from A is that AA orbits shall be impossible
in the field. Similarly, to obtain the saturation current from 8, with A cold,
orbits of BJ3 type must be impossible.

Since electrons of very low velocity are able to move only small distances
against retarding fields, AA orbits will always exist if there is a retarding field
for electrons near the surface of A. Thus, saturation currents from A can be
obtained only when there is an accelerating field, i.e., when V~~& &0. This
condition, although necessary, is not sufhcient to determine the existence of
the saturation current.

The possible orbits in the field must include all straight lines that can be
drawn in the field, since electrons of iq,finitely high velocity must describe
such paths. Therefore AA orbits will always exist if any part of the A surface
is concave. Strictly speaking, therefore, saturation currents cannot be ob-
tained from such electrodes, even with strong accelerating fields.

Boltzmann relation for currents in retarding 6elds.
Under the field conditions which gave saturation current from A, (im-

possibility of AA orbits so that X» ——1), we may now calculate by Eqs. (247)
and (245) the current isg that can flow from 8 to A when 8 is at temperature
T while A is cold. Placing )~~ = 1 gives

isg = isp(S&/Ss) exp (use/kT) (248)

isr being the saturation current (isg+iss) corresponding to the full emission
from the hot electrode, and V~g having been put in place of —Vg~. The cur-
rent density received at electrode A is Iz ——is~/Sz, while the emission current
density at 8 is Is isr/Ss——In term. s of I~ and Is, Eq. (248) becomes identi-
cal with Eq. (239) which we derived directly from the Boltzmann equation.
We see now, however, that this equation is only applicable for the flow of
electrons in retarding fields when the conditions are such that no AA orbits
are possible, (i.e. , those which begin and terminate on the collector).

The reciprocal reIation between emitter and collector thus shows that the
conditions in regard to potential distribution and shapes of electrodes that
are necessary and sufficient to give saturation currents, when one electrode
acts as emitter, are identical with those that are necessary and sufhcient for
How of current in accord with the Boltzmann equation when the other elec-
trode is made emitter.

Let us now apply these principles to cases where the two electrodes are:
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(1) Parallel planes; (2) Coaxial cylinders; (3) Concentric spheres. In each of
the three cases, all the electron orbits curve towards the more positive elec-
trode and thus cannot start and end on the more negative electrode unless
this electrode has a concave surface.

We may thus conclude that with planes, coaxial cylinders and concentric
spheres with one emitting and one non-emitting electrode, the current is
saturated when electrons (or ions) are accelerated from a non-reflecting emit-
ter which is not concave. When, however, electrons (or ions) are retarded as
they approach a non-reflecting collector which is not concave, the current z is
given by the following relation based on the Boltzmann equation:

i =SgIg~&; g&0, (249)

where Sg is the surface area of the collector, Ig is the emission current den-
sity corresponding to saturation, and g is a parameter proportional to the
voltage difference between collector and emitter defined by

s = Vose/kT = 11600Voe/T (250)

if Vos is in volts. When Eq. (249) applies, it is always a negative quantity.
We have now to consider the important class of cases where both AA and

BBorbits exist, for example, cases where electrons are accelerated from a con-
cave emitter or are acted on by a retarding field as they approach a concave
collector.

Coaxial cylinders and concentric spheres.
Case I. Electrons accelerated inwards from an external emitter. The general

methods of calculating the currents of various types, i&~, i», i», etc. , that
flow under various conditions have been discussed'" by Mott-Smith and
Langmuir. For the flow of electrons with an accelerating field from an exter-
nal emitter to an inner positively charged collector (anode) the current was
found"' to be

i = ScIEf (251)

where Sg is the surface area of the collector, Ig the saturation emission den-
sity from the emitter and f is a function of the radii of the two electrodes and
the potential.

For coaxial cylinders,

f = (ro/r) 2'(4 '") + "[I —~( I 4 + s }"')j (252)

where rt )0, and is defined by Eq. (250), r p is the radius of the emitter, r is
that of the collector and

y = r' (re' —r')-'
—r p~(r p rp) —i

(253)

(254)

H. M. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727—63, (1926), In Eq. (28a) on p.
738, which is equivalent to Eq. (252) given below, the factor e" was inadvertently omitted from
the last term.

8' I. Langmuir and H. M. Mott-Smith, Gen. Elec. Rev. 27, 454 (1924).
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Here I' ( ) stands for the probability integral defined by

E(x) = 2s-'" t e "'dy.
p

We shall see in a later chapter that these equations prove useful in deter-
mining the concentrations of electrons in gaseous discharges and therefore to
avoid the rather laborious calculations of the function f, we have prepared
the family of curves of Figs. 36, 37 and 38 which give f as a function of g for
various values of ro/r, which on these curves is given as a/r
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Fig. 38. Plot off as function of q calculated from Eq. 252.

Under certain conditions, Eq. (252) approaches simple limiting forms by
which the values of f are sometimes more conveniently obtained than by the
curves.

As Q+rI increases to values greater than about 3, f is given with rapidly
increasing accuracy by

(256)

If P & 3, this expression becomes practically

t'p t'. (257)

Substituting this in Eq. (251), remembering that S&/Sc ——ro/r, we have

z = SEIg = z~p =—zp. (258)
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Thus, although strictly speaking the current from a concave emitter can-
not be completely saturated, the current for all practical purposes has reached
saturation value i o when P & 3 or

2/ ) 3(r2/r)2 —3. (259)

To get approximate saturation from an external cylindrical emitter of 1
cm radius having a temperature of 1000'K, would take 1 volt on an internal
collector of 0.5 cm radius, 26 volts if the radius were 1 mm and 2600 volts if a
wire 0.1 mm radius were used as collector. These voltages increase in propor-
tion to the temperature of the emitter, and are needed wholly to prevent the
electrons from describing orbits which will carry them back to the emitter
(not because of space charge).

The other limiting case of interest to us is that obtained when the radius
of the emitter is large compared to that of the collector and the voltages
applied are far less than those just considered. As r,/r increases to infinity, f
approaches a limiting value given by

f = 22/'/22r '/' + —22[1 —P(2/1/2) j. (260)

The topmost curves, marked /2/r= 011, in Figs. 36, 37 and 38 have been
calculated by this equation.

An expansion of Eq. (252) in terms of r/r2 gives

f = 22r '/2[2/ + 1 —22/'r'/3r//']'/' (261)

which gives an excellent approximation for f whenever 3r22/22/r2 and r/ are
both large compared to unity. For large values of r,/r it reduces to

f —2x—1/2(2/ + 1)1/2 (262)

which agrees excellently (error (1 percent) with Eq. (260) when 2/) 3. The
dotted line in Fig. 36 gives the values of f according to Eq. (262) for 2/ (2.

For the corresponding flow of electrons between concentric spheres, the
value of f to be used in Eq. (251) is

f = (r2/r)2(1 —2~) + 2-~; 2/ ) 0. (263)

When /t1) 5, this reduces to (error (1 percent)

(264)

and by Eq. (251) the current becomes practically equal to the saturation cur-
rent from the external emitter.

With collectors of small radius, i.e. , as r2/r increases to infinity, f ap-
proaches another limiting value

f =2/+1. (265)
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C'ase II. Electrons ffotoing from an internal emitter to an external collector
against a retarding field T.he currents that flow under these conditions can be
calculated from the values off we have just found for Case I, by means of the
reciprocal relation expressed by Eq. (247). Let us identify the outer (con-
cave) electrode as A and the inner (convex) electrode as B. In Case I, A is
the emitter while in Case II, 8 is emitter. The fraction X» defined by Eq.
(245) is the ratio of the current i given by Eq. (251), to the saturation current
io ——5EIg and thus

~AB (~B/~A) f (266)

where f applies to Case I.
In Case II, the fraction of the saturation currenti o which flows from the

internal emitter to the external collector is

Z = ZO~BA j VJ3A P 0. (267)

We may now substitute these values of Xzs and ) eg ln Eq. (247) and then,
still using g as a measure of the collector potential in accord with Eq. (250), we
obtain

i = i.fe; rt & 0. (268)

This equation allows us to calculate the current for Case II for cylinders
or spheres in terms of the values of f given by Eqs. (252) to (265) or obtained
from the curves of Figs. 36, 37 and 38. It should be noted that the values of r 0,

r and g used to calculate f in this way are respectively: r„,re and Ve~e/k T,
where A refers to the external electrode. In Eq. (268), however,

rt = Vgee/kT (269)

so that rt &0, whereas in calculating f, we must take rt )0.
The general expression for i which may be obtained for cylinders for Case

II from Eq. (268) by introducing the value of f from Eq. (252), has already
been derived by W. Schottky'" and applied by him and by Germer'" in
experimental proof that the electrons emitted by a hot filament have a Max-
wellian distribution of velocities.

In all these experiments the emitter was a small wire at the axis of a rela-
tively large negatively charged cylindrical collector. Under such conditions
a simple, yet accurate, equation for the current can be calculated from the
value of f from Eqs. (262) and (268), giving

i = 2 '~'Zn, (1 —q)'~'e~; q & 0. (270)

The corresponding equation for spheres, from Eqs. (265) and (268) is

i = ia(1 —g)e"; rt & 0. (271)

' ' %.Schottky, Ann. d. Physik 44, 1011 (1914).
28' L. H. Germer, Phys. Rev. 25, 795—807 (1925).
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Where r/ro is not much larger than unity, we found in Case I, currents
close to saturation. Under similar conditions we now find from Eqs. (257),
(264) and (268) that the current in Case II is given by the equation of the
Boltzmann type, Eq. (249), although the collector in this case has a concave
surface.

The general relationships between the effects of accelerating and retard-
ing 6elds, and the curvatures of the electrode surfaces, for electron currents in

high vacuum where space charge is negligible, are summarized in Figs. 39 and

40. The collector voltage (proportional to il) is plotted as abscissa and the
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Fig. 39 and 4{). Current-voltage relations for planes (P} cylinders (C) and spheres (S).
Internal electrodes are assumed to be of small radius.

logarithm of the electron current as ordinate. Plotting in this way, as we see
from Eq. (249), the current-voltage curve corresponding to the Boltzmann
equation is a straight line whose slope is

dlogi
dV

11606
volts '

T
(272)

or if ordinary logarithms are used

d logy() i 5040
volt —'.

dV T
(273)

The curves of Figs. 39 and 40 were calculated by Eqs. (260), (265) and

(268), assuming the radius of the internal electrode to be small compared to
that of the external electrode.

Range of validity of foregoing equations In deriving Eq. s. (252) and (263),
which determine the limitations of current brought about by orbital motions



IRVING I.ANGMUER AND E. T. COMPTON

of the electrons between cylinders or spheres, it was not necessary to use
Laplace's equation or to assume any particular potential distribution be-
tween the electrodes. The equations were, in fact, derived by calculating the
radial and tangential components, I and v, of the electron velocities at the
emitter and at the collector without needing to know these quantities in the
space between the electrodes. At the emitter, the distribution of I and v was
obtained from Maxwell's distribution law and at the collector they were ob-
tainable from the former values by applying the laws of the conservation of
energy and of angular momentum.

It is clear, however, that some restrictions upon the potential distribution
are necessary. Schottky'" pointed out that the method fails if, owing to
space charge, a region of potential minimum exists between emitter and
collector, the current then being "limited by space charge" instead of "orbital
motions. " (See Chapter IU.) Davisson was the first to state the conditions
which the potential distribution must fulfill in order that the law of conserva-
tion of angular momentum may be correctly applied by the method used in
deriving Eqs. (252) and (263). In this derivation the current was calculated
by determining the number of electrons in orbits which intersect both the A
and 8 surfaces: moving outward from the A surface (A being emitter) and
into the B surface. It may happen, however, that an orbit which intersects
both A and 8 consists of two branches (as, for example, the two branches of a
hyperbola) separated in a radial direction by a region in which the radial veloc-

ity u has imaginary values. Obviously, such orbits must not be included
among AB orbits, but one branch should be classed as an AA orbit, while the
other is a BBorbit. Thus, as Davisson pointed out, no orbit can properly be
classed as an AB orbit unless I'&0 for every value of the radius vector lying
between r~ and r~. This condition for electron currents is fulfilled if the volt-
age V at every point betw'een the electrodes satisfies the relation

(274)

where A is the outer electrode, whose potential is taken to be zero and B is the
inner electrode at a positive potential Vg. For positive ion currents V and
V& will be negative and the direction of the inequality sign should be reversed.

Mott-Smith and Langmuir'" derived this relationship independently and
showed that the same equation is applicable for spherical electrodes and for
internal as well as external collectors.

Investigation shows that Davisson's condition expressed by Eq. (274) is
fulfilled not only when the potential distribution is that given by Laplace's
equation (no space charge) but also with currents so large that the space
charge is nearly sufhcient to bring the potential gradient at the surface of the
emitter to zero. In Chapter IV this matter will be discussed in more detail.

'8 %.Schottky, Ann. d. Physik 44, 1011 {1914).
~g~ H. M. Mott-Smith and I. Langmuir, Phys. Rev. 28, /27 —63 {1926},particularly pages

749-54.
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In deriving the reciprocal relati orI between emitter and collector, expressed
by Eq. (247), we assumed that space charge was negligible and thus the re-
moval of electrons in AA or in AB orbits would not change the number of
those describing BA orbits. It now apears, at least in the cases of coaxial
cylinders and concentric spheres, that this restriction was unnecessarily
severe. We have found in these cases that )~& and ) ~& are unchanged by the
presence of space charge (the electrode potentials remaining fixed) provided
the Davisson condition is still fulfilled. Thus the reciprocal relation is valid
until the current density becomes so great that the Davisson condition is
violated.

Effect of e1ectron reHection at the electrodes.

The equations that we have derived for electron currents have been based
on the assumption that emitter and collector absorb all incident electrons.
There are two efl'ects to be considered. Electrons reflected from the collector
may return to the emitter and thus decrease the net current. When the
emitter reflects electrons, it is no longer necessary that the emitted electrons
shall have a Maxwellian velocity distribution and thus equations such as Eq.
(252) may no longer be accurate. Consider first equilibrium conditions under
which the complete MBD must exist. Then at the surface of electrode A,
which we shall later take to be the emitter,

&AS &AA + &AB &0 + ~&BA (275)

where io is the saturation emission and R is the effective reflection coefficien
for electrons which have the velocity distribution present among the electrons
in BA orbits. Now the electrons constituting the current Ri~~ will in general
not have a Maxwellian velocity distribution, for the reflection coefticient is a
function of velocity and probably the angle of incidence of the impinging
electrons (Part I, p. 171—4). The total current i~r, however, under equilib-
rium conditions must consist of electrons having an MBD. Therefore by Eq.
(275), electrons constituting the saturation current io will only have a true
Maxwellian distribution when the reflection coefticient from the emitter is
zero.

If the collector is at a positive potential (accelerating field) electrons re-
flected at its surface will not be able to return to the emitter since reflection
generally involves energy loss. The reflected electrons increase the space
charge, but un1ess this becomes sufficient to bring the potential gradient at
the emitter to zero, the current from emitter to collector will not be modified.

When the collector is at a negative potential (retrirding field), the field will

tend to draw any reflected electrons back to the emitter. Thus if the collector
does not have a concave surface, so that all reflected electrons return, the cur-
rent will be

i = (1 —R)ScIse&. (276)

This equation will thus apply in the case of retarding fields between plane
electrodes, and between coaxial cylinders or concentric spheres if the collector
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is the internal electrode. Although the reHection coeKcient R is in general a
function of the average velocity of the incident electrons (and their velocity
distribution), it should be noted in this case that the velocity distribution of
the incident electrons corresponds to half a Maxwellian distribution and the
average energy (2kT) is independent of the retarding voltage used. Thus, in

spite of reHection from the collector, the current varies in proportion to e.
ReHection from the emitter, however, might alter the Maxwellian distribution
of the emitted electrons and thus cause thei e relation to fail.

With retarding fie1ds and a concave co1lector, for example, a negatively
charged external cylindrical collector, electrons reHected from the collector
may not be able to return to the emitter even with the accelerating field
which acts on them. The velocities of the reHected electrons will usually be
far higher than if they were emitted thermally so that the limitation by or-
bital motion, Eq. (252), will make the fraction of the reflected electrons which
return to the emitter small, if the emitter radius is small compared to that of
the collector. Under such conditions the effect of reHection tends to be negligi-
ble unless it brings about a limitation of current by space charge (see Chap-
ter IV).

EEects of magnetic 6elds on the How of electron currents.

A magnetic field of strength H, expressed in electromagnetic units (gauss)
exerts a force eIIv on a moving electron. Here v is the component of the elec-
tron's velocity in a direction perpendicular to the magnetic filed. This force
acts in a direction perpendicular to the direction of motion of the electron
and also perpendicular to the magnetic field. Thus any component of motion
of the electron parallel to the magnetic field remains unaltered by this field.

Consider a magnetic field parallel to the Z-axis acting on an electron mov-
ing with velocity v in the XY plane. The electron then describes a circular
path in this plane of such radius, r, that the force due to the magnetic field
balances the centrifugal force. Thus

r = rlo/eH = 5.65 && 10 'o/H cm.

If we express the electron velocity in terms of equivalent volts, V,

r = 3.354V'"/H cm. (278)

The direction of rotation is clockwise as seen in the direction of the mag-
netic lines of force. In presence of the magnetic field and of an electric field of
strength X, in a direction parallel to the X-axis, the electron describes'" a
trochoidal path in the XF-plane, this motion being that of a point moving in
a circle whose center drifts in a direction parallel to the Y-axis with a velocity
X/H. If X is expressed in volts cm ', this drift velocity corresponds to

(ro/2e) X'/H = 2.826X'/H' volts. (2&9)

~86 See "Conduction of Electricity Through Gases, "J.J.Thomson, Cambridge Univ. Press,
2nd Edition (2906), p. 111or 3rd Edition, p. 223.
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A component of electric field parallel to the magnetic field (Z-axis) causes
the same acceleration of the electrons as if no magnetic field were present.

Let us now consider the flow of electrons from a plane emitter to a parallel
plane collector, with a magnetic field parallel to the plane surfaces. If the
collector has a positive potential large compared to T/11600 volts (i.e. , AT/e),
the initial velocities of the electrons may be neglected. The electrons thus
describe cycloidal paths. Each electron starts to move toward the collector,
but its path becomes curved by the action of the magnetic field so that after
reaching a certain distance xo from the emitter it again returns to the col-
lector. This maximum distance is

xe ——(2m/e)X/H' = 11.31X/H' cm. (280)

If V is the potential difference between two plane electrodes separated by
the distance x, we may put X = V/x, and then from Eq. (280) we can conclude
that current can flow between the electrodes only if

x ( (2m/e)"'V'"/H = 3.363V'"/H. (281)

Kith a given H and x, the current should be zero until V has reached a
critical value and then rise abruptly to saturation. If V and x are held con-
stant, the current will be saturated until H reaches a critical value and then
falls abruptly to zero.

Theoretical and experimental studies of the eHects of magnetic fields on
the Bow of current between coaxial cylinders have been made by Hull'" in
his investigations of the magnetron. The magnetic field was assumed to be
parallel to the axis of the cylinders.

Maf.netran. The critical magnetic field required to stop the flow of elec-
tron current from a central cathode to a coaxial anode of relatively large
radius r is

H = (Sm/e)'"V'"/r = 6.726V"'/r gauss. (282)

The effect of initial velocities of the electrons was shown to be negligible
in all practical cases of interest. The experiments gave results in agreement
with the theory within the limits of accuracy prescribed by the degree of
symmetry of the apparatus.

Inverted mcgnetron. In the case of electrons Bowing from an outer cylindri-
cal cathode toward an internal coaxial anode, the effect of initial velocities
corresponding to thermal agitation is by no means negligible. Consider an
electron emitted with a tangential initial velocity v; and let V; be the poten-
tial needed to give to an electron this velocity. Then the longitudinal mag-
netic field needed to prevent this electron from reaching the inner cylinder
is

H = (Sm/e)'"(1/re)'(rV"' + reV ") (283)

where ro is the radius of the emitter, r is that of the collector, and V is the
accelerating potential of the collector. The + or the —sign is used according

'8' A. 'W. Hull, Phys. Rev. 18, 31—57 (1921'j and Jr. Amer. Inst. E. E. Sept, 1921



IRVING LANGMUIR AND E'. T. COTTON

as the direction of the initial tangential velocity is opposite to or is the same
as the direction of the magnetic deHection.

The e&ects of the radial components of the initial velocities are of far less
importance than the tangential components. The complete theory is, how-

ever, given by Hull, not only for cylindrical but also for plane electrodes.
Experiments again gave results in good agreement with the theory. With

an anode at 110 volts having a radius 1/25th of that of the surrounding
cylindrical cathode, a field of only 8 gauss brought the current to half value,
but this cut-oS, because of the effect of initial velocities, was gradual instead
of being sharp as in the case of the external anode. The shape of the curves
thus obtained (i as function of H) should, in fact, with a carefully constructed
cylindrical cathode, furnish an exceptionally accurate means of determining
the velocity distribution of the emitted particles.

The equations that have been derived by Hull for the critical magnetic
field are not dependent on any specific assumptions regarding the potential
distribution and therefore require no modification as the potential distribu-
tion is altered by space charge. However, just as in the absence of magnetic
fieId, no electron can pass from emitter to collector unless the expression for
its radial velocity u shows that u' & 0 for all values of the radius lying between
ro and r. This should furnish a kind of generalized Davisson relation analo-
gous to Eq. (274).

The 3faxmelI;BOAzmann distribution of a system of electrons in equilib-
rium at temperature T, which is characterized by Eqs. (233), (234), (236) and
(238), is not altered by a steady magnetic field, although the orbits of the
electrons are changed. The methods which we used in studying the How of
electrons between the electrodes A and 8, dividing the orbits into 5 types,
may still be used in presence of magnetic fields.

Thus the reciprocal relation expressed by Eq. (247) or (268) is applicable
in a magnetic field (even if the field is not uniform or symmetrically arranged
with respect to the electrodes) provided the generalized Davisson condition
is fulfilled.

For example, in an "inverted magnetron" (inner anode) it was found
experimentally that with +110volts on the anode, the current was brought
down to i/2 the saturation value by a longitudinal magnetic field of 8 gauss.
We may conclude from Eq. (247) that if the internal electrode had then been
heated to the temperature previously used for outer electrode, and the latter
had then been cooled without altering the potentials of the electrodes or the
magnetic field, the current under the new conditions would be /2 that cal-
culated by the Boltzmann Eq. (249). Since the current decreases gradually
with increasing magnetic field in the inverted magnetron with accelerating
field, the same must be true of the current from an internal emitter to an
external collector against a retarding field.

Similarly, since the cut-off for the ordinary magnetron (external anode)
is very sharp at a definite field strength II, we conclude that with an internal
collector at a negative potential, the current wouM be given accurately by
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the Boltzmann equation, Eq. (249), until the magnetic field increases to this
same value of FX, and then the current must drop abruptly to zero.

By dimensional reasoning, applied to geometrically similar devices of size
r, or directly from Eqs. (247) (282) and (283), we see that X» or )N» (the
fraction of the emitted current that reaches the collector) is a function of
(VBA/T) and (IIr/T"') only. In this way, the reciprocal relation may be
used when T~W T~ or the effect of changing the emitter temperature can be
calculated in terms of the effects produced by changing V» or FI.

CHAPTER IV. THE EFFECT OF SPACE CHARGE ON

THE FLOW OF CURRENT IN HIGH VACUUM

The current of electrons that flows in high vacuum from a hot cathode to
a positively charged electrode (anode) increases at first in proportion to the
emission of the cathode and will equal this emission (saturation current) if the
cathode surface is not concave.

By raising the cathode temperature, the space charge can thus be in-
creased in proportion to the emission. This, however, cannot go on indefi-
nitely, for finally, in accord with Poisson's Equation, a potential minimum
must appear in space, and the cathode will be surrounded by a potential bar-
rier which limits the escape of electrons.

This limitation of current by space charge begins when the emission is
raised to a critical value which first brings the potential gradient to zero at
some point of the cathode surface.

Space char ge equation for parallel planes.

The effect of space charge in limiting the current that can flow between
electrodes in high vacuum is best illustrated by considering the passage of
electrons from a heated plane cathode at zero potential, to a parallel plane
anode at potential t/'. .

Let us assume, to begin with, that the initial velocities of the electrons as
they leave the cathode can be neglected and therefore at any point at po-
tential I/'

-'mv' = Ve. (284)

If I is the current density, the space charge p is

p=I v. (285)

E/iminating v between these equations to get p and substituting this value
in Poisson's equation, gives

AV = 2 2'"~(ni/e)"'IV "'. (286)

For the case of parallel planes where AU is equal to d'V/dx', integration
gives

(dV/dx)' = Eo' + 87r(2m/e)'I'IV'" (287)
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where Eo, the integration constant, is equal to the electric held intensity at
the surface of the cathode.

Kith the cathode at such low temperature that emission is negligible,
d V/dx=Z ,0so that there is a linear potential distribution between the elec-
trodes as indicated by Curve I, Fig. 41. By raising the cathode temperature
so that I increases, the field near the anode increases, and must thus decrease
near the cathode. The curve giving the potential V as a function of x, the
distance from the cathode, becomes concave upwards (d'U/dx' being posi-
tive), and finally when I becomes sufficiently large, Eo must decrease to zero.

D~SrwaCZ scorn CwrmDE
I l i i I i

0 .z .4 .s .8 /.'o

Fig. 41. Potential distribution between plane cathode C and parallel plane anode A.

Until this happens, however, there is everywhere an accelerating field so that
every electron emitted must pass to the anode and the current is limited only
by the cathode emission, the current being the saturation current I,. If Eo
becomes negative, there is a retarding field at the cathode and thus, since the
initial velocity is assumed to be zero, the current would have to be zero. It is
clear, therefore, that no matter how large I, may become, the current that
Hows between the electrodes cannot increase beyond the definite value which
would make Zo ——0. Imposing this condition in Eq. (287) we have,

Integration gives""

dU/dx = (8~)'&'(2m/e)'~'I'i'V"4 (288)

(289)

8 This equation was first derived by C. D. Child, {Phys. Rev. 32, 492 {1911))in a theoret-
ical and experimental investigation of the magnitude of currents that could be carried by posi-
tive ions in arcs at low pressures. It was independently derived, and applied to electron currents
in high vacuum by I, Langmuir, Phys. Rev. 2, 450—486 {1913)and Phys. Zeits. 15, 348, {1914).
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This equation is applicable to unipolar currents carried either by elec-
trons or by positive or negative ions which leave the emitting surface with
negligible initial velocities. For electrons we may take e/m =5.279&&10"e.s.
units"'and expressing V in volts and x in cm, Eq. (289) becomes

I = 2.334 g 10 'U'~'x ' amps cm ' (290)

If, however, the carriers are singly charged ions having a "molecular
weight" iV, (oxygen atom =16), then we must put

e/m = 2.893 X 10'4M ' e.s. units

and our space-charge equation is

I = 5.462 &( 10 '3f '"V'"x ' amps. cm '.

(291)

(292)

WVith doubly charged ions the currents would be 2'" times greater.
The current densities given by these equations are those which will bring

Eo, the field intensity at the cathode, to zero.
In this derivation V has been treated as a function of x while I is constant.

The potential V thus varies in proportion to x4" as indicated by curve II in

Fig. 41, while the field intensity E is proportional to x'~'.

If, however, in the equation we let x be the distance between the plane
electrodes and V the difference in potential between them, the equation ex-
presses the relation between the current and the voltage often referred to as
the 3/2-power law.

There are thus two limitations to the current: it cannot exceed either the
saturation current I„orthe space-charge limited value given by Eq. (290).
If the potential difference between the electrodes is raised gradually from 0,
the current-voltage curve shows two distinct regions. In the first or space-
charge region, the current increases in proportion to V'", is inversely pro-
portional to x' and is independent of the cathode material or temperature.
In the second region the current is equal to the saturation current I, and thus
varies with cathode temperature or material, but is independent of V or x.

Ob3ection is sometimes raised to the derivation of this equation on the
ground that if v=0 and E0=0 at the cathode surface, then no current could
How. This difficulty seems rather academic if we consider that I=pv and
under our assumed conditions this takes the indeterminate form ~ XO. A
complete justification of Eq. (290) is found in the fact that a more rigorous
derivation based on a complete Maxwellian distribution of the velocities of
the emitted electrons leads, as we shall see, to an equation which becomes
identical with Eq. (290) when the initial velocities of the electrons approach
zero.

Species 0f initial velocities KVe know, of .course, that the electrons are
actually emitted from hot cathodes with appreciable velocities and therefore
Eq. (290) is to be regarded only as an approximation.

"' Birge, Rev. Modern Phys. J, , 1 (1929); C. T. Perry and E.L. Chaffee, Phys. Rev. 36,
904-18 (193{)).
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As a second approximation let us consider what changes would be brought
about in Eq. (290) if the electrons were all emitted with a definite velocity
component vo in a direction normal to the cathode surface. '" Velocity com-
ponents parallel to the cathode surface may be present but do not need to
be taken into account in the following derivations.

If the current is to be limited by space charge, a fraction of the electrons
must return to the cathode. This can occur only if there exists between the
cathode and anode a retarding field just sufficient to bring the electrons to
rest; i.e. , there must be a potential minimum (M in Fig. 41) in the space at a
certain distance, say xo, from the cathode, where the potential is —Vo, Vo

being the volt-equivalent of the initial velocity vo.

If we measure V and x from the potential minimum instead of from the
cathode, it is evident that Eq. (284) is still applicable. In Eq. (287) we may
put 80=0 (at x=0) and thus in the region between M and the anode A the
potential distribution is given as before by Eqs. (288), (289) and (290).

Between 3EI and the cathode C, electrons are moving in two opposite
directions, the current density of electrons away from the cathode being I,
and I,—I in the opposite direction, where I, corresponds to the saturation
current and I to the actual current Rowing to the anode. Since the space
charge produced by a given current in either direction is the same, the space
charge p at any point is the same as though there were a current 2I, —I in one
direction only. Thus the potential distribution between C and M is given by
Eq. (289) or (290) if we replace I by 2I.—I.

Thus we have

2I, —I = 2.33 X 10 'Vp'I'&0 (293)

I = 2.33 )& 10 'V, ' 'x, ' (294)

where x is the distance from M to A and V is the potential of A with re-
spect to 3L Dividing one equation by the other and placing x=xo+x and
V= V, —Vo (the potential difference between A and C), we get

xo ——x/[1+ I1+ (V/V0) I "'I2(I /I) —1I'") (295)

or if V()&&V,

(296)

approximately.
Curves III and IV in Fig. 41 have been calculated for the case V=10

volts, VD
——1 volt, x= 1 cm, I,/I being taken equal to 5 for curve III and 1 for

curve IV.
"'J.J.Thomson, in the 2nd Edition of his book, Conduction of Electricity Through Gases

(1906) p. 223 {also p. 372 in 3rd Edition, 1928) made this assumption in treating the space
charge problem between para11el planes. He obtained an equation like Eq. (287) except that it
was in far more complicated form.
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Under the conditions we have assumed, where the emitted electrons all
have the same velocity component vo normal to the cathode surface, the space
charge at M is theoretically infinite just as it previously was at the cathode
surface in the case t o = 0. The surface of minimum potential thus acts exactly
as a cathode giving a space-charge limited current I to the anode A. On the
other side, facing C, it receives a current I, and gives off a current I,—I. A
"virtual cathode" of this sort has its position and effective potential fixed by
the number and the velocities of the electrons that are projected towards it
by the neighboring actual electrodes. We shall find other cases of virtual
cathodes in considering space charge currents in three-electrode tubes.

The assumption that the electrons are emitted from the cathode with a
uniform normal velocity component vo is still objectionable in that it leads
to an infinite space charge density at M. However, the foregoing analysis
is useful in introducing the conception of the "virtual cathode" and showing
how the eAect of initial velocities can be taken into account merely by meas-
uring Vand x from M instead of from C.

Space charge equations for electrons emitted with Maxwellian velocity dis
tribution. The electrons given oA by a hot cathode actually have a Maxwel-
lian velocity distribution. * On this basis Schottky'" obtained an approxi-
mate solution for xo, the distance from the cathode to the potential mini-
mum when the current is limited by space charge. Complete solutions of the
problem of the potential distribution have been obtained by Epstein, Fry and
Langmuir. '" The following summary of results is based on Langmuir's treat-
ment of the problem, but an attempt is made to put the equations in more
convenient form than in prior publications.

With x as abscissa to measure distances from the cathode surface, we let
xi, x2 and x~ be the abscissas of the cathode, anode and surface of minimum
potential, respectively. Similarly, we let V be the potential at any surface
at x and Vi, V2 and V~ at cathode, anode and x~. The saturation current
density is I, and the actual current density to the anode is I, as limited by
space charge. The potential V~ at the minimum can be calculated directly by
means of the Boltzmann equation* which can be put in the form

V~ —Vsr = (Tj5040) 1ogio (I./I) volts. (297)

The problem of determining the potential distribution is greatly simpli-
fied by choosing, as origin for a V(x) plot, the point xjr, Vsr, and also by
replacing x and V by dimensionless parameters $ and g which serve as meas-
ures of x and V in terms of units of distance and potential appropriate to the
particular case considered. Thus we put

* See Part I, p. 204—207.'" %.Schottky, Phys. Zeits. 15, 526 and 624 (1914).
~9~ P. S. Epstein, Verh. d. D. Phys. Ges. 21, 85 (1919). Tables are given by which the po-

tential distribution may be obtained. Hov ever, all the equations involving the Boltzmann
constant k involve an error which may be corrected by replacing k by 2k. T. C. Fry, Phys. Rev.
17, 441 (1921)and ibid. , 22, 445 (1923). I. Langmuir, Phys. Rev. 21, 419 (1923}.

~ See Eqs. (9) and (10) Part I, page 139.
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s = e(V —V~)/kT = (11606/T)(V —V~)

$ = 9.174 && 10'T ' I'I'(x —x~)

where I is in amps. cm ', Tin degrees%, xin cm. **

An equivalent expression for $ is

$ = (8xn~e/V. )'"(x —x~)

(298)

(299)

(300)

where n~ is the electron concentration (electrons cm-') at the potential
minimum and V, is the potential equivalent to the electron temperature T in
accord with Eq. (8), Part I. The insertion of numerical values of e and V,
(in terms of T) gives

g = 0.2042(n~/T)'"(x —x~). (301)

Comparison of Eqs. (299) and (301) gives for the electron concentration
at x,g

nv ——(xm/2kT)'"(I/e) = 2.018 10"IT—'~' (302)

if I is in amps. cm . This is also directly derivable from Eq. (74) Part I,
remembering that in the present case at x~ we have only half of a complete
Maxwellian distribution.

The electron concentration n is given by

n = npg[1 + 1 + erf g"']e
where the error function is defined by

erf x = 2x '" t exp ( —y')dy.

(303)

(304)

The upper or lower signs are to be taken according as x —x,~I is + or —re-
spectively.

If q&3, a good approximation is

e = n~[(i + 1)e" + (xg) '~2] (305)

Langmuir~93 has published a table of $ as a function of ri, from which data the
Curve I of Fig. 42 has been prepared.

The procedure for calculating the potential distribution when I, I„Tare
given is as follows. First calculate rlq (the value of g at the cathode surface)
by the relation

gq ——2.303 logqo (I,/I) (306)

which is easily derivable from Eqs. (297) and (298), and then from Curve I
of Fig. 42 get the corresponding value of $~, which will be negative. Substitu-

**The constant 9.174)(10' is equal to 4{m /2k}'~'m'l'e'~' where nz is the mass of the electron.
In order to obtain I in amps. cm ', e should be taken to be 1.4300=4.770+10 "+0,1 g, g

being the velocity of light 2.998)(10"cm sec '.
g'~ L. Langmuir, Phys. Rev. 21, 419 {1923}.
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tion of $4, 2' and I in Eq. (299) gives x44 —xi. For any other value of x the
corresponding $ can be found; the curve gives il for this point and Eq. (298)
then gives V—V44. Comparison with Eq. (297) gives V at the desired point.

To calculate the current as a function of anode potential when I„Tand
the distance x2 —xi between anode and cathode are given, the foregoing

30

20

I—

/

7r
-2 0 2 4 /0 /2 /4 /6 /8 20 22

Fig. 42. Curve I gives & as function of q. & and g measure distance and potential respec-
tively in terms of specially defined units. Curve II corresponds to Eq. (310), v bile Curve III
corresponds to Eq. (289).

&=0 represents position of potential minimum M.
+g applies to space between M and anode.

applies to space between M and cathode.

method is used to calculate the potential V at x=x2 for a series of chosen
values of I, and thus a curve is produced giving the desired relation between
Iand V~,

The field intensity Z = —d V/dx at any point can be found without use of
the function $. It is given by

E' = 84re44~V, [(1 y 1 + erf g'i')44 —1 + 27r 'i'g'i'j (307)

using the same convention for the signs as in Eq. (303). To obtain 2 in

volts cm ', the factor in front of the bracket can be placed

Sm.en~V, = 3.097 &( i0 'on~T = 6250 IT (308)

Langmuir has shown, for large values of rj and x)x44 that $ can be ex-

panded in terms of inverse powers of g:—
$ = (2j3)2ii24rii4$4i4 + 1.6685gii4 (309)
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Substituting this in Eq. (299), squaring and combining with Eq. (298'l

gives
21/2 3 1/2 (V V )3/2

I = — (1+2.6582/ "')
92r //3 (x —x3/) 2

(310)

which is the usual three-halves power law, as given by Eq. (289), except that
the distances and voltages are measured from the potential minimum and the
correction factor given in parenthesis is added. The 2nd term in this cor-
rection factor has its origin in the 2nd term of the expansion for $, (Eq.
309)), whereas the usual three-halves power equation results from the first
term.

To show the relative magnitude of the errors made by using the uncor-
rected equation, Curve III in Fig. 42 has been drawn to give the values of
the 1st term in Eq. (309), while Curve II has been obtained by multiplying
this first term by (1+2.658r/ '")"' which is equivalent to using the approxi-
mation made in Eq. (310). Examination of these curves shows that the
ordinary space charge equation (289) or (290) involves rather large errors;
even when g is as large as 100 these errors amount to 10 percent. The first
order correction term employed in Eq. (310), however, makes the agreement
(Curve II) good even for values of r/ as small as 1 where the error in $ is
about 2 percent.

For nearly all practical cases, therefore, in which the e8ect of the initial
velocities needs to be considered, Eq. (310) is sufficiently accurate. Inserting
the numerical values as in Eq. (290) to express I in amps. cm ', V in volts
and x in cm we have

(V V )3/2
I = 2.334 X 10 ' [1+0.0247T'"(V —V3/) "'] (311)

(x —x32) '

In using this equation V3r is found directly from Eq. (297); putting Vi ——0
if we choose to measure voltages from the cathode. Measuring distances (x)
from the cathode we can find x3/ from Eq. (299) which may for convenience
be written

x3/ = 1.090 && 10 '( —$i) T'"I '" cm. (312)

The quantity ( —f&), according to Fig. 42, cannot exceed 2.55 and yet is greater
than 2.0 if I,/I) 7. Taking —$i

——2.55, we get as a convenient expression

xM ( 0.0016(1000I) '/ (T/1000) / cm (313)

and thus with a current density of 1 ma per cm' and a cathode temperature
of 1000' K, x~ is only 0.0016 cm.

The equations that we have derived for the potential distribution between
parallel planes are only applicable when there is actually a potential minimum
between the electrodes. When the retarding field extends to the anode, the
current is no longer limited by space charge and the Boltzmann equation
alone is sufficient to determine the current that Rows. The potential dis-
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tributions in some cases of retarding 6elds extending from cathode to anode
have been treated by Langmuir'" and by v. Laue. '"
Space charge equations for cylinders and spheres.

In considering the space charge limitation of current flowing between con-
centric cylinders or spheres, we have to distinguish between the functions of
the two electrodes. For example, we may have electron currents from a hot
wire cathode at the axis of a cylindrical anode, or we may wish to treat the
inverted case of a small cylindrical anode inside of a large electron-emitting
cylindrical cathode. Since, however, we may want to apply our equations
to the How of positive ions as well as electrons, it is better not to refer to the
two electrons as cathode and anode, but as emitter and collector.

As in the derivation of Eqs. (289) and (290), let us assume that the car-
riers of current escape from the emitter without initial velocity so that the
velocity is given by Eq. (284) if we take the potential of the emitter to be
zero. Using Poisson's equation in the form of Eq. (137), we now obtain in
place of Eq. (286)

O'V x dV
+ ——= 2(2)"'r(rs/e)"'IV '"

t&
(314)

where x is 1 for cylinders and 2 for spheres.
Let us now replace the variables V and r by two new dimensionless

variables y and P defined by

p = log, (rjro) (315)

(316)

where ro is the radius of the emitter.
Elimination of I and r from Eq. (314) by means of these two equations

gives

O'V dV 4 V
+ (« —1)

dy 9 P'
(317)

Since the current i between emitter and collector is independent of r, the
current density I varies inversely as r" or in proportion to e "& so that

dIjdy = —«I.

Introduction in this equation of the value of I from Eq. (316) gives

dV 4V dP
3 = 2(2 —«)V+

dv P dv

(318)

'" I. Langmuir, Phys. Rev. 21, 419 {1923}.'" M. v. Laue, Jahrb. d. Radioakt. u. EIektronik 15, 205 {1918}.
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Differentiation gi~es an expression for d'V/dy'. By substituting this and
the value of d V/dy from Eq. (319) in Eq. (317), V is eliminated and we ob-
tain,

d'P dP ' dP
3P + —+ (5 —~)P—+ P'(1+ 0.5x —0.5a') = 1.

d'Y ~'Y d7

For cylinders (x = 1), this gives,

d'P dP ' dP
3P + —+ 4P +—P' = 1.

d'Y d'Y d'Y

(320)

(321)

For spheres (x= 2), to prevent confusion, we will replace P by n and thus
Find

d2n do; 2 dn
3n + —+3n—= 1.

d'Y d'Y d'Y
(322)

To solve our space-charge problem we need to integrate these equations,
subject to the boundary conditions: Vand dV/dr=0 at r =ra ory=0.

Solutions of these equations may be obtained in the form of power series
in y as follows

P = y —(2/5) y' + (l1/120)y' —(47/3300) y4 + 0.00168'' . (323)

and

a = y —0.3y' + 0 075'' —0.01432y4 + 0.00216y5 (324)

That these solutions satisfy the boundary conditions can be proved by
substituting the values of n or p into Eq. (319), noting that d V/dy = rd V/dr
and that V/p approaches zero as y and V approach zero, since V"'/p remains
linite according to Eq. (316).

For larger values of y where the series for n and p converge too slowly, the
following approximate equations may be used which become more accurate
as ~y ~

increases.
Cylindrical case. External collector (y)0). Examination of the values of

p calculated from the series of Eq. (323) using positive values of y shows that
as r/r, increases, P rises to a maximum and then decreases to a minimum.

For large values of y the second term in Eq. (321) can be neglected and
the equation can then be integrated giving,

P = 1 + A(ro/r)"' sin [(2'"/3) log, (Br/ro)]. (324)

The integration constants A and B have been determined empirically from

'" The series for P was published by I. Langmuir Phys. Rev. 2, 450 (1913)and Phys. Zeits.
15, 348 (1914}.In the Phys. Rev. paper, through a printer's error, the coefficient of the second
term was incorrectly given. The method of calculating the coefficients of this series was de-

scribed by I. Langmuir and K. B. Blodgett, Phys. Rev. 22, 347 (1923), the coefficients of 14
terms being given. The series for a was derived later by I. Langmuir and K. B. Blodgett, Phys.
Rev. 24, 49 (1924). Values of P' and n' were tabulated in these papers.
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values of P found from the series of Eq. (323): A =0.9769, 8 =0.08383. For
convenient calculation the equation may then be written,

P = 1 + 0.9769(ro/r)'1~ sin [1.0854 log&p (r/11. 93rD)]. (325)

This equation gives p accurate to 1 percent at r/ro ——12 and within 0.1 per-
cent at r/ro ——44. Thus P is a damped harmonic function of y, rapidly ap-
proaching the limit p = 1. The following table gives some of the maximum and
minimum values of P, and the values of y and r/ro at which P = 1.

T.vaLE Xx. 3faxima and minima of p. (External collector).

2.4234
3.7827
9.143

10.449
15.808
17.113

r/rp

11.284
44.05

9 352X10'
3.451 X10'
7.332 X106
2 706X 10'

0
0.04621

0—5.321X10 4

0
+6.258X10 '

1.00000
1.09455
1.00000
0.999894
1.0
1.000013

Between the successive maxima and minima or vice versa, the radius r
increases 784 fold and the values p —1 change in the ratio 85.02:(—1). The
curve marked P' in Fig. 43 gives values of P' for this case up to r/ro ——1000.
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Fig. 43. Plot of p'-, ( —p}', cx', ( —n}2 as functions of radius. r0=radius of emitter; r =radius
of collector. P' and e' apply to cases for which r )r&. ( —P}'and (—n}' apply to cases for which
r0) r.

Cylindrical case Interna. t collector (y &0). When . ro/r is large, the val-
ues of P' are given by

P' = 4.6712(ro/r) [log„(ro/1.4142r) ]'". (327)
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By inserting this value of P' in Eq. (316) and comparing the result with Eq.
(146), it appears that the electric field near the collector is the same as that
which would be produced in the absence of space charge by an emitting
cylinder having a radius 0.7071 ro. In this inverted case, the effect of space

.6

.4
~3
~ 2

0

~ 2

-.6

-9
-/. Oo ~2 ,e .a I I I

/0 /Z /4 /6 /4 g.o

Fig. 44. Plot of P and Ot as functions of r/rp in the neighborhood of r/t'p=1.

charge near the collector is therefore negligible, but the space charge near the
emitter has an effect equivalent to a reduction in radius of the emitter in the
ratio 1.4142: i.

Spherical case. Externa1 collector (y)0). .For very large values of r/ro,
the following equation gives a good approximation,

a.' = (2l3)y + 0.5158 log, o (3.885'). (328)

The error in n' calculated by this equation is about 0.5 percent for p =6
and 0.02 percent at y = 12.

Spherical case. Internal co1Iector (y&0.) .For large values of ro/r, n.' is
given quite accurately by*

(329)

The error in n' involved in this approximation is 0.5 percent at ro/r = 9 and
0.02 percent at ro/r= 20. Comparison of this equation with Eqs. (316) and
(147) shows that the electric field near the collector is the same as that which
would be produced in the absence of space charge by an emitting sphere
having a radius 0.677 ro.

Space charge equation for cylinders (Negligible initial velocities) The cur-.
rent density I at any point between the cylinders is given by Eq. (316). We

* In the paper by I. Langmuir and K. B. Blodgett, Phys. Rev. 24, 49 (1924), in the equa-
tion on p. 54, Eq. (15), y=n2/2 was inadvertently used in place of o,' but the tabulated values
were correct.
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are usually interested in knowing the current i flowing between the cylinders
which is given by

(330)

where r is the collector radius and I., the length of the cylinders, is so great
compared to the radius that end-corrections are negligible.

For unipolar currents carried by electrons we may put e/m = 5.279 X 10"
e.s. units and with V in volts the equation becomes

i = 14.66 X 10 'LV ' /(rP') amperes. (331)

If, however, the currents are carried wholly by singly charged ions of
mass m, the equation becomes

i = 14.66 X 10 '(m, /m)"'LV~~'/(rP') amperes

which may be written

i = 3.432 X 10 'M '"LV'"/(rP')

(332)

(332—a)

where M is the "molecular weight" of the ion (oxygen atom = 16).
The values of J3' to be used in these equations may be calculated by the

methods already given or may be read off the curves of Fig. 43. When r/r,
is not far from unity n' or P' is more accurately obtained from the values of
n and P given in Fig. 44.

These equations may be used to calculate the space charge limited current
between cylinders of given radii and at known potentials, or, considering i to
be constant, they may be solved for V, for any chosen values of r/ro (and
therefore P'), and thus the potential distribution can be calculated.

In the theory of electric discharges in uniformly ionized gases, we shall see
that a cylindrical collector of radius r in such a gas is surrounded by a sheath
of radius r p through which the current is carried either by positive ions or by
electrons, but not by both. Thus the space charge equations (331) and (332)
are applicable, the outer surface of the sheath constituting a virtual emitter.
As the applied voltage I/ changes, the current density Ip at the outer surface
of the sheath remains constant so that the collector current i varies according
to

i = 2mrpl. Ip. (333)

If the current i is measured at given voltage t/, the sheath radius rp can
be calculated by getting P' from the known values of i, L, V and r by Eq.
(331), and then getting the corresponding value of ro/r from the curves
marked ( —P)' in Fig. 43. The current density Io is then obtained by Eq.
(333). It is usually found to be independent of the applied voltage.

It often happens that Ip is known and it is desired"' to calculate the cur-
rent i that will flow to a collector of known radius r with a given applied

"~ I.Langmuir and H. A. Jones, Phys. Rev. 31,366 (1928).
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potential V. Eq. (333) cannot be applied directly since we do not know rrr

Eliminatingi between Eqs. (333) and (332), we have

(rrr/r)P' = 2.334 && 10 '(m, /zrz)'r'V" /(Irrr'). (334)

Thus from the known values of V, Ii1 and r, the value of (rp/r) P' is found, and
from this by means of the curves in Fig. 45, r,/r and hence ro is obtained.
Fq. (333) then givesi.
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Fig. 45. Plot of ( —p)'(r0/r) as function of ro/r.

Space charge equations for spheres (Negligible initial velocities). Instead of
using Eq. (316) which gives the current density I, it is more convenient to use
the following expression for the total current i.

(335)

For electrons, when t/ is expressed in volts, this becomes

i = 29.34 )& 10 't/'I'a ' amperes. (336)

For ions of mass m, the coefficient is decreased in the ratio (m/m, )'r' giving,

(337)

where 3II is the "molecular weight" of the ions.

Space charge currents between equidistant curved surfaces.

Comparison of Eq. (316) which gives the space charge current density
for either cylinders or spheres, with Eq. (289), which applies to parallel
planes, shows that they are identical except that in the former r'p' replaces
x', x being the distance between the planes. The reason for this is evident if
we consider that when r and r& are nearly equal, p, as defined by Eq. (315),
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is approximately equal to (r —ro)/r or to x/r E.qs. (323) and (324), when the
terms involving the higher powers of y are neglected, show that P=y for
both cylinders and spheres and therefore r'P' = x'.

Thus equidistant curved surfaces having a radius of curvature large com-
pared to their separation may be treated approximately as though they were
plane surfaces. Careful consideration"' of the effects of the terms involving
y' and y' shows that very accurate values of the space charge current between
equidistant curved surfaces may be obtained by using the equation for paral-
lel planes if the area used in calculating the current density I from the total
current ~ is taken to be the area of a surface 4/5ths of the distance from the
emitter to the collector surfaces. The fractional error in the current thus
calculated is of the order of —0.03x'0' where 0 is the "total curvature" of the
surface (1/r for cylinders and 2/r for spheres).

The 3/2-power law for electrodes of any shape.

In all three cases, parallel planes, coaxial cylinders and concentric spheres,
neglecting initial velocities we have seen that the space-charge-limited cur-
rent varies in proportion to V"'. The following reasoning proves that this
relation holds for electrodes of any shape provided the effect of the initial
velocities of the emitted particles may be neglected.

Let us assume that the emitter is at zero potential and that space in which
the discharge takes place is bounded by surfaces which are either at zero
potential or at the potential V~, (the collector potential). Then if there are
no initial velocities, the problem of the How of current as limited by space
charge, involves the simultaneous solution of the three equations

-'mv' = Ve

I = Hp

AV = —4+p

(338)

(339)

(340)

with the boundary conditions V= 0 over the emitter surface and either 0 or
V& over all other bounding surfaces, and also the normal component of the
field intensity is zero at the emitter surface.

It should be noted that v in Eq. (338), which is the velocity in the direction
of motion, enters here as a scalar quantity, whereas in Eq. (339), 8 and I are
essentially vectors, the current density being different in diA'erent directions.
In the cases of planes, cylinders, and spheres, this distinction has not been
necessary since the paths of the electrons or ions have always been straight
and have coincided with the lines of electric force. For electrodes of other
shapes, however, the electrons describe orbits which will cut across the lines
of electric force. In fact, at each point the centrifugal force mv'/R due to the
curvature of any electron path must equal the electric force acting in a direc-
tion normal to the path (R being the radius of curvature).

Let us now consider what must be the eHect of increasing the potential at
every point in space in a definite ratio, n.'1, thus replacing V by n V. Equa-

I. Langmuir and K. B.BIodgett, Phys. Rev. 24, 57 (1924}.
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tion (340) shows that p, the space charge, must increase n-fold. Equation
(338) then indicates that the velocity v must everywhere be increased n'"
fold. The boundary conditions V=0 and gradient A=0 at the emitter sur-
face are obviously not altered when Vis increased n-fold.

If we increase the voltage everywhere n-fold, the electric force, and there-
fore also the centrifugal force, rlv'/R, must increase n-fold. But we have just
seen that v' itself increases n-fold and therefore the radius of curvature and
the shapes of the paths are unchanged.

For this reason, whatever the distinction between v and 8 may be, their
ratio remains unchanged, and thus both v and 8 must be proportional to n'".
Equation (339) then indicates that I varies with n'~'. In other words, the
current, limited by space charge, varies with V"' for electrodes of any shape.

The conditions under which this conclusion is valid should be examined
more closely. In order that Eq. (338) may apply, it is necessary not only that
the initial velocities shall be zero, but that the whole of the emitting surface
shall be at uniform potential. The potential drop along a 61amentary cathode
will thus cause deviations from the 3/2-power law which we shall consider
later.

If there are only two electrodes and one surrounds the other, our assumed
boundary conditions are fulfilled. If we have two electrodes in a glass en-

velope, the glass surface receives electrons from the cathode until it becomes
charged to cathode potential. For all such insulated surfaces, if we neglect
initial velocities, we may place V=0 and our boundary conditions are again
fulfilled so that the 3/2-power law should apply. However, we shall see that
with electrodes whose mutual capacitance is low compared to that between
the glass surface and the emitter, the tendency of the glass to acquire nega-
tive potentials because of the initial velocities of the electrons is a factor that
causes much larger deviations than in the case where one electrode encloses
the other.

Specs of sise If in. any high vacuum device ha~ing electrodes of any
shape, and in which the unipolar current is limited by space charge, all di-
mensions are increased n-fold, but the potentials of the electrodes are kept
unchanged, the total current remains unchanged. This follows from Eq.
(340) which shows that if V remains unchanged, p must be inversely pro-
portional to n' and thus by Eq. (339), the current density I is everywhere in-

versely proportional to n', and the current i is independent of the size of the
device.

EfFects of initial velocities on space charge currents between cylinders.

Case I. External collector. Schottky" pointed out that the correction of
the three-halves power law for cylinders, due to the initial velocities of the
electrons, must be much smaller than for parallel planes, as given, for ex-
ample, by the correction factor in Eq. (311). The effect of initial velocities
may be approximately taken into account by considering that the space

'99 Q'. Schottky, Phys. Zcits. 15, 624 (1914).
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charge at every point is reduced in the ratio [V/(V+ Vp) ]'" where Vo is the
volt-equivalent of the average initial velocity in a radial direction.

It is thus possible to show"' that the current between an internal emitter
of small diameter and an external collector of large diameter can be approxi-
mately calculated by Eq. (331) or (332) by replacing V by an effective value
V, given by

Vp V
V, = V —V~+ —log.

4 XVp
(341)

where V is the anode potential (cathode taken as zero), V~ is the potential
at the potential minimum as obtained from Eq. (297) by putting V& ——0, 'A is
a numerical factor that may be estimated to have the value 1.5 and t/Ois

given by

Vo = (3/2) AT/e = T/7733 volts. (342)

The radius r~ of the cylinder which is the locus of the minimum in the
potential near the emitter, can be estimated by considering this surface to be
a "virtual emitter, " using a method similar to that employed in deriving Eqs.
(293) and (29S). Between the emitter (r = ra) and the virtual emitter (r =r~),
the electrons (or ions) are in a retarding field, the effective current being 2i, —~

where i, is the saturation emission current, so that in applying the space
charge equation (331) we use values of P corresponding to the case of the
internal collector. Beyond r =r~, however, the electrons are in an accelerat-
ing 6eld and the case for the external collector is applicable. Thus we find

2(i/f) —1 = [(Vo —V~)/(V —V~) ]'~'(r/«)(p/po)' (343)

where the subscript 0 applies to the emitter, and Po and P are functions of
r~/ro and of r/rm respectively.

Since we may take r/r~ to be large, 13 will be close to unity and its value
will be nearly independent of r/r~. If V is so large that we may neglect V~
compared to V and if we take the potential of the emitter to be zero, we have

f3o' = 0'(rj«)( V~/V)"—'[2(~/i) —1] ' (344)

from which r~/rp can be obtained from the curve marked P in Fig. 44. Po in
this case refers only to that half of the curve where P has negative values, and
r~/ro is equivalent to 1/(r/ro) on this curve.

As an example consider a filament of 0.2 mm diameter at the axis of a
cylindrical anode 20 mm diameter. According to Eq. (331), neglecting the
eSect of initial velocities, the maximum current that can How with V=50
volts is 4.83 milliamps. per cm of length. Taking the cathode temperature to
be 2000'K, the average initial velocity in the radial direction according to
(342) corresponds to Vo ——0.26 volts. If the emission from the filament is
24. 1 ma per cm (about 5 times the "space-charge current"), we find from Eq.
(297) that the potential at the potential minimum is VM = —0.28 volts and

"' I.Langmuir, Phys. Rev. , 21, 419—35 {1923),see especially p. 43o.
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thus by Eq. (341) the effective potential, allowing for the initial velocities,
is 51.8 volts. From this, by Eq. (331), the space-charge current is 5.09
ma cm ' as compared with 4.83 obtained by neglecting initial velocities.
According to Eq. (344), (—Po)o= 0.00502 or Po = —0.071, and by Fig. 44 this
gives rz/ro =1.0715. The minimum potential thus lies so close to the cathode
surface that we are justified in having failed to distinguish between r~ and
ro in calculating P'for the purpose of gettingi

Case II. Internal collector. The conservation of angular momentum cor-
responding to the initial velocities requires that the tangential velocities of
the electrons shall increase as the electrons approach the collector, (in propor-
tion to 1/r). With a collector of small size, a considerable fraction of the
electrons thus pass close to the collector without striking it.

We have seen in Chapter III from Eqs. (251) and (252) that the fraction
of the emitted electrons that reach an internal cylindrical collector remains
constant as the emission increases until the Davisson condition, Eq. (274),
is no longer fulfilled. When this occurs, * the current has risen so nearly to the
critical value needed to give d V/dr =0 at the emitter, that we may without
appreciable error consider these two conditions to be equivalent. For cur-
rents less than this we have, by Eq. (251),

&c = ~clzf = ~zIz(r/ro)f (345)

where i~ is the current fIowing to the collector and SgIg is the saturation cur-
rent from the emitter.

When the emission has risen to such value that d V/dr =0 at the emitter
surface (or at the minimum potential surface close to it), the current is
limited by space charge and will remain nearly independent of the cathode
emission. The critical value of the emission current density Iz which gives
dV/dr =0 may be found by means of the space charge equation (330), in
accord with the following reasoning.

The discussion of Eq. (327) has shown that the effect of space charge
near an internal collector is unimportant as compared to that near the emit-
ter. Therefore the space charge produced by electrons which move from the
emitter to the collector in strictly radial directions (no initial velocities) is not
materially different from that due to electrons which miss the collector be-
cause of orbital motions, except that the latter in returning again to the
emitter contribute as much on the outward as on the inward journey. Thus,
as in the derivation of Eq. (293), we must replace o in the space charge equa-
tion, (330), by 21zSz ic In —this way, with the value of ic from (345), we
find

lz~z(2 —fr/ro) = (2 2'"/9)(e/m)'"V"'/(rP') (346)

By eliminating Iz5z between this equation and Eq. (345), we find that the
critical current which gives d V/dr =0 at the emitter has the value

* See forthcoming paper by I Langmuir and L. Tonks in Phys. Re~ .
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0

&C

2 . 21/2 g 1/2 p'3/2 1

9 m rP' (2r/(rof)) —1
(347)

This~ gives the required limitation of current by space charge, taking into
account the orbital motions resulting from the initial velocities. Here the
value of f is to be calculated by Eqs. (252), (257) or (262). In case IsSz, the
saturation current i~ from the emitter, is greater than the value given by
Eq. (347), there will be a minimum potential surface or potential barrier close
to the emitter, whose potential V~ in accord with Eq. (297) can be put equal
to

Vsc = (2'/5040) logio (&srf/(acro)) (348)

where the value of ic is given as a first approximation by Eq. (347). To allow
for the effect of this potential barrier in calculating i&, we may now replace
V in Eq. (347) by an effective value V, given by

(349)

Space charge limitation of bipo1ar cunents.

If positive ions are generated at the anode of a high vacuum discharge
with hot cathode, the partial neutralization of the electron space charge
allows the electron current to rise above that calculated from the space
charge equations already given.

It will be instructive to calculate the magnitude and other characteristics
of this effect for the case of parallel plane electrodes. We shall see later that
this theory leads to an understanding of phenomena at hot cathodes in
ionized gases.

Consider an infinite plane cathode C at zero potential and a similar
parallel plane anode A at the potential V~ and at a distance a from C. Let the
cathode emit a surplus of electrons without initial velocities. The current is
then limited by space charge and the current per unit area, Io, is given by Eq.
(289).

Now let the anode A emit positive ions (without initial velocities) with
a uniform distribution over its surface, the current density being I,. Because
of the partial neutralization of the electron space charge, the electron cur-
rent will increase to a new value, say, I, per unit area. Assuming no re-
combinations nor collisions between electrons and ions, we wish to determine
the relation between I, and I„.

The solution of this space charge problem"' gives

where

(350)

(351)

m, ,/». , being the ratio of the masses of the ions and electrons.
'" I. Langmuir, Phys. Rev. 33, 954-89 (1929). See especially p. 956—60.
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The potential distribution between the electrodes is given by

V /Vg

x/s = (3/4)(I./I.)'" [r"'+ ~I(f —v)"' —&}j '"dX (352)
0

where x is the distance from the cathode to a point whose potential is V.
Table XXI gives x/a for various values of U/Vq and n The. lowest line

gives I./Io as a function of n.

TxaLE XXI. Potential distribution between Plane cathode emitting surplus of electrons and
parallel plane anode which emits given numbers ofions. Table of values of xja, the fraction of the
distance to the anode, at which the potential is a given fraction of the anode potential.

0
0.02
0.05
F 1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

I,/I0

0
0.0532
.1057
.1778
.2991
.4054
.5030
.5946
.6817
.7653
.8459
.9240

1.0000

1.0000

0.=0.2

0
0.0513
.1022
.1723
.2911
~ 3962
.4932
.5847
.6723
.7570
.8395
.9201

1.0000

1 ~ 0839

0
0.0491
.0981
.1661
.2823
.3855
.4815
.5731
.6612
.7471
.8314
.9149

1.0000

1.1872

0
0.0467
.0934
.1588
.2714
.3721
.4667
.5580
.6461
.7332
.8198
.9074

1.0000

1.3237

0. =0.8
0

0.0438
.0879
.1498
.2573
.3546
.4467
.5371
.6245
, 7123
.8016
.8940

1.0000

1.5186

a =0.9
0

0.0419
.0842
.1437
.2477
.3423
.4324
.5218
.6080
.6958
.7861
.8813

1.0000

1.6644

a=1.0
0

0.0396
.0798
.1367
.2363
.3274
.4146
.5000
.5854
.6726
.7637
.8633

1.0000

1.8605

These results show that when ~= 1. , the potential gradient at the anode
becomes zero just as it is at the cathode, and thus the positive ion current
as well as the electron current is limited by space charge. Values of n greater
than unity give imaginary values for the potentials and are thus impossible.
For n= 1, the potential distribution curve is symmetrical about its mid-
point (x/a =0.5, V/Vg =0.5).

From the values of I./Io, in the last row of Table XXI, we see that the
electron current increases as more positive ions are emitted from the anode
until the positive ion current also becomes limited by space charge. When
this occurs, the electron current and the positive ion current are each 1.860
times as great as the currents of electrons or ions that could flow (with the
same applied potentials) if carriers of the opposite sign were absent.

It is interesting to inquire how large is the effect of single positive ions
emitted from the anode, in causing an increased electron Row from the
cathode.

Differentiation of Eq. (350) gives

and

dI,/dI„= 0.378(m„/m,)'~' for a = 0

dI,/dI, = 3.455(m„/m,)"' for a = 1

(353)

(354)
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A plot of I,/Io as function of n from the data of Table XXI shows that
the slope of the curve increases gradually from 0.378 at o; =0 up to 3.455 at
0.,=1. Thus the effectiveness of the ions in raising the electron current in-
creases as the field strength decreases in the region where they originate, but
only up to a certain limiting value. Of course when o. = 1 the further increase
in the electron current is stopped by the space charge limitation of the ion
current.

The square root of the ratio of the masses of the ions and the electrons is
607 for mercury vapor, 271 for argon, and 60.8 for hydrogen, and therefore
each positive ion of these gases liberated at the anode will increase the num-
ber of electrons that cross the space by 229, 102 or 23 respectively in the case
of a pure electron discharge (n = 0).

The effect has also been determined of generating the ions not at the
anode but in the space between cathode and anode. Single ions introduced
into a pure electron discharge at a point 4/9ths of the distance from cathode
to anode produce a maximum eRect, 0.582 (m„/m,)"', in increasing the elec-
tron current.




